

�ñÞãïñç êáé Áîéüðéó�ç ÁðïèÞêåõóç Ñïþí ìåÄéáöïñéêÞ Êá�áãñáöÞ Äïóïëçøéþí ÄåäïìÝíùí
Ç ÌÅÔÁ�ÔÕ×ÉÁÊÇ ÅÑ�ÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓõðïâÜëëå�áé ó�çíïñéóèåßóá áðü �çí �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò�ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò Åîå�áó�éêÞ Åðé�ñïðÞáðü �çí

ÁíäñïìÜ÷ç ×á�æçåëåõèåñßïõùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ
ÌÅÔÁ�ÔÕ×ÉÁÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇÌÅ ÅÎÅÉÄÉÊÅÕÓÇÓÔÁ Õ�ÏËÏ�ÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁ

ÉáíïõÜñéïò 2009

Dediation
To my family and NP...

Aknowledgements
At this point, I would like to thank all those people, who eah in his way have helped forthe suessful ompletion of this thesis.I am mostly grateful to Prof. Stergios Anastasiadis for his systemati supervision andguidane throughout this researh, from the early stages of the design, to the last ones ofthe omposition of this thesis. During all these months, through his ore knowledge onthe �eld of omputer systems, he gave me the opportunity to indulge in this partiulararea of knowledge.The deepest gratitude to my parents for everything they have done, from the earlystages of my eduation till this point, and espeially for the moral and �nanial supportthey provided me, and the tolerane they have shown during all these years. I am reallygrateful for their ontinuous enouragement.I would like to thank all the people of the Systems Researh Group (SRG) at theUniversity of Ioannina, who turned the endless hours of study into a joyful experiene.Espeially Lamprini Konsta and George Margaritis, through numerous hours of disus-sions, provided me useful feedbak at several hekpoints of my thesis. Speial thanks toNikolaos Papanikos for all the help and enouragement, and primarily for all his valuabletolerane during the months that passed.Finally, it should be noted that all the work presented in this thesis was in partsupported by the projet INTERSAFE with approval number 303090/YD7631 of theINTERREG IIIA Greee-Albania 2000-20006 neighboring program.

Table of Contents
1 Introdution 11.1 Thesis Sope . 11.2 Thesis Outline . 32 Related Researh 42.1 Fast and Reliable Storage Systems . 42.1.1 Synhronous Writes . 52.1.2 Log-Strutured File Systems . 62.1.3 Soft Updates . 82.1.4 Journaling File Systems . 82.1.5 Persistent Memory . 102.1.6 Other Implementations . 112.2 Stream Arhival Servers . 112.2.1 Traditional Databases . 122.2.2 General-Purpose File Systems . 132.2.3 Playbak Servers . 142.3 Redundany Elimination . 162.4 Summary . 173 Journaling in the Ext3 File System 183.1 Bakground . 183.1.1 Basi File System Conepts . 193.1.2 Introdution to Ext3 . 203.1.3 Journaling Modes . 213.1.4 Journal . 24i

3.1.5 Transations . 253.1.6 Kernel Bu�ers . 263.1.7 Flushing Dirty Bu�ers to Disk . 263.2 Commit Poliy . 283.3 Chekpoint Poliy . 293.4 Reovery Poliy . 303.5 Summary . 314 Arhitetural De�nitions 324.1 Design Goals . 324.2 Partial Writes . 344.3 Commit Poliy . 354.4 Reovery Poliy . 354.5 Summary . 365 Prototype Implementation 375.1 Partial Bloks . 385.2 Journal Heads . 395.3 Tags . 395.4 Commit Poliy . 405.5 Reovery Poliy . 416 Experimental Results 426.1 Experimentation Environment . 426.2 Streaming Workloads . 446.2.1 Flushing Poliy . 456.2.2 Journal TraÆ . 476.2.3 Final Loation TraÆ . 496.2.4 Write Response Time . 516.2.5 CPU Utilization . 526.2.6 Mixed Workload . 536.3 The Postmark Benhmark . 546.4 Reovery Time . 55ii

6.5 Other Issues . 567 Conlusions and Future Work 587.1 Conlusions . 587.2 Future Work . 59

iii

List of Figures2.1 A log-strutured �le system treats its storage as a irular log and writes alldata and metadata modi�ations sequentially to the head of a segmentedappend-only log. Log spae must be onstantly relaimed and thus, agarbage olleting proess is responsible for oalesing unused spae intoempty segments. 62.2 A journaling �le system logs updates to a irular journal �le before om-mitting them to the main �le system. One the orresponding updates hasbeen stored to their �nal loation, opies of the bloks in the journal anbe disarded allowing the journal spae to be relaimed. 93.1 We illustrate the arhitetural view of the Linux operating system anddistinguish the Ext3 �le system inside the kernel. Furthermore, we �gurethe on-disk layout of the Ext3, whih is based on the generi Unix �lesystem struture. 203.2 The behavior of the three di�erent journaling modes through time. Timeows downwards following the arrows, while the boxes represent �le sys-tem updates. The two timelines represent ommit and hekpoint; theproesses of updating the on-disk journal struture and the �nal on-diskloation, aordingly. Depending on the onsisteny semantis that eahmode provides, the updates an take plae synhronously or not. 233.3 In the original design of the Ext3 data journaling, there is a full blokin the journal for eah write operation, despite the size of the new datamodi�ation. In addition, in the journal desriptor blok a new auxiliarytag is alloated eah time a write update is logged, and it is used to desribethe orrespondene between the journal and the �xed loation disk blok. 24iv

3.4 We illustrate the on-disk layout of the journal. The journal onsists ofa journal superblok, journal desriptor bloks, full data and metadatabloks, and journal ommit bloks. 253.5 A bu�er page is a page of data assoiated with speial desriptors, alledbu�er heads. Their main purpose is to quikly loate the disk address ofeah individual blok in the page. 273.6 Two speial strutures, a bu�er head and a journal head, need to be allo-ated for eah blok bu�er that is going to be journaled. The bu�er headspei�es the respetive blok number in the journal, while the journal headpoints to the orresponding transation. 294.1 We measure the amount of traÆ sent to the journal devie aording tothe three journaling modes. The total journal traÆ of data journaling issubstantially higher in omparison to the other two modes. Additionally,at request sizes lower than 4KB, data journaling inurs traÆ that hangessublinearly as a funtion of the write rate. This is reasonable sine datajournaling sends to the journal entire bloks rather than only the part thatis modi�ed by eah write operation. 335.1 In di�erential data journaling, the on-disk layout of the journal has one newfeature; the partial data bloks. These bloks are used to aumulate themodi�ations of multiple write operations in a redued number of journalbloks. 385.2 In the di�erential data journaling we use a new type of journal bloks, thepartial journal bloks, to aumulate the data modi�ations from multiplewrites. Full journal bloks are still used for metadata or bloks that areompletely modi�ed by write operations. The desriptor's tags are usedto keep the orrespondene between �nal loation and journal bloks, andalso to desribe the partial modi�ations inside the partial journal bloks. 40
v

6.1 We examine the journal devie throughput aross di�erent numbers ofstreams and rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams,the disk overhead of di�erential data journaling is omparable to that ofordered and writebak modes, unlike the default data journaling modewhih leads to journal devie throughput by several fators higher. Never-theless, at high rates, di�erential data journaling overlaps with the defaultdata journaling mode in terms of journaling throughput. 486.2 We examine the throughput of the �le system devie aross di�erent num-bers of streams and rates. For low-rate streams, the two metadata-onlyjournaling modes require up to several fators higher throughput than thetwo data journaling modes. Nevertheless, in ase of high-rate streams, the�nal loation disk overhead is omparable aross all the four modes. . . . 506.3 We measure the average write lateny of synhronous updates at di�erentrates and streams. Synhronous writes are usually avoided beause theyare known to inur high lateny in typial �le systems. However, datajournaling modes an bene�t from the sequential journal's throughput thateventually allows the system to safely and quikly store the inoming data. 516.4 We investigate the total CPU utilization of the system aross the di�erentjournaling modes. In all the four ases, at both low and high rates, theCPU remains mostly idle, whether doing nothing or waiting for the I/Ooperations to �nish. Thus, the extra CPU ost of di�erential data journal-ing due to memory opy operations is nominal, in omparison to the otherthree modes. 536.5 We evaluate the Postmark benhmark results. Both data and di�erentialdata journaling modes perform several fators better from the metadata-only journaling modes. In partiular, due to low write lateny, data jour-naling modes manage to serve a larger number of transations per seond. 546.6 We measure the reovery time aross the four journaling mount modes.We observe that di�erential data journaling requires muh lower time forthe san pass than the default data journaling mode, while the replay passtakes omparable time aross the two modes. 56vi

6.7 We �gure the Postmark results while enabling and disabling the on-diskwrite ahe. We notie that the two data journaling modes almost doublethe transation rate with respet to the ordered mode that is ommonlyused by default. 57

vii

List of Tables6.1 Various rates used from di�erent types of streams. 446.2 Flushing Poliy - Stream Rate of 1Kbps 466.3 Flushing Poliy - Stream Rate of 10Kbps 466.4 Flushing Poliy - Stream Rate of 1Mbps 476.5 Flushing Poliy - Postmark . 55

viii

AbstratAndromahi T. Hatzieleftheriou, MS, Computer Siene Department, University of Ioan-nina, Greee. January, 2008. Fast and Reliable Stream Storage Through Di�erential DataJournaling.Thesis Supervisor: Stergios V. Anastasiadis.Real-time storage of massive stream data is emerging as a ritial omponent in modernomputing infrastrutures used for ontinuous monitoring purposes. Traditional �le anddatabase systems are not designed for suh operation environments and inur exessiveresoure requirements when handling high-volume streaming traÆ.In this thesis, we examine the possibility of employing data journaling tehniques inorder to ombine sequential throughput with low lateny during synhronous writes. Ex-perimentally we demonstrate that low-rate streams inur remarkably high data journalingtraÆ in a ommonly used prodution �le system. Therefore, to alleviate the problemwe introdue di�erential data journaling in a prototype subsystem that we have designedand implemented for a widely available operating system. Through extensive experimen-tation, we show that our implementation ahieves substantial redution in the requireddisk throughput ombined with very low write lateny.

ix

Åê�å�áìÝíç �åñßëçøçÁíäñïìÜ÷ç ×á�æçåëåõèåñßïõ �ïõ ÈùìÜ êáé �çò Öù�åéíÞò. MS, ÔìÞìá �ëçñïöïñéêÞò,�áíåðéó�Þìéï Éùáííßíùí, ÉáíïõÜñéïò, 2008. �ñÞãïñç êáé Áîéüðéó�ç ÁðïèÞêåõóç Ñïþí ìåÄéáöïñéêÞ Êá�áãñáöÞ Äïóïëçøéþí ÄåäïìÝíùí.ÅðéâëÝðùí: Ó�Ýñãéïò Áíáó�áóéÜäçò.Ç áðïèÞêåõóç ìåãÜëïõ üãêïõ ñïþí äåäïìÝíùí óå ðñáãìá�éêü ÷ñüíï áðï�åëåß âáóéêÞ õðç-ñåóßá �ùí óýã÷ñïíùí óõó�çìÜ�ùí õðïëïãéó�þí, êõñßùò óå ðåñéð�þóåéò åöáñìïãþí ðáñá-êïëïýèçóçò. ÔÝ�ïéåò åöáñìïãÝò ÷ñçóéìïðïéïýí�áé åõñÝùò ó�éò ìÝñåò ìáò ãéá �ç äéá÷åßñéóçõðïëïãéó�éêþí õðïäïìþí êáé �çí ðñïó�áóßá öõóéêþí ÷þñùí.Óýìöùíá ìå ðñïçãïýìåíåò åñãáóßåò, �á ðáñáäïóéáêÜ óõó�Þìá�á äéá÷åßñéóçò äåäïìÝ-íùí, üðùò åßíáé �á óõó�Þìá�á áñ÷åßùí ãåíéêïý óêïðïý êáé ïé ó÷åóéáêÝò âÜóåéò äåäïìÝíùí,äåí åðáñêïýí ãéá �çí áðïèÞêåõóç ñïþí ðïõ ðáñÜãïí�áé ìå óõíå÷Þ ñõèìü áðü áéóèç�Þñåòóå ðñáãìá�éêü ÷ñüíï. Ó�ç ãåíéêÞ ðåñßð�ùóç, Ýíá óýó�çìá ðáñáêïëïýèçóçò ëáìâÜíåé óõ-íå÷þò íÝá äåäïìÝíá áðü Ýíá ìåãÜëï ðëÞèïò óõíäÝóåùí-áéóèç�Þñùí êáé �á áðïèçêåýåé ãéáêÜðïéï ÷ñïíéêü äéÜó�çìá, �ï ïðïßï åîáñ�Ü�áé áðü �ï åßäïò �çò åðåîåñãáóßáò ó�çí ïðïßáðñüêåé�áé íá õðïâëçèïýí. Ïé áéóèç�Þñåò ìðïñïýí, ãéá ðáñÜäåéãìá, íá ðáñÜãïõí âßí�åï êáéÞ÷ï õøçëÞò ðïéü�ç�áò ìå õøçëü ñõèìü ìå�Üäïóçò, Þ íá ó�Ýëíïõí ðåñéïäéêÜ ðëçñïöïñßåòãéá �ç äéáêýìáíóç êëéìá�ïëïãéêþí óõíèçêþí ìå ðïëý ÷áìçëü�åñï ñõèìü. ÊÜ�ù áðü áõ�Ýò�éò å�åñïãåíåßò óõíèÞêåò, ðñïêýð�åé ç áíÜãêç ãéá Ýíá óýó�çìá éêáíü íá áðïèçêåýåé áîéü-ðéó�á �çí åéóåñ÷üìåíç ñïÞ, ÷ùñßò ðáñÜëëçëá íá åðçñåÜæåé �çí áêïëïõèéáêÞ áíáðáñáãùãÞ�ùí äåäïìÝíùí ðïõ ëáìâÜíåé.Ôá óýã÷ñïíá óõó�Þìá�á áñ÷åßùí åöáñìüæïõí �å÷íéêÝò êá�áãñáöÞò äïóïëçøéþí (jour-naling) ðñïêåéìÝíïõ íá âåë�éþóïõí �ï âáèìü áîéïðéó�ßáò ðïõ ðñïóöÝñïõí. Âáóéêü ãíþñé-óìá áõ�Þò �çò ìåèüäïõ åßíáé ü�é åðé�ñÝðåé �ç ìå�áöïñÜ �ùí äåäïìÝíùí Þ �ùí ìå�áäåäïìÝíùíáðü �ç ìíÞìç ó�ï äßóêï óýã÷ñïíá ìå áêïëïõèéáêü �ñüðï. ¸�óé, áíáâÜëëå�áé ðñïóùñéíÜx

ç ÷ñïíïâüñá ìå�áêßíçóç �ùí äåäïìÝíùí Þ �ùí ìå�áäåäïìÝíùí ó�çí �åëéêÞ �ïõò èÝóç ó�ïäßóêï, åíþ �áõ�ü÷ñïíá ìåéþíå�áé ç êáèõó�Ýñçóç åããñáöÞò ðïõ ãßíå�áé áí�éëçð�Þ áðü �çíåêÜó�ï�å åöáñìïãÞ. Êá�Ü êýñéï ëüãï, ïé �å÷íéêÝò áõ�Ýò åöáñìüæïí�áé ó�á ìå�áäåäïìÝíá�ïõ óõó�Þìá�ïò, åíþ êÜðïéá óõó�Þìá�á áñ÷åßùí åðéðñüóèå�á õðïó�çñßæïõí êá�áãñáöÞ äï-óïëçøéþí ó�á äåäïìÝíá ðïõ �ñïðïðïéïýí�áé (data journaling). Ó÷å�éêÞ Ýñåõíá Ý÷åé äåßîåéü�é ìÝóù �çò êá�áãñáöÞò äïóïëçøéþí äåäïìÝíùí, ìðïñïýí íá åîõðçñå�çèïýí áé�Þóåéò åã-ãñáöÞò �õ÷áßáò ðñïóðÝëáóçò ìå áêïëïõèéáêÞ áðüäïóç äßóêïõ. Áí�ßèå�á, óå ðåñéð�þóåéòìåãÜëùí áé�Þóåùí åããñáöÞò áêïëïõèéáêÞò ðñïóðÝëáóçò Ý÷åé ðáñá�çñçèåß ü�é ç �å÷íéêÞáõ�Þ ìåéþíåé �çí áðüäïóç �ïõ äßóêïõ, êáèþò áõîÜíå�áé óçìáí�éêÜ ç êßíçóç ó�ï áðïèçêåõ-�éêü ìÝóï. Ó�çí ðåñßð�ùóç ðïõ ìåëå�Üìå, âáóéêü ìáò ìÝëçìá åßíáé ç áîéüðéó�ç êáé áðï-äï�éêÞ áðïèÞêåõóç ðïëëáðëþí åéóåñ÷üìåíùí ñïþí, �ùí ïðïßùí ç óõíïëéêÞ óõìðåñéöïñÜåßíáé �õ÷áßáò ðñïóðÝëáóçò, ðáñüëï ðïõ êáèåìßá ãñÜöåé áêïëïõèéáêÜ óå êÜðïéï îå÷ùñé-ó�ü áñ÷åßï. Óå �Ý�ïéá ðåñéâÜëëïí�á ðáñáìÝíåé áäéåõêñßíéó�ï ðïéÜ åßíáé ç êá�áëëçëü�åñçìÝèïäïò ãéá �ç äéá÷åßñéóç �çò åéóåñ÷üìåíçò ñïÞò.Ó�çí ðáñïýóá åñãáóßá, ìåëå�Üìå �ç óõìðåñéöïñÜ �çò êá�áãñáöÞò äïóïëçøéþí äåäïìÝ-íùí ó�á ðëáßóéá �ùí óýã÷ñïíùí áé�Þóåùí åããñáöÞò óå óõó�Þìá�á áñ÷åßùí. ¸íá âáóéêüìåéïíÝê�çìá áõ�Þò �çò ìåèüäïõ åßíáé ü�é åðéöÝñåé óçìáí�éêü êüó�ïò óå åýñïò æþíçò äßóêïõ,ëüãù �ïõ õøçëïý üãêïõ �ùí äåäïìÝíùí ðïõ ó�Ýëíïí�áé ãéá áðïèÞêåõóç. �ñïêåéìÝíïõ íáåëá��þóïõìå �éò áðáé�Þóåéò óå åýñïò æþíçò, õëïðïéÞóáìå ìéá íÝá ìÝèïäï êá�áãñáöÞò äï-óïëçøéþí äåäïìÝíùí ðïõ áðïèçêåýåé ìüíï �çí ðñáãìá�éêÞ ìå�áâïëÞ ó�á äåäïìÝíá ùò áðï-�Ýëåóìá �ùí áé�Þóåùí åããñáöÞò �ïõ ÷ñÞó�ç. ÕëïðïéÞóáìå �çí ðñï�åéíüìåíç ìÝèïäï ó�ïðñïêáèïñéóìÝíï óýó�çìá áñ÷åßùí ext3 �ïõ ðõñÞíá �ïõ ëåé�ïõñãéêïý óõó�Þìá�ïò Linux.Ìå ëåð�ïìåñåßò ðåéñáìá�éêÝò ìå�ñÞóåéò äåß÷íïõìå ü�é áíÜëïãá ìå �ï ñõèìü ìå�Üäïóçò �ùíñïþí, ìðïñïýìå íá ìåéþóïõìå óçìáí�éêÜ �éò áðáé�Þóåéò óå åýñïò æþíçò �çò êá�áãñáöÞòäïóïëçøéþí äåäïìÝíùí. Ôáõ�ü÷ñïíá, ðå�õ÷áßíïõìå ìéá óçìáí�éêÞ ìåßùóç ó�ï ÷ñüíï áðü-êñéóçò �ùí óýã÷ñïíùí áé�Þóåùí åããñáöÞò �ïõ óõó�Þìá�ïò áñ÷åßùí. ÓõíïëéêÜ, ç ìÝèïäïòðïõ ðñï�åßíïõìå åßíáé éêáíÞ íá ðñïóöÝñåé ãñÞãïñç êáé áîéüðéó�ç áðïèÞêåõóç, �üóï óå ðå-ñéð�þóåéò ñïþí äåäïìÝíùí, üóï êáé óå ðáñáäïóéáêÝò åöáñìïãÝò ðïõ áðáé�ïýí óýã÷ñïíåòåããñáöÝò ãéá �çí áîéüðéó�ç áðïèÞêåõóç �ùí äåäïìÝíùí �ïõò.
xi

Chapter 1
Introdution

1.1 Thesis Sope1.2 Thesis Outline
1.1 Thesis SopeContinuous monitoring proesses are prevalent today for a wide range of purposes suh asnetwork administration, autonomi systems management and physial site safety. Suhimportant appliations make stream-oriented funtionality highly relevant in modernomputing infrastrutures. For instane, reently proposed stream management enginesdemonstrate the feasibility of exibly applying time-series operators on high-rate streams[3, 19℄. Existing stream proessing environments store stream data either temporarilybefore applying real-time operators within time windows [7℄, or permanently in order tosupport retrospetive query proessing [10℄.Prior researh has made the ase that traditional data management approahes, suhas relational databases and general-purpose �le systems, are not engineered to eÆientlystore ontinuous stream data that are automatially generated from sensors in real time[7, 10℄. Sensors may generate high-resolution video and audio streams at high rates [11℄,or send intermittent variations of environmental onditions at muh lower rates [22℄. Amonitoring system reeives messages from high-volume links or large numbers of sensors1

and stores the reeived data for a time period that depends on whether the appliedproessing ours in real time or retroatively.Aross all types of heterogeneous streams with di�erent rate and ontent harateris-tis, it would be desirable to store the reeived data reliably on the same faility withoutompromising the sequential playbak performane required for statistial proessing ore�etive visualization. Thus, a stream storage faility ould serve as a building blokfor a variety of appliations in the entire range from network paket proessing to urbantraÆ ontrol or environmental monitoring with the appropriate indexing funtionalitybuilt separately at a higher level, when support for query proessing is required.In general, �le system operations are either data operations that update user data, ormetadata operations that modify the struture of the �le system itself. Existing general-purpose �le systems use journaling in order to synhronously move data or metadata frommemory to disk in a sequential manner. Thus they postpone the more ostly transfer ofdata or metadata to the disk loation without penalizing the write lateny pereived bythe appliation user. Indeed, previous researh has used trae-based emulation to experi-mentally demonstrate that data journaling an serve random writes with high sequentialthroughput, but atually makes throughput lower at high data volumes due to the extradisk traÆ generated [25℄. The study made the reasonable onlusion that data journalingshould only be enabled with random writes, but disabled with large sequential writes. In-stead, we fous on the eÆient and reliable storage of multiple onurrent streams whoseaggregate workload demonstrates random-aess behavior even though appends orre-sponding to individual streams may be perfetly sequential. To a large extent, in suhenvironments it remains unlear what is the most appropriate way to handle the inomingdata.In the present thesis, we investigate the performane harateristis of data journalingin the ontext of synhronous writes that would be required among several situationsinluding the reliable storage of inoming streaming data. In order to lower the ost of datajournaling, we introdue di�erential data journaling, that onstitutes a di�erential versionof the default data journaling mode of a widely used operating system. In partiular, theprimary idea of our approah is to journal only the bytes that are atually written ratherthan the entire orresponding bloks that ontain them. Therefore, depending on therate harateristis of the streams, we an redue the required journaling throughput up2

to several fators. As a side-e�et of the sequential writes to the journaling devie, wealso manage to substantially redue the response time of synhronous writes. Thus, wean use data journaling to redue the lateny of writes at a redued ost of required diskthroughput.
1.2 Thesis OutlineThe remainder of this thesis is organized as follows:In Chapter 2, an overview of the related literature is presented. We review previousresearh related to tehniques that have been proposed to provide �le system reliabilityaross system rashes and ahieve high performane during data and metadata updates.Furthermore, we de�ne the storage needs of appliations that manage stream data, andpresent some of the most important implementations in this �eld. Finally, we presentreent researh related to redundany elimination that intends to redue the onsumptionof expensive resoures, suh as hard disk and memory spae.In Chapter 3, we desribe an existing journaling method that is ommonly used. Inpartiular, we examine the journaling tehnique that the Ext3 �le system applies in orderto preserve metadata onsisteny aross system failures, while minimizing the requiredreovery time.In Chapter 4, the design goals of our study are de�ned and the general arhiteturaldeisions taken during our prototype implementation are justi�ed.In Chapter 5, we introdue the di�erential data journaling tehnique that we havedesigned and implemented for a widely available operating system. Our prototype isbased on the idea of aumulating the modi�ations of multiple updates into a singlejournal blok, and intends to minimize the write lateny at a redued disk throughputost.In Chapter 6, we explain the experimentation environment that we used in our studyand present our measurements aross di�erent workloads. The experimental results aredisplayed graphially and our onlusions are justi�ed.In Chapter 7, the onlusions and the future diretions of this thesis are outlined.3

Chapter 2
Related Researh

2.1 Fast and Reliable Storage Systems2.2 Stream Arhival Servers2.3 Redundany Elimination2.4 SummaryIn this hapter, we desribe approahes that have been previously proposed in orderto ahieve high performane in �le systems during data and metadata updates. Further-more, we review previous researh that fouses on tehniques whih intend to provide �lesystem reliability aross system rashes. Next, we de�ne the storage needs of streamingappliations, and present some of the most important proposals in this diretion. Finally,we present reent researh related to redundany elimination that intends to redue theonsumption of expensive resoures, suh as hard disk and memory spae.
2.1 Fast and Reliable Storage SystemsFile systems are entral parts of modern operating systems and are expeted to serve twoopposing priniples; performane and durability. Nevertheless, operating systems are stillsuseptible to hardware, software and power failures that damage both their eÆienyand their reliability. 4

Early �le systems introdued the use of a main memory bu�er ahe to hold writesuntil they are asynhronously written to disk. Those �le systems su�ered from potentialorruption during a power failure or an operating system's rash, sine reovery oftenrequired a time onsuming examination of the entire state of the �le system. Even today,during reboot, verifying a �le system's onsisteny requires a speial utility that reoversthe �le system's omponents to a onsistent state. As disk sizes grow, this time anbeome a serious bottlenek, leaving the system o�ine for a onsiderable amount of timewhile the disk is sanned, heked and repaired. Although disk drives are beoming fasterthrough time, this speed inrease is modest ompared with their enormous inrease inapaity. Unfortunately, every doubling of disk apaity leads to a doubling of reoverytime needed from traditional �le systems heking tehniques.It is, however, possible to make �le system reovery fast without sari�ing reliabilityand preditability. This is typially done by �le systems whih guarantee atomi omple-tion of �le system updates. The prinipal idea behind atomi updates is that an entirebath of updates an be written to the �le system, but those updates do not take e�etuntil a �nal ommit update is made on the disk. In order to ahieve this, the �le systemmust keep both the old and the new ontents of the updated data somewhere on diskuntil the �nal ommit.In order to preditably reover after a rash, the reovery phase must be able towork out what the �le system was trying to do when the rash that led to inompleteoperations to disk ourred. Consistent reovery of the metadata after a rash, due tooperating system or power failure, requires the system updates to be written on disk in aspei� order. There are many ways of ahieving the required ordering between updatesand we desribe some of the most important in the rest of the present setion.2.1.1 Synhronous WritesThe system an ahieve onsisteny simply by updating the system metadata synhronously.The synhronous metadata update mehanism �rst waits for the pending writes to om-plete, before submitting the next ones. Nonetheless, synhronous writes an signi�antlyimpair the ability of a �le system to ahieve high performane as it is not feasible to bathup multiple updates into a single disk operation. Similarly one an reover reently writ-5

Log

Segments

... Disk

...
Write Frontier

Available for reclamation

Figure 2.1: A log-strutured �le system treats its storage as a irular log and writes alldata and metadata modi�ations sequentially to the head of a segmented append-onlylog. Log spae must be onstantly relaimed and thus, a garbage olleting proess isresponsible for oalesing unused spae into empty segments.ten data after a rash by writing them synhronously to disk. Synhronous data writesare typially applied in database systems that store ritial data [31, 8℄.Xsynfs introdues the idea of externally synhronous I/O that guarantees durabilitynot to the appliation, but to the external entity that observes appliation output [23℄.In partiular, an externally synhronous system all returns ontrol to the appliation be-fore ommitting data. Subsequently, all output that ausally depends on the unommittedtransation is bu�ered, and is eventually externalized only after the ommitment is su-essfully ompleted. However, in the ase of appliations that do not produe any output,xsynfs ommits data periodially similarly to an asynhronously mounted journaling �lesystem, an approah that is desribed later in this setion.2.1.2 Log-Strutured File SystemsThe main idea behind the design of a log-strutured �le system (LFS) is to improve writeperformane by bu�ering a sequene of �le system updates in the �le ahe and thenwriting all the hanges to disk sequentially in a single disk write operation [27℄. For thisreason, a log-strutured �le system treats the disk as a segmented append-only log andwrites all data and metadata modi�ations into it. The log is the only struture on diskand onsists of segments that failitate the removal of deleted areas (Figure 2.1).Periodially, the system writes the omplete and onsistent �le strutures safely ata �xed loation of the log alled hekpoint region. After a rash, the �le system uses6

the hekpoint for its initialization, and the reent portion of the log to quikly reoverreently written data. In partiular, upon its next mount, the �le system does not needto walk all its data strutures to �x any inonsistenies, but an reonstrut its state fromthe last onsistent point in the log.Free spae must be onstantly relaimed from the tail of the log to prevent the �lesystem from beoming full when the head of the log wraps around to meet it. Whenupdated data is written to the end of the log, the previous opy of the data is still on diskin its old loation and an be onsidered as dead spae or a hole in the log. A garbageolleting proess is responsible for oalesing these holes into empty segments whih arethen available for new log writes. The tail itself an skip forward over data for whihnewer versions exist farther ahead in the log; the remainder is simply moved out of theway by appending it bak to the head.Log-strutured �le systems maximize the write throughput on magneti media byavoiding ostly seeks. In addition, interleaved writes to multiple streams an be alloatedlosely together on disk. However, log-strutured �le systems indue leaning overhead,sine the size of the �le system is of �nite size and the log must eventually wrap around.Although write alloation in log-strutured �le systems is straightforward, the garbageolletion of storage spae after �les are deleted, has remained problemati. Cleaning ina general purpose LFS must handle �les of vastly di�erent sizes and lifetimes, and allexisting solutions involve opying data to avoid fragmentation. Previous study veri�edthis high leaning overhead, partiularly under OLTP-like workloads, where small randomwrites make up a large portion of the disk I/O requests [28℄. Over the last years, manyalgorithms have been proposed to redue the leaning ost of LFS, but the leaning ostis still high in systems with high disk spae utilization and little idle time.A number of �le systems have been implemented based on this design, inluding theSprite LFS [27℄ and some prototype LFS implementations on Linux. HyLog uses a log-strutured layout for hot pages to ahieve high write performane, and overwrite strategyfor old pages to redue the leaning ost [32℄. DualFS is a reent implementation basedon a variation of log-strutured �le systems [24℄. It uses two separates devies for thedata and metadata, respetively; it employs a log-strutured �le system for the metadataand treats data as in typial Unix systems. We present another variation of LFS alledStreamFS in Setion 2.2.2, where all writes take plae at a write frontier whih advanes7

as data is written [10℄. StreamFS does not require a segment leaner, and applies aprototype expiration poliy in order to seletively overwrite the stored data.2.1.3 Soft UpdatesSoft updates is a mehanism that delays writes of metadata and expliitly maintains de-pendeny information to speify the order in whih data must be written to disk [13℄.Thus, it eliminates the need for a log or most synhronous writes related to metadata.The system maintains for eah disk blok a list of all the metadata dependenies asso-iated with the blok. When a blok needs to be written, whih blok requires otherbloks to be written �rst, the system rolls bak the a�eted parts of the seleted blok totheir earlier state. After the write has ompleted, the system deletes all the ompleteddependenies and restores the blok to its urrent value. Thus, appliations see the mostreent version of the metadata bloks and the system keeps disk ontents onsistent. Aftersystem rashes the system an be mounted and used immediately, sine the only remain-ing inonsistenies are non-fatal errors that an be orreted in the bakground duringnormal operation.Soft updates trak and enfore metadata update dependenies, so that the �le systeman safely delay writes for most �le operations. This method improves system performanebeause it aggregates multiple metadata updates into a redued number of disk writesand postpones time-onsuming operations, suh as deletes, to a bakground proess.2.1.4 Journaling File SystemsJournaling �le systems use an auxiliary log to reord all metadata operations and ensurethat the log and data bu�ers are synhronized in a way that guarantees reoverability.Additionally, some implementations also support logging of data modi�ations. The goalof a journaling �le system is to avoid running time-onsuming onsisteny heks on thewhole �le system, by looking instead in the log that ontains the most reent disk writeoperations. Consequently, remounting a journaling �le system after a system failure is amatter of a few seonds.A journaling �le system maintains a journal of the updates it intends to make, aheadof time. The log is maintained as a prealloated �le within the same �le system or as8

1

2

3

Final LocationJournal

Metadata and data
written to the filesystem

Metadata/Data
writt

en

to
the journal

Write Request

Log space can be
reclaimedFigure 2.2: A journaling �le system logs updates to a irular journal �le before om-mitting them to the main �le system. One the orresponding updates has been storedto their �nal loation, opies of the bloks in the journal an be disarded allowing thejournal spae to be relaimed.a standalone separate �le system. After a rash, reovery simply involves replaying theupdates from the journal until the �le system is onsistent again. A �le system transation,whih onsists of a sequene of orrelative updates, is marked as omplete when it isjournaled and followed by a ommit reord. Only then the orresponding updates an bewritten to their �nal loation (Figure 2.2). Journaling �le systems guarantee atomiityduring reovery, as all the updates of a transation an either be rejeted or replayed,aording to whether or not the transation is followed by a ommit reord in the journal.Through write-ahead logging the journaling �le systems ensure that the log is writtento disk before any pages ontaining data modi�ed by the orresponding operations. Eventhough the system performs additional disk operations, they are eÆient sine they aresequential. Bathing of log writes that originate from di�erent onurrent appliations,provides additional throughput improvements. In addition, �le system journaling allowssynhronous writes to omplete faster, beause they return as soon as the sequential logupdate ompletes. Therefore, ostly disk operations at the �nal loations of the modi�edbloks an be deferred and ompleted periodially and asynhronously.Journaling of �le data helps further in that diretion, but inurs signi�ant extrathroughput on the journaling devie. The ost of data journaling an be high for largewrites due to the signi�ant volume of data sent to the log. Unfortunately, urrentimplementations inur onsiderable logging ativity even with small writes. In order to9

simplify the implementation, they log the entire bloks being modi�ed rather than justtheir modi�ed part. However, journaling redues write lateny in both small and largewrites, sine it allows the synhronous log updates to be ompleted sequentially.The data and metadata journaling of the Ext3 �le system has been doumented[29, 12℄.yFS is a reently proposed �le system for general purposes that only uses journal transa-tions for metadata modi�ations [33℄, while it redues disk seeking and handles large �leseÆiently. Earlier, Hagmann desribed metadata update logging in the Cedar File Systemto improve performane and ahieve onsisteny [16℄. In order to gain performane, itused group ommit, a onept derived from high performane database systems. Also, theEho distributed �le system used a journal to reord disk storage updates thus improvingperformane and availability [5℄.Prabhakaran et al. introdued the semanti blok-level analysis tehnique to trae andanalyze �le systems, and the semanti trae playbak tehnique to evaluate �le systemmodi�ations [25℄. Evaluation of Ext3 over Linux showed that data journaling inurssubstantial traÆ to the journal but with sequential throughput, unlike the ordered modethat mainly writes data to the �nal loation. The authors onlude that sequential work-loads should better be served in ordered mode, while random workloads an bene�t fromdata journaling. Using trae-based emulation, the authors show that di�erential datajournaling an redue substantially the amount of traÆ to the journal in database ap-pliations.2.1.5 Persistent MemoryThere exist approahes that implement some type of stable storage through speializedhardware. The memory vulnerability to power outages an be enountered using uninter-ruptible power supply or a distint Flash RAM devie. Thus, writes to the �nal on-diskloation an be deferred to a later more onvenient time, when the memory spae needsto be relaimed for example. However, the main drawbak of suh implementations is theextra hardware expenses.The Rio �le ahe makes ordinary memory safe for persistent storage, through theuse of an uninterruptible power supply, that allows the �le system to avoid synhronouswrites and guarantee the �le system onsisteny at the same time [8℄. However, durability10

is guaranteed only as long as the power in on or the batteries remain harged.Another approah, the Network Appliane's WAFL (Write Anywhere File Layout) �lesystem hekpoints the disk to a onsistent state periodially and uses Non-Volatile RAM(NVRAM) for fast writes between hekpoints [18℄. NVRAM is used to keep a log of NFSrequests that WAFL has proessed sine the last onsisteny point. WAFL keeps thenew opies of the updated data in di�erent loations from the old opies, and eventuallyreuses the old spae one the updates are ommitted to disk. After an unlean shutdown,it replays any requests in the log to prevent them from being lost. The Write AnywhereFile Layout improves write performane by writing �le system bloks to any loation ondisk and in any order, while deferring disk spae alloation with the help of NVRAM.Nevertheless, NVRAM is haraterized by apaity, reliability and ost limitations.2.1.6 Other ImplementationsHildebrand et al. highlight the prevalene of small and sequential data requests in sienti�appliations [17℄. They show that it is possible to improve the overall write performaneof parallel �le systems by using parallel I/O for large write requests and a distributed �lesystem for small write requests. The Virtual Log is another e�ort to minimize the latenyof small synhronous writes by building the log-strutured �le system over a log withentries that are not neessarily physially ontiguous [31℄. Virtual Log is an approahto improve small disk write performane even in systems with no idle periods, but itrequires detailed knowledge of the disk layout and the loation of the disk head at anymoment, whih might be diÆult to obtain from modern disks. Finally, the Google FileSystem handles large �les typially mutated by appending new data sequentially ratherthan overwriting existing data, at random �le loations [14℄.
2.2 Stream Arhival ServersReently a new lass of data-intensive appliations has beome widely reognized; stream-ing data management appliations. This lass inludes �nanial appliations, networkmonitoring, seurity, teleommuniations data management, web appliations, manufa-turing and sensor networks. In the data stream model, individual data items may be11

relational tuples, e.g., network measurements, all reords, web page visits, sensor read-ings, and so on. However, their ontinuous arrival in multiple, rapid and time-varyingstreams yields some fundamentally new researh problems.In partiular, data arrival rates whih an vary from hundreds of thousands of paketsper seond per link to muh lower rates, ompliate the storage management for suhappliations. Currently, the design of a streaming-oriented storage system an be basedon two possible arhitetures; either a relational database an be used to store the in-oming stream data, or a ustom index an be built on top of a onventional �le system.Nonetheless, at the above mentioned heterogeneous data rates, both ommon database in-dex strutures and general-purpose �le systems have been doumented to perform poorly[7, 10, 2℄. This motivates the need for a new storage system, that runs on ommodityhardware and is spei�ally designed to satisfy the storage needs of streaming data.2.2.1 Traditional DatabasesNowadays, network monitoring systems are useful for a multitude of purposes, suh asphysial site safety, network and seurity forensis. Monitoring appliations di�er sub-stantially from onventional business data proessing. Traditional Database ManagementSystems (DBMS) have been oriented toward business data proessing, and onsequentlyare designed to address the needs of these appliations [7℄. Partiularly, a DBMS is on-sidered to be a passive repository storing a large olletion of data elements and typiallyonly humans initiate queries and transations on this repository. Furthermore, tradi-tional DBMSs are not designed for rapid and ontinuous loading of individual data items,and they do not diretly support the ontinuous queries that are typial of data streamappliations. Finally, a DBMS assumes that appliations require no real-time servies.Appliations that ontinuously monitor and store massive numbers of streams in real-time ould bene�t from DBMSs, due to the high volume of monitored data and the queryrequirements that arise. However, traditional DBMSs seem to have remarkable ineÆien-ies under suh irumstanes. First, monitoring appliations ontinuously reeive highvolumes of data from external soures, suh as sensors, rather than from humans issuingtransations. Moreover, while for a DBMS data do not have a notion of time and anyupdate operation overwrites the previous value, data stream represent a sequene of val-12

ues for the same entity. Thus, the stati model of databases, with dynamially hangingqueries being exeuted over stati data, is not designed for handling stream data, whihhas stati queries being exeuted over dynamially hanging data. Last but not least,handling data streams would require the DBMS to serve real-time appliations, making itimperative that the DBMS employ intelligent resoure management (e.g., sheduling) andgraeful degradation strategies (e.g., load shedding) during periods of high load. Theseare not features of a traditional DBMS whih is designed as a store-and-query modelinstead.Digital streaming infrastrutures replae traditional losed-iruit television systemsin urban traÆ-ontrol appliations to store large numbers of video feeds [11℄. Previously,environmental, oeanographi and meteorologial onditions have been measured andstored over distributed relational databases [22℄. Aurora is a stream proessing enginethat has been developed to support primitives for streaming appliations, handle queryproessing on inoming messages in real time and graefully deal with spikes in messageload [7, 3℄. The CoMo is a passive monitoring system that an be used as a building blokfor a network monitoring infrastruture that proesses and shares network traÆ statistisover multiple sites [19℄. Como inludes a storage proess that is data agnosti and treatsall data bloks equally. Also, load shedding tehniques were developed to maintain theauray of traÆ queries within aeptable levels at extreme traÆ onditions [4℄.2.2.2 General-Purpose File SystemsThe storage needs of monitoring appliations result in ontinuous sequential writes to theunderlying storage system. In order to redue disk seek overheads and improve systemthroughput, the system should employ data plaement tehniques that exploit the par-tiular I/O harateristis of streams. General-purpose �le systems are not engineered toeÆiently store ontinuous stream data that are automatially generated from sensors inreal time. Unix-like �le systems, for instane, are typially optimized for writing small�les and reading large ones sequentially, while monitoring and querying appliations ei-ther write very large �les at high data rates, or apply small writes at muh lower rates,while issuing small reads.File systems periodially write data to disk and transation proessing appliations13

view transations as ommitted only after the data has been written to disk. A mod-i�ed version of the log-strutured �le system has been reently used for the storage ofhigh-volume streams [10℄. StreamFS has inoming stream data written to a frontier thatmoves in a irular fashion along the disk spae and seletively overwrites the expireddata. However, StreamFS has been spei�ally designed for high-rate streams typiallygenerated in network monitoring systems; it is unlear how it would behave in hetero-geneous environments where high-rate and low-rate streams o-exist. Additionally, anaggregate high-rate stream typially ontains a large volume of information that makesneessary to build an index struture online during data storage and san entire segmentsof the stored data during retrospetive query proessing. Instead, demultiplexing of theinoming data into separate �les would possibly failitate and redue the load of thesubsequent seletive retrieval and proessing.In order to improve their operation reliability, reent general-purpose �le systemsapply journaling tehniques to preserve metadata onsisteny aross system rashes atminimal reovery time. Suh tehniques are therefore in high demand, espeially, in en-vironments where high availability is important, not only to improve reovery times onsingle mahines, but also to allow a rashed mahine's �le system to be reovered onanother mahine when we have a luster of nodes with a shared disk. Comparisons arossdi�erent journaling methods with general-purpose �le server traÆ has shown that, de-pending on the sequentiality workload harateristis, either ordered data writing or datajournaling may lead to better performane [25℄. Nevertheless, the problem is that theblok aess sequene on a ontent server is e�etively random when many slow streamsaess large �les onurrently, even though individual stream appends are perfetly se-quential [1℄. Therefore, it might be useful to build system failities for the storage ofheterogeneous streams with di�erent rate and ontent harateristis.2.2.3 Playbak ServersSeveral researh projets and ommerial produts of media streaming servers have al-ready established the feasibility of streaming stored �les. Reent years have witnessedan ever-inreasing demand for media-on-demand appliations on the Internet. Typially,users aess online media lips by liking on a hyperlink using their Web browser, whih14

results in the browser opening a media player to play the seleted media �le. The playbakservers are responsible to deliver the seleted media �le to the player through streaming.In the streaming mode of data delivery, the initial portion of the media is loaded into theplayer bu�er, whih takes a brief time period. The remainder of the ontent is obtainedaross the network, while the media �le is being played bak. A stream �le is reeived,proessed, and played simultaneously and immediately, leaving behind no residual opyof the ontent on the reeiving devie.Therefore, the main purpose of a playbak server is to read from disk the requiredstored stream �le, and then deliver it to the proper lient. Reading a stream �le from thedisk refers to �nding and retrieving the bloks that ontain the requested data. Addition-ally, read-ahead tehniques are applied in order to enhane disk performane. Read-aheadonsists of reading several adjaent pages of data of a �le from disk, before they are a-tually requested. On the other hand, streaming storage deals with the stream �les' writeoperations. Thus, the basi hallenge of a streaming storage server is to quikly, reliablyand eÆiently, in terms of disk throughput, store the inoming data. Write operations ondisk-based stream �les are slightly more ompliated, sine speial are must be taken inorder to avoid ompromising their sequential playbak performane.Streaming workloads di�er from traditional web workloads in many respets, present-ing a number of hallenges to system designers and media servie providers. For instane,transmitting media �les requires more omputing power, bandwidth and storage and ismore sensitive to network jitter than web objets. Furthermore, media aess lasts for amuh longer period of time and allows for user interation.In partiular, although proxy ahing has been suessful in delivering stati text-basedontent, it is more diÆult to deliver streaming media ontent. First, the size of a mediaobjet is generally muh larger than a text-based objet, rendering the ahing of entiremedia objets as stati objets ineÆient. Furthermore, a lient requesting some mediaobjet demands ontinuous streaming delivery. While, the oasional delays that ourwhen transferring data over the Internet are aeptable for text-based Web browsing, forstreaming media data this transfer delay results in undesirable playbak jitter at the lientside.Instead, whole-�le transfers, or �le downloading an provide ontinuous playbak, butit introdues a signi�ant startup delay, in addition to large bu�er spae requirements15

on the lient. In omparison to traditional �le downloading, media data streaming al-lows signi�antly faster playbak initiation, provides guarantees for uninterrupted datadeoding, and requires minimal bu�ering requirements from the lient devies.
2.3 Redundany EliminationSeveral approahes have been proposed that intend to redue the onsumption of expen-sive resoures, suh as hard disk and memory spae or transmission bandwidth. Reduingthe number of required bytes is equivalent to the elimination of data redundany withinmemory or the storage devie. A number of tehniques that have been proposed towardsthis e�ort inlude data ompression, dupliate suppression and delta enoding methods.Partiularly, data ompression eliminates the redundany inside an objet, dupliate sup-pression refers to the elimination of idential objets and, �nally delta enoding eliminatesthe redundany between similar objets.Signi�ant improvements have ourred over the past deades in the �eld of virtual-ization. The main researh interest lies in the multiplexing of hardware resoures amongvirtual mahines that run ommodity operating systems, in order to redue the host'smanagement overhead. Nevertheless, main memory is not amenable to inexpensive mul-tiplexing and thus a variety of redundany elimination tehniques, suh as page sharing ofidential pages, memory ompression inside individual pages and delta enoding betweensimilar pages, are performed to ahieve high memory onsolidation. Related study showsthat substantial memory savings are available from the sharing of idential pages betweenvirtual mahines when running homogeneous workloads [30℄. The Di�erene Engine, anextension to the Xen virtual mahine monitor, demonstrates the potential memory savingsavailable from leveraging a ombination of whole page and sub-page sharing and memoryompression [15℄.Kulkarni et al. exploited similarity at the blok level in order to redue the number ofbytes needed to represent an objet when it is stored [21℄. In partiular, they proposedthe use of ompression, dupliate blok suppression and delta enoding to eliminate re-dundany of stored data in a salable and eÆient way. Finally, Venti is a network-basedstorage system intended primarily for arhival purposes [26℄. This approah enfores a16

write-one poliy, preventing aidental or maliious destrution of data, while dupliateopies of a blok an be oalesed in order to redue the onsumption of storage.
2.4 SummaryThe prevalene of ontinuous monitoring proesses for system management purposes andgeneral physial site safety make stream proessing appliations highly relevant in modernomputing infrastrutures. Prior researh has made the ase that neither traditionaldatabases, nor general-purpose �le systems are suÆiently engineered to eÆiently storeontinuous stream data that is automatially generated from sensors in real time.Furthermore, urrent �le systems mostly are to maintain their integrity aross rasheswithout ompromising their performane. They ahieve this goal by ushingmetadata up-dates at sequential disk throughput or by avoiding the violation of the dependenies arossthe blok updates. Existing tehniques that omplete the data updates synhronously,require signi�ant extra disk throughput in order to ahieve that at relatively low lateny.This overhead omes from the large amounts of data that needs to be written to disk, evenin ases of small updates. However, a number of e�etive tehniques have been proposedover the last deades, in order to redue the onsumption of expensive resoures, suh asmemory and disk spae.In this thesis, we reonsider the ability of onventional �le systems to serve the needs ofstreaming workloads, and towards this diretion we modify a widely available �le systemin order to alleviate its relevant design ineÆienies. At the same time, we demonstratethat it is possible to redue substantially the throughput overhead of synhronous datawrites while maintaining low latenies, as well.

17

Chapter 3
Journaling in the Ext3 File System

3.1 Bakground3.2 Commit Poliy3.3 Chekpoint Poliy3.4 Reovery Poliy3.5 SummaryJournaling results in notieable redution of the time period spent during the reoveryof a �le system to a onsistent state after a rash. In this hapter, we analyze the popularLinux journaling �le system, Ext3 [29, 12℄. In partiular, we examine the journalingtehniques that are applied, in order to ahieve high onsisteny guarantees aross systemrashes at minimal reovery time, and detet design ineÆienies that inur signi�antperformane overhead to the journal devie.
3.1 BakgroundAs disk apaities grow faster than disk aess speeds over time, modern �le systemsuse journaling to support fast reovery after a rash [29, 12, 6, 25℄. Journaling reduespossible downtime of several hours to a few seonds by avoiding running time-onsuming18

onsisteny heks over the entire apaity of the �le system. Instead, it simply replaysthe most reent disk writes stored in the log. Ext3 implements journaling by performingeah high-level hange to the �le system in two steps:1. First, it opies the modi�ed bloks into the journal.2. Then, it transfers the modi�ed bloks into their �nal disk loation.The journal is treated as a irular bu�er; one the neessary information has been storedto its �nal loation, opies of the bloks in the journal an be disarded allowing thejournal spae to be relaimed.3.1.1 Basi File System ConeptsA �le system refers to a olletion of �les and �le management strutures on a physialor logial mass storage devie. It desribes a method of organizing bloks on a storagedevie into �les and diretories. The ommon �le model used by the widely known Linuxoperating system is objet-oriented. Objet is a software onstrut that de�nes both adata struture and the methods that operate on it. It onsists of the following objettypes:
• The superblok objet that stores information relating to a mounted �le system.
• The i-node objet that stores information about a single �le. Eah i-node objetis assoiated with an inode number that uniquely identi�es the �le within the �lesystem.
• The �le objet that stores information onerning the relation between an open �leand a proess.
• The dentry objet that stores information about the linking of a diretory entry withthe orresponding �le.The arhiteture depited in Figure 3.1 illustrates the relationships between the major�le system-related omponents in both user spae and the Linux kernel. In partiular, asystem all interfae layer provides the means to perform funtion alls from user spaeinto the kernel. The Linux kernel ontains a Virtual File System layer whih provides a19

Hardware

User Space User Processes

Kernel
System Call Interface

VFS

Ext3 Filesystem

IB Inode Bitmap

Data BitmapDB

Journal SuperblockJS

DBIB INODE JS JD... ...

Journal Descriptor BlockJD

Journal Commit BlockJC

JC...

Journal file

Storage Media

DATASB

SuperblockSB

......M/D

Journal Metadata/Data BlocksM/DFigure 3.1: We illustrate the arhitetural view of the Linux operating system and dis-tinguish the Ext3 �le system inside the kernel. Furthermore, we �gure the on-disk layoutof the Ext3, whih is based on the generi Unix �le system struture.ommon interfae abstration for �le systems supported by the kernel. VFS onstitutesan indiretion layer whih handles the �le oriented system alls and alls the neessaryfuntions in the physial �le system ode to do the appropriate I/O. Finally, the �lesystem is responsible for applying the orresponding I/O requests on the proper devies.3.1.2 Introdution to Ext3The Third Extended File System, known as Ext3, is a journaling �le system that is om-monly used by the Linux operating system, and onstitutes the default �le system for themost reent Linux distributions. Ext3 is largely based on the Ext2 �le system. Partiu-larly, its on-disk layout is entirely ompatible with the existing of an Ext2 �le system withan additional disk struture, the journal �le (Figure 3.1). Thus, all data and metadataupdates are plaed into the standard Ext2 strutures that onstitute the �nal loationstrutures. 20

Information about pending �le system updates is written to the journal. By foringjournal updates to disk before updating omplex �le system strutures, this write-aheadlogging tehnique enables eÆient rash reovery. A simple san of the journal and aredo of any inomplete ommitted operations are needed to reover the �le system to aonsistent state. The journal �le is, by default, loated within the �le system, although itan be also stored on a separate devie or partition. The journal is treated as a irularbu�er and thus, one the neessary information has been written to its �xed on-diskloation, the orresponding journal spae an be relaimed.3.1.3 Journaling ModesExt3 uses three kinds of journaling; writebak, ordered and data journaling mode.
• In writebak mode Ext3 logs only the �le system metadata, while data bloks arewritten diretly to their �xed loation. Although this mode is onsidered to be thefastest, it provides the weakest onsisteny guarantees of the three modes, sine itdoes not enfore any ordering between the journal and the �xed-loation data writes.Partiularly, the ontents of a �le might be written before or after the journal isupdated. As a result, �les modi�ed right before a rash an beome orrupted. Thus,while metadata bloks are onsidered to be onsistent, no guarantee is provided tothe orresponding data bloks.
• In ordered journaling mode, only metadata writes are journaled. However, datawrites to their �xed loation are ordered right before the journal writes of themetadata, thus reduing the risk of orrupting data during reovery. In ontrast towritebak mode, this mode provides more sensible onsisteny semantis, sine dataand metadata are guaranteed to be onsistent after reovery. This is the defaultjournaling mode on many Linux distributions.
• The full data journaling mode journals both metadata and data bloks. This modeminimizes the risk of losing �le updates, but inurs additional disk aesses. Itis onsidered to provide the strongest onsisteny guarantees of the three modes,while it seems to have di�erent performane harateristis, in some ases worse, andsurprisingly, in some ases better. In partiular, the sequential nature of the journal21

an improve performane, while in other ases performane gets worse beause eahblok is typially transferred to disk twie; one to the journal and then later to its�nal loation. In the rest of this thesis, we prefer to use the term data journalingwhen we refer to the full data journaling mode in order to stress out the fat thatit journals data in addition to metadata.In our researh, we fous on the eÆient and reliable storage of multiple onurrentstreams. Hene, we onentrate on the onsisteny guarantees provided through orderedand data journaling, sine writebak mode o�ers the weakest onsisteny semantis of thethree modes. However, for reasons of ompleteness, in our experimental measurementswe examine the behavior of all the three modes.Figure 3.2 depits the behavior of three di�erent journaling modes during the ommitand the hekpoint intervals; the proesses of updating the on-disk journal struture andthe �nal on-disk loation respetively. Aording to the mount options, the write updatesare either written diretly to their �nal on-disk loation, or to the journal. Depend-ing on the onsisteny semantis that eah mode provides, the updates an take plaesynhronously or not. In partiular, time ows downwards following the arrows, whileboxes represent �le system updates. Additionally, the two timelines represent ommitand hekpoint time. As shown in Figure 3.2(a), during the ommit time, the writebakmode writes synhronously metadata to the journal, while data bloks an be ushedasynhronously to their �nal loation at any time. Thus, the required disk overhead islow sine only metadata is logged. In Figure 3.2(a), the dotted boxes are used to implythat no ordering is required between data and metadata updates as they an our in anyorder. Ordered journaling mode ushes data synhronously to the �xed loation beforethe orresponding journal reord is updated (Figure 3.2(b)). Next, when the proper timeinterval expires, metadata is �nally written asynhronously to the appropriate �xed lo-ation. Consequently, a small amount of information (only metadata) is written to thejournal sequentially and eÆiently. However, synhronous data writes to the �le systeminur heavy disk traÆ, whih limits the system's performane for small writes. In datajournaling the log is updated synhronously with both metadata and data reords at eahommit interval (Figure 3.2()). When the proper time interval expires, both metadataand data are �nally written asynhronously to their �xed on-disk loations. One again,22

WRITEBACK
MODE

Final Location

Journal

(Data)

Final Location
(Data)

Final Location
(Data)

(Metadata)

Final Location
(Metadata)

Sync

Commit

Checkpoint

(a)

ORDERED
MODE

Final Location

Journal

(Metadata)

(Metadata)

Final Location
(Data)

Sync

Sync

Commit

Checkpoint

(b)

DATA
MODE

Journal
(Metadata+Data)

Final Location

(Metadata+Data)

Sync

Commit

Checkpoint

()Figure 3.2: The behavior of the three di�erent journaling modes through time. Timeows downwards following the arrows, while the boxes represent �le system updates.The two timelines represent ommit and hekpoint; the proesses of updating the on-disk journal struture and the �nal on-disk loation, aordingly. Depending on theonsisteny semantis that eah mode provides, the updates an take plae synhronouslyor not.journal writes are eÆient due to the append-only nature of the log. Nevertheless, whenlarge volumes of data need to be written, the dupliates due to the journal writes impairthe overall system's performane. Although journal writes negatively a�et the perfor-mane of large data writes, small writes an bene�t from the sequential journal. There,data modi�ations an be bathed together while deferring their movement to the �nalloation, thus reduing disk head seeking overhead.
23

HEADER

TAG

Journal Descriptor
Block

...

TAG

TAG

Full Blocks

- block # of final
location on disk

TAG

TAG

...Buffer Page

Block Buffer
New Data

Unmodified DataFigure 3.3: In the original design of the Ext3 data journaling, there is a full blok inthe journal for eah write operation, despite the size of the new data modi�ation. Inaddition, in the journal desriptor blok a new auxiliary tag is alloated eah time a writeupdate is logged, and it is used to desribe the orrespondene between the journal andthe �xed loation disk blok.3.1.4 JournalExt3 handles the journal through a speial kernel layer alled journaling blok devie(JBD). The journal is implemented as either a hidden �le within the root diretory ofthe �le system or a separate disk partition. Eah log reord in the journal orrespondsto one low-level operation in the �le system that updates one disk blok. The journalrepresents with a log reord the entire modi�ed blok of the �le system rather than therange of blok bytes atually modi�ed (Figure 3.3). Thus, the journal is wasteful in termsof disk throughput and spae, but simple in terms of proessing omplexity beause ituses the bu�ers of the modi�ed bloks diretly. Additionally, eah log reord is assoiatedwith auxiliary information that ontains the number of the orresponding blok in the �lesystem and several status ags.As shown in Figure 3.4, Ext3 uses additional metadata strutures to trak the list ofjournaled bloks. The journal superblok traks summary information for the journal,suh as the blok size and head and tail pointers. A journal desriptor blok, as weexplain later in this hapter, marks the beginning of a transation and desribes thesubsequent journaled bloks, inluding their �nal �xed on-disk loation. In data journalingmode, the desriptor blok is followed by the data and metadata bloks; in ordered and24

JDJS M/D JCJC JD M/DM/D

Journal Descriptor Block

JS Journal Superblock

JD

Journal Commit Block

Journal Metadata/Data Block

JC

M/D

...

Journal On-Disk Layout

Figure 3.4: We illustrate the on-disk layout of the journal. The journal onsists of ajournal superblok, journal desriptor bloks, full data and metadata bloks, and journalommit bloks.writebak mode, the desriptor blok is followed by the metadata bloks. Finally, a journalommit blok is written to the journal at the end of the transation to mark its suessfulompletion and verify that the orresponding data and metadata updates are safe on disk.3.1.5 TransationsEah high-level operation of the �le system (e.g. a system all) is usually split into a seriesof low-level operations that manipulate disk data strutures. The atomi operation handlerefers to a set of low-level operations. When the system reovers from a failure, it ensuresthat either the whole high-level operation is applied, or none of its low-level operations is.For reasons of eÆieny, instead of ushing eah atomi handle to the journal, the systemgroups into a single transation the reords of multiple atomi operation handles. Allthe log reords of a handle belong to one transation. After its reation, the transationaepts log reords of new handles for a �xed period of time. The system stores all thelog reords of a transation onseutively on the journal. After the log reords have beenommitted to the �le system, the system relaims all the bloks of the transation.The JBD layer handles eah transation as a whole. A transation is onsideredomplete (equivalently in state T FINISHED), if all its log reords are fully residing inthe journal inluding the ommit blok. It is inomplete, if at least one log reord of thetransation is not in the journal. An inomplete transation an be in one of the followingstatesT RUNNING It still aepts new atomi operation handles.T LOCKED It does not aept new handles, but waits for the aepted handles to25

�nish.T FLUSH All the handles in a transation are omplete and the transation is beingwritten to the journal.T COMMIT All the log reords have been written to the journal exept for the ommitblok of the transation.When reovering from a failure, the system skips all inomplete transations and transfersthe bloks of the omplete transations to the �le system.3.1.6 Kernel Bu�ersThe Linux kernel uses the page ahe to temporarily keep page opies from reentlyaessed disk �les in memory. In most ases, the kernel refers to the page ahe whenreading or writing from disk. In partiular, before a �le write ours, the kernel veri�eswhether the orresponding page exists in the page ahe. In ase that it is found, thewrite is applied to that page in memory. Otherwise, when the write perfetly falls on pagesize boundaries, the page is not read from disk, but alloated and immediately marked asdirty. Otherwise, the orresponding page is fethed from disk and requested modi�ationsare done. Pages that have been modi�ed in memory for writing to disk, are marked dirtyand have to be ushed to disk before they an be freed.A blok bu�er is the bu�er of an individual disk blok in memory. As depited inFigure 3.5, eah blok bu�er has a bu�er head desriptor that spei�es all the neessaryhandling information required by the kernel in order to loate the orresponding blokon disk. Generally, the page ahe does not alloate the blok bu�ers individually, but inunits of pages alled bu�er pages. The kernel addresses individual bloks using the bu�erheads pointed to by the orresponding bu�er page.3.1.7 Flushing Dirty Bu�ers to DiskWrite operations are deferred in the page ahe. When data in the page ahe is newerthan the data on the baking store, that data is alled dirty. Dirty pages that aumulatein memory eventually need to be written bak to disk. Dirty page writebak ours intwo situations: 26

Buffer Page

Block Buffer

..
.

..
.

Block Buffer

Block Buffer

Disk Block ...

Disk

block number
offset in page

Disk BlockDisk Block

Buffer Head

Buffer Head

Buffer Head

Disk BlockFigure 3.5: A bu�er page is a page of data assoiated with speial desriptors, alledbu�er heads. Their main purpose is to quikly loate the disk address of eah individualblok in the page.
• When free memory shrinks below a spei�ed threshold, the kernel must write dirtydata bak to disk in order to free memory.
• When dirty data grows older than a spei� threshold, suÆiently old data is writtenbak to disk, in order to ensure that dirty data does not remain dirty inde�nitely.The Linux kernel uses a group of general purpose kernel threads alled pdush to system-atially san the page ahe looking for dirty pages to ush, and additionally, ensure thatno page remains dirty for too long.Therefore, a number of pdush kernel threads ush dirty pages to their �nal loationon disk through two separate mehanisms:
• Systematially san the page ahe every writebak period.
• Implement a timeout mehanism on eah page aording to a on�gurable expirationperiod.Furthermore, the JBD layer uses an additional kernel thread, known as kjournaldthread. This kernel thread is responsible for two things:
• Every so often the urrent state of the �le system needs to be ommitted to thejournal on disk. This happens periodially and the orresponding time interval isknown as ommit interval. 27

• The dirty bu�ers of the ommitted transations need to be ushed periodially tothe �nal on-disk loation, in order to relaim spae in the log.A user an also use the fsyn system all to synhronously ush all the data andmetadata dirty bu�ers of the spei�ed �le desriptor to disk. Atually, fsyn moves thebloks to the journal or the �nal disk loation depending on the mount mode.
3.2 Commit PoliyThe ommit of a transation involves writing to journal the dirty bu�ers that were modi-�ed by this tranation, and then writting a ommit reord to mark the proess as omplete.The ommit poliy is initiated, either when the ommit interval expires, or when the writeupdates need to be synhronously written to disk (i.e., through fsyn).Eah invoation of the write system all reates a new atomi operation handle thatis added to the urrent ative transation. When the transation moves to ommit state,the kernel aquires a journal desriptor blok. This blok ontains tags that map blokbu�ers to their �nal loation on disk of the �le system (Figure 3.3). When a journaldesriptor blok �lls up with tags, the kernel moves it to the journal together with theorresponding blok bu�ers. The kernel alloates additional journal desriptor bloks asneeded for eah transation.For eah blok bu�er that will be journaled, the kernel alloates a separate bu�erhead spei�ally for the I/O needs of journaling. Additionally, the kernel reates anauxiliary struture alled journal head that assoiates the blok bu�er with the respetivetransation. So, as depited in Figure 3.6, for eah journal blok bu�er there is (i) a bu�erhead that spei�es the respetive blok number in the journal and, (ii) a journal headthat points to the orresponding transation.In general, the bu�er head of a journaled blok bu�er points to the original opy ofthe blok bu�er. However, if this blok bu�er is going to be used onurrently by anothertransation, then the kernel reates in memory a new opy of the blok bu�er for thejournal I/O transfer needs. When all the log reords of a transation have been safelywritten to the journal, the system alloates and synhronously writes to the journal a�nal ommit blok that states the transation has ommitted suessfully.28

Journal Head

Buffer Head

Buffer Page

offset in page

Disk

block number
...

...Figure 3.6: Two speial strutures, a bu�er head and a journal head, need to be allo-ated for eah blok bu�er that is going to be journaled. The bu�er head spei�es therespetive blok number in the journal, while the journal head points to the orrespondingtransation.3.3 Chekpoint PoliyObviously, there is a limited amount of spae in the journal, and this spae needs to bereused. Besides, ommitted transations that have all their bloks written to the �nalon-disk loation, no longer need to be kept in the journal. The proess of ensuring that asetion of the log is ommitted fully to disk, so that this area an be relaimed, is knownas hekpointing.The hekpointing proess ushes the metadata and data bu�ers of a transation notyet written to their atual loation on the disk, allowing the transation to be safelyremoved from the journal. The journal an have multiple hekpointing transations,and eah hekpointing transation an have multiple bu�ers. The proess onsiders eahommitting transation, and for eah transation, it �nds the metadata bu�ers that needto be written to the �nal loation on disk. Subsequently, all these bu�ers are ushedin one bath. One all the transations are hekpointed, their log is removed from thejournal.In partiular, hekpointing is initiated when the journal is being ushed to the disk(e.g., unmount) or when a new handle is started. A new handle an fall short of guaranteednumber of bu�ers, so it may be neessary to arry out a hekpointing proess in orderto release some spae in the journal. Espeially, a hekpoint proess is triggered whenthe amount of free journal spae is between 1/4 and 1/2 of the journal size. In general,29

the size of the journal is a on�gurable parameter in Ext3.
3.4 Reovery PoliyThe transation ommitting ompletes when a transation has ushed all its reords to thejournal and has been marked as �nished. This is done for eah running transation withina spei�ed time period by the kjournald kernel thread. Subsequently, the transationhekpointing ompletes when all the bloks of a ommitted transation have been movedto their �nal loation on disk and the orresponding transation reords are removed fromthe journal.During reovery, the �le system sans the log for ommitted omplete transations;inomplete transations are disarded. Thus, if the system �nds log reords in the journalafter a rash, it assumes that the unmount was unsuessful and initiates a reoveryproedure in three phases.PASS SCAN In the �rst phase, it �nds the last reord of the journal. From here, thereovery proess knows whih transations need to be replayed. The exat state ofthe journal is unknown sine the system does not know the point at whih the failureourred. The last transation in the journal an be either in the hekpointing orin the ommitting state. A running transation annot be found, as it was only inmemory during the rash. For ommitting transations, the updates made need tobe disarded. Thus, the system only onsiders ommitted transations for replaying.PASS REVOKE During the seond phase, the kernel builds a hash table from therevoked bloks. These are bloks of ommitted transations that should not bewritten to their �nal disk loation, beause they are obsoleted by later operations.This is important to know in order to prevent older journal reords from beingreplayed on top of newer data using the same blok. This table is used every timethat the system needs to �nd out whether a partiular blok should be replayed ondisk.PASS REPLAY In the third phase, the reovery proess writes to their �nal disk loa-tion the newest version of all the bloks that our in ommitted transations, and30

are not present in the hash table of revoked bloks.If the system rashes again before the reovery �nishes, the same journal an be reusedin order to omplete the reovery.
3.5 SummaryThe Ext3 �le system is a journaling extension to the standard Ext2 �le system on Linux.Summarizing, the write updates are initially reorded sequentially in a separate area ofthe disk reserved for use as a journal. File system transations whih omplete have aommit reord added to the journal, and only after the ommit is safely on disk may the�le system write the updates bak to their original loation. During the reovery phase,the inluded bloks of a transation an either be replayed or disarded. A hekpointingproess is needed to ush the bu�ers of an already ommitted transation, that have notyet been written to their �nal loation through the normal dirty page ushing poliy.Then, the transation an be safely removed from the journal.Journaling results in massively redued time spent reovering a �le system after arash, and is therefore in high demand in environments where high availability is impor-tant. In addition, synhronous writes omplete faster sine they return as soon as thesequential log update ompletes. Data journaling an improve even more the responsetime of synhronous writes, but signi�ant extra disk throughput on the journaling devieis inurred due to the large volume of data written to the log.

31

Chapter 4
Arhitetural Definitions

4.1 Design Goals4.2 Partial Writes4.3 Commit Poliy4.4 Reovery Poliy4.5 SummaryIn this hapter, we de�ne the design goals of our study and explain the general ar-hitetural deisions taken before our prototype implementation. Initially, we detet thedesign ineÆienies of existing journaling tehniques that lead to unneessary disk over-head on the journal devie. Then we propose a more eÆient sheme for the fast andreliable storage of multiple onurrent updates.
4.1 Design GoalsContemporary journaling �le systems mostly are to maintain their metadata onsisteny.In order to provide high onsisteny guarantees, they only log metadata modi�ations inthe journal. Nevertheless, two ommonly used �le systems, Ext3 and Reiser FS, addition-ally support data journaling as a mount option.32

0 1 10 100

Request Size (KB)

0

1

10

100

1000

T
ot

al
 J

ou
rn

al
 T

ra
ff

ic
 (

M
B

)

Requirements

Data Journaling
Writeback
Ordered

Figure 4.1: We measure the amount of traÆ sent to the journal devie aording to thethree journaling modes. The total journal traÆ of data journaling is substantially higherin omparison to the other two modes. Additionally, at request sizes lower than 4KB,data journaling inurs traÆ that hanges sublinearly as a funtion of the write rate. Thisis reasonable sine data journaling sends to the journal entire bloks rather than only thepart that is modi�ed by eah write operation.Comparisons aross di�erent journaling methods with general-purpose �le server traf-�, have shown that either ordered data writing or data journaling may lead to betterperformane depending on whether the aggregate workload is sequential or random-aess[25℄. Partiularly, it was reported that data journaling improves the throughput of ran-dom I/O operations, but inurs muh higher disk throughput than metadata journaling.This high ost of data journaling originates from the signi�ant volume of data that is sentto the log. When the journal �lls up with log reords, a hekpoint proess is triggeredto synhronously write them to their �nal loation, thus leading to further delay.Furthermore, �le system journaling allows synhronous writes to omplete faster sinethey return as soon as the sequential log update ompletes. In the partiular ases thatboth data and metadata bloks are logged, the bene�t is higher, but this osts signi�antdisk overhead on the journaling devie. Unfortunately, the ost of data journaling an behigh even with small writes, sine for simpliity reasons, journaling tehniques that sup-port data journaling, log the entire bloks being modi�ed rather than just their modi�edpart.In order to verify the signi�ant overhead of data journaling, we examine the three33

mount options of Ext3 using periodi synhronous writes of varying request sizes. Thedi�erene in the amount of traÆ sent to the journal devie aross the three mountoptions of Ext3 is depited in Figure 4.1, where the total disk traÆ is measured duringa time period of 5 minutes. We observe that the total journal traÆ of data journaling issubstantially higher in omparison to the other two modes. Furthermore, we notie thatat request sizes lower than 4KB, whih is the default �le system blok size, data journalinginurs traÆ that hanges sublinearly as a funtion of the write rate. In partiular, datajournaling sends a large amount of traÆ to the journal for small writes regardless of theatual size of the write requests. This is reasonable sine data journaling sends to thejournal entire bloks instead of the atual newly written bytes.In the present study, we investigate the performane harateristis of data journalingin the ontext of synhronous writes that would be required among several situationsinluding the reliable storage of inoming streaming data. In order to lower the ost ofdata journaling we introdue di�erential data journaling ; a new journaling mode wherea series of write modi�ations an be aumulated in a single journal blok. Therefore,when the workload onsists of many small writes we manage to redue substantially therequired journal throughput by avoiding to log a whole blok for eah data modi�ation.
4.2 Partial WritesThe idea behind journaling is that an entire bath of updates an be written to the �lesystem, but those updates do not take e�et until a �nal ommit update is made on thedisk. In order to ahieve this, the �le system must keep both the old and the new ontentsof the updated data somewhere on disk until the �nal ommit. The updated ontents arestored in the journal on disk, where for eah modi�ed �nal blok exists a orrespondingjournal blok.Therefore, in order to manage the partial data blok modi�ations we need to introduea new type of journal blok. This new type is responsible for �tting as many partialmodi�ations as possible. In ase that it runs out of spae, a new one an be alloated inits plae. 34

4.3 Commit PoliyDuring the ommit poliy, dirty bu�ers are written to the journal followed by a ommitreord, that states that the proess has ompleted suessfully. As we have alreadyexplained, data journaling logs full bloks instead of the new bytes written by eah update,and thus invokes unneessary disk traÆ, even in ases of small writes. Ideally, we shouldonly journal the modi�ed part of individual bloks, and this an be ahieved throughthe proposed new journal blok type. Through the use of this blok we an substantiallyredue the total number of bloks that need to be logged and, onsequently we an improveonsiderably the journal devie throughput.
4.4 Reovery PoliyDuring the reovery phase, the journal is initially sanned for inomplete ommittedtransations. If suh transations exist, they are replayed in the �le system. Throughthis proess whole bloks are read from the journal and, hene they an easily be writtenbak to their �nal on-disk loation.However, our approah is more ompliated than the default poliy. In partiular,some journal bloks inlude updates from more than one blok modi�ations, and inorder to be applied, the orresponding unmodi�ed bloks need to be read from the disk.Thus, in ase of partial modi�ations, every original blok should be �rst read from the�nal on-disk loation, and then written bak, updated with the di�erene retrieved fromthe orresponding journal reord. Nevertheless, when a blok is retrieved from the journaland it is either a metadata or a fully modi�ed blok, then the default reovery proessan be applied.Furthermore, the suessful ompletion of the reovery phase imposes the need forauxiliary information. The required information, that is known and stored for eah journalblok at the ommit time, should inlude:

• the number of the orresponding blok in the �le system,
• the size and the starting o�set of the modi�ation inside the original disk blok,35

• anything else that ould be useful during the replay of the partial updates from thejournal bloks to their �nal loation.Subsequently, this information an be retrieved during the reovery proess and, thus helpthe replay of the partial modi�ations.
4.5 SummaryAs it is lear from the above analysis, traditional data journaling shemes an exhibithigh and unneessary disk traÆ, as whole bloks are written to the journal, regardless ofthe modi�ation size. In this thesis, we propose an advanement of the traditional datajournaling approah, where the deltas (hanges) to data bloks are journaled rather thanthe entire data bloks themselves. Our main idea is to aumulate a number of writemodi�ations in a few single journal bloks, named partial journal bloks. Subsequently,during the unommon ase of reovering after a rash, we an easily reover the originalbloks after applying to them the orresponding modi�ations from the partial bloks.

36

Chapter 5
Prototype Implementation

5.1 Partial Bloks5.2 Journal Heads5.3 Tags5.4 Commit Poliy5.5 Reovery PoliyAording to previous researh, the journaling of both data and metadata improvesthe throughput of random I/O operations, while at the same time inurs muh higherdisk overhead than the metadata-only journaling modes. In the rest of this hapter, weoutline the approah that we follow in order to keep low the overhead of data journalingand at the same time retain its signi�ant performane gains. In partiular, we desribethe implementation of di�erential data journaling ; a variation of the full data journalingmode of Ext3. Even though we onsider our approah quite general, in our desriptionwe use the previously introdued terminology of Ext3, over whih we have implementedour prototype.
37

JDJS M/D JCJC JD M/DPD

Journal On-Disk Layout

Journal Descriptor Block

Journal Commit Block

JS Journal Superblock

JD

JC

Journal Metadata/Data BlockM/D

Journal Partial Data BlockPD

PD M/D PD

Figure 5.1: In di�erential data journaling, the on-disk layout of the journal has one newfeature; the partial data bloks. These bloks are used to aumulate the modi�ationsof multiple write operations in a redued number of journal bloks.5.1 Partial BloksThe original journaling proess of Ext3 transfers a full opy of eah modi�ed blok bu�erfrom memory to journal. This is true for both data and metadata bloks when theyare journaled aording to the mount options of the �le system. Thus, even a single bithange in a bitmap results in the entire bitmap blok being logged. In ase of small writesthat modify only a part of a blok bu�er, the logging of full bloks an have a multipliere�et at the throughput required by the journal devie, as we have already observed inFigure 4.1. The atual waste in journal devie throughput depends on the fration of theblok bu�er that is left unmodi�ed by eah write operation. Ideally, only the modi�edpart of the blok should be written to the journal. Subsequently, at the unommon asethat the reovery proess is initiated, the original blok should be read from the �nalon-disk loation and then written bak, updated with the di�erene retrieved from theorresponding journal reord.In order to implement di�erential data journaling, we introdue a new type of journalblok that we use to aumulate the modi�ations of data bloks from multiple writeoperations (Figure 5.1). We all this type of journal blok partial, to di�erentiate itfrom full bloks, whih are bloks fully modi�ed by a single write operation. Partialbloks are only used to gather the partial updates of data bloks, rather than metadatamodi�ations. In summary, the ommit proess treats data bloks di�erently than themetadata ones, while two di�erent types of data bloks are distinguished; partial thatstore writes smaller than the default blok size, and non-partial that orrespond to fully38

written bu�ers.
5.2 Journal HeadsAs we have already explained in paragraph 3.2, for eah journal blok bu�er there is aorresponding journal head that assoiates the blok with a transation. Additionally,the journal head points to a bu�er head that links the bu�er to a bu�er page and otherinformation required for the transfer to the journal devie.For writes that only modify part of a blok, we expanded the journal head with twoextra �elds, the o�set and the length, respetively, of the partially modi�ed blok pointedto by the bu�er head. As we see below, we make use of the journal head in order toprepare the bloks that we atually send to the journal.
5.3 TagsAs the ommit proess is started, a bu�er for the journal desriptor blok is alloated. Indata journaling, the transation logs both data and metadata modi�ations. The journaldesriptor blok ontains a list of �xed-length tags, where eah tag orresponds to onewrite. Originally, eah tag ontains two �elds:

• The �nal disk loation of the modi�ed blok.
• Four ags for journal-spei� properties of the blok.In our design, we introdue three new �elds in eah tag:
• A ag to indiate whether the orresponding blok is partially modi�ed or not.
• The length of the new bytes written in the partial blok.
• The starting o�set in the data blok of the �nal disk loation.This data is persistent and an be used for reovery if a failure ours.

39

HEADER

TAG

Journal Descriptor
Block

Partial Blocks

...

TAG

TAG

..
.

DATA DIFF

DATA DIFF

DATA DIFF

Full Blocks

- block # of final
location on disk

- offset inside page
- length in bytes

TAG

DATA DIFF

...

TAG

Buffer Page

Block Buffer
New Data

Unmodified DataFigure 5.2: In the di�erential data journaling we use a new type of journal bloks, thepartial journal bloks, to aumulate the data modi�ations from multiple writes. Fulljournal bloks are still used for metadata or bloks that are ompletely modi�ed by writeoperations. The desriptor's tags are used to keep the orrespondene between �nalloation and journal bloks, and also to desribe the partial modi�ations inside thepartial journal bloks.One the tags �ll up a journal desriptor blok, the desriptor blok and all the orre-sponding data and metadata bloks are written onseutively to the journal. Furthermore,additional journal desriptor bloks are alloated as required by the transation.
5.4 Commit PoliyThe ommit proess of di�erential data journaling di�ers from the original approah inthat it makes further use of partial bloks. In partiular, a new partial data blok is allo-ated when a new transation is started and it is used to aumulate all the modi�ationswith size smaller than the default �le system blok size. The journal desriptor blokstores the mapping of eah journal blok to its atual on-disk loation in the form of tags.In our prototype, it additionally inludes tags that desribe the partial writes (Figure5.2). If a write updates part of a data blok, the modi�ed bytes are opied to the urrent40

partial blok bu�er of the transation. When the available spae of a partial data blokis not suÆient to store a new inoming update, then a new partial blok is alloated toserve the next partial modi�ations. In ase that a write system all modi�es a metadatablok or fully writes a data blok, we log the orresponding full blok instead.We might still need to reate a opy of the full blok in order to freeze the versionthat we send to the journal, if the blok is going to be modi�ed shortly by anothertransation. One all data and metadata is on safe storage, the transation needs to bemarked as ommitted so that it an be guaranteed that all its updates are safe in thejournal. Eventually, the ommit proess ompletes right after the journal ommit blokis synhronously written to the log.
5.5 Reovery PoliyDuring the reovery proess, the data modi�ations are retrieved from the journal, andare subsequently applied to the bloks orresponding to the �nal on-disk loation.Initially, when a desriptor blok is read from the log, we extrat its inluded tags.Eah tag an desribe either a partial or a full log blok. When we meet the �rst tag thatdesribes a partial write modi�ation, the next log blok is retrieved from the journal,and from that point on it is used as the partial blok of the urrent transation. Sinethe data of onseutive writes are plaed next to eah other in the partial blok, theirorresponding starting o�sets an be dedued from the length �eld in the tags. In asethat the length �eld of a tag exeeds the end of the urrent partial blok, the next blokis read from the journal and beomes the new partial blok of the transation. We usethe starting o�set tag �eld to read into a kernel bu�er the disk blok that we will modifyin order to apply the data modi�ations.However, if the partial blok ag is not set, then the next blok is retrieved from thejournal, whih is eventually treated as a metadata or a full data blok. Obviously, thefull blok is diretly written to the �nal disk loation without reading �rst the previousversion from the disk.

41

Chapter 6
Experimental Results

6.1 Experimentation Environment6.2 Streaming Workloads6.3 The Postmark Benhmark6.4 Reovery Time6.5 Other IssuesIn the present hapter, initially, we introdue the hardware on�guration that we usedin our performane measurements. Afterwards, we study the requirements and perfor-mane of our di�erential data journaling implementation with respet to the ordered, thewritebak and the default data journaling modes of Ext3, and we graphially present ourexperimental results.
6.1 Experimentation EnvironmentWe implemented the di�erential data journaling in the Linux kernel version 2.6.18. Weevaluated our prototype implementation using x86-based server nodes running the DebianLinux distribution. For the majority of the experiments we used nodes with a quad-ore2.66GHz proessor, 2GB RAM, and two SAS 15KRPM disks, eah of 300GB storage42

apaity and 16MB internal bu�er. Additionally, for one set of the experiments, a 2.33GHzquad-ore proessor and two SATA 7.5KRPM disks, eah of 250GB and 16MB on-diskahe, were used.In the general ase, two separate disks are used; one for the journal and another onefor the atual �le system strutures, exept for one ase that is explained later in thishapter. Furthermore, we use the default �le system parameters of Linux that set the pageand the blok size to 4KB. We also keep the default journal size of 128MB, but manuallytune for best performane the writebak period and expiration period of the dirty pageush proess. In our measurements, we assume that write operations are followed by thefsyn system all for synhronous ompletion.Previous researh reports that, by default, a synhronous write operation returns assoon as the data reahes the on-disk write ahe, rather than the storage media. Thisbehavior renders the system unreliable unless we disable the on-disk bu�er ahe or useontrollers with battery-baked ahe [23℄. In most of our experiments, we kept enabledthe disk write ahe, whih essentially emulates devies with battery-baked memory.However, we also evaluated our system with the write ahes disabled. As we explain,the disk write ahe adds no bene�t to streaming workloads but leads to signi�antperformane advantages in traditional appliations.In order to study the harateristis of our system and evaluate our implementation,we did extensive performane measurements. In partiular, the �rst set of experiments isbased on a mirobenhmark that we have built for the needs of a streaming workload eval-uation. This benhmark onsists of multiple threads that periodially apply synhronouswrites at a spei� rate. In our evaluation, we examine the disk throughput requirementsand the average lateny of eah write. During the next set of experiments, we used thePostmark benhmark to measure performane in an environment of temporary small �lesthat is typial for eletroni mail, newsgroups and web-based ommere [20℄. Thus, weinvestigate the bene�t of data journaling in appliations other than streaming. Finally,we performed a series of experiments in order to examine the possible overhead of ourprototype implementation. Therefore, we measure the time needed to reover the sys-tem to a onsistent state after a rash, the CPU overhead that our approah inurs andperform some other experiments that are presented in the rest of this hapter.At last but not least, our prototype implementation of di�erential data journaling is43

Table 6.1: Various rates used from di�erent types of streams.Stream Type Estimated Average RateEnvironmental Measurements (tens of bits - hundreds of Kbits)/se(humidity, temperature et.)Audio Streams (hundreds of bits - hundreds of Kbits)/se(telephone quality, mp3 et.)Video Streams (tens of Kbits - tens of Mbits)/se(videophone quality, mpeg et.)being used as a working environment over a period of three and a half months. Thesystem has demonstrated a stable behavior during this entire period.
6.2 Streaming WorkloadsIn our �rst set of experiments, we evaluate the bene�ts and requirements of di�erentialdata journaling in a �le system. We onsider the ase where the inoming data from a largenumber of onurrent streams is stored synhronously on the same disk. Atually, throughthe use of mirobenhmark that we developed, we emulate the behavior of streamingworkloads, where massive numbers of streams need to be stored synhronously at thesame disk faility.In digital multimedia, the data rate, or else bitrate, represents the amount of informa-tion of a reording that is stored per unit of time. Various fators an inuene a stream'srate, suh as the ompression sheme that is used or the nature of the partiular steamingappliation. For instane, some sensors may send video and audio streams of high qual-ity at high rates, while others may generate environmental measurements at muh lowerrates. In Table 6.2, we present the range of di�erent rates that are used aording to thetype of eah stream.Our mirobenhmark tool allows us to examine the performane harateristis ofstreams with di�erent rates, while varying the degree of onurreny. So, in order topress the system, we inrease the total number of streams between the di�erent runs. At44

eah exeution, a sequene of write updates is synhronously applied to the system fora spei�ed amount of time, while aording to the stream rate di�erent reord sizes areused. Typially, a low-rate streaming workload implies many small synhronous writesapplied to the same storage media, while higher-rate streams typially orrespond tolarger ones. In partiular, the rate of a low-rate streaming workload varies from tens ofbits up to few tens of kilobits per seond. Therefore, the orresponding write request sizeis muh smaller than the default Linux kernel blok size. On the other hand, high-ratestreams send data over megabits per seond, thus leading to request sizes that range fromhundreds of kilobytes and on.6.2.1 Flushing PoliyIn streaming workloads, even though eah stream simply appends data sequentially tothe end of a separate �le, the aggregate traÆ is random. However, data journaling safelystores data on the journal at sequential throughput and lazily transfers it to the �nalloation at a rate that we an ontrol. Partiularly, we manually tune for best performanethe writebak period and the expiration period of the dirty page ush proess, aording tothe rate and the number of the streams that are involved in eah experiment's exeution.The writebak period is used to de�ne when the pdush daemons wake up and write olddata out to disk, while the expiration period de�nes when dirty data is old enough tobe eligible for writeout by the pdush daemons. Data whih has been dirty in memoryfor longer than this interval will be written out next time a pdush daemon wakes up.In Linux kernel, the writebak period is by default set to 5 seonds and the expirationperiod to 30 seonds.Ideally, in ase of low-rate streams we would like to aumulate multiple write updatesin memory for a long period of time, in order to bene�t as muh as possible from thebathing of related writes. We ahieve this by delaying the awakening of pdush daemonsand inreasing both the default expiration and writebak intervals. Nevertheless, thenew time intervals should be arefully seleted, to avoid over�tting either the journaldevie, or the memory. In general, when there is no available spae left in the journalor the memory, the subsequent writes should blok, waiting for the journaled updates tomove from memory to their �nal on-disk loation, through either the hekpointing or the45

Table 6.2: Flushing Poliy - Stream Rate of 1KbpsNumber of Writebak Period Expiration PeriodStreams (in seonds) (in seonds)100 10 300500 10 3001000 10 1502000 10 603000 1 304000 1 305000 1 56000 1 57000 1 58000 1 5kernel's dirty page ush proess. For this reason, we hoose the expiration interval to belong enough for low-rate streams, but we wake up the pdush daemons rather frequentlyto lean the memory from old updates. Additionally, when the number of low-rate streamsinreases, so does the total amount of data written and hene, we lessen the expirationinterval to avoid the hekpointing and the dirty page ush proess. Tables 6.2 and 6.3present the partiular tuning of the dirty page ushing parameters that we use in ourmeasurements, for low-rate streams of 1Kbps and 10Kbps respetively.Multiple high-rate streams generate large volumes of data that need to be stored onTable 6.3: Flushing Poliy - Stream Rate of 10KbpsNumber of Writebak Period Expiration PeriodStreams (in seonds) (in seonds)50 10 300100 5 100500 5 601000 1 301500 1 1046

Table 6.4: Flushing Poliy - Stream Rate of 1MbpsNumber of Writebak Period Expiration PeriodStreams (in seonds) (in seonds)10 5 2025 1 550 1 375 1 1100 1 1the same disk faility. The bene�t of bathing together suh updates is insigni�antdue to their size. Therefore, we don't need to keep them in memory for long time. Inthese ases, we an either use the default expiration and writebak periods, or slightlyredue them aording to the generated amount of data. One again, when the number ofstreams inreases we an redue the intervals even more, in order to prevent the memorystrutures from getting full. Table 6.4 presents the on�guration of the writebak andexpiration periods in ase of high-rate streams of 1Mbps.Finally, sine we fsyn every individual write, we use the default journal ommitinterval of 5 seonds to wake up the kjournald daemon, as it eventually does not inueneour measurements.6.2.2 Journal TraÆIn Figure 6.1 we measure the journal devie throughput aross di�erent numbers ofstreams and rates of 1Kbps, 10Kbps and 1Mbps. In Figure 6.1(a), we observe that whenthe number of streams reahes several thousands, data journaling sends around 30MB/sof log reords to the journal. Instead, di�erential data journaling keeps the traÆ lowerthan 5MB/s. This behavior is less intense as the stream rate inreases from 1Kbps to10Kbps (Figure 6.1(b)), and in fat the two data journaling modes overlap for streams of1Mbps (Figure 6.1()). As expeted, in all three ases the two metadata-only journalingmodes keep the overhead of the journal devie at the low levels, sine only a small amountof information is �nally logged.
47

0 2000 4000 6000 8000

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

1 Kbps/stream

Data Journaling
Diff Data Jrn
Writeback
Ordered

(a) 0 500 1000 1500

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

10 Kbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

(b)

0 20 40 60 80 100

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

1 Mbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

()Figure 6.1: We examine the journal devie throughput aross di�erent numbers of streamsand rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams, the disk overhead ofdi�erential data journaling is omparable to that of ordered and writebak modes, unlikethe default data journaling mode whih leads to journal devie throughput by severalfators higher. Nevertheless, at high rates, di�erential data journaling overlaps with thedefault data journaling mode in terms of journaling throughput.In general, we observe that at low rates, the journal throughput of di�erential datajournaling is lose to that of ordered and writebak modes. The orresponding throughputin the ase of the default data journaling mode is several fators higher. Partiularly, alow-rate streaming workload implies many small synhronous writes applied to the samestorage media, while higher-rate streams typially orrespond to larger ones. In the ase oflow-rate streams, di�erential data journaling manages to redue substantially the journalthroughput. This is ahieved through the aumulation of multiple write updates into a48

single journal blok. On the other hand, default data journaling inurs signi�ant journaloverhead beause of the full-blok logging sheme. Even though a orresponding inreasein memory opy ativity is likely, this is hardly a problem as we see later. Therefore, wean reliably store the data of low-rate streams without exessive journaling ost.Nonetheless, at high rates, di�erential data journaling overlaps with the default datajournaling mode in terms of journaling throughput, while the required journal disk over-head of metadata-only modes remains signi�antly low. As the total amount of datawritten inreases, the bene�t of partial writes beomes nominal and large volumes of dataare �nally sent to the journal.6.2.3 Final Loation TraÆIn Figure 6.2 we measure the disk throughput for the update of the �nal loation on the �lesystem. We notie that the ordered and writebak methods, that only journal metadata,inur onsistently higher throughput to the �nal disk loation, espeially at low-ratestreams. Besides, metadata-only journaling allows synhronous updates to omplete by�rst foring data bloks to their �nal on-disk loation, before the orresponding metadatabloks are synhronously written to the journal. Instead, the two data journaling modesappend both the metadata and data updates synhronously, but eÆiently to the journal,and keep the orresponding data bloks in memory for some time. There, eah blok hasthe hane to reeive the updates from multiple writes, before it is transferred to its �nalloation on disk. Furthermore, we tune the parameters of the dirty page ush proess inorder to gain as muh as possible from the opportunity of bathing. Hene, for low-ratestreams we open enough the expiration interval and allow many small modi�ations ofsingle bloks to be aumulated.On the other hand, for high rate streams, we have redued onsiderably the expirationand the writebak periods, in order to prevent the journal devie from beoming full.Generally, when the journal �lls up, a hekpointing proess is initiated and all the sub-sequent writes are bloked. However, this tuning, in the long run, prevents us to bene�tfrom the bathing opportunities o�ered during small writes. Thus, the same number ofwrite updates are applied to the �nal on-disk loation, regardless of the journaling mode.
49

0 2000 4000 6000 8000

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 1 Kbps/stream

Writeback
Ordered
Data Journaling
Diff Data Jrn

(a) 0 500 1000 1500

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 10 Kbps/stream

Writeback
Ordered
Data Journaling
Diff Data Jrn

(b)

0 20 40 60 80 100

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 1 Mbps/stream

Writeback
Ordered
Data Jrn
Diff Data

()Figure 6.2: We examine the throughput of the �le system devie aross di�erent numbersof streams and rates. For low-rate streams, the two metadata-only journaling modesrequire up to several fators higher throughput than the two data journaling modes.Nevertheless, in ase of high-rate streams, the �nal loation disk overhead is omparableaross all the four modes.Summarizing, at low rates, the writebak and ordered modes tend to require up toseveral fators higher throughput than the two data journaling modes. We attribute thisbene�t of the two data journaling modes to the aggregation of multiple writes that updatethe same blok. Sine journaling keeps eah update safe on disk, dirty pages an remainfor a on�gurable time period in memory before they are ushed to the �le system disk.Nevertheless, in ase of high-rate streams, the �nal loation disk overhead is omparableaross all the four modes sine, due to the large amount of data written, there is no bene�tfrom bathing together related writes. 50

0 2000 4000 6000 8000

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data Jrn(a) 0 500 1000 1500

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

10 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data(b)

0 20 40 60 80 100

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Mbps/stream

Ordered
Data Journaling
Diff Data Jrn
Writeback

()Figure 6.3: We measure the average write lateny of synhronous updates at di�erentrates and streams. Synhronous writes are usually avoided beause they are known toinur high lateny in typial �le systems. However, data journaling modes an bene�tfrom the sequential journal's throughput that eventually allows the system to safely andquikly store the inoming data.6.2.4 Write Response TimeThe bene�ts of the two data journaling modes are even more impressive, when we onsiderthe average lateny of the synhronous writes, as depited in Figure 6.3. In order todemonstrate the di�erenes aross the di�erent modes, we use logarithmi sale at they axis. As we move from higher to lower rates, the write lateny of the ordered andwritebak modes appears from several fators up to orders of magnitude higher thanthose of the two data journaling modes. In partiular, in Figure 6.3(a), we see that the51

ordered and writebak modes inur almost two orders of magnitude higher lateny withrespet to the other two modes, when serving large numbers of low-rate streams. Thus, awrite operation that ompletes in tens of milliseonds with data journaling, takes as highas 10 seonds with ordered mode.Data journaling modes fore write updates synhronously to the journal. Therethe written transations are appended sequentially and eÆiently. However, in ase ofmetadata-only journaling modes, data is ushed synhronously to the �xed loation beforethe orresponding metadata bloks are synhronously written to the journal. Espeially,when we have large numbers of streams, data bloks are distributed aross random loa-tions on disk, and hene inur seeking overhead and rotational lateny when data writesare fored to the �nal loation.Suh a high write lateny in the default Ext3 journaling mode, the ordered mode, raisesissues about the ability of the system to quikly and safely store inoming measurements.This is ruial, espeially at ritial time periods before physial atastrophes, when thearriving data matter the most. Synhronous writes are usually avoided beause they areknown to inur high lateny in typial �le systems. This is true even when the writeahe of the disk is enabled. Nevertheless, the sequential throughput of the journal hasa onsiderable impat to the ability of the system to store safely the inoming data in ashort period of time.6.2.5 CPU UtilizationA possible overhead of our prototype implementation is the CPU ost that is needed,so that multiple data modi�ations an be aumulated in single journal bloks. This isahieved through the memory opy of the modi�ed blok parts to the appropriate journalpartial blok.In Figure 6.4 we evaluate the impat of the four journaling modes to the total CPUutilization of the system. We observe that the system utilization always remains less than10%. At both low and high rates, the CPU remains mostly idle, whether doing nothingor waiting for the I/O operations to �nish. Therefore, the proessing ost of di�erentialdata journaling remains omparable to that of the other three mount modes.Consequently, the aumulation of multiple write updates in one blok in di�erential52

20

40

60

80

100

U
ti

liz
at

io
n

(%
)

Total CPU

Ordered

W
riteback

Data Jrn

Diff Data

1Kbps

Ordered

W
riteback

Data Jrn

Diff Data

1Mbps

Idle

Idle Wait

System

User

Figure 6.4: We investigate the total CPU utilization of the system aross the di�erentjournaling modes. In all the four ases, at both low and high rates, the CPU remainsmostly idle, whether doing nothing or waiting for the I/O operations to �nish. Thus, theextra CPU ost of di�erential data journaling due to memory opy operations is nominal,in omparison to the other three modes.data journaling does not reate an overhead, for the memory opy, muh higher than theother modes.6.2.6 Mixed WorkloadFinally, a number of experiments with workloads that onsist of mixed set of streamswith di�erent rates were performed and lead to measurements similar to the above. Theresults of the mixed workload tend to approah respetively the behavior of streams withlow or high rate, depending on the prevalene of the orresponding type of stream in theworkload.
53

0 5000 10000 15000

Request Size (Bytes)

0

100

200

300

400

500

T
ra

ns
ac

ti
on

s/
s

Postmark

Diff Data Jrn
Data Journaling
Writeback
Ordered

Figure 6.5: We evaluate the Postmark benhmark results. Both data and di�erentialdata journaling modes perform several fators better from the metadata-only journalingmodes. In partiular, due to low write lateny, data journaling modes manage to serve alarger number of transations per seond.6.3 The Postmark BenhmarkIn Figure 6.5, given the very enouraging results that we obtained for workloads with low-rate streams, we evaluate data journaling with Postmark. This benhmark is typiallyused to study the performane of small writes [17℄. It is designed by Je�rey Kather inorder to repliate the small �le workloads seen in eletroni mail, netnews, and web-basedommere under heavy load.We measure the ahieved transation rate with a workload of 10000 transations over500 �les, and a mix of read, append, reate and delete �le operations. We run Postmarkwith 100 threads and �le ranges from half kilobyte to a hundred kilobyte.The atualduration of the experiment varies depending on the eÆieny of the requested operations.We run the benhmark in a range of blok sizes from 128 bytes to 16KB. During ourexperimental measurements, we use the kernel's default dirty page ushing parametersthat are presented in Table 6.5. In Figure 6.5 the x axis refers to the request size of theread and write operations, while the y axis is the number of transations that an beserved per seond.Our main observation is that the two data journaling modes perform several fatorsbetter than the metadata-only journaling modes. The performane improvement is higherfor small blok sizes. However, even with the blok size equal to 16KB, the data journaling54

Table 6.5: Flushing Poliy - PostmarkWritebak Period Expiration Period Commit Interval5 seonds 30 seonds 5 seondsmodes double the measured transation rate. This behavior omes from the low writelateny that the two data journaling modes inur, in ontrast to the metadata-only modes.Thus, within the same time period, data and di�erential data modes manage to serve muhmore transations than the other modes.Consequently, if somebody uses di�erential data journaling to keep low the extrajournaling throughput, one an improve substantially the performane of appliationsthat need synhronous small writes.
6.4 Reovery TimeIn a di�erent experiment, we evaluate the ability of the system to reover quikly aftera system rash that leads to log reords appearing in the journal during the reboot. Inthis setting, we have 100 threads that apply 100 write updates with request size 125bytes. Furthermore, we disable the writebak and expiration time periods of the pdushkernel thread, in order to ensure that the transations ommit to the journal, but don'thekpoint the updates to the �nal loation on disk. Then we ut the power to thesystem. During the reboot, we measure, within the kernel, the time period of the �lesystem reovery.In Figure 6.6, we breakdown the total reovery aross the three passes that san thetransations, revoke bloks, and replay the ommitted transations. We notie that thesanning period for di�erential data journaling is muh lower than that of default datajournaling and atually similar to those of ordered and writebak. This is reasonable,due to the new type of journal bloks that we introdued, the partial data bloks. Thus,gathering small updates into a small number of journal bloks, di�erential data journalinglogs muh fewer bloks than default data journaling, whih for eah update sends a fullblok to the journal. Instead, in the metadata-only journaling modes, the amount ofjournaled bloks is even smaller sine data bloks are not logged at all.55

100

200

300

400

500

600

700

M
ill

is
ec

on
ds

Recovery Time

Ordered

W
riteback

Data Jrn

Diff Data

Replay
Revoke
Scan

Figure 6.6: We measure the reovery time aross the four journaling mount modes. Weobserve that di�erential data journaling requires muh lower time for the san pass thanthe default data journaling mode, while the replay pass takes omparable time aross thetwo modes.For the revoke phase, as expeted, the time period needed is omparable to all thefour modes. During the last phase, in di�erential data journaling extra blok reads fromthe disk are required so that the modi�ations from the journal partial bloks an beapplied to the orresponding �nal disk bloks during replay. On the other hand, in thedefault data journaling ase, this is avoided sine whole bloks are logged, and duringreplay these bloks an diretly replae the existing �nal disk bloks without �rst readingthem. Nonetheless, despite the extra blok reads involved in the replay of di�erential datajournaling, the time the replay phase takes ends up omparable to that of the default datajournaling.
6.5 Other IssuesSine the ordered mode does not take full advantage of the separate journal devie, wealso investigate the ase where we use the two SAS disks in RAID0 on�guration withhardware ontroller support. For the on�guration of this set of experiments, we use asjournal a normal �le within the same �le system devie rather than a separate partition.From our measurements (not shown) we observe that the write lateny drops to half in56

0 5 10 15

Request Size (Bytes)

0

50

100

150

T
ra

ns
ac

ti
on

s/
s

Postmark

Diff Data
Ordered

(Disabled cache/SATA)

(a) 0 5 10 15

Request Size (Bytes)

0

100

200

300

400

500

Postmark

Diff Data
Ordered

(Enabled cache/SATA)

(b)Figure 6.7: We �gure the Postmark results while enabling and disabling the on-disk writeahe. We notie that the two data journaling modes almost double the transation ratewith respet to the ordered mode that is ommonly used by default.the ordered mode, when ompared to the ase where we dediate one disk to the journal.After the hange, the write lateny of di�erential data journaling remains about the sameas before. The relative di�erene between the latenies of the two modes is still highaross the di�erent streams rates and in exess of a magnitude order for 1Kbps streams.In a di�erent experiment, we examine the e�ets from disabling the write ahe of thedisks. For these measurements, we use a server with two 250GB SATA disks. We �ndthat the disabled write ahe of the disks makes no di�erene to the streaming workloadmeasurements in omparison to the ase that the ahe is enabled. However, in the aseof the Postmark benhmark with 5000 transations, disabling the write ahe sales downthe performane of the di�erent mount modes, as shown in Figure 6.7.Spei�ally, we disable the on-disk write ahe to ensure that the writes only returnafter they reah the media. The advantage of di�erential data journaling is evidentespeially with small read and write requests. Furthermore, when we enable the on-disk write ahe, performane sales similarly for the ordered mode and di�erential datajournaling, while the relative di�erene remains. Overall, di�erential data journaling stillmaintains a signi�ant advantage with respet to the ordered mode, espeially at lowstream rates.
57

Chapter 7
Conlusions and Future Work

7.1 Conlusions7.2 Future Work
7.1 ConlusionsThe unique demands plaed by high-volume stream storage indiate that neither existingdatabases nor �le systems are diretly suited to handle their storage needs. In our vision,a general-purpose stream storage faility ould serve as a building blok for a variety ofappliations in the entire range from network paket monitoring to urban traÆ ontrolwith the appropriate indexing funtionality built separately at a higher level when needed.The operation reliability in suh appliations is a primary hallenge, espeially when publisafety onerns are involved. In order to improve their operation reliability, general-purpose �le systems apply journaling tehniques to preserve metadata onsisteny arosssystem rashes at minimal reovery time. Motivated from the emerging need to reliablystore and handle large numbers of streams for real-time or retrospetive proessing, wehave taken a fresh look at �le systems that support data journaling.We have used a widely known �le system mounted with data journaling mode and,after applying synhronous writes, we demonstrated that the journal devie throughputis high beause the journal log reords store entire bloks rather than their modi�ed part.58

Then, we introdued the di�erential data journaling mode, based on the idea of aumu-lating the updates from multiple writes into a single journal blok. In order to implementdi�erential data journaling, we designed a new type of journal blok that we all partialdata blok. Additionally, we tune the timing of dirty page ushing to omplete in thebakground rather than synhronously with the write operations. Using streaming work-loads, we found that di�erential data journaling redues the journal traÆ substantiallyin omparison to the default data journaling mode, espeially for streams with low rates.The sequential throughput of the journal redues the write lateny up to orders of mag-nitude for the data journaling modes with respet to metadata-only journaling. Finally,we have experimented with a typial small-write workload and measured substantial im-provement in the supported transation rate. Overall, di�erential data journaling o�ersfast storage aross streaming and traditional workloads at relatively low disk throughputrequirements.
7.2 Future WorkThere are many diretions for future work, mainly regarding the performane evaluationof our implementation. In the future, we primarily plan to extend the experimentalmeasurements of our prototype implementation, to validate further the ontributions ofour study and emphasize the o�ered performane gains.Only experimentation in a real streaming environment an reveal the potential ofour approah. Therefore, initially, we aim to examine the behavior of di�erential datajournaling in the ontext of a distributed �le system that we are urrently building for theneeds of streaming data storage. In partiular, a real workload with varying number oflients applying onurrent writes of stream data to the same storage server, will providea more realisti environment in terms of the ability of di�erential data journaling to servestreaming workloads.Regardless of the possible performane loss under ertain irumstanes, given thenature of the load for whih our system is designed, a diret omparison with the log-strutured �le system or other journaling �le systems would also be valuable in order todemonstrate the bene�ts of our arhiteture.59

Furthermore, heterogeneity, a main feature of most streaming storage systems, is itselfa hallenging problem to be handled by the existing implementations. We have alreadyperformed a series of measurements aross mixed workloads, where low and higher ratestreams oexisted. Yet, we need to examine further how di�erential data journalingperforms in suh heterogeneous senarios.Moreover, we intend to examine the behavior of di�erential data journaling undersome database workload. TPC-C simulates a omplete omputing environment where apopulation of users exeutes transations against a database [9℄. The benhmark thatwe are going to use onstitutes a realisti implementation of order-entry built on top ofPostgres.Finally, a possible extension of our work would investigate the automati tuning ofsystem parameters related to the timing of dirty page ushes.

60

Bibliography[1℄ Stergios V. Anastasiadis, Rajiv G. Wikremesinghe, and Je�rey S. Chase. Cirus:Opportunisti blok reordering for salable ontent servers. In USENIX Confereneon File and Storage Tehnologies, pages 201{212, 2004.[2℄ Brian Babok, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.Models and issues in data stream systems. In ACM Symposium on Priniples ofDatabase Systems, pages 1{16, New York, NY, USA, 2002. ACM Press.[3℄ Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Cetintemel, MithCherniak, Christian Convey, Eddie Galvez, Jon Salz, Mihael Stonebraker, NesimeTatbul, Rihard Tibbetts, and Stan Zdonik. Retrospetive on aurora. The VLDBJournal, 13(4):370{383, 2004.[4℄ Pere Barlet-Ros, Gianlua Iannaone, Josep Snjuas-Cuxart, Diego Amores-Lopez,and Josep Sole-Pareta. Load shedding in network monitoring appliations. InUSENIX Annual Tehnial Conferene, pages 59{72, Santa Clara, CA, 2007.[5℄ Andrew D. Birrell, Andy Hisgen, Chuk Jerian, Timothy Mann, and Garret Swart.The eho distributed �le system. Tehnial Report TR-111, DEC Systems ResearhCenter, Palo Alto, CA, September 1993.[6℄ Daniel P. Bovet and Maro Cesati. Understanding the Linux Kernel. O'Reilly Media,Sebastopol, CA, third edition, November 2005.[7℄ Don Carney, U�gur C� etintemel, Mith Cherniak, Christian Convey, Sangdon Lee,Greg Seidman, Mihael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoringstreams - a new lass of data management appliations. In International Confereneon Very Large Data Bases, pages 215{226, Hong Kong, China, 2002.61

[8℄ Peter M. Chen, Wee Tek Ng, Subhahandra Chandra, Christopher Ayok, Gu-rushankar Rajamani, and David Lowell. The rio �le ahe: Surviving operating sys-tem rashes. In Interlational Conferene on Arhitetural Support for ProgrammingLanguages and Operating Systems, pages 74{83, Cambridge, MA, 1996.[9℄ Transation Proessing Counil. Tp benhmark standard spei�ation, revision5.9. Tehnial report, 2007.[10℄ Peter J. Desnoyers and Prashant Shenoy. Hyperion: High volume stream arhivalfor retrospetive querying. In USENIX Annual Tehnial Conferene, pages 45{58,Santa Clara, CA, June 2007.[11℄ Manuel Esteve and Carlos E. Palau. A exible video streaming system for urbantraÆ ontrol. IEEE Multimedia, 13(1):78{83, January 2006.[12℄ Riardo Galli. Journal �le systems in linux. Upgrade, 2(6):50{56, Deember 2001.[13℄ Gregory R. Ganger, Marshall K. MKusik, Craig A. N. Soules, and Yale N. Patt.Soft updates: a solution to the metadata update problem in �le systems. ACMTransations on Computer Systems, 18(1):127{153, February 2000.[14℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �le system.In ACM Symposium on Operating Systems Priniples, pages 29{43, Bolton Landing,NY, Otober 2003.[15℄ Diwaker Gupta, Sangmin Lee, Mihael Vrable, Stefan Savage, Alex C. Snoeren,George Varghese, Geo�rey M. Voelker, and Amin Vahdat. Di�erene engine: Harness-ing memory redundany in virtual mahines. In USENIX Symposium on OperatingSystem Design and Implementation, San Diego, CA, USA, 2008.[16℄ Robert Hagmann. Reimplementing the edar �le system using logging and groupommit. In ACM Symposium on Operating Systems Priniples, pages 155{162,Austin, TX, 1987.[17℄ Dean Hildebrand, Lee Ward, and Peter Honeyman. Large �les, small writes, andpnfs. In ACM International Conferene on Superomputing, pages 116{124, Cairns,Australia, June 2006. 62

[18℄ Dave Hitz, James Lau, and Mihael Malolm. File system design for an nfs �le serverappliane. In Usenix Winter Tehnial Conferene, pages 235{246, San Franiso,CA, January 1994.[19℄ Gianlua Iannaone, Christophe Diot, Derek MAuley, Andrew Moore, Ian Pratt,and Luigi Rizzo. The omo white paper. Tehnial Report Tehnial Report IRC-TR-04-17, Intel Researh, 2004.[20℄ Je�rey Kather. Postmark: A new �le system benhmark. Tehnial Report TR-3022,NetApp, 1997.[21℄ Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Traey. Redun-dany elimination within large olletions of �les. In USENIX Annual TehnialConferene, pages 59{72, Boston, MA, 2004.[22℄ Darrel D. E. Long, Patrik E. Mantey, Craig M. Wittenbrink, Theodore R. Haining,and Brue R. Montague. Reinas: the real-time environmental information networkand analysis system. In IEEE COMPCON, pages 482{487, Marh 1995.[23℄ Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.Rethink the syn. In Usenix Symposium on Operating Systems Design and Imple-mentation, pages 1{14, Seattle, WA, 2006.[24℄ Juan Piernas, Toni Cortes, and Jose M. Garia. Dualfs: A new journaling �le systemwithout meta-data dupliation. In ACM International Conferene on Superomput-ing, pages 137{146, New York, NY, 2002.[25℄ Vijayan Prabhakaran, Andrea C. Arpai-Dusseau, and Remzi H. Arpai-Dusseau.Analysis and evolution of journaling �le systems. In USENIX Annual TehnialConferene, pages 105{120, Anaheim, CA, 2005.[26℄ Sean Quinlan and Sean Dorward. Venti: a new approah to arhival storage. InUSENIX Conferene on File and Storage Tehnologies, Monterey,CA, 2002.[27℄ Mended Rosenblum and John K. Ousterhout. The design and implementation of alog-strutured �le system. ACM Transations on Computer Systems, 10(1):26{52,February 1992. 63

[28℄ Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jaqueline Chang, Sara Mmains,and Venkata Padmanabhan. File system logging versus lustering: A performaneomparison. In Usenix Annual Tehnial Conferene, pages 249{264, 1995.[29℄ Stephen C. Tweedie. Journaling the linux ext2fs �lesystem. In LinuxExpo, pages25{29, Durham, NC, 1998.[30℄ Carl A. Waldspurger. Memory resoure management in vmware esx server. SIGOPSOperating Systems Review, 36(SI):181{194, 2002.[31℄ Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Virtual log based�le systems for a programmable disk. In USENIX Symposium on Operating SystemsDesign and Implementation, pages 29{43, New Orleans, LA, 1999.[32℄ Wenguang Wang, Yanping Zhao, and Rik Bunt. Hylog: A high performane ap-proah to managing disk layout. In USENIX Conferene on File and Storage Teh-nologies, pages 145{158, Berkeley, CA, USA, 2004. USENIX Assoiation.[33℄ Zhihui Zhang and Kanad Ghose. yfs: A journaling �le system design for handlinglarge data sets with redued seeking. In USENIX Conferene on File and StorageTehnologies, pages 59{72, San Franiso, CA, 2003.

64

Author's PubliationsAndromahi Hatzieleftherou, Stergios V. Anastasiadis, Okeanos: Fast and Reliable StreamStorage Through Di�erential Data Journaling, Tehnial Report DCS2008-8, Departmentof Computer Siene, University of Ioannina, November 2008.Andromahi Hatzieleftheriou, Stergios V. Anastasiadis, Okeanos - Reliable Arhival Stor-age for Heterogeneous Stream Data, EuroSys, Glasgow, Sotland, UK, April 2008 (poster).

Short VitaAndromahi Hatzieleftheriou was born in Serres, Greee in 1985. She was admitted at theComputer Siene Department of the University of Ioannina in 2002. She reeived her BSdegree in Computer Siene in 2006 and she is urrently a postgraduate student at thesame department. She is a member of the Systems Researh Group of the University ofIoannina sine 2007. Her main researh interests lie in the �eld of �le and storage systems.

	andro
	master_2009_02

