
USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  59

Host-side Filesystem Journaling for Durable Shared Storage
Andromachi Hatzieleftheriou and Stergios V. Anastasiadis

Department of Computer Science and Engineering, University of Ioannina, Ioannina 45110, Greece

Abstract

Hardware consolidation in the datacenter occasionally leads
to scalability bottlenecks due to the heavy utilization of crit-
ical resources, such as the shared network bandwidth. Host-
side caching on durable media is already applied at the block
level in order to reduce the load of the storage backend. How-
ever, block-level caching is often criticized for added over-
head, and restricted data sharing across different hosts. Dur-
ing client crashes, writeback caching can also lead to unrecov-
erable loss of written data that was previously acknowledged
as stable. We improve the durability of shared storage in the
datacenter by supporting journaling at the kernel-level client
of an object-based distributed filesystem. Storage virtualiza-
tion at the file interface achieves clear consistency semantics
across data and metadata blocks, supports native file sharing
between clients over the same or different hosts, and provides
flexible configuration of the time period during which the
data is durably staged at the host side. Over a prototype im-
plementation that we developed, we experimentally demon-
strate improved performance up to 58% for specific durability
guarantees, and reduced network and disk bandwidth at the
storage servers by up to 42% and 82%, respectively.

1 Introduction

Infrastructure virtualization in the datacenter typically consol-
idates client and server nodes on similar hardware. Network
storage is often provided by scalable server clusters through
protocols operating at the file, block or object level. The file
interface is attractive for its sharing and efficiency proper-
ties [30, 13, 25, 40, 6, 22, 1]; the block interface provides
convenient virtualization flexibility but incurs undesirable
translation overheads [24, 20, 35, 36, 26]; and the object in-
terface is scalable and efficient because it carries semantical
information for specialized storage management [30, 39, 41].

Another design dimension in datacenter storage applies
client-side caching for improved performance and durability
at reduced network and server load. Existing solutions often
apply block-level caching at the client-side host, and they
adopt write-through or writeback policy according to the
application and hardware characteristics. A write-through
policy is preferred for read caching without data loss at
device failure. Instead, a writeback policy improves the re-
source efficiency and application performance but makes the
cache device part of the failure model [24, 34, 9, 19, 31, 16].

The Arion system is a new design point that we introduce
in cloud storage to improve the durability of the file interface
at the client side (Fig. 1 fully explained in Section 2). We

 0

 20

 40

 60

 0 30 60 90 120

A
m

ou
nt

 (M
B

)

Time (s)

Unflushed Dirty Data

Ceph
Arion

Figure 1: Dirty data that remains unflushed in the volatile
memory of the client in Ceph and the proposed Arion system.

integrate the client software of a distributed filesystem with
persistent host-based storage over a journal device. We
enhance the flushing functionality of the filesystem client
with tunable control of both the amount of dirty pages that
are staged at the host, and the time period taken by dirtied
pages to reach the backend servers. At increased flushing
frequency to the journal device, we practically minimize
the recovery point objective (RPO) close to zero under the
following condition: the dominant cause of a client crash
is operator or software bug rather than permanent hardware
loss, such as that of the local storage device [28, 4].

The availability and performance of cloud services de-
pends on the ordering, durability and membership properties
of replication consistency [7]. In a multi-tier system, data
is replicated at the frontend application, an intermediate
caching layer, and the backend persistent storage. For
reduced cross-layer communication, the frontend can be
stateless and lose recently written data during a crash or
reboot. Recognition of this risk has urged the designers of
local filesystems, flash-based caches and distributed storage
systems to emphasize the ordering guarantees of crash
consistency at the expense of weaker durability [10, 19, 26].

I/O-intensive workloads in a distributed filesystem can
take advantage of writeback caching at the client side to
improve their performance and reduce the respective network
and server load. Unfortunately, current scalable filesystems
can natively support only in-memory caching at the client
side. This deficiency has been partially addressed by having
the filesystem client running in the hypervisor and enforcing
the guests to mount disk images as plain files through a block
interface that enables block-based caching [9]. But this ap-
proach has been criticized for the increased overheads from
the semantic gap that it causes and the unnecessary multiple
translations between the file and block interface [13, 20, 35].

Our main contributions are the following: (i) We improve
the durability of frontend memory caching by integrating

60  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

disk-based journaling into the client of a distributed filesys-
tem. (ii) We implement a prototype of the proposed storage
layer in the kernel-level client of the Ceph object-based
filesystem. (iii) We experiment with several application-level
benchmarks over a virtualized host and a clustered storage
backend. Our approach enables frequent flushes of dirty
pages to the local journal without crossing the network and
hitting the disks of the backend storage. Therefore, in a host
machine with reliable local storage, we approximate the
consistency ordering and durability of write-through caching
with the configurable efficiency of periodic writeback.

We further motivate our research in Section 2 and
describe the Arion architecture in Section 3. We present our
software prototype in Section 4 and explain our experimental
results in Section 5. In Sections 6 we compare our work
with previous research, and in Section 7 we clarify our
contributions and some limitations. Finally, in Section 8 we
outline our conclusions and possible extensions.

2 Motivation

Loss or corruption of committed updates to critical data is
recognized as a particularly damaging class of failure [4].
This observation is highly relevant in a large-scale multi-tier
environment, with mean time between failures inversely
proportional to the number of machines. Several studies con-
clude that hardware failures contribute much less to service-
level failures in comparison to causes related to software
bugs and faults from operator or maintenance tasks [28, 4].

In traditional Unix, written data is acknowledged asyn-
chronously to the application but only flushed periodically
to the local disk. This approach has been adopted by several
distributed filesystems in the form of asynchronous data
transfer from the volatile memory of the client to the
servers [27, 23]. Although durable caching at the client side
can reduce the network load of the servers, it complicates
the maintenance of replication consistency among different
clients or between the clients and the servers [14].

In Fig. 1, we measure the amount of dirty data that re-
mains unflushed at the client memory over time. We com-
pare Ceph [41] under default flushing parameters with the
proposed Arion system (Section 3). In the environment of
Section 5, we used the fileserver mode of Filebench [12] run-
ning for 2min over 10000 files. The Linux pdflush daemon
wakes up every 5s and transfers dirty data older than 30s from
the client to the servers [8]. Additionally, the Arion client
every 1s flushes dirty data to the local journal of the host. On
average over time, the Ceph client keeps 24.3MB of dirty data
solely in volatile memory, i.e., unrecoverable from a crash.
Instead, the Arion host-side journaling reduces to 5.4MB the
vulnerable data in the volatile memory of the client.

3 System Architecture

Next we outline our assumptions and goals before we
describe the main design ideas of Arion and consistency.

OBJECT STORAGE SERVERS

VMVMGuest Guest

HOST
journal device

Hypervisor

Figure 2: Host-side journaling in the Arion architecture.

3.1 Assumptions and Goals

We aim to improve the durability and performance of
shared storage in the datacenter at reduced utilization of
the server resources. User is the application-level entity
that initiates I/O requests to the filesystem, and client is the
host-based software that provides filesystem access to users.
We target host hardware with reliability characteristics on
par with those of the server machines. The host provides
directly-attached storage with sufficient redundancy to
tolerate the occasional failure of a single device. Appropriate
storage technologies include hard disks, solid-state drives,
or non-volatile memory. In the proposed storage architecture
we aim to support the following properties:

i) Interface Stored data is directly accessible for regu-
lar use and maintenance tasks over the network with a
POSIX-like file-based interface [37].

ii) Sharing Heterogeneous clients on the same or different
hosts can natively share data at the storage level but may
also apply synchronizations at the application level.

iii) Durability Most recent writes survive client reboots but
require redundant hardware support to tolerate perma-
nent failures of individual storage devices at the host.

iv) Performance Client writes are safely stored at sequen-
tial disk throughput, but the read performance depends
on the efficiency of the client memory cache.

v) Scalability The storage backend linearly scales out to
efficiently hold increasing amounts of data.

3.2 Design

We rely on an object-based scale-out backend of multiple
data and metadata servers (Fig. 2). The client runs over either
a guest system on virtualized hardware or a standalone sys-
tem on bare metal. A read operation synchronously returns
the latest version of the requested state. A synchronous write
reaches a configurable number of durable replicas before
it returns. An asynchronous write returns as soon it updates
the buffer cache of the client system, but the modified blocks
have to reach a configurable number of durable replicas
before they are considered safely stored.

We regard the frontend logging to a persistent storage
medium as a complementary form of replication. Unlike the
traditional replication that is homogeneously applied across
functionally equivalent backend servers, the frontend logging
adds heterogeneity with respect to the storage format, the
logical layer and the time duration of the replica1.

1The Coda filesystem previously introduced the concept of two-tier
replication in the context of disconnected operation [18](see also Section 6).

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  61

The metadata server (MDS) enables shared filesystem
access at file granularity through different types of tokens
leased to the clients. Supported access types include exclusive
write (cached) by a single client, and concurrent read (cached)
or concurrent write (uncached) by multiple clients. A client
can only cache the writes of data and metadata accessed with
exclusive permission. The file interface provides valuable
semantical information about the consistency dependencies
of modified data and metadata. When a client transfers the file
updates to the servers, the metadata is written only after the
referenced data blocks have safely reached the server state.

The key innovation of our design is the integration of
a local journal with the kernel-level client of a distributed
filesystem (Fig. 2). The host-side journal is distinct for each
guest in virtualized hosts. The client inserts into the journal
both the data and metadata modified by an I/O request. Thus
we ensure that a metadata version matches the version of the
data it refers to (version consistency [11]). We only keep one
transaction active to accept all the (redo) records of low-level
I/O operations corresponding to an atomic filesystem request.
An active transaction closes as a result of timeout expiration,
explicit flush request, or reclamation of journal space [8].

A journaled block remains cached in the client memory
until it is safely written to the servers. If an MDS revokes
the write token from a client due to some conflict (e.g.,
concurrent writes to the same file), the client is forced to
write (checkpoint) the conflicting writes to the servers and
invalidate the respective journal records. On client disconnec-
tion from the servers, the leased tokens may expire and the
client will no longer be able to access the files locally [23].
At network reconnection, the client writes to the servers the
mutated blocks of each file whose token has been refreshed
and whose metadata cached at the client is newer than the file
metadata at the MDS, but it discards the remaining blocks.

The primary benefit from host-side journaling in a dis-
tributed filesystem is the reduced vulnerability of outstanding
writes in the volatile memory of the client. If a client crashes
and reboots without hardware failure at the host, then the
client replays the completed transactions and transfers the
recorded updates to the filesystem servers. We update a file
only if the replaying client confirms token ownership, and
the journaled metadata is newer than the file metadata at the
MDS. In case of client crash during the recovery, the replay
is repeated until the client journal is fully checkpointed.

The durable storage of recent writes over the host-side
journal improves the server writeback efficiency with respect
to the utilized network and disk bandwidth. The consumed
shared resources are reduced through batching applied to
repetitive writes over the same blocks, or to small writes.
At synchronous writes, we journal the updates locally and
postpone the server writeback as permitted by the flushing pa-
rameter settings. Thus, performance improves depending on
the pressure over the shared resources and the resulting queu-
ing delays in the I/O path of the Arion networked storage.

3.3 Consistency

We strengthen the durability of memory-based caching in
clients that provide native support for file sharing. The file in-
terface differentiates the data blocks from the metadata. Thus,
our system cleanly addresses issues of vertical (client-server)
and horizontal (client-client) consistency across different
replicas [9]. In the order imposed by their arrival time and
structural dependencies, the data and metadata updates are
first journaled at the local host and subsequently persisted at
the backend servers. Additionally, the filesystem arbitrates the
conflicts among different clients through lease-based tokens.
In contrast, block-based schemes typically operate transpar-
ently to the filesystem, and as a result explicitly track the
order and relax the durability of block updates [10, 19, 26].

4 System Prototype

Next we provide background information on the Linux kernel
and Ceph, before we present the implementation of Arion.

4.1 Background

Linux The Linux kernel maintains in memory a page cache
with data and metadata blocks of recently accessed disk
files [8]. A page descriptor stores bookkeeping information
about the address space and the inode of a page. For every
cached disk block, there is a block buffer that stores the
actual data, and a buffer head structure with bookkeeping
information. The dirty pages are written to disk at timeout
expiration, under space pressure in the main memory or the
journal device, and by explicit flush request from the user.

The Linux kernel implements filesystem journaling with
a special kernel layer, the Journaling Block Device (JBD).
All the records of the low-level operations that belong to a
high-level atomic update are stored in the same transaction
of the journal. The journaling I/O of each block buffer is
managed through a separate buffer head structure in kernel.
Additionally, a journal head structure links each block
buffer to the corresponding transaction. One or more journal
descriptor blocks mark the beginning of the transaction and
store the tags of journal blocks belonging to the transaction.
A commit operation writes to the journal the dirty buffers
of a transaction followed by a commit block. A checkpoint
operation transfers the records of a transaction to the
filesystem state and deletes the transaction from the journal.

Ceph The Ceph is an object-based parallel filesystem de-
signed for scalability, performance and high availability [41].
It consists of four main components: the clients provide
a POSIX-like I/O interface; the metadata servers (MDS)
manage the namespace hierarchy; the object storage devices
(OSD) reliably store data and metadata; and the monitors
(MON) manage the server cluster map. A set of MDSs
acts as a scalable, consistent, distributed cache of the file
namespace. The metadata is persistently stored on the OSDs
as a collection of regular objects. Ceph maps each object
to a placement group consisting of multiple OSDs. Each

62  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

OSDs

Client

journalHOST

2. commit

3. writeback

RAM

1. write

Figure 3: A write request is applied to the kernel memory,
then added to the host journal and finally reaches the servers.

OSD maintains a local journal to handle object versioning
and update serialization.

The kernel-level client prepares a page in the cache upon
a write request. A partial page update fetches the original
page to the cache from the OSDs, copies on it the user
modifications and marks the inode object as dirty. The
Linux pdflush threads wake up periodically to scan the
list of dirty inodes and write their dirty pages to the OSDs.
The writeback time refers to the wake-up period, and the
expiration time refers to the time length after which a dirty
page is flushed. After the writeback completion at the OSDs,
the client transfers the dirty inode to the MDS and receives
acknowledgment when the inode update is safely stored.

4.2 Implementation

In order to improve the durability and efficiency of shared
data storage over Ceph, we increase the statefulness of
the filesystem client with a local journal (Fig. 3). Our
prototype implementation integrates the Linux JBD with the
CephFS kernel-level client and the other Ceph components.
In the ceph fs client structure of CephFS we
added two extra fields: the journal bdev referring
to a block-device control structure in the kernel, and the
s journal referring to the journal control structure of
JBD. We specify the journal device to the kernel with a new
mount option that we added in the system.

For the addition of journaling support in Ceph, we allocate
disk block buffers and buffer heads during a write with
the ceph write begin() function. We also create a
journal head to insert each block buffer to an active transac-
tion. The modified pages are written to the network servers
either periodically, or under pressure from the client memory
and journal space. After a particular page is written back or
invalidated, we also invalidate the respective journal records.

The private field of a page descriptor is used by the
local Linux filesystem to typically link a page with a block
buffer, and by Ceph to maintain the context of the supported
snapshot service. Instead, we introduce an auxiliary metadata
structure, called ceph metapage, to associate a page
with the block buffer, the snapshot context, and several inode
attributes of the file. We link the above metadata structure
to the page via the private field of the page descriptor.
Arion allocates the ceph metapage structure when it
creates the block buffers for a page, and deallocates it after
the page is written back to the servers.

In kernel, we added a new page state, called JBD state,
to indicate that a page has been marked for journaling but

not committed yet to the journal. The journaling of metadata
operations has been particularly challenging to implement in
Arion, because there are several places in the I/O path of the
original Ceph that mark the inode as dirty. Also, unlike local
filesystems, the Ceph client does not directly cache an inode
object as a raw metadata block. In order to effectively man-
age the file metadata in the journal of Arion, we substantially
expanded the JBD tag structure in the journal descriptor block
to include several inode attributes provided by the MDS.

As a result, the journal tag of Arion contains fields
to identify the number of modified data blocks, the
modification offset range, and the inode number, version,
size, permissions and latest time of different operation
types. During the crash recovery of a client, we compare
the inode metadata contained in the journal tag of a file
against the respective attributes freshly fetched from the
MDS. Subsequently, we only replay the write requests of
files whose journaled metadata has not been obsoleted in the
MDS by accesses that occurred in the time period between
the transaction commit and the ongoing recovery.

Our current prototype implementation fully supports (i) the
journaling of mutated data and metadata from the client mem-
ory to the host-side journal, and (ii) the filesystem recovery
after a client crash that leaves the host hardware operational.

5 Performance Evaluation

We implemented the Arion host-side journaling based on
Linux JBD2 and the kernel-level client of Ceph (v0.80.1).
The Arion development required 3417 new commented lines
across 15 files of Linux kernel (v3.6.6). Next we describe our
experimentation environment, and the measured performance
and resource consumption of Arion and original Ceph.

5.1 Experimentation Environment

The host machine is a rack server with 2 quad-core x86-64
2.66GHz processors, 7GB RAM, 2 bonded 1GbE links, and
two 300GB 15KRPM SAS HDDs in RAID0 configuration.
The host uses Linux kernel v3.5.5 with Xen v4.2.0, and
the guest runs Linux v3.6.6 over 2GB RAM and 2 pinned
VCPUs. Arion uses a 2GB disk partition at the host for
local journal. We leave for future work the study with other
types of durable devices (e.g., SSDs). The guest client
mounts directly the distributed filesystem, and the hypervisor
provides local access to the network and journal devices.

Each of Ceph and Arion uses 5 machines: 3 OSDs, 1 MON
and 1 MDS. The machine is a rack server running Linux ker-
nel (v3.10.41) over 2 quad-core x86-64 2.66GHz processors,
3GB RAM, 1 GbE link, and two separate 300GB 15KRPM
SAS HDDs. A stored object is replicated over 3 OSDs. Each
OSD dedicates one disk for journaling (1GB partition).

Our experiments are based on the Filebench v1.4.9.1 mac-
robenchmark (fileserver, varmail, createfiles) and the FIO
v2.1.7 microbenchmark. We clear the caches before each
experiment. We keep the on-disk write buffers disabled at

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  63

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

C
eph

C
eph-1

C
eph-sync

Arion-60

Arion-inf

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

(a)

Mail Server

 0

 1

 2

 3

 4

 5

 6

C
eph

C
eph-1

C
eph-sync

Arion-60

Arion-inf

N
o
rm

a
liz

e
d
 N

e
tw

 L
o
a
d
 (

K
B

/I
O

)

(b)

Mail Server (OSD)

Received
Transmitted

 0

 200

 400

 600

 800

 1000

 1200

C
eph

C
eph-1

C
eph-sync

Arion-60

Arion-inf

T
h
ro

u
g
h
p
u
t
(O

p
s
/s

)

(c)

File Creation

 0

 2

 4

 6

 8

 10

 12

 14

C
eph

C
eph-1

C
eph-sync

Arion-60

Arion-inf

N
o
rm

a
liz

e
d
 N

e
tw

 L
o
a
d
 (

K
B

/I
O

)

(d)

File Creation (OSD)

Received
Transmitted

Figure 4: Operation throughput and normalized network
load with the varmail (a,b) and createfiles (c,d) modes of
Filebench across different settings of Ceph and Arion.

the host, but activated at the servers of Ceph and Arion [32].
RAID0 with two disks does not give unfair advantage to host
journaling because the storage backend already consists of
multiple servers with two disks each. In the shown bar charts
we include 95% confidence intervals from 5 repetitions.

5.2 Measurements

In Fig. 4 we run two Filebench modes with default settings
(for 5min) to study the system performance and efficiency.
We examine Ceph with the writeback and expiration time
respectively set to the default 5s and 30s (Ceph), or both
set equal to 1s (Ceph-1), or the filesystem mounted in syn-
chronous mode (Ceph-sync). We also examine Arion with
dirty blocks periodically copied to the host-side journal every
1s, and the writeback and expiration times both set equal to
60s (Arion-60), or infinity (Arion-inf) to minimize writeback.

Varmail emulates multi-threaded I/O activity of a server
synchronously storing email messages across 50000 files.
In Fig. 4a, Arion-60 achieves operation throughput of 837.8
ops/s, or 58% higher than 531.3 ops/s of default Ceph. Arion-
60 increases the Ceph data throughput (1.9MB/s) by 58%
and reduces the Ceph latency (97.5ms) by 39%. The perfor-
mance of Ceph-1 is similar to that of Ceph. Fig. 4b illustrates
the received and transmitted OSD network traffic normalized
by the number of completed operations. Arion-60 reduces
the received network load of Ceph —normalized in KB/IO—
by 30% and the transmitted by 27%. The bottleneck resource
is the server disk I/O caused by synchronous writes.

We examine a metadata-intensive workload with file
creations in Figures 4c,d. Arion-60 is comparable to
Ceph with respect to performance and load. Ceph-sync
achieves higher performance than Arion-60 by 10%, but

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

C
eph

C
eph-1

C
eph-sync

Arion-60

Arion-inf

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

(a)

FIO Random Writes (Zipfian)

0.9

1.5

3.2

0.7
0.9

 0

 400

 800

 1200

 1600

 2000

 2400

 0 60 120 180 240 300

C
u
m

u
la

ti
v
e
 R

e
c
e
iv

e
d
 D

a
ta

 (
M

B
)

Time (s)

(b)

Network Load (OSD)

Ceph
Ceph-1

Arion-60
Arion-inf

Ceph-sync

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

J
o
u
rn

a
l
D

e
v
ic

e
 (

%
)

Time (s)

(c)

Disk Utilization (OSD)

Arion-60
Ceph-1

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

F
ile

s
y
s
te

m
 D

e
v
ic

e
 (

%
)

Time (s)

(d)

Disk Utilization (OSD)

Figure 5: (a) Average latency, (b) cumulative network load at
one OSD, and disk utilization at the (c) journal and (d) filesys-
tem OSD disks across different settings of Ceph and Arion.

also increases by 10% the received and transmitted network
load. Ceph-sync improves slightly the performance because
it handles the metadata updates directly at the MDS instead
of fetching them to the client as asynchronous settings do.

We further explore the relative behavior of the two
systems using the FIO microbenchmark with Zipfian write
pattern of α=1.0001 (e.g., [17]). The benchmark writes a
total of 2GB data in a preallocated file of 2GB size with
block size in the range 2-16KB. With respect to Ceph
(0.9ms) and Ceph-1 (1.5ms) in Fig 5a, Arion-60 achieves
lower latency (0.7ms) by 22% and 53%, respectively. We
examine the total network traffic received over time at
one OSD of each system in Fig 5b. We notice that Ceph
terminates at instance 233s with 2.1GB total received traffic.
In contrast, Arion-60 ends the experiment at 172s (26%
shorter) with received volume 1.2GB (42% lower).

In Figures 5c,d we examine the bandwidth utilization of
the journal and filesystem storage device at one of the OSDs.
We show Ceph-1 that keeps the durability characteristics simi-
lar to those of Arion. The depicted Arion-60 OSD utilizes the
journal and filesystem device at 15.0% and 16.4% on average;
the respective utilizations of Ceph-1 are 24.4% and 88.4%.
We conclude that Arion-60 reduces the filesystem device uti-
lization by 82% with respect to Ceph-1 in the examined case.

Overall, Arion-60 improves the performance of Ceph and
Ceph-1 by up to 58%, but also reduces the server network
and disk load by up to 42% and 82%, respectively. We exper-
imentally confirmed the improved comparative performance
and efficiency of Arion in several other write-intensive work-
loads (e.g., OLTP, key-value store). We also measured the
recovery time of the Arion client in the range 77.4ms-2.622s,
depending on the load of client write activity before the crash.

64  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

6 Related Work

Filesystems Andrew pioneered client disk-based caching but
lacked the explicit separation in data and metadata manage-
ment of object-based storage [33, 41]. Coda exploited data
caching strictly for availability during disconnected opera-
tion [18]. During a communication failure, a Coda client
logged locally the mutating system calls. At network recon-
nection, each server received and replayed all the logged
operations together as one transaction. On the contrary, Ar-
ion continuously logs mutations during normal operation and
writes them back to efficiently maintain consistency.

Database consistency can be preserved through transaction
correctness [5]. SiloR is a multicore database system that
uses logging and checkpointing for fast recovery to a
transactionally-consistent state without replication [42]. The
Sprite distributed filesystem disabled client caching of files
concurrently updated by different clients [27]. Echo intro-
duced ordered write-behind to delay the automatic writing of
cached blocks to server disks [23]. NFSv4 delegates request
handling to the client for reduced latency and network
traffic [29]. Unlike Arion, existing filesystems typically
limit client caching to volatile memory without support for
durable host-side journaling during normal operation.

Virtualization and cloud VMFS stores disk volumes
over shared cluster-based block storage [38]. Capo uses the
local disks of the hosts for multicast-based preload and block-
based write-through or writeback caching [34]. Ventana com-
bines file-based sharing with the versioning, migration and
access control of virtual disks [30]. A client-side manager of-
fers disk-based caching but relies on NFSv3 at the host to con-
nect the virtual machines with object-based storage servers.
Therefore, existing storage systems only support block-level
caching, or inherit the limited scalability of NFSv3.

CacheFS supports local disk-based caching but is practi-
cally limited to read-only filesystems [15]. BlueSky provides
on-site NFS-based proxy service of remote cloud storage
through local disk caching of journal and log segments [40].
SCFS provides FUSE-based caching of entire files at the
client memory and disk without the proxy bottleneck [6].
However, it lacks the journaling integration with a scalable
distributed filesystem of Arion for flexible file sharing.

Flash memory Non-volatile memory can be used at the
client and server of a distributed filesystem for I/O effi-
ciency [3]. Writeback caching can improve performance,
reduce server load, and eliminate cache warmup on restart [2].
Optimistic crash consistency decouples ordering from dura-
bility for efficient filesystem consistency [10]. In-place com-
mit over non-volatile memory unifies the buffer cache with
journaling [21]. Offering disk-based caching through journal-
ing is an extension of Arion that we plan for future work.

Mercury pointed out the zero recovery point objective
(RPO), i.e., no recently-written data lost from a crash. It
uses flash memory in the block I/O virtualization stack
of the hypervisor to provide write-through caching [9].

Non-zero RPO can be applied for improved performance
via block-level writeback caching at the host. Update order
is preserved by explicit tracking of the dependency between
I/O requests or transaction grouping of modified blocks [19].
Due to concerns about the consistency and durability of these
ordering schemes, a recent block-level solution satisfies
asynchronously but explicitly the ordering constraints of
application-specified write barriers [31]. Nevertheless,
host-side block-based caching lacks native support for
writable file sharing within or across hosts [9, 19, 31, 2, 16].

7 Discussion

Persistent host-side caching primarily targets the improved
performance and efficiency of networked storage. Typically,
it uses a block-based interface that inherently lacks both the
support for data sharing across different hosts and the ability
for interposition in the file-based protocol of a distributed
filesystem. It also makes the consistency preservation of
network storage a challenging problem because the semantic
gap between the file and block interfaces complicates the
atomic grouping of dirty blocks by I/O request, and their
ordering according to filesystem-imposed dependencies.
Finally, the persistence of mapping metadata in block-based
caching and the repetitive translation of I/O requests across
different storage layers can introduce considerable overheads
in networked storage I/O [2, 13].

The original design of Ceph cannot recover any writes that
returned after they were only placed at the volatile memory
of the client before a crash. Therefore, the Arion architecture
is innovative because it adds durability into the client
memory cache through journal-based recovery, conditionally
propagates the updates to the servers after client reconnection,
and also permits the clients to scalably communicate directly
with the object servers of the storage backend. Overall,
assuming host machines with sufficiently reliable local
storage, our approach overcomes several sharing, scalability,
and consistency limitations of related existing solutions.

8 Conclusions

For enhanced end-to-end durability of shared storage in the
datacenter, we integrate the client of a distributed filesystem
with a host-based journal. At the host, we provide local
durable storage to dirty data and metadata until they are
written to the network servers. We implemented a prototype
of the proposed Arion design over the Ceph production
distributed filesystem. In a virtualization environment,
we experimentally demonstrate promising efficiency and
performance results for specific durability levels configured
through the frequency of copying dirty blocks to the host-side
journal. In our future work we plan to experiment with dif-
ferent types of storage devices; explore interesting tradeoffs
among performance, durability and efficiency for demanding
applications; and extend the host-based journaling to support
caching of blocks evicted from memory.

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  65

9 Acknowledgments

We thank our shepherd Jens Teubner for his valuable
guidance and the anonymous reviewers for their constructive
comments. This research has been supported by the
European Union (European Social Fund - ESF) and Greek
national funds through the Operational Program ”Education
and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) — Research Funding Program: Thales.
Investing in knowledge society through the European Social
Fund (project Cloud9).

References

[1] APPUSWAMY, R., LEGTCHENKO, S., AND ROW-
STRON, A. Towards paravirtualized network file sys-
tems. In USENIX Workshop on Hot Topics in Storage
and File Systems (Philadelphia, PA, June 2014).

[2] ARTEAGA, D., AND ZHAO, M. Client-side flash
caching for cloud systems. In ACM Intl. Systems and
Storage Conf. (Haifa, Israel, June 2014), pp. 7:1–7:11.

[3] BAKER, M., ASAMI, S., DEPRIT, E., OUSTERHOUT,
J., AND SELTZER, M. Non-volatile memory for fast,
reliable file systems. In ACM ASPLOS Conf. (Boston,
MA, Oct. 1992), pp. 10–22.

[4] BARROSO, L., CLIDARAS, J., AND HÖLZLE, U. The
Datacenter as a Computer: An Introduction to the De-
sign of Warehouse-Scale Machines. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Pub-
lishers, 2013.

[5] BERNSTEIN, P. A., HADZILACOS, V., AND GOOD-
MAN, N. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing Co.,
Reading, MA, 1987.

[6] BESSANI, A., MENDES, R., OLIVEIRA, T., NEVES,
N., CORREIA, M., PASIN, M., AND VERISSIMO,
P. SCFS: a shared cloud-backed file system. In
USENIX Annual Technical Conf. (Philadelphia, PA,
2014), pp. 169–180.

[7] BIRMAN, K., FREEDMAN, D., HUANG, Q., AND
DOWELL, P. Overcoming CAP with consistent soft-
state replication. Computer 45, 2 (Feb. 2012), 50–58.

[8] BOVET, D. P., AND CESATI, M. Understanding the
Linux Kernel, third ed. O’Reilly Media, Sebastopol,
CA, Nov. 2005.

[9] BYAN, S., LENTINI, J., MADAN, A., PABON, L.,
CONDICT, M., KIMMEL, J., KLEIMAN, S., SMALL,
C., AND STORER, M. Mercury: Host-side flash
caching for the data center. In IEEE Intl. Conf. on
Mass Storage Systems and Technology (Pacific Grove,
CA, Apr. 2012).

[10] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Optimistic crash consistency. In ACM Symp. on Oper-
ating Systems Principles (Farminton, PA, Nov. 2013),
pp. 228–243.

[11] CHIDAMBARAM, V., SHARMA, T., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Consistency without ordering. In USENIX Conf. on
File and Storage Technologies (San Jose, CA, Feb.
2012), pp. 73–86.

[12] http://sourceforge.net/projects/filebench/.

[13] HILDERBRAND, D., POVZNER, A., TEWARI, R.,
AND TARASOV, V. Revisiting the storage stack in
virtualized NAS environments. In USENIX Workshop
on I/O Virtualization (Portland, OR, June 2011).

[14] HOWARD, J. H., KAZAR, M. L., MENEES, S. G.,
NICHOLS, D. A., SATYANARAYANAN, M., SIDE-
BOTHAM, R. N., AND WEST, M. J. Scale and
performance in a distributed file system. ACM Trans-
actions on Computer Systems 6, 1 (Feb. 1988), 51–81.

[15] HOWELLS, D. FS-Cache: a network filesystem
caching facility. In Linux Symposium (Ottawa, Canada,
July 2006).

[16] http://www.fusionio.com/products/ioturbine-virtual.

[17] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D.,
AND LI, K. DFS: a file system for virtualized flash
storage. In USENIX Conf. on File and Storage
Technologies (San Jose, CA, Feb. 2010), pp. 85–100.

[18] KISTLER, J. J., AND SATYANARAYANAN, M. Discon-
nected operation in the Coda file system. ACM Trans-
actions on Computer Systems 10, 1 (Feb. 1992), 3–25.

[19] KOLLER, R., MARMOL, L., RANGASWAMI, R.,
SUNDARARAMAN, S., TALAGALA, N., AND ZHAO,
M. Write policies for host-side flash caches. In
USENIX Conf. on File and Storage Technologies (San
Jose, CA, Feb. 2013), pp. 45–58.

[20] LE, D., HUANG, H., AND WANG, H. Understanding
performance implications of nested file systems in
a virtualized environment. In USENIX Conf. File
and Storage Technologies (San Jose, CA, Feb. 2012),
pp. 87–100.

[21] LEE, E., BAHN, H., AND NOH, S. H. A unified buffer
cache architecture that subsumes journaling function-
ality via nonvolatile memory. ACM Transactions on
Storage 10, 1 (Jan. 2014), 1:1–1:17.

66  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

[22] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Physical disentanglement in a container-based
file system. In USENIX Symp. on Operating Systems
Design and Implementation (Broomfield, CO, Oct.
2014).

[23] MANN, T., BIRRELL, A., HISGEN, A., JERIAN, C.,
AND SWART, G. A coherent distributed file cache
with directory write-behind. ACM Transactions on
Computer Systems 12, 2 (May 1994), 123–164.

[24] MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEB-
VRE, G., FEELEY, M. J., HUTCHINSON, N. C., AND
WARFIELD, A. Parallax: virtual disks for virtual ma-
chines. In ACM European Conf. on Computer Systems
(Glasgow, Scotland, UK, Apr. 2008), pp. 41–54.

[25] MEYER, D. T., WIRES, J., HUTCHINSON, N. C.,
AND WARFIELD, A. Namespace Management in Vir-
tual Desktops. USENIX; login: 36, 1 (Feb. 2011), 6–11.

[26] MICKENS, J., NIGHTINGALE, E. B., ELSON, J.,
NAREDDY, K., GEHRING, D., FAN, B., KADAV,
A., CHIDAMBARAM, V., AND KHAN, O. Blizzard:
Fast, cloud-scale block storage for cloud-oblivious
applications. In USENIX Symp. on Networked Systems
Design and Implementation (Seattle, WA, Apr. 2014),
pp. 257–273.

[27] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT,
J. K. Caching in the Sprite network filesystem. ACM
Transactions on Computer Systems 6, 1 (Feb. 1988),
134–154.

[28] OPPENHEIMER, D., GANAPATHI, A., AND PATTER-
SON, D. A. Why do Internet services fail, and what
can be done about it? In USENIX Symp. on Internet
Technologies and Systems (Seattle, WA, Mar. 2003),
pp. 1–15.

[29] PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, P.,
SMITH, C., LEBEL, D., AND HITZ, D. NFS version
3 design and implementation. In USENIX Summer
Technical Conference (Boston, MA, June 1994),
pp. 137–152.

[30] PFAFF, B., GARFINKEL, T., AND ROSENBLUM,
M. Virtualization aware file systems: Getting beyond
the limitations of virtual disks. In USENIX Symp. on
Networked Systems Design and Implementation (San
Jose, CA, May 2006), pp. 353–366.

[31] QIN, D., BROWN, A. D., AND GOEL, A. Reliable
writeback for client-side flash caches. In USENIX
Annual Technical Conf. (Philadelphia, PA, June 2014),
pp. 451–462.

[32] RAJIMWALE, A., CHIDAMBARAM, V., RA-
MAMURTHI, D., ARPACI-DUSSEAU, A., AND
ARPACI-DUSSEAU, R. Coerced cache eviction and
discreet-mode journaling: Dealing with misbehaving
disks. In Intl. Conf. on Dependable Systems and Net-
works (Hong Kong, China, June 2011), pp. 518–529.

[33] SATANARAYANAN, M. Scalable, secure, and highly
available distributed file access. Computer 23, 5 (May
1990), 9–21.

[34] SHAMMA, M., MEYER, D. T., WIRES, J., IVANOVA,
M., HUTCHINSON, N. C., AND WARFIELD, A. Capo:
Recapitulating storage for virtual desktops. In USENIX
Conf. on File and Storage Technologies (San Jose, CA,
Feb. 2011), pp. 31–45.

[35] TARASOV, V., HILDEBRAND, D., KUENNING, G.,
AND ZADOK, E. Virtual machine workloads: The case
for new benchmarks for NAS. In USENIX Conf. File
and Storage Technologies (San Jose, CA, Feb. 2013),
pp. 307–320.

[36] TARASOV, V., JAIN, D., HILDEBRAND, D., TEWARI,
R., KUENNING, G., AND ZADOK, E. Improving
I/O performance using virtual disk introspection. In
USENIX Workshop on Hot Topics in Storage and File
Systems (San Jose, CA, June 2013).

[37] THE AUSTIN GROUP. POSIX.1-2008 Volume 2:
System Interfaces. IEEE Std 1003.1 and The Open
Group Base Specifications Issue 7, 2008.

[38] VAGHANI, S. B. Virtual machine file system. ACM
SIGOPS Operating Systems Review 44, 4 (Dec. 2010),
57–70.

[39] VAN MOOLENBROEK, D. C., APPUSWAMY, R., AND
TANENBAUM, A. S. Towards a flexible, lightweight
virtualization alternative. In ACM Intl. Systems and
Storage Conf. (June 2014), pp. 8:1–8:7.

[40] VRABLE, M., SAVAGE, S., AND VOELKER, G. M.
Bluesky: A cloud-backed file system for the enterprise.
In USENIX Conf. File and Storage Technologies (San
Jose, CA, Feb. 2012), pp. 237–250.

[41] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MALTZAHN, C. Ceph: A
scalable, high-performance distributed file system. In
USENIX Symp. on Operating Systems Design and
Implementation (Seattle, WA, Nov. 2006), pp. 307–320.

[42] ZHENG, W., TU, S., KOHLER, E., AND LISKOV,
B. Fast databases with fast durability and recovery
through multicore parallelism. In USENIX Symp.
on Operating Systems Design and Implementation
(Broomfield, CO, Oct. 2014), pp. 465–477.

