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QUADRATIC CONSTRAINT CONSISTENCY IN THE

PROJECTION-FREE APPROXIMATION OF HARMONIC MAPS

AND BENDING ISOMETRIES

GEORGIOS AKRIVIS, SÖREN BARTELS, AND CHRISTIAN PALUS

Abstract. We devise a projection-free iterative scheme for the approximation
of harmonic maps that provides a second-order accuracy of the constraint

violation and is unconditionally energy stable. A corresponding error estimate

is valid under a mild but necessary discrete regularity condition. The method
is based on the application of a BDF2 scheme and the considered problem

serves as a model for partial differential equations with holonomic constraint.

The performance of the method is illustrated via the computation of stationary
harmonic maps and bending isometries.

1. Introduction

A widely used approach to discretizing partial differential equations that involve
a nonlinear pointwise constraint follows [3] and is based on semi-implicit discretiza-
tions of gradient flows or evolution problems with a linearized treatment of the
constraint. A corresponding projection step to guarantee an exact satisfaction of
the constraint in appropriate quadrature points can only be used in special situa-
tions, e.g., if the problem is of second order and the finite element discretizations
under consideration provide certain monotonicity properties; cf. [7]. However, even
if the projection is stable, it may increase the residual of an approximation. It
was observed in [10] that the projection step can be omitted in many situations
and that the resulting constraint violation is controlled (linearly) by the step size
independently of the number of iterations. We refer the reader to [9, Ch. 7] for an
overview of these results. If a high accuracy in the approximation of the constraint
is desired, then this limits the efficiency of the numerical method. It is the goal
of this article to devise a variant of the projection-free scheme resulting from com-
bining [3] and [10] that provides second order accuracy in the constraint violation
under sharp discrete regularity conditions but is guaranteed to satisfy a first or-
der accuracy property unconditionally. Harmonic maps serve as a model problem
for partial differential equations with holonomic constraint, the application of our
results to other problems is illustrated by the computation of bending isometries.
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To explain the main ideas, we consider the numerical approximation of harmonic
maps into spheres that are stationary configurations of the Dirichlet energy among
unit-length vector fields for given boundary conditions, i.e.,

−∆u = λu, |u|2 = 1 in Ω, u = uD on ΓD, ∂nu = 0 on ∂Ω \ ΓD,

in a bounded Lipschitz domain Ω ⊂ Rd with boundary part ΓD ⊂ ∂Ω of positive
surface measure and a given function uD which is assumed to be equal to the trace
of a function ũD ∈ H1(Ω;R`) with |ũD| = 1 almost everywhere in Ω. The function
λ is the Lagrange multiplier related to the unit-length constraint and is given by
λ = |∇u|2; see [9, Ch. 7] and references therein. A weak formulation determines a
solution u ∈ H1(Ω;R`) with u = uD on ΓD and |u|2 = 1 in Ω, via the equation

(1) (∇u,∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · u = 0 in Ω, i.e., u is stationary with respect to

tangential perturbations on the unit sphere along u; see, e.g., [3] or the overview
in [9, Ch. 7] for details on the derivation of the weak formulation (1). The corre-
sponding formulation as a saddle point problem has been used in various articles
as a foundation for the development of approximation schemes; see, e.g., [21, 6]. In
view of irregularity results for general harmonic maps, cf. [24], it is important to
compute harmonic maps with low Dirichlet energy.

The iterative scheme devised in [3, 10] realizes a semi-implicit time discretization
of the gradient flow problem

(∂tu, v)? + (∇u,∇v) = 0

for all v ∈ H1
D(Ω;R`) subject to initial and boundary conditions u(0, ·) = u0 with

|u0|2 = 1 and u|ΓD
= uD, v|ΓD

= 0, and the constraints

∂tu · u = 0, v · u = 0.

The choice of inner product (·, ·)? in the gradient flow problem depends on the par-
ticular application, e.g., choosing the L2 inner product (·, ·) yields approximation
of the heat flow of harmonic maps into the sphere, while choosing the H1

D inner
product (∇·,∇·) is well-suited for approximating stationary configurations. Par-
ticularly, with the step size τ > 0 and the backward difference quotient operator
dtu

n = (un − un−1)/τ , it computes for given u0 the sequence (un)n=1,2,... via the
sequence of problems

(dtu
n, v)? + (∇un,∇v) = 0

subject to homogeneous boundary conditions for dtu
n and v on ΓD, and the lin-

earized unit length condition

dtu
n · un−1 = 0, v · un−1 = 0.

Note that here dtu
n is seen as the unknown variable which then defines un via un =

un−1 + τdtu
n. The iteration is unconditionally well posed and energy decreasing,

i.e., choosing v = dtu
n yields that

‖dtun‖2? +
1

2
dt‖∇un‖2 +

τ

2
‖∇dtun‖2 = 0.

This implies the summability of the discrete time derivatives ‖dtun‖2? and hence the
weak convergence of subsequences to solutions of (1). A bound for the constraint
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violation thus follows from the orthogonality condition and |u0|2 = 1, i.e., we have

|un|2 − 1 = |un−1|2 − 1 + τ2|dtun|2 = · · · = τ2
n∑
j=1

|dtuj |2.

Taking the L1 norm of this identity, the sum on the right-hand side is bounded by
τ(c?/2)‖∇u0‖2 provided that the induced norm ‖ · ‖? controls the L2 norm up to a

factor c
1/2
? .

The iterative scheme can also be seen as a backward Euler method for the L2

flow of harmonic maps if the flow metric is the L2 inner product. For such evolution
problems the discretization based on higher order time stepping methods has re-
cently been investigated in [1]; cf. also [11] for a nodal treatment of the unit-length
constraint. Provided that a sufficiently regular solution exists, quasi-optimal error
estimates have been derived which imply bounds on the constraint violation. We
study here the violation of the constraint in the absence of a smooth and unique
solution. The use of the H1 seminorm ‖ · ‖? = ‖∇ · ‖ defines an H1 gradient flow.
Being equal to the energy norm, this scalar product is natural for the minimization
problem and acts as a preconditioner. This typically leads to a faster energy decay
and, thus, is a preferable choice if one is interested in approximating stationary
configurations.

The generalization of the semi-implicit backward Euler method for the har-
monic map heat flow devised in [1] computes for given u0, . . . , uk−1 the sequence
(un)n=k,k+1,... via the scheme

(u̇n, v)? + (∇un,∇v) = 0

subject to homogeneous boundary conditions on ΓD and the linearized constraint

u̇n · ûn = 0, v · ûn = 0.

Here u̇n is a higher order approximation of the time derivative and ûn a suitable
explicit extrapolation. Adopting concepts from the construction of backward dif-
ferentiation formula (BDF) methods as analyzed in, e.g., [20, 2], approximations
with second order consistency properties are given by

u̇n =
1

2τ

(
3un − 4un−1 + un−2

)
,

or equivalently 2u̇n = 3dtu
n − dtun−1, and

ûn = un−1 + τdtu
n−1 = 2un−1 − un−2.

In particular, we have that un =
(
4un−1 − un−2 + 2τ u̇n

)
/3.

The iteration is initialized with one step of the linearized backward Euler method
and then repeated until the discrete time-derivatives are sufficiently small or some
final time T > 0 is reached. This initialization step does not affect the convergence
behavior in the L2 norm; cf. [25, Theorem 1.7] for related details. As an alternative
in discrete settings, a first iterate that satisfies a nodal unit-length constraint exactly
may be obtained by nodally projecting the backward Euler iterate to the unit
sphere, or by employing a nonlinear scheme; see, e.g., [19] for a Crank-Nicolson
type method. However, such approaches typically involve additional constraints,
e.g., on underlying triangulations, to guarantee energy stability. Note that we
always regard u̇n as the unknown variable in the time steps which is then used
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to specify the new iterate un. The function u̇n satisfies homogeneous boundary
conditions on ΓD if un−2, un−1, un equal uD on ΓD.

Algorithm 1.1. Choose u0 ∈ H1(Ω;R`) with u0|ΓD
= uD and |u0|2 = 1.

(0) Compute dtu
1 ∈ H1

D(Ω;R`) such that dtu
1 · u0 = 0 and

(dtu
1, v)? + (∇[u0 + τdtu

1],∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · u0 = 0; set u1 = u0 + τdtu

1 and n = 2.
(1) Set ûn = 2un−1 − un−2 and compute u̇n ∈ H1

D(Ω;R`) with u̇n · ûn = 0 and

(u̇n, v)? +
1

3
(∇[4un−1 − un−2 + 2τ u̇n],∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · ûn = 0; set un = (4un−1 − un−2 + 2τ u̇n)/3.

(2) Stop if ‖u̇n‖? + ‖dtun‖ ≤ εstop or nτ ≥ T .
(3) Increase n→ n+ 1 and continue with (1).

The stopping criterion in Step (2) of the algorithm controls the residuals in the
partial differential equation (1) and the involved orthogonality relation; in partic-
ular, it provides control over the difference between ûn and un. Instead of the
implicit Euler scheme for the initialization in Step (0), other single-step methods
can be used provided that the treatment of the constraint remains unchanged. The
estimates of Proposition 3.1 below carry over directly if the midpoint scheme is
used.

Since the subspace of functions v ∈ H1
D(Ω;R`) satisfying v ·ûn = 0 in Ω is weakly

closed, the Lax–Milgram lemma implies that the iteration is unconditionally well
defined and terminates within a finite number of iterations. More precisely, we
show in Proposition 3.2 that

‖∇UN‖2G + τ

N∑
n=2

‖u̇n‖2? ≤ ‖∇U1‖2G,

where Un = (un, un−1) and ‖ · ‖G denotes a BDF-adapted variant of the L2 norm
defined in Section 2.2. An elementary calculation, cf. Proposition 3.1 below, shows

that we have ‖∇U1‖G ≤ c
1/2
G ‖∇u0‖ so that u̇n → 0 as n→∞. For the constraint

violation we show in Proposition 3.4 that for N ≥ 2 we have

‖|uN |2 − 1‖L1 =
3

2

(
1− 1

3N

)
τ2‖dtu1‖2 +

3

2
τ4

N∑
n=2

(
1− 1

3N+1−n

)
‖d2
tu
n‖2.

The right-hand side is always of order O(τ). Moreover, if and only if a dis-
crete regularity property applies, i.e., if and only if dtu

1 belongs to L2(Ω) and the
piecewise constant interpolant of the sequence τ1/2d2

tu
n belongs to L2(0, T ;L2(Ω))

uniformly as τ → 0, then the right-hand side is of order O(τ2). In view of the pos-
sibility of singularity formation from smooth initial data, cf. [15], a general proof
of the discrete regularity condition cannot be expected for the discrete L2 flow.
Our results apply however to stronger discrete flows such as the H1 flow of har-
monic maps, for which our experiments show clear advantages over the L2 flow,
in particular for the case of irregular initial data. All of our results are stated for
a semi-discrete method but hold verbatim if a spatial discretization with a nodal
treatment of the (linearized) constraint is considered.
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The article is organized as follows. We specify our notation and collect some
auxiliary results in Section 2. In Section 3 we derive our main result. The appli-
cation to the computation of harmonic maps and bending isometries is reported in
Section 4. We remark that other approaches based on higher order time stepping
methods for partial differential equations such as the Landau–Lifshitz–Gilbert equa-
tion typically employ a suitable projection step or make use of constraint-preserving
reformulations; cf. [13, 4, 5, 16, 18, 23].

2. Auxiliary results

We use standard notation for differential operators and Lebesgue and Sobolev
spaces, i.e., H1

D(Ω;R`) denotes the space of vector fields u : Ω → R` in L2(Ω;R`)
whose weak gradients are square integrable and whose traces vanish on ΓD ⊂ ∂Ω.
We let |·| denote the Euclidean length of a vector or the Frobenius norm of a matrix
and ‖ · ‖ the L2 norm of a function or vector field.

2.1. Discrete time derivatives. We always let τ > 0 denote a time-step size
which gives rise to the backward difference operator

dtu
n =

1

τ
(un − un−1)

for n = 1, 2, . . . , N and a sequence (un) in a Hilbert space. We also make use of a
second discrete time derivative, defined for n ≥ 2 by

d2
tu
n =

1

τ2
(un − 2un−1 + un−2).

A binomial formula shows that we have

(dtu
n, un) =

dt
2
‖un‖2 +

τ

2
‖dtun‖2.

Approximations of time derivatives with higher accuracy can be obtained by a
Lagrange interpolation of k+1 successive members of a sequence (un) corresponding
to time levels (tn) and a subsequent evaluation of the derivative of the interpolation
polynomial at tn. This leads to backward differentiation formulas and if three
successive values un, un−1, un−2 are used, i.e., k = 2, provides the discrete time
derivative

u̇n =
1

2τ

(
3un − 4un−1 + un−2

)
.

The discrete time derivatives dtu
n and u̇n define equivalent `2 seminorms in the

sense of the following lemma.

Lemma 2.1 (Norm equivalence). For every sequence (un) and N ≥ 2 we have for
the seminorms

|(un)|τ,1 =
(
τ

N∑
n=2

‖u̇n‖2 + τ‖dtu1‖2
)1/2

, |(un)|τ,2 =
(
τ

N∑
n=1

‖dtun‖2
)1/2

,

that c−1
12 |(un)|τ,1 ≤ |(un)|τ,2 ≤ c12|(un)|τ,1 with c12 ≥ 1.

Proof. The relation 2u̇n = 3dtu
n − dtun−1 immediately leads to the first estimate.

It also implies the second estimate since

‖dtun‖2 ≤
(2

3
‖u̇n‖+

1

3
‖dtun−1‖

)2

≤ 8

9
‖u̇n‖2 +

2

9
‖dtun−1‖2.
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Summing over n = 2, 3, . . . , N and absorbing the second sum on the right-hand side
except for ‖dtu1‖2 implies the estimate. �

We also state an inverse estimate for discrete seminorms.

Lemma 2.2 (Inverse estimate). For every sequence (un) and N ≥ 2 we have(
τ

N∑
n=2

‖d2
tu
n‖2
)1/2

≤ τ−1cinv

(
τ

N∑
n=2

‖u̇n‖2 + τ‖dtu1‖2
)1/2

.

Proof. Noting that 2(u̇n − dtun) = τd2
tu
n yields that

τ‖d2
tu
n‖ ≤ 2

(
‖u̇n‖+ ‖dtun‖

)
.

Taking squares, summing over n = 2, 3, . . . , N , and incorporating Lemma 2.1 proves
the estimate. �

2.2. BDF-adapted norm. The definition of u̇n leads to the multistep scheme
ẏn = f(tn, y

n) which has a second order consistency property and is referred to as
a BDF2 scheme. It satisfies an energy stability property which is a consequence of
the identity, cf. [20, p. 308],

(2) u̇n · un = dt|Un|2G +
τ3

4
|d2
tu
n|2,

where Un = (un, un−1) for n ≥ 1 and for an arbitrary pair X = (x, y) of elements
x, y from an inner product space we set

|X |2G = (GX ) · X = g11|x|2 + 2g12x · y + g22|y|2,
with g11 = 5/4, g12 = −1/2 and g22 = 1/4. The positive eigenvalues µ± =

(3± 2
√

2)/4 of the symmetric matrix G = (gij) yield the equivalence

µ−(|x|2 + |y|2) ≤ |(x, y)|2G ≤ µ+(|x|2 + |y|2).

Moreover, we have |(x, y)|2G − 1
4

(
|x|2 + |y|2

)
= x · (x− y), and

(3) |(x, y)|2G −
1

2
|x− y|2 =

3

4
|x|2 − 1

4
|y|2.

Lemma 2.3 provides a discrete version of the identity (|v|2)′ = 2v′ · v. Recall that
we have v̂n = vn−1 + τdtv

n−1.

Lemma 2.3 (Discrete chain rule). For a sequence (vn) and n ≥ 2 we have

2v̇n · v̂n =
1

2τ

[
3|vn|2 − 4|vn−1|2 + |vn−2|2

]
− 3

2
τ3|d2

t v
n|2.

Proof. We start by splitting the left-hand side of the asserted identity as

2v̇n · v̂n = 2v̇n · vn − 2v̇n · (vn − v̂n).

We apply (2) to the first term on the right-hand side. For the second term we note
that 2v̇n = 3dtv

n − dtvn−1 and vn − v̂n = τ(dtv
n − dtvn−1), and use the binomial

formula (3a− b)(a− b) = (a2 − b2) + 2(a− b)2, i.e.,

2v̇n · (vn − v̂n) = τ(3dtv
n − dtvn−1) · (dtvn − dtvn−1)

= τ
(
|dtvn|2 − |dtvn−1|2

)
+ 2τ3|d2

t v
n|2.

On combining the identities we deduce with Vn = (vn, vn−1) that

2v̇n · v̂n = dt
(
2|Vn|2G − τ2|dtvn|2

)
− 3

2
τ3|d2

t v
n|2.



QUADRATIC CONSTRAINT CONSISTENCY 7

Incorporating (3) yields the asserted identity. �

Remark 2.4. If u̇n · ûn = 0, then we deduce for n ≥ 2 that

(4)
3

2
|un|2 − 2|un−1|2 +

1

2
|un−2|2 =

3

2
τ4|d2

tu
n|2

If |un? |2 = 1 for all n ≥ 0, then we have 2u̇n? · ûn? = − 3
2τ

3|d2
tu
n
? |2 for n ≥ 2.

3. Main result

We provide in this section the derivation of the identities and estimates for the
energy stability and constraint violation. We always denote a pair of subsequent
approximations for n ≥ 1 via

Un = (un, un−1)

with the iterates (un)n=0,... obtained with Algorithm 1.1. Throughout the following
we assume that the norm induced by the inner product (·, ·)? controls the L2 norm,
i.e., that

‖v‖ ≤ c1/2? ‖v‖?
for all v ∈ H1

D(Ω;R`). The first result concerns the initialization step.

Proposition 3.1 (Initialization). (a) We have

‖∇U1‖2G ≤ cG‖∇u0‖2, τ‖dtu1‖2? ≤
1

2
‖∇u0‖2.

(b) We have ∥∥|u1|2 − 1
∥∥
L1 = τ2‖dtu1‖2.

Proof. (a) Choosing v = dtu
1 in Step (0) of Algorithm 1.1 shows that we have

1

2
‖∇u1‖2 + τ‖dtu1‖2? +

τ2

2
‖∇dtu1‖2 =

1

2
‖∇u0‖2,

which implies the bounds for ‖∇U1‖2G and τ‖dtu1‖2?.
(b) Since dtu

1 · u0 = 0 in Step (0) of Algorithm 1.1, we have that |u1|2 = |u0|2 +
τ2|dtu1|2. Noting |u0|2 = 1 shows the identity. �

The second result implies that the iteration is energy decreasing and that it
becomes stationary for n→∞.

Proposition 3.2 (Energy decay). For every N ≥ 1 we have

‖∇UN‖2G + τ

N∑
n=2

‖u̇n‖2? +
τ4

4

N∑
n=2

‖d2
t∇un‖2 = ‖∇U1‖2G.

Proof. Choosing v = u̇n in Step (1) of Algorithm 1.1 yields, using (2), that

τ‖u̇n‖2? + ‖∇Un‖2G − ‖∇Un−1‖2G +
τ4

4
‖d2
t∇un‖2 = 0.

A summation over n = 2, 3, . . . , N leads to the asserted identity. �

Remark 3.3. For the extrapolated value ûn+1/2 = (3un − un−1)/2 we have

1

2
‖∇ûn+1/2‖2 +

1

8
τ2‖dtun‖2 = ‖∇Un‖2G,

which yields another version of the energy law and shows that the BDF2 method
has a stabilizing effect.



8 G. AKRIVIS, S. BARTELS, AND C. PALUS

We next derive constraint violation estimates which provide an unconditional
linear rate and a quadratic error under a mild but necessary discrete regularity
condition. Qualitatively, the condition requires that sequences of approximations
are uniformly bounded in W 1,∞(0, δ;L2(Ω)) ∩H3/2(0, T ;L2(Ω)) for some δ > 0.

Proposition 3.4 (Constraint violation). For every n ≥ 2, we have

|un|2 = −1

2

(
1− 1

3n−1

)
|u0|2 +

3

2

(
1− 1

3n

)
|u1|2 +

3

2
τ4

n∑
i=2

(
1− 1

3n+1−i

)
|d2
tu
i|2.

If |u0|2 = 1, and u1 is computed by the linearly implicit Euler method, then
(
|un|

)
is increasing almost everywhere in Ω and we have

(5)
∥∥|un|2 − 1

∥∥
L1 =

3

2

(
1− 1

3n

)
τ2‖dtu1‖2 +

3

2
τ4

n∑
i=2

(
1− 1

3n+1−i

)
‖d2
tu
i‖2.

(a) Unconditionally and uniformly in n ≥ 1, (5) is bounded by c1τ .
(b) If and only if for m ≥ 1 we have

(6) ‖dtu1‖2 + τ2
m∑
i=2

‖d2
tu
i‖2 ≤ cr,

then (5) is bounded by c2τ
2 for every n = 1, 2, . . . ,m, as τ → 0.

Proof. The main idea is to interpret (4) as an inhomogeneous linear difference
equation that implies the asserted identity. The roots of the polynomial α̃(z) =
3
2−2z+ 1

2z
2 are z1 = 1 and z2 = 3, and thus the rational function 1/α̃ is holomorphic

in the open unit disk in the complex plane. A Taylor expansion about the origin
yields for |z| < 1 that

(7)
1

α̃(z)
=

∞∑
n=0

γnz
n.

Multiplying this identity by α̃(z) and comparing coefficients leads to the values
γ0 = 2/3 and γ1 = 8/9, and the recursion formula

3

2
γn − 2γn−1 +

1

2
γn−2 = 0.

Noting that (γn) is given as a linear combination of the sequences z−n1 = 1 and

z−n2 = 3−n shows that γn = 1 − 3−(n+1), n ≥ 0. We next consider the difference
equation (4) with n replaced by n− j, j = 0, . . . , n− 2, multiply the corresponding
equations by γj , and sum over j to derive the identity

n−2∑
j=0

γj

(3

2
|un−j |2 − 2|un−j−1|2 +

1

2
|un−j−2|2

)
=

3

2
τ4

n−2∑
j=0

(
1− 1

3j+1

)
|d2
tu
n−j |2.

We re-arrange the left-hand side as

n−2∑
j=2

(3

2
γj − 2γj−1 +

1

2
γj−2

)
|un−j |2

+
3

2
γ0|un|2 +

(3

2
γ1 − 2γ0

)
|un−1|2 −

(
2γn−2 −

1

2
γn−3

)
|u1|2 +

1

2
γn−2|u0|2,

and use the identities for the coefficients to deduce the asserted identity for |un|2,
which immediately leads to (5) noting that |u1|2 = |u0|2 + τ2|dtu1|2.
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(a) Proposition 3.1 shows that τ‖dtu1‖2 is uniformly bounded. The inverse estimate
of Lemma 2.2 in combination with the energy stability established in Proposition 3.2
thus proves the unconditional estimate.
(b) The assumed bound directly leads to the quadratic error estimate. It is optimal
since the coefficients in (5) are uniformly bounded from below. �

Remark 3.5. (i) Choosing the test functions v = dtu
1 and v = u̇n in Steps (0)

and (1) of Algorithm 1.1, respectively, yields that

‖dtu1‖2? ≤ ‖∇u1‖‖∇dtu1‖, ‖u̇n‖2? ≤ ‖∇un‖‖∇u̇n‖.
Hence, if the norm ‖ ·‖? controls the H1 norm, we have that ‖dtu1‖H1 and ‖u̇n‖H1 ,
n ≥ 2, are bounded by the initial energy. Noting 2u̇n = 3dtu

n−dtun−1 then implies
a uniform bound on ‖dtun‖H1 , n ≥ 1.
(ii) If the norm ‖ · ‖? controls the L∞ norm, e.g., via suitable Sobolev inequalities
or inverse estimates in a spatially discrete setting, then a pointwise bound for the
constraint violation error can be deduced.

4. Experiments

We report in this section the performance of the devised method used as an itera-
tive procedure to determine stationary configurations for the pointwise constrained
Dirichlet energy and a nonlinear bending functional. The algorithm devised and
analyzed for approximating harmonic maps into spheres can be greatly generalized
and applies to the numerical solution of a constrained minimization problem

Minimize I[u] =
1

2
a(u, u)− b(u), u ∈ V,

subject to boundary conditions `bc(u) = uD and a constraint

G(u) = 0.

Given some approximation û ∈ V satisfying `bc(û) = uD we define a corresponding
linear space via

F [û] = {v ∈ V : `bc(v) = 0, g(û; v) = 0
}
,

where g is the derivative of G. Our algorithm then reads as follows.

Algorithm 4.1. Choose u0 ∈ V with `bc(u0) = uD and G(u0) = 0.
(0) Compute dtu

1 ∈ F [u0] with

(dtu
1, v)? + a(u0 + τdtu

1, v) = b(v)

for all v ∈ F [u0]; set u1 = u0 + τdtu
1 and n = 2.

(1) Set ûn = 2un−1 − un−2 and compute u̇n ∈ F [ûn] = 0 with

(u̇n, v)? +
1

3
a(4un−1 − un−2 + 2τ u̇n, v) = b(v)

for all v ∈ F [ûn]; set un = (4un−1 − un−2 + 2τ u̇n)/3.
(2) Stop if ‖u̇n‖? + ‖dtun‖] ≤ εstop or nτ ≥ T .
(3) Increase n→ n+ 1 and continue with (1).

Choosing b = 0, a(·, ·) = (∇·,∇·) and G(u) = |u|2 − 1 yields the setting of har-
monic maps, whereas choosing a(·, ·) = (D2·, D2·) and G(u) to realize an isometry
constraint yields the setting of bending isometries considered below in Section 4.2.
We refer the reader to [9, Section 4.3.2] for a discussion of admissible functions
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G that lead to a constraint violation as discussed above. The norm ‖ · ‖] is as-
sumed to be sufficiently strong to provide control over the linearization error in the
constraint.

Assuming that V = Vh is a finite element space, we let u̇n ∈ RN denote the
coefficient vector representing u̇nh ∈ Vh in a suitable basis. In this case Step (1) is
equivalent to the saddle point problem[

A [Gn]T

Gn 0

] [
u̇n

λ

]
=

[
b
0

]
,

where A ∈ RN×N encodes the bilinear form a(·, ·), b is a representation of the
right-hand side and explicit terms, and Gn ∈ RM×N , M ∈ N, realizes the linear
constraint g(ûnh; ·) = 0 with λ ∈ RN being the corresponding Lagrange multiplier.
The dimension M of the discrete constraint map depends on the constraint dis-
cretization, e.g., with the restriction of a one-dimensional constraint to the vertices
of a triangulation, M equals the number of vertices in the triangulation. In our im-
plementation we employ a direct solver for the solution of the linear system in every
time step to obtain u̇n, which in turn yields a new iterate. We refer to [19, 22] for
results concerning the stability of the constrained formulation and implementations
based on explicit constructions of bases of the kernel of Gn.

4.1. Harmonic maps. We define harmonic maps as stationary configurations for
the Dirichlet energy

Ihm(u) =
1

2

∫
Ω

|∇u|2 dx

in the set of mappings u ∈ H1(Ω;R`) for Ω ⊂ Rd satisfying the pointwise unit-
length constraint

|u|2 − 1 = 0

almost everywhere in Ω and the boundary condition u|ΓD
= uD on a subset

ΓD ⊂ ∂Ω with positive surface measure. For an extension u0 ∈ H1(Ω;R`) of
uD, Algorithm 1.1 determines a sequence (un) that converges to a harmonic map
of low energy. In a discrete setting we use the conforming finite element spaces

Vh = S1(Th)`,

consisting of elementwise affine, globally continuous functions, and impose the ini-
tial unit-length and subsequent orthogonality relations in the nodes z ∈ Nh of the
triangulation Th. To compute certain error quantities we employ the corresponding
nodal interpolation operator Ih : C(Ω;R`) → S1(Th)`. The results established for
Algorithm 1.1 carry over nearly verbatim to its discrete counterpart; cf. [7, 10]. We
test its performance for a setting leading to a smooth harmonic map. Experiments
for harmonic maps with singularities led to similar results.

Example 4.2 (Stereographic projection). For d = 2, ` = 3 we set Ω = (−1/2, 1/2)2,
ΓD = ∂Ω, and uD = π−1

st |∂Ω with the inverse stereographic projection π−1
st : Ω→ S2

given for x ∈ Ω by

π−1
st (x) = (|x|2 + 1)−1

[
2x

1− |x|2
]
.

Then u = π−1
st is a smooth harmonic map satisfying u|∂Ω = uD.
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Figure 1. Nodal interpolant of the inverse stereographic projec-
tion π−1

st in Example 4.2 on a coarse grid (left and middle) and
perturbed initial configuration u0

h (right).

Bounded initial data. The solution u is illustrated in the left and middle plots of
Figure 1. For a spatial discretization we choose a uniform triangulation Th of Ω into
8192 right-angled triangles. The initial function u0

h and the discrete boundary data
uD,h are obtained via a nodal interpolation of the exact solution u and a subsequent
perturbation of interior nodal values; cf. the right plot of Figure 1. For this discrete
perturbation we have Ihm(u0

h) ≈ 22.06 whereas the exact optimal energy is given
by Ihm(u) ≈ 3.009.

Using step sizes τ = 2−m, the fixed stopping criterion εstop = 10−3 in combi-
nation with the L2 norm that specifies ‖ · ‖], and choosing the L2 and H1

D inner
products for the gradient flow metric (·, ·)?, respectively, we obtained the results

shown in Table 1. The function ustop
h denotes the iterate after Nstop steps for

which the stopping criterion was satisfied first. Tables 1 and 2 show the number of
iterations Nstop, the constraint violation measure

δuni[uh] =
∥∥Ih (|uh|2 − 1

) ∥∥
L1 ,

the energy errors

δener[uh] =
∣∣Ihm[uh]− Ihm[u]

∣∣,
and the discrete regularity quantities

A2 = τ2
N ′∑
n=2

‖d2
tu
n
h‖2, B2 = ‖dtu1

h‖2,

with N ′ = Nstop, whose boundedness is needed to guarantee the quadratic con-
straint consistency results. The experimental convergence rates eocuni and eocener

were computed as logarithmic slopes.
Our observations are as follows: (i) the numbers of iterations to meet the stop-

ping criterion increase linearly with the decreasing step size and are comparable
for the implicit Euler and BDF2 method as well as for the L2 and H1 gradient
flows; (ii) the discrete regularity condition appears to be satisfied for the L2 and
H1 gradient flows and both numerical methods, although a small growth for the
quantity B2 is observed in the case of the L2 flows; (iii) the constraint violation and
energy errors decay linearly for the implicit Euler and (nearly) quadratically for the
BDF2 methods before spatial discretization errors dominate the energy error. Our
explanation for (i) is that the gradient flows and stopping criteria determine times
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Figure 2. Nodal values of the rough initial data u0
h for the approxi-

mation of Example 4.2 on a coarse grid (left) and final iterate for the
BDF2 method with τ = 2−8 (middle, right).

t? at which the time derivative is sufficiently small and approximately n ≈ t?/τ
iterations are needed to reach this point via the time stepping method realized by
the algorithm. While the H1 flow provides strong control over the time derivative,
cf. Remark 3.5, the rough initial data appear to lead to a certain initial growth of
the first time derivative in case of the L2 flows providing an explanation for (ii).
The growth of the time derivative leads to a slight initial reduction of the quadratic
convergence rate reported in (iii).

Rough initial data. As a second test problem, we reconsider Example 4.2, again
choosing a uniform triangulation Th of Ω into 8192 right-angled triangles. We now
use randomly generated nodal values in the interior of Ω instead of a perturbation
of the exact solution to initialize the discrete gradient flows, cf. Figure 4.1.

The initial function u0
h is obtained by choosing the inverse stereographic projec-

tion u0
h(z) = π−1

st (z) for all boundary nodes z ∈ Nh ∩ ΓD and choosing a random
value for u0

h(z) at all interior nodes z ∈ Nh ∩ Ω. This random choice is realized
via generating for each interior node z two independent and uniformly distributed
pseudo-random numbers α1 ∈ (−π/2, π/2), α2 ∈ (−π, π) that we interpret as the
angles in the representation of u0

h(z) in spherical coordinates with the fixed radial
distance 1. This procedure is conducted only once, such that we use the same
randomly chosen u0

h for every step size. An interpolation of the discrete function
u0
h on a coarse grid is illustrated in the left plot in Figure 4.1.

Using step sizes τ = 2−m, the fixed stopping criterion εstop = 10−3 in combi-
nation with the L2 norm that specifies ‖ · ‖], and choosing the L2 and H1

D inner
products for the gradient flow metric (·, ·)?, respectively, we obtained the results
shown in Table 2.

Partially in contrast to the first experiment with bounded initial data, we observe
the following: (i) while for the H1 flow the iteration numbers to meet the stopping
criterion increase linearly with the decreasing step size, this correlation is not as
pronounced for the L2 flow; (ii) the discrete regularity condition appears to be still
satisfied for the H1 gradient flow, while it appears to be clearly violated for the
L2 flow; (iii) only the constraint violation for the H1 flow still decays quadratically
with the BDF2 method, while for the L2 flow we only observe a rough linear
convergence in the constraint, and the energies do not seem to converge at all for
both flows; (iv) all iterations appear to satisfy the stopping criterion at a meta
stable state of the (discrete) energy landscape as shown in the middle and right
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τ Nstop δuni[u
stop
h ] eocuni A2 B2 Ihm[ustoph ] δener[u

stop
h ] eocener

Implicit Euler method (L2-gradient flow)

2−4 23 1.288e–01 — 1.949e+01 2.738e+01 4.667 1.658e+00 —
2−5 31 1.130e–01 0.19 5.992e+01 9.432e+01 4.442 1.433e+00 0.21

2−6 47 9.219e–02 0.29 1.594e+02 2.937e+02 4.133 1.124e+00 0.35

2−7 78 6.867e–02 0.42 3.488e+02 7.921e+02 3.777 7.681e–01 0.55
2−8 140 4.619e–02 0.57 6.077e+02 1.791e+03 3.453 4.443e–01 0.79

2−9 261 2.823e–02 0.71 8.446e+02 3.375e+03 3.229 2.201e–01 1.01

2−10 502 1.601e–02 0.82 9.606e+02 5.423e+03 3.108 9.877e–02 1.15
2−11 982 8.627e–03 0.89 9.222e+02 7.648e+03 3.052 4.308e–02 1.19

2−12 1941 4.502e–03 0.94 7.700e+02 9.734e+03 3.028 1.910e–02 1.17

2−13 3858 2.305e–03 0.97 5.711e+02 1.145e+04 3.018 8.678e–03 1.13
2−14 7693 1.167e–03 0.98 3.812e+02 1.272e+04 3.013 3.970e–03 1.12

BDF2 method (L2-gradient flow)

2−4 39 2.878e–01 — 2.125e+01 2.738e+01 6.518 3.509e+00 —

2−5 79 2.204e–01 0.39 5.448e+01 9.432e+01 6.493 3.484e+00 0.01
2−6 39 1.615e–01 0.45 1.420e+02 2.937e+02 5.649 2.640e+00 0.40

2−7 76 1.035e–01 0.64 3.229e+02 7.921e+02 4.557 1.548e+00 0.77

2−8 144 5.535e–02 0.90 5.905e+02 1.791e+03 3.703 6.935e–01 1.15
2−9 275 2.464e–02 1.16 8.508e+02 3.375e+03 3.245 2.356e–01 1.55

2−10 534 9.370e–03 1.39 9.793e+02 5.423e+03 3.074 6.448e–02 1.86

2−11 1053 3.156e–03 1.57 9.324e+02 7.648e+03 3.025 1.586e–02 2.02
2−12 2096 9.710e–04 1.70 7.671e+02 9.734e+03 3.013 3.718e–03 2.09

2−13 4184 2.794e–04 1.79 5.635e+02 1.145e+04 3.010 6.977e–04 2.41
2−14 8363 7.647e–05 1.86 3.754e+02 1.272e+04 3.009 7.961e–05 3.13

Implicit Euler method (H1-gradient flow)
2−0 22 5.631e–02 — 1.190e–02 3.199e–02 3.468 4.592e–01 —

2−1 32 3.429e–02 0.72 1.351e–02 5.686e–02 3.236 2.265e–01 1.02

2−2 53 1.921e–02 0.84 1.127e–02 8.188e–02 3.112 1.029e–01 1.14
2−3 95 1.021e–02 0.91 7.554e–03 1.011e–01 3.055 4.601e–02 1.16

2−4 178 5.270e–03 0.95 4.424e–03 1.133e–01 3.030 2.097e–02 1.13
2−5 344 2.678e–03 0.98 2.402e–03 1.203e–01 3.019 9.751e–03 1.11

2−6 677 1.350e–03 0.99 1.252e–03 1.240e–01 3.014 4.547e–03 1.10

2−7 1342 6.778e–04 0.99 6.397e–04 1.260e–01 3.011 2.057e–03 1.14
2−8 2672 3.396e–04 1.00 3.233e–04 1.269e–01 3.010 8.412e–04 1.29

2−9 5333 1.700e–04 1.00 1.625e–04 1.274e–01 3.009 2.411e–04 1.80

2−10 10655 8.503e–05 1.00 8.147e–05 1.277e–01 3.009 5.704e–05 2.08

BDF2 method (H1-gradient flow)
2−0 16 7.048e–02 — 1.458e–02 3.199e–02 3.570 5.604e–01 —
2−1 22 2.809e–02 1.33 1.735e–02 5.686e–02 3.162 1.533e–01 1.87

2−2 44 9.071e–03 1.63 1.396e–02 8.188e–02 3.046 3.712e–02 2.05
2−3 86 2.599e–03 1.80 8.722e–03 1.011e–01 3.018 9.086e–03 2.03

2−4 171 6.991e–04 1.89 4.814e–03 1.133e–01 3.011 2.079e–03 2.13
2−5 341 1.817e–04 1.94 2.515e–03 1.203e–01 3.009 2.706e–04 2.94
2−6 682 4.635e–05 1.97 1.283e–03 1.240e–01 3.009 1.953e–04 0.47
2−7 1363 1.171e–05 1.99 6.476e–04 1.260e–01 3.009 3.140e–04 -0.69

2−8 2725 2.942e–06 1.99 3.253e–04 1.269e–01 3.009 3.440e–04 -0.13
2−9 5450 7.374e–07 2.00 1.630e–04 1.274e–01 3.009 3.516e–04 -0.03

2−10 10899 1.846e–07 2.00 8.160e–05 1.277e–01 3.009 3.535e–04 -0.01

Table 1. Step sizes, number of iterations, constraint violation, discrete
regularity measures, and energy errors for the implicit Euler and BDF2
methods approximating L2 and H1 gradient flows for harmonic maps
initialized with a perturbation of the exact solution in Example 4.2.
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plot in Figure 4.1. Observation (i) underlines the preconditioning effects of the
H1 scalar product as the natural metric for the minimization problem. While the
H1 flow provides strong control over the time derivative, cf. Remark 3.5, and is
less sensitive to rough initial data, (ii) shows that for the irregular initial data the
regularity condition is not satisfied in the L2 flow, which explains the constraint
error behavior reported in (iii). Finally the termination at a meta stable state (iv),
which is possibly caused by larger constraint errors due to the extremely high initial
energies, explains the lack of energy convergence in observation (iv). We note that
the occurrence of distinct meta stable states in the gradient flow appears to be
related to specific random initial data and that stopping of the algorithm at such a
state was also observed with the Euler method for the same initial data. With all
other parameters unchanged, we did not observe this stopping phenomenon for a
different set of random interior nodal values.

τ Nstop δuni[u
stop
h ] eocuni A2 B2 Ihm[ustoph ] δener[u

stop
h ] eocener

BDF2 method (L2-gradient flow)

2−8 718 6.133e+00 — 1.989e+05 1.824e+04 666.7 6.637e+02 —
2−9 458 4.203e+00 0.55 4.908e+05 6.762e+04 714.7 7.117e+02 -0.10

2−10 792 2.839e+00 0.57 1.176e+06 2.361e+05 794.2 7.912e+02 -0.15

2−11 4288 1.887e+00 0.59 2.775e+06 7.526e+05 753.8 7.508e+02 0.08
2−12 8206 1.195e+00 0.66 6.286e+06 2.129e+06 514.9 5.119e+02 0.55

2−13 5877 6.770e-01 0.82 1.251e+07 5.261e+06 246.2 2.432e+02 1.07

2−14 27184 3.296e-01 1.04 2.079e+07 1.130e+07 98.16 9.515e+01 1.35
2−15 22244 1.328e-01 1.31 2.737e+07 2.111e+07 22.65 1.964e+01 2.28

BDF2 method (H1-gradient flow)

2−1 306 2.537e-01 — 4.129e-01 1.343e-01 28.46 2.545e+01 —

2−2 426 6.806e-02 1.90 3.928e-01 1.934e-01 12.00 8.994e+00 1.50
2−3 837 1.439e-02 2.24 2.442e-01 2.388e-01 10.14 7.130e+00 0.34

2−4 1796 3.048e-03 2.24 1.334e-01 2.677e-01 9.939 6.930e+00 0.04

2−5 4048 6.702e-04 2.19 6.200e-02 2.841e-01 9.909 6.900e+00 0.01
2−6 7483 1.580e-04 2.09 3.116e-02 2.929e-01 9.904 6.895e+00 0.00

2−7 14849 3.832e-05 2.04 1.562e-02 2.975e-01 9.903 6.893e+00 0.00

2−8 29646 9.445e-06 2.02 7.802e-03 2.998e-01 9.902 6.893e+00 0.00

Table 2. Step sizes, number of iterations, constraint violation, dis-
crete regularity measures, and energy errors for the BDF2 method ap-
proximating L2 and H1 gradient flows for harmonic maps using random
initial data in Example 4.2.

4.2. Bending isometries. Large bending deformations of thin elastic sheets can
be determined via a dimensionally reduced description resulting as a Γ limit of three-
dimensional hyperelasticity; cf. [17]. The variational formulation seeks a minimizing
deformation for the functional

Ibend(u) =
1

2

∫
ω

|D2u|2 dx

in the set of functions u ∈ H2(ω;R3) satisfying the pointwise isometry constraint

(∇u)T(∇u)− id2×2 = 0,

with the identity matrix id2×2 ∈ R2×2, and the boundary conditions

u|γD = uD, ∇u|γD = φD,
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for given functions uD ∈ C(γD;R3) and φD ∈ C(γD;R3×2). Our discretization
is based on the nonconforming space of discrete Kirchhoff triangles and a discrete
gradient operator, i.e.,

Vh =
{
vh ∈ C(ω;R3) : vh|T ∈ P3,red(T )3 for all T ∈ Th,
∇vh continuous in every z ∈ Nh

}
,

where P3,red(T ) denotes a nine-dimensional subspace of cubic polynomials, and,
with the space of elementwise quadratic, continuous functions S2(Th),

∇h : Vh → S2(Th)3×2.

The matrix of second derivatives D2u in Iiso is replaced by the discrete second
derivatives D2

huh = ∇∇huh. The isometry constraint is imposed at the nodes
z ∈ Nh of the triangulation; cf. [8, 12] for related details. The discretization defines
the bilinear form

ah(uh, vh) =

∫
ω

D2
huh : D2

hvh dx,

the linear functional

`bc,h(uh) =
(
uh|γD ,∇huh|γD

)
,

and the linearized constraint functional evaluated at the nodes of the triangulation

gh(ûh; vh) =
([

(∇ûh)T(∇vh) + (∇vh)T(∇ûh)
]
(z)
)
z∈Nh

.

Other approaches to the discretization of nonlinear bending problems such as dis-
continuous Galerkin methods as devised in [14] can also be formulated in this ab-
stract way. We test Algorithm 4.1 for a setting leading to the formation of a Möbius
strip.

Example 4.3 (Möbius strip). Let ω = (0, L) × (−w/2, w/2) and γD = {0, L} ×
[−w/2, w/2] with L = 12 and w = 2. We choose boundary data uD and φD that
map the two sides contained in γD to the same interval but enforce a half-rotation
of the strip ω.

As initial data u0 that is compatible with the boundary conditions and isometry
constraint we use a Lipschitz continuous function that defines a flat, folded Möbius
strip. The interpolated function u0

h on a triangulation of ω into 3072 triangles re-
sembling halved squares is shown in Figure 3. The initial data is thus of unbounded
bending energy as the mesh-size tends to zero. Using the bilinear form ah to define
discrete H2 gradient flows determined by the implicit Euler and BDF2 methods
we obtained the iterates shown also in Figure 3. The unfolding of the initially flat
configuration was obtained with a forcing term in the energy that was set to zero
for tn ≥ tf = 2. From the coloring used for the plots in the figure we observe that
the BDF2 method leads to significantly reduced constraint errors. This observation
is confirmed by the numbers displayed in Table 3. For the implicit Euler and the
BDF2 methods we computed the isometry constraint violation errors

δiso[uh] =
∥∥Ih(|(∇uh)T(∇uh)− id2×2 |

)∥∥
L1 ,

and the discrete regularity quantities

A2 = τ2
N ′∑
n=2

‖∇d2
tu
n
h‖2, B2 = ‖∇dtu1

h‖2,
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with N ′ = Nstop. Correspondingly, we used ‖vh‖] = ‖∇vh‖ to evaluate the stopping
criterion with εstop = 10−3. Our overall observations are similar to those for the
approximation of harmonic maps using an H1 gradient flow. In particular, we find
that (i) the number of iterations needed to satisfy the stopping criterion grows
linearly with τ−1 and the iterations are comparable for the implicit Euler and
BDF2 methods, (ii) the constraint violation decays significantly faster for the BDF2
method than for the implicit Euler method and the discrete energies are lower, and
(iii) the discrete regularity quantities remain bounded as the step sizes are reduced.
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Figure 3. Evolution of an initially flat Möbius strip from Example 4.3
using the implicit Euler (top row) and BDF2 methods (bottom row) re-
alizing discrete H2-gradient flows with step sizes τ = 2−7. The coloring
represents the constraint violation.

τ Nstop δiso[ustoph ] eociso A2 B2 Ibend[ustoph ]

Implicit Euler method (H2
h-gradient flow)

2−0 349 2.255e+01 — 4.617e+02 1.054e–01 14.98

2−1 198 1.342e+01 0.75 1.038e+03 1.874e–01 12.37
2−2 446 5.243e+00 1.36 9.363e+02 2.699e–01 10.95

2−3 874 2.493e+00 1.07 9.736e+02 3.332e–01 10.29

2−4 1791 1.226e+00 1.02 8.741e+02 3.735e–01 9.983
2−5 3617 6.142e–01 1.00 6.839e+02 3.965e–01 9.840

2−6 7261 3.072e–01 1.00 4.351e+02 4.088e–01 9.768

2−7 14538 1.538e–01 1.00 2.492e+02 4.151e–01 9.732
2−9 29086 7.695e–02 1.00 1.339e+02 4.184e–01 9.715

BDF2 method (H2
h-gradient flow)

2−0 151 5.993e+00 — 5.970e+01 1.054e–01 11.63

2−1 263 6.713e+00 -0.16 2.789e+02 1.874e–01 11.04
2−2 490 2.552e+00 1.40 4.090e+02 2.699e–01 10.05

2−3 1049 9.924e–01 1.36 6.480e+02 3.332e–01 9.834

2−4 2273 1.905e–01 2.38 4.980e+02 3.735e–01 9.727
2−5 4578 4.827e–02 1.98 5.081e+02 3.965e–01 9.704

2−6 9166 9.470e–03 2.35 3.986e+02 4.088e–01 9.698

2−7 18313 1.506e–03 2.65 2.535e+02 4.151e–01 9.697
2−9 36590 2.065e–04 2.87 1.390e+02 4.184e–01 9.697

Table 3. Step sizes, number of iterations, constraint violation, dis-
crete regularity measures, and energies for the implicit Euler and BDF2
methods approximating a discrete H2 gradient flow leading to the for-
mation of a Möbius strip for the boundary conditions specified in Ex-

ample 4.3.
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