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Abstract

Andromachi Hatzieleftheriou T.

Phd, Department of Computer Science and Engineering, University of Ioannina, Greece.

September, 2015.

Fast and E�cient, Durable Storage in Local and Distributed Filesystems.

Thesis Supervisor: Stergios V. Anastasiadis.

The increasingly large amount of structured and unstructured data that needs to be

constantly stored and processed, requires highly scalable storage system solutions. Typi-

cally, in a cloud environment the storage stack consists of multiple tiers. Front-end ma-

chines are mainly responsible for temporarily caching data, while back-end machines pro-

vide persistent storage. Additionally, data is redundantly stored among multiple servers

for high availability in case of failures. However, the co-location of multiple workloads on

top of a shared physical infrastructure introduces several new design challenges related

to the performance, resource e�ciency and durability of multi-tier cloud environments.

In the present thesis, we argue that the inherent characteristics of multi-tier virtualized

environments necessitate the fresh reconsideration of the I/O path. Across the di�erent

tiers of the storage stack, we investigate the tradeo� between consistency and resource e�-

ciency, aiming to provide improved durability and high performance at moderate resource

overhead.

In the �rst part of this thesis, we focus on the storage backend tier with the aim to

combine improved local �lesystem consistency with high performance and e�cient storage

bandwidth utilization. In general, synchronous small writes are commonly used to safely

log recent state modi�cations for fast crash recovery. Demanding systems usually dedi-

cate separate devices to logging for adequate performance during normal operation and

redundancy during state reconstruction. Nevertheless, storage stacks enforce page-sized

xii



granularity in data transfers from memory to disk. As a result, they consume excessive

storage bandwidth to handle small writes, which hurts performance. The problem wors-

ens, as �lesystems often handle multiple concurrent streams, which e�ectively generate

random I/O tra�c.

In a local �lesystem, we rely on journaling of both data and metadata blocks in order

to achieve their safe transfer to disk at sequential disk throughput and low latency. We

propose the design of two new mount modes, wasteless journaling and selective journaling.

Wasteless journaling coalesces multiple concurrent subpage writes into page-sized jour-

nal blocks. Instead, selective journaling selectively journals data updates below a write

threshold, and transfers the rest directly to the �lesystem. We implement a functional

prototype of our design over a widely-used local �lesystem. Across a wide range of mi-

crobenchmarks and application-level workloads over standalone servers and a multi-tier

networked system, we demonstrate that the proposed modes preserve �lesystem consis-

tency, and provide improved operation throughput along with reduced write latency and

recovery time, at low storage bandwidth overhead.

In the second part of the present thesis, we focus on the frontend layer of a multi-tier

environment. In particular, we examine the implications among performance, resource

e�ciency, and durability in scalable storage systems. Hardware consolidation in the dat-

acenter occasionally leads to scalability bottlenecks due to the heavy utilization of critical

resources, such as the shared network bandwidth. Host-side caching on durable media

is already applied at the block level in order to reduce the load of the storage backend.

However, block-level caching is often criticized for added overhead, and restricted data

sharing across di�erent hosts. During client crashes, writeback caching can also lead to

unrecoverable loss of written data that was previously acknowledged as stable.

We improve the durability of shared storage in the datacenter by supporting journal-

ing at the kernel-level client of a well-known object-based distributed �lesystem. Storage

virtualization at the �le interface allows us to achieve clear consistency semantics across

data and metadata blocks, support native �le sharing between clients over the same or

di�erent hosts, and provide 
exible con�guration of the time period during which the

data is durably staged at the host side. Over a prototype implementation, we demon-

strate improved operation throughput at reduced disk and network bandwidth utilization

for speci�c durability, across multiple microbenchmarks, application-level workloads, and
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real-world applications on top of a local cluster setup and a large-scale public cloud envi-

ronment.
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ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

ÁíäñïìÜ÷ç ×áôæçåëåõèåñßïõ ôïõ ÈùìÜ êáé ôçò ÖùôåéíÞò.

PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, ÓåðôÝìâñéïò,

2015.

ÃñÞãïñç êáé ÁðïäïôéêÞ, ÁíèåêôéêÞ ÁðïèÞêåõóç óå ÔïðéêÜ êáé ÊáôáíåìçìÝíá ÓõóôÞìáôá

Áñ÷åßùí.

ÅðéâëÝðùí: ÓôÝñãéïò Â. ÁíáóôáóéÜäçò.

Óôçí åðï÷Þ ôçò øçöéáêÞò ðëçñïöïñßáò, ôá êëéìáêþóéìá óõóôÞìáôá áðïèÞêåõóçò åßíáé

áðáñáßôçôá ãéá ôç äéá÷åßñéóç ôïõ ôåñÜóôéïõ üãêïõ äïìçìÝíùí êáé áäüìçôùí äåäïìÝíùí

ðïõ áðáéôïýí ïé õðçñåóßåò äéáäéêôýïõ. Ôï áðïèçêåõôéêü óýóôçìá óå Ýíá ðåñéâÜëëïí

õðïëïãéóôéêïý íÝöïõò áðïôåëåßôáé óõíÞèùò áðü ðïëëáðëÜ åðßðåäá. Ôï ðñþôï åðßðåäï

åßíáé õðåýèõíï ãéá ôçí ðñïóùñéíÞ áðïèÞêåõóç ôùí äåäïìÝíùí, åíþ ôï ôåëåõôáßï åðßðåäï

ðáñÝ÷åé ìüíéìç áðïèÞêåõóç. Åðéðñüóèåôá, ôá óõóôÞìáôá áðïèÞêåõóçò ìåãÜëçò êëßìáêáò

äéáôçñïýí ðïëëáðëÜ áíôßãñáöá ôùí äåäïìÝíùí óå äéáöïñåôéêïýò êüìâïõò þóôå íá ðåôý÷ïõí

õøçëÞ äéáèåóéìüôçôá óå ðåñßðôùóç êÜðïéáò áðïôõ÷ßáò. Ùóôüóï, ç óõíýðáñîç ðïëëáðëþí

ñïþí åñãáóéþí ðÜíù óå ìßá êïéíÞ õðïäïìÞ óôï êÝíôñï äåäïìÝíùí (datacenter), åéóÜãåé ìßá

óåéñÜ áðü ó÷åäéáóôéêÜ æçôÞìáôá ðïõ áöïñïýí ôçí áðüäïóç (performance), ôçí áðïäïôéêü-

ôçôá (e�ciency) êáé ôçí áíèåêôéêüôçôá (durability) ôùí äåäïìÝíùí óôï óýóôçìá. Óôçí

ðáñïýóá äéáôñéâÞ åðéóçìáßíïõìå ôçí áíáãêáéüôçôá ãéá óõíïëéêÞ áíáèåþñçóç ôïõ ìïíïðá-

ôéïý áðïèÞêåõóçò óå Ýíá ðïëõóôñùìáôéêü óýóôçìá ìåãÜëçò êëßìáêáò. Ðñïò áõôÞ ôçí

êáôåýèõíóç, óå äéáöïñåôéêÜ åðßðåäá ôïõ óõóôÞìáôïò áðïèÞêåõóçò, åîåôÜæïõìå ôçí åðßäñáóç

ôçò óõíÝðåéáò ôùí äåäïìÝíùí óôçí áðïäïôéêüôçôá ôïõ óõóôÞìáôïò. ÈÝôïõìå ùò âáóéêü

óôü÷ï ôçí åîáóöÜëéóç ôçò áíèåêôéêüôçôáò ôùí äåäïìÝíùí óå óõíäõáóìü ìå õøçëÞ áðüäïóç

êáé ÷áìçëÝò áðáéôÞóåéò óå öõóéêïýò ðüñïõò.

Óôï ðñþôï ôìÞìá ôçò ðáñïýóáò äéáôñéâÞò, ìåëåôÜìå óôï êáôþôåñï åðßðåäï ôçò óôïßâáò

xv



áðïèÞêåõóçò, êáé åîåôÜæïõìå ôï ôïðéêü óýóôçìá áñ÷åßùí ìå óôü÷ï íá ðñïóöÝñïõìå õøçëÞ

áîéïðéóôßá, âåëôéùìÝíç áðüäïóç êáé áðïäïôéêÞ ÷ñÞóç ôïõ åýñïõò æþíçò äßóêïõ. Óå Ýíá

ìåãÜëï åýñïò óõóôçìÜôùí, ïé ìéêñÝò óýã÷ñïíåò åããñáöÝò ðáßæïõí êñßóéìï ñüëï óôçí

áîéïðéóôßá êáé ôç äéáèåóéìüôçôá ôùí óõóôçìÜôùí áðïèÞêåõóçò, êáèþò ÷ñçóéìïðïéïýíôáé

ãéá ôçí áóöáëÞ êáôáãñáöÞ ôùí ìåôáâïëþí óôçí êáôÜóôáóç ôïõ óõóôÞìáôïò êáé ôç ìåôÝðåé-

ôá áíÜêáìøç áðü ðéèáíÝò áðïôõ÷ßåò. ÔõðéêÜ ðáñáäåßãìáôá ôÝôïéùí óõóôçìÜôùí áðïôåëïýí

ôá ðáñáäïóéáêÜ óõóôÞìáôá áñ÷åßùí, ïé ó÷åóéáêÝò âÜóåéò äåäïìÝíùí êáé ôá óõóôÞìáôá

áðïèÞêåõóçò êëåéäéïý-ôéìÞò. Ôï ãåãïíüò üôé ôá óýã÷ñïíá óõóôÞìáôá áðïèÞêåõóçò ìåôáöÝ-

ñïõí ôá äåäïìÝíá áðü ôç ìíÞìç óôï äßóêï óå ïëüêëçñá ìðëïê, Ý÷åé óáí áðïôÝëåóìá ôçí

Üóêïðç ÷ñÞóç åýñïõò æþíçò äßóêïõ ðïõ åðéöÝñåé áõîçìÝíç êáèõóôÝñçóç åããñáöÞò.

ÐñïêåéìÝíïõ íá åëáôôþóïõìå ôéò áðáéôÞóåéò óå åýñïò æþíçò äßóêïõ, ó÷åäéÜóáìå äýï

íÝåò ìåèüäïõò êáôáãñáöÞò åíçìåñþóåùí (journaling). Ðéï óõãêåêñéìÝíá, âáóéæüìáóôå

óôçí ôå÷íéêÞ êáôáãñáöÞò åíçìåñþóåùí óôá ìåôáäåäïìÝíá êáé ôá äåäïìÝíá, þóôå íá ðåôý-

÷ïõìå óôçí áóöáëÞ åããñáöÞ ôïõò óôï äßóêï ìå ÷áìçëÞ êáèõóôÝñçóç, áîéïðïéþíôáò ôçí

áêïëïõèéáêÞ ðñïóðÝëáóç ôïõ áñ÷åßïõ êáôáãñáöÞò. Ç ðñþôç ìÝèïäïò áðïèçêåýåé ìüíï ôçí

ðñáãìáôéêÞ ìåôáâïëÞ óôá äåäïìÝíá ùò áðïôÝëåóìá ôùí áéôÞóåùí åããñáöÞò ôïõ ÷ñÞóôç,

óõãêåíôñþíïíôáò ðïëëáðëÝò ìéêñÝò áéôÞóåéò óå Ýíá ðëÞñåò ìðëïê. Óôç óõíÝ÷åéá ðñïôåß-

íïõìå ìßá åíáëëáêôéêÞ ìÝèïäï êáôáãñáöÞò åíçìåñþóåùí, ç ïðïßá Ý÷åé ùò óôü÷ï íá ìåéþóåé

ôçí êßíçóç óôï áñ÷åßï êáôáãñáöÞò óôçí ðåñßðôùóç ìåãÜëùí áéôÞóåùí áêïëïõèéáêÞò ðñï-

óðÝëáóçò. Ôï ðñïôåéíüìåíï óýóôçìá äéá÷ùñßæåé ôéò áéôÞóåéò ìå âÜóç êÜðïéï êáôþöëé

åããñáöÞò (write threshold). Óýìöùíá ìå ôï ìÝãåèïò ôçò åêÜóôïôå áßôçóçò, ôá äåäïìÝíá

ôçò áðïèçêåýïíôáé åßôå óôï áñ÷åßï êáôáãñáöÞò, åßôå óôçí ôåëéêÞ ôïõò èÝóç óôï äßóêï.

ÕëïðïéÞóáìå ôéò ðñïôåéíüìåíåò ìåèüäïõò óôï åõñÝùò äéáäåäïìÝíï óýóôçìá áñ÷åßùí ext3

ôïõ Linux. ÐñáãìáôïðïéÞóáìå ôçí áîéïëüãçóç ôïõ ðñïôåéíüìåíïõ óõóôÞìáôïò ÷ñçóéìï-

ðïéþíôáò ìéá óåéñÜ åêôåíþí ðåéñáìáôéêþí ìåôñÞóåùí ðïõ ðåñéëáìâÜíïõí óõóôÞìáôá ñïþí

äåäïìÝíùí, äéáêïìéóôÝò çëåêôñïíéêÞò áëëçëïãñáößáò, óõóôÞìáôá åðåîåñãáóßáò óõíáëëá-

ãþí ðñáãìáôéêïý ÷ñüíïõ êáé ðáñÜëëçëá óõóôÞìáôá áñ÷åßùí. Óõãêñßíáìå ôï óýóôçìÜ

ìáò ìå ôéò õðÜñ÷ïõóåò ðñïóåããßóåéò êáé áðïäåßîáìå üôé åðéôõã÷Üíåé ÷áìçëÞ êáèõóôÝñçóç

åããñáöÞò êáé åðáíáöïñÜò, õøçëü ñõèìü åîõðçñÝôçóçò óõíáëëáãþí, åíþ Ý÷åé ÷áìçëÝò

áðáéôÞóåéò óå åýñïò æþíçò äßóêïõ.

Óôï äåýôåñï ôìÞìá ôçò ðáñïýóáò äéáôñéâÞò, åðéêåíôñùíüìáóôå óôï ðñþôï åðßðåäï

åíüò ðïëõóôñùìáôéêïý óõóôÞìáôïò áðïèÞêåõóçò. Åéäéêüôåñá, ìåëåôÜìå æçôÞìáôá ðïõ
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áöïñïýí ôçí áðüäïóç, ôçí áðïäïôéêÞ áîéïðïßçóç ôùí ðüñùí êáé ôçí áíèåêôéêüôçôá ôùí

äåäïìÝíùí óå Ýíá êëéìáêþóéìï óýóôçìá áðïèÞêåõóçò. Óôï êÝíôñï äåäïìÝíùí, ç åêôÝëåóç

ðïëëáðëþí ñïþí åñãáóßáò ðÜíù óôçí ßäéá õðïäïìÞ ìðïñåß íá ïäçãÞóåé óå ðåñéïñéóìÝíç

êëéìáêùóéìüôçôá åîáéôßáò ôçò áõîçìÝíçò ÷ñÞóçò êñßóéìùí ðüñùí, üðùò ôï åýñïò æþíçò

äßóêïõ êáé äéêôýïõ. Ç ìåãÜëç åðéâÜñõíóç ôïõ äéêôýïõ åðéâÜëëåé óôïí ðåëÜôç íá äéáôçñÞóåé

ãéá êÜðïéï ÷ñïíéêü äéÜóôçìá ôá åíçìåñùìÝíá äåäïìÝíá óôçí êñõöÞ ôïõ ìíÞìç (cache) ãéá

ëüãïõò áðüäïóçò. Ç êñõöÞ áðïèÞêåõóç óôçí ðëåõñÜ ôïõ ðåëÜôç ðÜíù áðü áíèåêôéêÜ ìÝóá

ìðïñåß íá âåëôéþóåé ôçí áíèåêôéêüôçôá ôùí äåäïìÝíùí, åíþ åöáñìüæåôáé Þäç óå åðßðåäï

ìðëïê (block-based) ðñïêåéìÝíïõ íá ìåéùèåß ôï öïñôßï ôïõ áðïèçêåõôéêïý óõóôÞìáôïò ðïõ

âñßóêåôáé áðü ðßóù. Ùóôüóï, ç êñõöÞ áðïèÞêåõóç åðéðÝäïõ ìðëïê êñßíåôáé áíåðáñêÞò

ëüãù ôçò ðñüóèåôçò åðéâÜñõíóçò óôçí áðüäïóç ôïõ óõóôÞìáôïò, êáé ôçò ðåñéïñéóìÝíçò

äõíáôüôçôáò êïéíï÷ñçóßáò äåäïìÝíùí ðïõ ðñïóöÝñåé ìåôáîý äéáöïñåôéêþí äéáêïìéóôþí.

Åðéðñüóèåôá, óå ðåñßðôùóç áðïôõ÷ßáò ôçò ëåéôïõñãßáò ôïõ ðåëÜôç, ç êñõöÞ áðïèÞêåõóç ìå

ðåñéïäéêÞ åããñáöÞ (writeback caching) ìðïñåß íá ïäçãÞóåé óå áðþëåéá ôùí äåäïìÝíùí ôá

ïðïßá ðñïçãïõìÝíùò åðéâåâáéþèçêáí ùò ìüíéìá áðïèçêåõìÝíá óôéò åêôåëïýìåíåò åöáñìï-

ãÝò.

Óôçí ðáñïýóá äéáôñéâÞ, âåëôéþíïõìå ôçí áíèåêôéêüôçôá ôçò êïéíü÷ñçóôçò áðïèÞêåõóçò

óôï êÝíôñï äåäïìÝíùí ìå ôçí õðïóôÞñéîç êáôáãñáöÞò åíçìåñþóåùí óôïí ðåëÜôç åðéðÝäïõ

ðõñÞíá åíüò êáôáíåìçìÝíïõ óõóôÞìáôïò áñ÷åßùí ìåãÜëçò êëßìáêáò. Ç åðéëïãÞ ôçò äéåðá-

öÞò áñ÷åßùí (�le-based interface) áðëïðïéåß ôï ìïíïðÜôé ðñïò ôï ôåëéêü áðïèçêåõôéêü

ìÝóï ðñïóöÝñïíôáò ðïëëáðëÜ ïöÝëç. Áñ÷éêÜ, âåëôéþíåé ôçí áðüäïóç ôùí åöáñìïãþí

êáé ðåôõ÷áßíåé îåêÜèáñç óçìáóéïëïãßá óõíÝðåéáò ìåôáîý äåäïìÝíùí êáé ìåôáäåäïìÝíùí.

ÅðéðëÝïí, õðïóôçñßæåé ôçí åããåíÞ êïéíï÷ñçóßá áñ÷åßùí ìåôáîý ðåëáôþí ðïõ ôñÝ÷ïõí åßôå

óôïí ßäéï, åßôå óå äéáöïñåôéêïýò äéáêïìéóôÝò. ÔÝëïò, ç äéåðáöÞ áñ÷åßùí åðéôñÝðåé ôçí

åõÝëéêôç ñýèìéóç ôçò ÷ñïíéêÞò ðåñéüäïõ êáôÜ ôçí ïðïßá ôá äåäïìÝíá åßíáé áîéüðéóôá áðïèç-

êåõìÝíá óôçí ðëåõñÜ ôïõ äéáêïìéóôÞ. ÐñïêåéìÝíïõ íá äþóïõìå ôç äõíáôüôçôá óå ðïëëá-

ðëïýò ðåëÜôåò íá ðñïóðåëÜóïõí ôáõôü÷ñïíá êïéíÜ äåäïìÝíá, åîáóöáëßæïõìå üôé ôï óýóôç-

ìá äéáôçñåßôáé óõíå÷þò óå ìßá óõíåðÞ êáôÜóôáóç. Åðßóçò, ðáñÝ÷ïõìå Ýíáí åéäéêü ìç÷áíé-

óìü ãéá ôçí åðáíáöïñÜ ôùí äåäïìÝíùí ðïõ âñßóêïíôáé áðïèçêåõìÝíá óôï áñ÷åßï êáôáãñá-

öÞò åíçìåñþóåùí ôïõ ðåëÜôç êáôÜ ôçí áíÜêáìøç ôïõ óõóôÞìáôïò áðü êÜðïéá áðïôõ÷ßá.

Áîéïëïãïýìå ðåéñáìáôéêÜ ôçí ðñùôüôõðç õëïðïßçóç ðïõ áíáðôýîáìå óôï êáôáíåìçìÝíï

óýóôçìá áñ÷åßùí ôïõ Ceph óôï Linux, ÷ñçóéìïðïéþíôáò ìéá ôïðéêÞ óõóôïé÷ßá õðïëïãéóôþí,
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êáé ôï ìåãÜëçò êëßìáêáò ðåñéâÜëëïí õðïëïãéóôéêïý íÝöïõò ôçò Amazon. ÓõíïëéêÜ ôï

ðñïôåéíüìåíï óýóôçìá åðéôõã÷Üíåé óçìáíôéêÞ âåëôßùóç óôçí áðüäïóç ãéá óõãêåêñéìÝíåò

åããõÞóåéò áíèåêôéêüôçôáò, áîéïðïéþíôáò ìåéùìÝíï åýñïò æþíçò äéêôýïõ êáé äßóêïõ óôïõò

äéáêïìéóôÝò áðïèÞêåõóçò.
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Chapter 1

Introduction

1.1 Thesis Context

1.2 Thesis Contributions

1.3 Thesis Organization

1.1 Thesis Context

The continuous increase in volume, variety and velocity of data has led to the evolution of

data storage. In the era of Big Data, large amounts of constantly generated information

needs to be e�ciently stored, analysed and processed. For instance, in 2010 Facebook

reported the actual need to store and load in daily basis, 15PB and 60TB of data accord-

ingly, with a total of one billion new photos per week [184, 18]. Today, Twitter monthly

serves 316 million of active users, posting 500 million tweets per day [187]. According

to a recent study, data is doubling every two years, and is expected to reach 44 trillion

gigabytes by 2020 [61]. Additionally, the emergence of cloud computing has given rise to a

new class of Internet-scale applications, including online serving, analytics and bulk pro-

cessing, that manage the increasing amount of data and serve thousands or even millions

of concurrent users.

The large data volume, in combination with the rapidly growing number of concurrent

users, imposes the requirement for high scalability at the underlying cloud storage infras-
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tructure. This observation has led system designers to move from centralized to scalable

distributed solutions. The storage stack typically consists of several tiers with multiple

servers per tier. Frontend machines temporarily cache data locally, while backend ma-

chines provide persistent storage. A common multi-tier storage architecture consists of

a distributed database running on top of a cloud-scale �lesystem with typical examples

including Bigtable over GFS and HBase over HDFS [37, 74].

Furthermore, the advent of cloud computing creates an increasing tendency of mi-

grating traditional desktop and server applications to the cloud. Server consolidation is

attractive because it enables operational cost reduction, and power e�ciency in the dat-

acenter. Virtualization is the key technology that enables the consolidation of multiple

virtual desktop or server machines on top of a shared physical infrastructure. In a vir-

tualization environment, the physical resources are multiplexed among multiple isolated

virtual machines. Today, the majority of cloud providers, such as Amazon through Elas-

tic Compute Cloud (EC2) and Microsoft through Azure, provide computing, network and

storage resources on demand through virtual machines [3, 32].

Nevertheless, hardware consolidation also introduces several design challenges. First,

the co-location of heterogeneous workloads over a shared infrastructure often leads to

contention of critical resources, such as disk and network bandwidth, resulting in re-

duced system scalability and performance [110, 155, 200, 69, 16]. Furthermore, typical

assumptions of several large-scale distributed applications about resource homogeneity

are weakened, which further complicates the e�cient resource management of tasks and

virtual machines [200]. Despite the physical resources, the co-located applications may

also need to share data, for instance across jobs cooperating to solve a particular task [83].

Indeed, �ne-grained data sharing is commonly enabled through a distributed �lesystem

interface [199].

The storage interface typically de�nes the semantic level of information between the

application and the storage system. In a virtualized datacenter, storage is provided

through protocols operating at the block, �le or object level. The block-based inter-

face in the form of virtual disks has prevailed in the storage management of virtualization

environments. Virtual disks are stored as 
at �les usually over a network �leserver, or

a storage array network. However, storage consolidation at the block-level introduces

multiple layers of abstraction. This results in redundant translations between di�erent
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layers of the storage and the network stack in the course of a request from the guest to the

remote storage backend [80, 176, 177, 9, 106]. Alternatively, through the �le interface, the

guest can directly access the remote �leserver without unnecessary performance overhead.

Moreover, the �le interface facilitates semantical awareness, which further enables several

performance optimizations and strengthens consistency [120, 111, 189, 91, 1, 43]. Native

support for �ne-grained �le sharing is also a desirable feature [145, 120, 172, 191, 23].

Overall, although the block-based interface provides virtualization 
exibility and wide

system compatibility, a �le-based interface is attractive for its performance, controlled

sharing properties, and clear consistency semantics. As a third option a guest can use

an object-based interface to directly access multiple object based servers for improved

scalability [189].

On another design dimension, service failures have been surveyed and analyzed exten-

sively across di�erent online providers [136, 84]. Operator errors in the form of miscon�g-

urations or buggy custom-written software running in the machines or the network, are

recognized as the leading causes of service failures. In order to tolerate network and ma-

chine failures, large scale systems usually replicate data across multiple nodes. However,

the frontend layer is usually kept stateless for reduced communication overhead [25]. In

particular, the frontend only stores locally soft state that does not survive crash failures

or reboots, which hurts the durability of the system.

In general, the �lesystem consistency introduces a tradeo� between performance and

durability. The low latency and high throughput of directly-attached storage allows a

local �lesystem to periodically 
ush data and metadata updates to stable storage. In

contrast, the potential contention over the network or the shared servers mandates that

the client of a distributed �lesystem preferably keeps dirty data un
ushed in volatile

memory arbitrarily long for improved performance and resource e�ciency. In this case,

the client participates in the system failure model; if the client fails, it loses recently

updated blocks in the volatile memory which have not reached the server yet. Indeed,

several designers of local �lesystems, large-scale storage systems, and 
ash-based caching,

decide to trade consistency for improved performance by decoupling the ordering of write

requests from their durability [42, 101, 121].

At the storage backend, the crash consistency of local �lesystems has been studied

extensively [42, 146]. Write-ahead logging is a technique commonly used to improve
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system reliability by preserving recent updates from failures; it also increases system

availability by substantially reducing the subsequent recovery time. Synchronous small

writes play critical role in the availability of a wide range of systems, including traditional

�lesystems, relational databases, and key-value stores, because they safely log recent

state modi�cations for fast recovery from crashes [72, 66, 37, 104, 19, 169, 63, 75, 140].

Nevertheless, the storage stack enforces page-sized granularity in data transfers from

memory to the storage backend, resulting in ine�cient storage bandwidth utilization and

reduced performance. In fact, the resource waste is exacerbated due to multiple concurrent

streams that generate random I/O tra�c [32, 13].

Despite the technological advances in cloud computing over the last decade, cloud

storage systems face several limitations related to their e�ciency, performance, durability,

or �le sharing properties [23]. In this thesis, we propose the fresh reconsideration of the

I/O path in multi-tier virtualized environments. We show that the resource e�ciency at

each storage tier contributes to the overall system performance improvement. We also

recognize the importance of investigating the implications of the consistency semantics to

the resource e�ciency and the performance, at each tier separately. Overall, we combine

improved �lesystem consistency with high performance and e�cient resource utilization,

across di�erent layers of the storage stack.

Our initial goal is to improve the consistency and the bandwidth e�ciency of the local

�lesystem at the storage backend. We rely on journaling of data updates in order to

ensure their safe transfer to disk at low latency and high operation throughput without

excessive resource overhead. We design and implement a new journaling method which

merges concurrent subpage writes into page-sized blocks to the journal. We also develop

an additional journaling method which only logs updates below a write threshold and

transfers the rest directly to the �lesystem.

Subsequently, we focus on the frontend layer aiming to improve the performance,

resource e�ciency, and durability of the shared storage system. Especially, we rely on

storage virtualization at the �le level for its clear consistency semantics, native �le sharing

support, and performance characteristics. We improve the durability of shared storage

in the datacenter by supporting local disk-based journaling at the kernel-level client of

a scalable distributed �lesystem. Our approach enables frequent 
ushes of dirty pages

to the local journal without crossing the network and hitting the disks of the backend
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storage.

1.2 Thesis Contributions

According to the examined storage layer of a multi-tier environment, the contributions of

this thesis can be classi�ed into two categories.

At the storage backend layer:

• We measure bandwidth ine�ciencies in journaled �lesystems and examine ways to

combine �lesystem consistency with high performance at moderate cost.

• We design and implement two new mount modes, wasteless and selective journaling,

in a widely-used local �lesystem.

• We discuss the e�ects of alternative journaling optimizations to the consistency

semantics of the �lesystem in the context of di�erent storage con�gurations.

• We experimentally show the performance improvement of the proposed modes, at

low journal bandwidth requirements, across a wide range of realistic workloads over

standalone servers, and a multi-tier networked system.

At the frontend layer:

• We propose to improve the durability of frontend memory caching with a local

disk-based journal at the client of a distributed �lesystem.

• We design and implement a prototype of the proposed storage layer at the client of

a commonly-used object-based �lesystem.

• We carefully investigate the consistency semantics of the proposed storage proto-

col under normal system operation, and in case of client failures, such as network

disconnection and reboot.
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• We experimentally demonstrate that the proposed design improves the application

performance, and reduces the disk and network bandwidth utilization for speci�c

durability guarantees over a local clustered storage backend and a large scale cloud

environment.

1.3 Thesis Organization

The remainder of the present thesis is organized as follows:

In Chapter 2, we provide the background required to understand the challenges

that arise in multi-tier storage environments with regard to the implications of crash

consistency on the resource e�ciency and the performance of the system.

In Chapter 3, we motivate our work on improving the bandwidth e�ciency for con-

sistent multistream storage at the storage backend by experimentally revealing bandwidth

waste in a widely known journaling �lesystem. Then, we present the design of the two

new journaling modes that we propose, and discuss the consistency semantics provided

by the Okeanos design.

In Chapter 4, we describe the implementation details of the Okeanos prototype,

and investigate the implications of alternative journaling optimizations to the consistency

semantics of the �lesystem in the context of di�erent storage con�gurations.

In Chapter 5, we present the experimentation environment that we used, and provide

the experimental evaluation of the Okeanos prototype through microbenchmarks and

application-level workloads on standalone servers, and a multi-tier networked system.

In Chapter 6, we motivate our work on improving the durability of shared storage by

experimentally measuring the amount of dirty data that remains vulnerable at the client

memory of a commonly used large-scale �lesystem over time. We outline the proposed

design goals and describe the architecture of Arion. We also investigate the consistency

semantics of our storage protocol along with its implications to the e�ciency.

In Chapter 7, we initially provide some necessary background information, and then

present the implementation details of the Arion prototype.

In Chapter 8, we describe our experimentation environment, and present the ex-

perimental evaluation of Arion using microbenchmarks, application-level workloads, and
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real-world applications over a local cluster and a public-cloud setup. Additionally, we

examine an alternative storage device setup.

In Chapter 9, we compare the proposed systems with previous research related to the

storage management in virtualization and cloud environments. Furthermore, we present a

detailed study of the previous research on distributed �lesystems, transaction processing,


ash-based caching and �lesystem logging, and discuss several device and application-

speci�c reliability issues.

InChapter 10, we investigate some promising directions for future work, and describe

our ongoing work on related open research issues.

In Chapter 11, we provide an overview of the contributions of this thesis, and sum-

marize the basic conclusions.
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Chapter 2

Background

2.1 Storage in Virtualization Environments

2.2 Cloud Storage

2.3 Reliable Multistream Storage

2.4 Local Filesystem Consistency

2.5 Summary

Infrastructure virtualization in the datacenter consolidates desktop and server machines

over the same hardware. The physical resources are typically shared among multiple

heterogeneous applications with di�erent I/O characteristics, resulting in resource con-

tention and limited performance scalability. The storage interface plays a critical role in

the performance, e�ciency, consistency and sharing properties of the co-located virtual

machines. However, providing crash consistency in order to ensure the correctness of the

�lesystem structure after a failure, further complicates the design of a large-scale storage

system, and introduces a tradeo� between performance and durability. As highly con-

current streams of data travel across the multi-tier storage stack of a virtualized cloud

environment, it is important to investigate the implications of the consistency semantics

to the resource e�ciency and the overall system performance at each layer separately.
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In this chapter we initially describe the storage properties of the alternative storage

interfaces in virtualization environments. Then, we discuss the design issues and the

challenges that arise in a multi-tier cloud environment. We also examine some interesting

topics in the reliable storage management of highly-concurrent streams of data over a

wide range of applications. Finally, we focus on the crash consistency semantics of local

�lesystems.

2.1 Storage in Virtualization Environments

The increasing power of modern systems in combination with 
exible virtualization soft-

ware, encourage service providers to consolidate multiple virtual servers on a single phys-

ical machine. Virtualization enables the multiplexing of physical resources, such as disk

capacity and network bandwidth, across di�erent guest operating systems. A thin layer,

namely the Virtual Machine Monitor(VMM) or hypervisor, lies between the hardware

and the hosted virtual machines. The VMM is responsible for scheduling and managing

the allocation of physical system resources among the co-located guest machines. The

individual work
ows from multiple guest operating systems result in highly-concurrent

streams of data to the underlying storage system. Moreover, the submitted I/O requests

are increasingly latency-sensitive.

In virtualization environments the performance interference among multiple concurrently-

running virtual machines leads to unpredictable performance and suboptimal resource

utilization [70, 170, 110]. For example, a single badly-behaving application is able to sat-

urate the storage system due to random I/O requests. As a result, the contention in the

storage system has been extensively studied over the last years [70, 170, 110]. Another

signi�cant di�culty is the semantic gap introduced between the hosted machines and the

VMM [41, 189]. In particular, the resource scheduling decisions of the VMM are agnostic

of application-speci�c information available at the operating system level. Additionally,

the semantic gap raises questions about data consistency because the hypervisor operates

transparently to the guest �lesystem [1, 43]. Overall, it remains di�cult to e�ciently pro-

vide crash consistency guarantees at low latency and high throughput in virtualization

environments.
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Figure 2.1: (a) Block, (b) �le and object storage interfaces in virtualization environments.

Application data is typically served in the form of virtual disks stored as 
at �les over

a network �leserver, or volumes over either directly-attached storage or a storage-area

network. A guest accesses a virtual disk as a local device through a block-based interface

as depicted in Figure 2.1a. Alternatively, a �le-based interface can be used at the guest

side to directly access remote �le servers over the network (Figure 2.1b).

Despite the actual storage backend (SAN or NAS), a virtual disk is also formatted

with a local �lesystem within the guest. The resulting multi-layered storage stack may

lead to performance degradation due to multiple �le-to-block transformations of the I/O

requests [80, 176, 177, 9]. Similarly, �lesystem nesting through a block-based interface

has been reported to incur signi�cant performance overhead [106]. On the contrary, a �le-

based interface reduces redundant translations between di�erent layers of the storage and

the network stack as a request travels from the guest to the remote �le server. Therefore,

remote storage access through a �le-based interface has been advocated to improve the

performance of virtual machines in comparison to block-based access.

Another signi�cant advantage of the �le interface is its ability to preserve �le-level

semantics in order to improve the performance and strengthen consistency [120, 111, 189,

91, 1, 43]. In particular, the �le interface provides valuable semantical information about

the consistency dependencies of modi�ed the data and metadata blocks. Instead, the

block-based interface treats metadata as data below the guest �lesystem, which can lead

to inconsistencies in case of a guest failure [43, 106, 176, 101, 91, 1]. Additionally, a �le-
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Bene�ts
Interface

References
Block File

sharing X [145, 120, 172, 191, 23]

semantical awareness

consistency X [43, 106, 101, 189, 91, 1]

performance X [176, 80, 106, 9, 91]

manageability

disaster recovery X X [50, 141]

migration X X [143, 57]

thin provisioning X X [57, 106]

searchability X [145, 120]

snapshotting X X [193, 141, 106]

versioning X X [145, 57]

systems compatibility X [176, 9]

isolation X X [145, 103, 112]

Table 2.1: Storage properties respectively facilitated by the block-based and �le-based

interface of a virtual machine.

based interface natively supports controlled �le-sharing among di�erent virtual machines

[94, 51, 120, 145, 172, 191, 23, 9].

On the contrary, the �le interface has been criticized for reduced virtualization 
ex-

ibility and limited isolation of the guest machines [80, 176, 9, 145]. In contrast to the

�le-based interface, the block interface also provides wide compatibility across di�erent

backend storage systems and frontend guest operating systems [176, 189, 9]. However, the

block interface limits content searching within the virtual machines [145]. Finally, both

interfaces provide 
exible manageability through versioning, migration, thin provision-

ing, snapshotting, and disaster recovery [145, 57, 106, 193, 141, 50, 141]. In Table 2.1 we

summarize the comparative bene�ts of block-based and �le-based networked storage as re-

ported in current literature. Alternatively, for improved scalability, an object-based inter-

face allows the guest to directly connect to multiple object servers (Figure 2.1b) [193, 189].
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2.2 Cloud Storage

The storage management in a cloud environment is challenging due to the increasingly

large amount of data and the constantly growing number of concurrent users. The cloud

storage solutions can be categorized as structured and unstructured. Unstructured data,

such as text and multimedia �les, has no prede�ned data model, while structured data

depends on a particular well-de�ned schema. Unstructured data management is provided

over the traditional �le-based interface by large-scale �lesystems, such as the Google File

System (GFS) and the Hadoop Distributed File System (HDFS) [65, 171]. Instead, key-

value stores are used for the storage management of structured data [37, 74]. Common

multi-tier cloud storage examples include Bigtable over GFS and HBase over HDFS [37,

74]. Nevertheless, such layering has been reported to result in reduced consistency, while

the write-dominated disk I/O negatively impacts the overall system performance [74].

Generally, the compute and storage resources of physical machines in the datacenter

are multiplexed among multiple heterogeneous applications. According to recent publicly

available traces from Google, the variability concerns both the executed tasks and the

resource types of the running virtual machines, in case of virtualized environments [155].

For instance, server and desktop workloads have di�erent I/O patterns from large-scale

distributed applications [121]. More speci�cally, big data workloads (such as MapReduce)

issue large sequential I/O, while POSIX applications (such as databases) usually result

in small, random I/O requests [109]. The co-location of such heterogeneous workloads

on top of a shared infrastructure through virtualization can lead to signi�cant resource

contention, impacting the application performance [110, 155, 200, 69, 16]. Heterogeneity is

also observed in the consistency requirements of di�erent applications [178]. For example,

POSIX applications typically require stricter consistency semantics. However, POSIX

semantics can be provided at the cost of limited performance, especially when multiple

machines access shared storage [78]. Instead, several system designers typically prefer to

trade strong consistency for improved performance [121].

The consistency and availability of large-scale storage systems in the event of machine

and network failures have been extensively studied over the last decade. In general, the

availability and performance of cloud services depend on the ordering, durability and

membership properties of replication consistency [25]. In a multi-tier system, data is
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replicated at the frontend application, an intermediate caching layer, and the backend

persistent storage. Replication across multiple machines allows the system to tolerate

machine crashes and network partitions. For reduced cross-layer communication, the

frontend can be stateless and lose recently written data during a crash or reboot. Recog-

nition of this risk has urged the designers of local �lesystems, 
ash-based caches and

distributed storage systems to emphasize the ordering guarantees of crash consistency at

the expense of weaker durability [42, 101, 121, 46].

On another design dimension, in order to improve their performance and reduce the

respective network and server load, I/O-intensive workloads in a distributed �lesystem

can take advantage of writeback caching at the client side. Writeback caching allows the

application data to be acknowledged as soon as it reaches the client-side cache, while

the actual transfer to the backend storage is performed at a later time. Unfortunately,

current scalable �lesystems can natively support only in-memory caching at the client side,

resulting in limited durability [193, 50, 171]. This de�ciency has been partially addressed

by having the �lesystem client running in the hypervisor (or another proxy node) and

enforcing the guests to mount disk images as plain �les through a block interface that

enables block-based caching at the hypervisor [31, 191]. Nevertheless, this approach has

been criticized for the increased overheads from the semantic gap that it introduces and

the unnecessary multiple translations between the �le and block interface [80, 106, 176, 23].

Indeed, data sharing is a useful feature of the �le interface, and it is desirable either among

independent web services co-located within the same cloud, or across jobs cooperating to

solve a particular task [64, 83].

2.3 Reliable Multistream Storage

Synchronous small writes lie in the critical path of several systems that target fast recovery

from failures with low performance loss during normal operation [72, 66, 82, 37, 104, 5,

19, 113, 169, 63, 75, 140]. Before modifying the system state, updates are recorded to

a sequential �le (write-ahead log). Periodically the entire system state (checkpoint) is

copied to permanent storage. After a transient failure, the lost state is reconstructed by

replaying recent logged updates against the latest checkpoint [190].

13



Write-ahead logging improves system availability by preserving state from failures and

substantially reducing recovery time. It is a method widely applied in general-purpose �le

systems [156, 82, 163, 148], relational databases [66], key-value stores [37, 113], event pro-

cessing engines [104, 29], and other mission-critical systems [132, 32, 27]. Logging is also

one technique applied during the checkpointing of parallel applications to avoid discarding

the processing of multiple hours or days after an application or system crash [147, 19, 139].

Logging incurs synchronous small writes, which are likely to create performance bottleneck

on disk [66, 192, 132, 10, 124]. Thus, the logging bandwidth is typically over-provisioned

by placing the log �le on a dedicated disk separately from the devices that store the sys-

tem state (e.g. relational databases [127], Azure [32]). In general, asynchronous writes

also behave as synchronous if an I/O-intensive application modi�es pages at the 
ushing

rate of the underlying disk [17].

Furthermore, a distributed service is likely to maintain numerous independent log

�les at each server (RVM [159], Megastore [13], Azure [32]). For instance, multiple logs

facilitate the balanced load redistribution after a server failure in a storage system. If the

logs are concurrently accessed on the same device, random I/O is e�ectively generated

leading to long queues and respective delays. This ine�ciency remains even if the logs

are stored over a distributed �lesystem across multiple servers. One solution is to manage

the multiple logs of each server as a single �le (e.g. Bigtable over GFS [37], HBase over

HDFS [27, 74]). In case of recovery, individual logs have to be separated from each other

at the cost of extra software complexity and processing delay during recovery.

For the needs of high-performance computing, special �le formats and interposition

software layers have been developed to e�ciently store the data streams generated by

multiple parallel processes [60, 79, 147, 19]. In structures optimized for multi-core key-

value storage, the server thread running on each core maintains its own separate log

�le [116]. For higher total log throughput it is recommended that di�erent logs are

stored on di�erent magnetic or solid-state drives. However, fully replacing hard disks with


ash-based solid-state drives is currently not considered a cost-e�ective option for several

storage-intensive workloads [130, 67]. Also, while the storage density of 
ash memory

continues to improve, important metrics such as reliability, endurance, and performance

of 
ash memory are currently declining [68].
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2.4 Local Filesystem Consistency

In a local �lesystem, inconsistencies can arise due to a hardware error, memory corruption,

or a system crash. Write ordering is essential to preserve �lesystem consistency in the

presence of system crashes. Typically write ordering is imposed by explicit cache 
ushes.

However, a cache 
ush request is expensive because it forces all dirty data to disk, even

if only a subset actually needs to be persisted [42, 112]. The durability of written data

can be improved if one alternatively disables the on-disk cache, or uses controllers with

battery-backed cache [152, 169].

According to the guarantees provided for data and metadata blocks, a recent study

distinguishes the following levels of �lesystem consistency [43]:

• Metadata consistency ensures that the metadata structures are consistent, with no

guarantees about data blocks.

• Data consistency provides guarantees about both metadata and the corresponding

data blocks.

• Version consistency additionally associates metadata with data of the matching

version, resulting in the highest consistency level.

A number of techniques have been proposed to maintain �lesystem consistency in the

face of system crashes. Soft updates track and enforce metadata update dependencies so

that the �lesystem can safely delay writes for most �le operations [163]. Copy-on-write

techniques write �lesystem blocks to any location on disk without updating the original

disk blocks in-place [82, 156, 202]. Filesystem journaling applies writes of metadata, and

sometimes data, blocks to a write-ahead log before updating their �nal location in the

�lesystem [72, 148, 186].

Soft updates ensure both data and metadata consistency, whereas copy-on-write pro-

vides all the above levels of consistency [43]. Instead, journaling supports three alternative

modes with di�erent consistency semantics. In writeback journaling mode only metadata

blocks are logged without any constraints in the relative order at which data and meta-

data blocks update the �lesystem. It is considered the fastest mode, but also the weakest

in terms of consistency. In ordered journaling mode only metadata writes are logged.

However, the data blocks are written to their �nal location right before the journal writes
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of the metadata, reducing the risk of corrupting data during recovery. This order ensures

that a �le structure points to valid data blocks on disk. In data journaling mode both

metadata and data blocks are logged. As a result, data journaling minimizes the risk

of losing �le updates and, is considered to provide the strongest consistency guarantees.

In particular, it achieves data, metadata and version consistency by correctly associating

metadata with data of the corresponding version.

Despite the strong consistency guarantees, data journaling incurs additional disk ac-

cesses because each block is typically transferred to disk twice; once to the journal and

then later to its �nal location. Several studies have tried to improve the journaling per-

formance by relaxing the ordering constraints [42, 43]. Nevertheless, the use of data

journaling is commonly explicitly discouraged in several cases [148, 203, 5, 152, 43].

2.5 Summary

In this chapter, we provided the background required to understand the challenges that

arise in multi-tier storage systems regarding the implications of crash consistency on the

resource e�ciency and performance of the system across di�erent tiers. Overall, we un-

derlined the importance to improve the e�ciency of the resource consumption across all

layers of the storage stack in a multi-tier environment in order to enhance the overall sys-

tem performance. E�ciency is important because hardware consolidation can sometimes

lead to scalability bottlenecks due to heavy utilization of critical resources. The seman-

tics of the storage interface is also crucial for the performance, e�ciency, and consistency

properties of virtualized environments. Finally, it is essential for designers of reliable stor-

age systems to ensure the consistency of committed updates in case of failures. However,

�lesystem consistency typically leads to a tradeo� between performance and durability. In

the present thesis, we investigate the performance and consistency implications of critical

resource consumption across di�erent layers of the I/O path in the datacenter storage.
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Chapter 3

Improving the Journaling Efficiency

3.1 Motivation

3.2 System Design

3.3 Summary

In a large-scale multi-tier environment the e�ciency of the local �lesystem at the stor-

age backend plays a critical role in the overall system performance. We begin our study

by focusing on the storage e�ciency of local �lesystems. In local �lesystems, journaling

is a technique commonly used to ensure their fast recovery in case of system failures.

However, storage stacks enforce page-sized granularity in data transfers from memory to

disk resulting in ine�cient bandwidth utilization in case of small write requests. In this

thesis, we consider the reduction of journal bandwidth in current systems as a means to

improve the performance of reliable storage at low cost. In particular, we rely on jour-

naling of data updates in order to ensure their safe transfer to disk at low latency and

high operation throughput without storage bandwidth waste. In this chapter, we present

the architectural aspects of the proposed design with particular emphasis on the provided

consistency semantics.
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Figure 3.1: For a duration of 5min, we use 100 threads over the Linux ext3 �lesystem

to do periodic synchronous writes at �xed request size (each thread writes 1req/s). We

measure the total write tra�c to the journal across di�erent mount modes (fully explained

in Sections 3.2 and 4.1).

3.1 Motivation

Journaled �lesystems copy data and/or metadata from memory to a write-ahead log (jour-

nal) on disk [81, 164, 186, 203, 148]. Update records are safely appended to the journal

at sequential throughput, and costly �lesystem modi�cations are postponed without pe-

nalizing the write latency perceived by the user. A page cache temporarily stores recently

accessed data and metadata; it receives byte-range requests from applications and for-

wards them to disk in the form of page-sized requests [28, 33]. The page granularity of

disk accesses is prevalent across all storage transfers, including data and metadata writes

to the �lesystem and the journal. In the case of asynchronous small writes, the disk e�-

ciency is improved as multiple consecutive requests are coalesced into a page before being


ushed to disk. In contrast, synchronous small writes are 
ushed to disk individually

causing costly random I/O of data and metadata page transfers.

In Figure 3.1, we measure the amount of data written to the journal of the ext3

�lesystem (described in Section 4.1). We run a synthetic workload of 100 concurrent

threads for 5min. Each thread generates periodic synchronous writes of �xed request

size at rate 1req/s. We include the ordered and writeback modes along with the data

journaling mode. The ordered and writeback modes incur lower tra�c because they only

write to the journal the blocks that contain modi�ed metadata. Instead, data journaling
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writes to the journal the entire modi�ed data and metadata blocks. In Figure 3.1, as the

request size drops from 4KB to 128 bytes (by a factor of 32), the total journal tra�c of

data journaling only decreases from 267MB to 138MB (by about a factor of 2). Thus,

data journaling incurs a relatively high amount of journal tra�c at subpage requests. By

tracing the block transfer activity of ext3 in the Linux kernel we found that metadata

and data modi�cations are journaled in granularity of entire 4KB pages regardless of how

many bytes are actually modi�ed in a �le page.

According to Chidambaram et al. [43], after a system crash, the data journaling mode

correctly associates metadata with data of the matching version (version consistency).

This type of crash consistency is stronger than only keeping the metadata structures

consistent with each other (metadata consistency), or correctly associating the data blocks

with the �le they belong to (data consistency). However, data journaling requires each

data update to be written twice, �rst in the journal and later in the �lesystem. If it

involves a large amount of written data or numerous small writes, double writes lead to

excessive utilization of storage bandwidth that may hurt performance. Consequently, the

use of data journaling is explicitly discouraged in several cases, while production systems

activate only metadata journaling by default [148, 203, 5, 152, 43].

Today, journaling of both data and metadata is applied in a production distributed

�lesystem to ensure consistency of on-disk state [193]. Additionally, data journaling is

desirable for increased consistency across several production environments, including the

native �lesystem of I/O-intensive high-performance computing systems [137], or the host

�lesystem holding the disk images of virtual machines running write-dominated work-

loads [106]. In general, write-optimized �lesystems that improve random access perfor-

mance are increasingly important for networked environments [109].

In this chapter, we investigate the performance and consistency implications of storage

bandwidth consumption in journaled and other �lesystems. In the case of data journaling,

we �nd that the excessive disk tra�c of synchronous small writes is primarily a result of the

page granularity enforced by the storage stack and less a consequence of writes to both the

journal and the �lesystem. In fact, journaling may actually improve performance because

it safely copies updates to disk at sequential throughput. The bandwidth ine�ciency of

small writes is not trivially overcome by reducing the granularity of disk writes to a single

sector because smaller writes would cause higher I/O overhead in the system. Instead,
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we propose to accumulate the modi�cations from multiple subpage updates from di�erent

threads into a single page, and only pay once the disk I/O cost of the page write. This

approach cannot be directly applied to writes that modify the �lesystem in-place because

each write corresponds to a di�erent block on disk. However, it is applicable to the

updates appended into the journal.

We set as objective to achieve �lesystem crash consistency at high I/O performance

with e�cient bandwidth utilization. We introduce, design, and fully implement two new

mount modes, wasteless journaling and selective journaling. We are mainly concerned

about highly concurrent multi-threaded workloads that synchronously apply small writes

over the same storage devices [132, 37, 5, 104, 19, 27, 32, 169]. Unnecessary writes of un-

modi�ed data and writes of high positioning overhead occupy valuable disk access time.

Thus they waste disk bandwidth, which should preferably be spent on useful data trans-

fers. To achieve our objective, we transform multiple random small writes into a single

block append to the journal. With microbenchmarks and application-level workloads,

we show that our two modes can considerably reduce the journal (and �lesystem) traf-

�c. More importantly, they improve operation throughput and substantially reduce the

response time in comparison to alternative mount options and �lesystems.

To the best of our knowledge, the present work is the �rst to comprehensively inves-

tigate the general bene�ts of subpage data journaling using a prototype implementation

in a fully operational �lesystem. We summarize our contributions as follows:

1. Measure bandwidth ine�ciencies in journaled �lesystems and examine ways to com-

bine �lesystem consistency with high performance at moderate cost.

2. Design and fully implement wasteless and selective journaling as optional mount

modes in a widely-used �lesystem.

3. Discuss the implications of alternative journaling optimizations to the consistency

semantics of the �lesystem in the context of di�erent storage con�gurations.

4. Apply micro-benchmarks, storage workloads and database logging traces over a

journal spindle to demonstrate performance improvements up to several orders of

magnitude across di�erent metrics.
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5. With a parallel �lesystem, we show that wasteless journaling doubles the throughput

of parallel checkpointing over small writes, while it reduces the total tra�c to disk.

3.2 System Design

In the present section, we describe the basic assumptions and objectives of our journaling

architecture. In a general-purpose �lesystem, we aim to safely store recent state updates

on disk and ensure their consistent recovery in case of failure. We also strive to serve

synchronous small writes and subsequent reads fast, with low bandwidth requirements.

The consistency of metadata updates has already been studied previously [72, 163]. Addi-

tionally, subpage journaling of metadata updates is made widely available today through

popular commercial �lesystems, such as the IBM JFS and MS NTFS [148]. On the con-

trary, data journaling is only supported in fewer �lesystems (e.g. ext3/4, ReiserFS) and its

use is generally avoided because it is considered harmful for performance [43]. Moreover,

the subpage journaling of data updates is not supported in current �lesystems.

3.2.1 Wasteless Journaling

Historically, journaling was only applied to the metadata of a �lesystem with speci�c goal

to ensure fast structural recovery after a system failure [72, 186]. Today, support for data

journaling is provided in few �lesystems to preserve from a system crash the latest data

updates and keep them accessible [43]. As a side e�ect of the journal sequential access,

data journaling can improve the throughput of random I/O operations. However, this

bene�t is realized at the cost of excessive bandwidth consumption due to the page gran-

ularity of the storage tra�c [148, 10]. In order to overcome this limitation, we designed

and implemented a new mount mode that we call wasteless journaling. In synchronous

writes, we transform partially modi�ed data blocks into descriptor records, which we sub-

sequently accumulate into special journal blocks (Figure 3.2.a). For data blocks that have

been fully modi�ed by write operations, we synchronously copy the entire blocks from

memory to the journal. After timeout expiration or due to shortage of journal space, we

copy the partially or fully modi�ed data blocks from memory to their �nal location in the

�lesystem. Subsequently, we clean the respective records from the journal device.
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Figure 3.2: (a) In wasteless journaling, we journal data updates at subpage granularity.

(b) In selective journaling, while we treat small requests approximately as in wasteless

mode, we transfer large requests directly to the �nal location without prior journaling of

the data.

3.2.2 Selective Journaling

Data journaling adds extra I/O cost because it writes data to both the journal and the

�lesystem. In the particular case of sequential writes, the bene�t from sequential appends

to the journal device is not that signi�cant, because the data writes to the �lesystem are

most likely sequential. In this case, the journal device may actually become a bottleneck

and harm performance. With goal to reduce the journal I/O activity of sequential writes,

we evolved wasteless journaling into an alternative mount mode that we call selective

journaling. In this mode, the system automatically di�erentiates the write requests based

on a �xed size threshold that we call write threshold. Depending on whether the write

size is below the write threshold or not, we respectively transfer the synchronous writes

to either the journal or the �nal disk location directly (Figure 3.2b). The rationale of this

approach is to apply data journaling only when multiple small writes can be coalesced

into a single journal block, or di�erent data blocks are fully modi�ed and scattered across

multiple locations in the �lesystem.
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3.2.3 Crash Consistency

Since the synchronous write from a single thread must be transferred to disk immedi-

ately, it only makes sense to accumulate into a journal block the writes that originate

from di�erent concurrent threads. Therefore, we expect wasteless and selective journal-

ing to be mostly bene�cial in environments that consist of multiple writing streams with

frequent small writes. In the case of wasteless journaling, we only consider a write oper-

ation e�ectively completed after we log both data and metadata into the journal device.

Synchronous writes from the same thread are added to the journal sequentially. In case

of failure, a pre�x of the operation sequence is recovered through the replay of the data

modi�cations that have been successfully logged into the journal. Thus, the structure

of the �lesystem remains consistent across system failures and the �lesystem metadata

refers to the latest data that has been safely stored on disk (version consistency [43]).

Selective journaling allows a series of synchronous writes to have a subset of the

modi�ed data added to the journal and the rest of the modi�ed data directly transferred to

the �nal location in the �lesystem. During a recovery from crash, a write operation is fully

aborted if the corresponding journal appends were interrupted halfway. However, if the

write is large enough to be directly transferred to the �nal location, it may be only partially

completed at the instance of the failure. Consequently, selective journaling provides the

consistency of mount modes that journal the metadata only after the respective data

is saved to disk (data consistency [43]). Such modes update the data in place and

add metadata modi�cations to the journal, while selective journaling applies large data

updates in place but adds to the journal both metadata modi�cations and small data

updates. If the write tra�c is dominated by request sizes below the write threshold,

the consistency of selective journaling approaches the version consistency of wasteless

journaling.

Arguably, the accumulation of multiple small updates into a single journal block leaves

open the possibility of losing multiple updates if the block does not safely reach the jour-

nal device. However, the wasteless and selective journaling do not defer in any way the

operation of bu�er 
ushing regardless of whether it is periodically invoked by the �lesys-

tem or explicitly requested through synchronous writes. Instead, the two modes merely


ush the bu�er updates faster because they reduce the amount of I/O involved. This
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e�ciency allows applications to achieve decreased write latency and shorter vulnerability

window during which requested updates remain outstanding. We provide additional ex-

planations about the system consistency, when we describe the atomicity guarantees of

our implementation in Section 4.1.4, while we experimentally demonstrate the reduced


ushing latency of our modes in chapter 5.

3.2.4 Update Sequences

In selective journaling, we call update sequence a series of multiple incoming updates

applied to the bu�er of a single data block. The update sequence terminates when the

modi�ed data block along with the respective metadata blocks are safely transferred from

memory to the �lesystem. In our de�nition, the updates are not necessarily back-to-back,

but there should be no in-between transfer of the respective data and metadata blocks

to the �nal disk location. For presentation simplicity, but without loss of generality, we

assume that the write threshold and the block size are both set equal to the size of a

system page.

If the �rst update in such a sequence has subpage size, we mark the corresponding

bu�er as journaled. Then, we log to the journal the entire update sequence of the block

as the individual updates are 
ushed to disk. It would be a straightforward approach

to turn o� the journaling of the block as soon as the subpage write switched into a full

overwrite along an update sequence. As a result, the initial updates of the block would be

journaled and the rest would be directly 
ushed to the �lesystem. During journal replay

at a subsequent recovery from a failure, the subpage writes would erroneously corrupt

the block whose latest update fully overwrote it. We deliberately avoid this situation by

journaling the block throughout the update sequence at the cost of paying data journaling

I/O for the entire update sequence.

Instead, if the �rst update is page-sized, we skip journaling for the entire update

sequence of the block. This implies that 
ushing any subsequent subpage data write

to disk causes the entire data block to be 
ushed to the �lesystem and the respective

metadata blocks written to the journal. If we trivially did not do that, then only the

subpage writes could be recorded in the journal. Our approach in this case sacri�ces the

sequential I/O of journaling in order to avoid block corruption due to only replaying the
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Figure 3.3: Alternative execution paths of a write request in the selective journaling mode.

subpage writes of the update sequence after a failure.

We prefer to preserve clean recovery semantics in selective journaling at the cost

of lower performance gain. In our experience, the two above transitions in write size

along an update sequence are not common in practice. Also, an update sequence has

limited lifetime due to the periodic 
ushing of dirty data by the system. According

to our experiments, selective journaling maintains signi�cant performance gains across

di�erent representative workloads that we examined. In Figure 3.3, we use a 
owchart to

summarize the possible execution paths of a write request through selective journaling.

3.3 Summary

Motivated by the measured ine�ciencies in journaled �lesystems, we examined ways to

combine �lesystem consistency with high performance at moderate cost. In a journaled

�lesystem, we introduced the design of wasteless and selective journaling as alternative

mount modes. Wasteless journaling coalesces synchronous concurrent small writes of data
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into full page-sized journal blocks. Instead, selective journaling automatically activates

wasteless journaling on data writes with size below a �xed threshold. Finally, we included

a detailed discussion about the consistency semantics provided by the proposed journaling

modes.
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Chapter 4

The Okeanos Prototype

4.1 Prototype Implementation

4.2 Summary

In this chapter we provide the implementation details of the proposed journaling modes.

Additionally, we discuss the implications of alternative journaling optimizations to the

consistency semantics of the �lesystem in the context of di�erent storage con�gurations.

We implement wasteless and selective journaling in the Okeanos prototype system over

the Linux ext3 �lesystem.

4.1 Prototype Implementation

At a high level, the original ext3 �lesystem implements journaling of updates in two steps.

First, it copies the modi�ed blocks into the journal with a a commit block at the end.

Then, it updates the modi�ed blocks in-place at the �lesystem and discards the journal

blocks.
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respective disk block in the journal device and, (ii) A journal head in memory links the

block with the journal transaction to which it belongs.

4.1.1 Bu�ers

The Linux kernel uses the page cache to keep the data and metadata of recently accessed

disk �les in memory [28]. For every cached disk block, a block bu�er in memory stores

the respective data, while a bu�er head stores the related bookkeeping information (Fig-

ure 4.1). The page cache manages disk blocks in page-sized groups called bu�er pages.

Since the block and page typically have the same size, we use these two terms interchange-

ably from now on. A number of pd
ush kernel threads periodically 
ush dirty pages to

their �nal disk location. The threads systematically scan the page cache every writeback

period ; a dirty page is due for 
ushing after an expiration period has passed since it was

last modi�ed. Additionally, applications can synchronously 
ush the data and metadata

blocks of an open �le, for instance, through the fsync call or after opening the �le with

the O SYNC option enabled. The journaling block device is a special kernel layer used by

ext3 to implement the journal as a hidden �le in the �lesystem, or a separate disk par-

tition. In the journal, each log record corresponds to an update of one disk block in the

�lesystem. The log record contains the entire modi�ed block instead of the byte range
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Figure 4.2: (a). In the original design of data journaling, the system copies to the jour-

nal the entire blocks modi�ed by write operations. (b) In wasteless journaling, we use

multiwrite journal blocks to accumulate the data modi�cations from multiple writes.

actually overwritten. This wastes disk bandwidth and space but makes straightforward

the restoration of modi�ed blocks after a crash. The degree of waste depends on the

fraction of the block that is left unmodi�ed by the write operation.

At the minimum, the system only needs to log the modi�ed part of each bu�er and

merge it into the original block to recover the latest block version. Thus, we introduce

a new type of journal block that we call multiwrite block (Figure 4.2b). We only use

multiwrite blocks to accumulate the updates from data writes that partially modify block

bu�ers. If a bu�er contains metadata or is fully modi�ed by a write operation, we can send

it directly to the journal without creation of an extra copy in the page cache. We call such

a journal block a regular block. When a write request of arbitrary size enters the kernel,

the request is broken into variable-sized updates of individual block bu�ers. In wasteless

journaling, for bu�er updates smaller than the block size, we copy the corresponding

data modi�cation into a multiwrite block. Otherwise, we link the update to the entire

modi�ed block in the page cache. In selective journaling, we set the write threshold equal

to the page size of 4KB. If a bu�er update is smaller than the write threshold, we mark

the corresponding block as journaled by setting a special 
ag that we added in the page

descriptor of the bu�er. Then, we copy the modi�cation to the multiwrite block. If the

update modi�es the entire block, we prepare the corresponding modi�ed bu�er for transfer
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to the �lesystem without prior journaling. We clear the journaled 
ag after we complete

the block transfer to the �lesystem.

In a straightforward way, our current prototype can also support arbitrary write

thresholds below the page size. In contrast, support for write thresholds above the page

size requires additional implementation intervention at the system path of write requests

as described recently in a more general context [118]. The additional modi�cation is nec-

essary in order to keep track of the write size across the bu�ers in the page cache and

treat them di�erently based on the write threshold.

4.1.2 Transactions

A system call may consist of multiple low-level operations that atomically manipulate

disk data structures of the �lesystem. For improved e�ciency, the system assigns to

one transaction the records of multiple calls. Before the records of a transaction are

transferred to the journal, the kernel allocates a journal descriptor block with a list of

tags. A tag maps a bu�er to the respective block in the �lesystem (Figure 4.2a). When a

journal-descriptor block �lls up with tags, the kernel moves it to the journal together with

the associated block bu�ers. For each block bu�er that will be written to the journal,

the kernel allocates an extra bu�er head speci�cally for the needs of journaling I/O.

Additionally, it creates a journal head structure to associate the block bu�er with the

respective transaction (Figure 4.1). After all the log records of a transaction have been

safely transferred to the journal, the system appends to the journal a �nal commit block.

For writes that only modify part of a block, we expanded the journal head with

two extra �elds, the o�set and the length of the partially modi�ed block pointed to by

the bu�er head. When we start a new transaction, we allocate a bu�er for the journal

descriptor block. The journal descriptor block contains a list of �xed-length tags, where

each tag corresponds to one block update (Figure 4.2.b). Originally, each tag contained

the �lesystem location of the modi�ed block and one 
ag for the journal-speci�c properties

of the block. In our design, we introduce three new �elds in each tag: (i) A 
ag to indicate

the use of a multiwrite block, (ii) The length of the write in the multiwrite block, and

(iii) The starting o�set of the modi�cation in the �lesystem data block. These �elds are

required during recovery to allow the extraction of the update from the multiwrite block
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and the overwrite of the respective �lesystem block at the right o�set.

4.1.3 Recovery

We consider a transaction committed if it has 
ushed all its records to the journal and

has been marked as �nished. A transaction is automatically committed by the kjournald

kernel thread after a �xed amount of time has elapsed since the transaction started.

Subsequently, we regard the transaction as checkpointed if all the blocks of a committed

transaction have been moved to their �nal location in the �lesystem and the corresponding

log records have been removed from the journal. If the journal contains log records after

a crash, the system assumes that the unmount was unsuccessful and initiates a recovery

procedure in three phases. In the scan phase, it looks for the last record in the journal that

corresponds to a committed transaction. During the revoke phase, the kernel marks as

revoked those blocks that have been obsoleted (overwritten or deleted) by later operations.

In the replay phase, the system writes to the �lesystem the remaining (unrevoked) blocks

that occur in committed transactions.

During the recovery process, we retrieve the modi�ed blocks from the journal. In

the case of multiwrite blocks, we apply the updates to blocks that we read from the

corresponding �lesystem locations. Since the data of consecutive writes are placed next

to each other in the multiwrite block, we can deduce their corresponding starting o�sets

from the length �eld in the tags. As soon as the length �eld of a tag exceeds the end

of the current multiwrite block, we read the next block from the journal and treat it as

another multiwrite block from the same transaction. We read into memory and update

the appropriate block as speci�ed by the �lesystem location and the starting o�set in the

tag. However, if the multiwrite 
ag is not set, then we read the next block of the journal

and treat it as a regular block. We write every regular block directly to the �lesystem

without need to read �rst its older version from the disk.

4.1.4 Atomicity

Disk drives can guarantee the atomic update of a 512-byte sector through an attached

checksum calculated over the sector data [160]. For a page that consists of multiple sectors,

incomplete page updates can be detected (torn page detection) through additional bits
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calculated over the entire page [162, 43]. Accordingly, we assume that the disk supports

atomic page updates. One misbehaviour not covered by the page atomicity is the case

that only a subset of the pages in a transaction actually reaches the �lesystem. This is

possible because the disk internally uses a write cache to temporarily store incoming data.

The on-disk write cache is typically set to operate in write-back mode, which may reorder

writes for better performance. Then, the disk is possible to acknowledge a synchronous

page write before the data is safely stored.

The integrity of a journaled transaction can be veri�ed with a checksum calculated

over the contents of the transaction [149]. However, a journaled �lesystem may silently

end up in inconsistent state if the system crashes after a transaction partially updates the

�lesystem but before the transaction is safely stored in the journal. Such inconsistency can

be avoided if the �lesystem explicitly controls the on-disk ordering of journal commits.

For that purpose, the Linux ext3 provides the barrier mount option while the SCSI

speci�cation o�ers the SYNCHRONIZE CACHE command [160]. Similarly, SATA provides

the FLUSH CACHE command [157]. If the device does not support write barriers, a 
ush

workload can be used to 
ush the on-disk write cache instead [152]. Alternatively, we

can disable the write cache and have the disk only acknowledge a write after that really

reaches the medium [169].

Assuming page atomicity on disk, wasteless journaling provides the consistency of

data journaling. If additionally the disk barrier is used or the write cache is disabled,

both wasteless and data journaling guarantee the idempotence of write operations. If

a transaction replay is interrupted halfway through, from page atomicity it follows that

each a�ected page in the �lesystem will carry either the new value or the old value. A

safely committed transaction can be repeatedly applied to the �lesystem until it completes

successfully. At this point, all the a�ected pages in the �lesystem will have the new value.

Selective journaling marks as journaled the bu�er of an update sequence based on the

size of the �rst update to the respective data page. If a data page is prepared for direct

transfer to the �lesystem, there is no journal head to associate this data page with a

transaction. It is possible that the system crashes right after a dirty data page is directly

transferred to the �lesystem. The respective metadata updates will not make it to the

journal if we use write barriers or disable the on-disk write cache. After the crash, the

above data update can become visible to the user if the update overwrote an existing �le
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Figure 4.3: We consider three di�erent pairs of data and metadata blocks whose respective

bu�ers are updated in memory. From left to right, we show a possible timing of block

transfers to the journal (j) and the �lesystem (fs) across four di�erent �lesystem modes.

The superscripts d and m of the blocks refer to data and metadata, respectively, while

t1, t2 and t3 refer to three time instances of system crash that we examine. The square

containing c refers to the commit block.

page. Essentially, the consistency of selective journaling degenerates to that of ordered

mode if the update sequence is not journaled. With journaled update sequence, the

respective �lesystem page is only modi�ed if it belongs to a safely committed transaction.

If all the update sequences of a transaction are journaled, the consistency of selective

journaling is that of wasteless journaling. As part of our experimentation, we con�rm the

comparative bene�ts of our journaling modes across di�erent settings of the on-disk cache

and the write barrier (Section 5.2.6).

Example In Figure 4.3, we examine the potential e�ect of the updates applied to three

di�erent pairs of data and metadata blocks whose bu�ers are already located in system

memory. Assuming that time increases from left to right, we refer to the data and meta-

data block of updates 1, 2, and 3, respectively, with bd1 and bm1 , b
d
2 and bm2 , b

d
3 and bm3 . The

squares that contain the character c symbolize the commit block of the transaction. We

assume that the updates applied to bd1 and bd2 are partial, while bd3 is fully overwritten.
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With the journal and �lesystem on disk, the example indicates that wasteless and selec-

tive journaling are likely to require less I/O time to safely 
ush the updates from memory

to disk in comparison to the ordered and data journaling modes.

If the system crashes at instance t1, then all the updates applied in memory are lost.

At the other extreme, if the system crashes at instance t3, then all the updates can be

safely recovered from disk. Although both data and wasteless journaling record all the

block updates to the journal, wasteless journaling transfers one less block. The ordered

mode transfers all the data blocks to the �lesystem, before it appends the three metadata

blocks to the journal. Selective journaling only transfers block bd3 to the �lesystem, but it

copies to the journal the updates of bd1 and bd2 through a multiwrite block.

In this example, if the system crashes at instance t2, then selective journaling has

already modi�ed block bd3 in the �lesystem, while the ordered mode has modi�ed bd1, b
d
2, b

d
3

in the �lesystem. As a result both the ordered and selective journaling modes leave the

�lesystem in an inconsistent state after the crash. Additionally, given that the commit

block has not been safely stored on disk before the crash, all four modes fail to recover

the three updates. The example indicates that the multiwrite block helps reduce the I/O

tra�c to the journal, while any in-place updates directly applied to the �lesystem may

lead to inconsistencies during a crash.

4.2 Summary

To summarize, we provided a detailed description of the Okeanos prototype implementa-

tion. In particular, we implemented a method that we call wasteless journaling to merge

concurrent subpage writes to the journal into page-sized blocks. Additionally, we de-

veloped the selective journaling method that only logs updates below a write threshold

and transfers the rest directly to the �lesystem. In this chapter we also examined the

implications of alternative journaling optimizations to the consistency semantics of the

�lesystem.
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Chapter 5

Performance Evaluation of the

Okeanos System

5.1 Experimentation Environment

5.2 Performance Evaluation

5.3 Summary

In this chapter, we provide an extensive experimental evaluation of the Okeanos pro-

totype. We compare the proposed journaling modes against existing methods using mi-

crobenchmarks and application-level workloads on standalone servers, and a multi-tier

networked system. In our experiments we examine both synchronous and asynchronous

write-intensive workloads.

5.1 Experimentation Environment

We implemented wasteless and selective journaling in the Linux kernel version 2.6.18.

Newer Linux releases still lack the functionality that we propose (e.g. ext4 [102]). In

order to add the proposed functions into ext3, we modi�ed 684 lines of code across 19

�les of the original Linux kernel. Members of our team used the modi�ed system as their

35



working environment for several months. We evaluated our prototype over a sixteen-node

cluster using x86-based servers running the Debian Linux distribution and connected

through gigabit Ethernet

In most experiments we use nodes with one quad-core 2.66GHz processor, 3GB RAM,

and two SAS 15KRPM disks (Seagate Cheetah ST3300655SS [38]). Each disk has 300GB

storage capacity, multi-segmented 16MB cache, 3.4/3.9ms average read/write seek time

and 122-204MB/s sustained transfer rate. We have the journal and the data partition on

two separate disks, unless we mention otherwise. Our conclusions were similar in several

experiments that we did (not shown) with two SATA 7.2KRPM disks of 250GB capacity

and 16MB cache. We keep the page and block sizes equal to 4KB, while we leave the

journal size at the default value 128MB. In our measurements, we assume synchronous

write operations, unless we specify di�erently. We keep the default parameters of periodic

page 
ushing: writeback period equal to 5s and expiration period 30s. Between successive

repetitions, we 
ushed the page cache by unmounting the journal device and writing the

value 3 to the /proc/sys/vm/drop caches. On otherwise idle machines, with up to �fteen

experiment repetitions, we ensure that our results have half-length of 90% con�dence

interval within 10% of the reported average.

5.2 Performance Evaluation

We study the performance of microbenchmarks, application-level workloads and traces

from database logs directly running on the modi�ed �lesystem. We also evaluate a stable

Linux port of the Log-structured File System, where the entire �lesystem is structured as

a log [156]. Additionally, over a multi-tier con�guration based on the PVFS2 distributed

�lesystem, we examine the impact of the server �lesystem to the parallel workload running

across multiple clients. Finally, we measure the recovery time after a crash.

The default disk settings typically increase performance by allowing a synchronous

write to return when the data reaches the on-disk cache rather than the storage sur-

face. The durability of written data can be improved if one alternatively disables the

on-disk cache, applies 
ush workloads to the cache, or uses controllers with battery-

backed cache [132, 152, 169]. In most of our experiments we kept enabled the on-disk
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Figure 5.1: (a) At 1Kbps, the journal bandwidth (lower is better) of both selective and

wasteless journaling approaches that of ordered and writeback modes, unlike data journal-

ing which is several factors higher. (b) At 1Mbps, wasteless and data journaling have the

same journal bandwidth, while selective journaling lies between writeback and ordered.

(c) In comparison to ordered and writeback at 1Kbps, the other three modes incur lower

�lesystem bandwidth (lower is better), because they batch multiple writes into fewer page


ushes.

caches, but in Section 5.2.6 we report the sensitivity of our results to alternative cache

con�gurations.

5.2.1 Microbenchmarks

For a time period of 5min, we run a number of threads on the local �lesystem. Each

thread appends data to a separate �le by calling one synchronous write per second. The

generated aggregate tra�c e�ectively consists of random I/O operations. As metric of

ine�ciency, we use the average consumed bandwidth (the lower the better) on the journal

device across the di�erent mount modes of ext3. With 1Kbps streams in Figure 5.1a, we

observe that as the number of streams increases from one hundred to several thousand,

the journal bandwidth of data journaling reaches 27MB/s. On the contrary, selective and

wasteless journaling limit the journal tra�c up to 2.9MB/s and 4.2MB/s, respectively.

The higher storage bandwidth of data journaling is expected because it writes to the

journal the entire modi�ed data blocks instead of just the subpage modi�cations.
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Figure 5.2: (a) With low rates, the write latency (lower is better) of ordered and writeback

mode appears orders of magnitude longer than the other modes. (b) At higher rates, the

selective and ordered modes experience much higher latency. (c) As we read sequentially

multiple �les that we previously wrote concurrently, read requests of 4KB size with NILFS

complete in order of magnitude longer time than the di�erent modes of ext3.

At stream rate 1Mbps, wasteless and data journaling are comparable in terms of jour-

nal bandwidth (Figure 5.1b). Instead, the selective and ordered modes transfer data

updates directly to the �lesystem, which reduces their journal tra�c by an order of mag-

nitude or more with respect to wasteless and data journaling. We additionally examined

(not shown) streams of 10Kbps and 100Kbps, and mixed workloads with multiple stream

rates at di�erent ratios. Without surprise, the journal bandwidth of wasteless journaling

varied between the values reported in Figures 5.1a,b according to the fraction of requests

that correspond to each stream rate.

In Figure 5.1c, we measure the consumed bandwidth of the �lesystem device for 1Kbps

streams. The ordered mode synchronously transfers the data updates directly to the

�lesystem with costly random I/Os before moving the corresponding metadata to the

journal. Instead, wasteless, selective and data journaling synchronously transfer the up-

dates to the journal and only periodically 
ush the dirty pages to the �lesystem. Thus,

multiple writes to the same data block are automatically coalesced into fewer page 
ushes

leading to lower tra�c at the �lesystem. Respectively, we also measured the processor

utilization (not shown) and found it relatively higher for wasteless, selective and data

journaling. Nevertheless, processor utilization in these experiments always remained low,
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up to 5%.

Ultimately, the journaling of data is expected to reduce the latency of synchronous

writes. As they serve multiple streams of 1Kbps, in Figure 5.2a, the ordered and write-

back modes incur orders of magnitude higher latency with respect to the other modes.

Multiple concurrent synchronous requests in ordered mode result in random accesses to

the �lesystem device. Thus, data journaling completes a write operation in tens of mil-

liseconds, but the ordered mode takes several seconds instead. Selective journaling follows

wasteless at low rates, and approaches the ordered mode at high rates (Figures 5.2a,b).

In Figure 5.2, we also consider a stable Linux port of the Log-structured File System,

where all data and metadata updates are written sequentially as a continuous stream

(NILFS) [197]. We �nd that the write latency of NILFS is comparable to that of waste-

less and data journaling at both 1Kbps and 1Mbps streams. Overall, the sequential

throughput of the journal improves signi�cantly the ability of the system to store fast

the incoming data. In Figure 5.2c, we use a thread to read sequentially one after the

other di�erent numbers of �les that we previously created concurrently at 1Mbps each,

using NILFS or ext3. In this experiment, we measure the average time to read one 4KB

block. We observe that NILFS is an order of magnitude slower with respect to ext3. We

attribute this behaviour to the fact that NILFS interleaves the writes from di�erent �les

on disk, which may lead to poor storage locality during sequential reads. Our results with

1Kbps streams were similar; NILFS along with the ordered and writeback modes incur

higher read latencies than the other three modes.

In order to examine the generality of our conclusions, we also considered streams with

asynchronous writes. In I/O-intensive workloads, we anticipate that recent updates are


ushed to the �lesystem as a result of memory pressure, before the page cleaning daemon

is periodically activated over the cache. In Figure 5.3, with several low-rate streams,

we notice that the ordered mode leads to write latency that is considerably longer and

highly variable in comparison to selective journaling. Essentially, selective and wasteless

journaling move recent updates to the journal device at sequential throughput, which

reduces the latency of ordered and data journaling up to several orders of magnitude.

Correspondingly, we con�rm previous reports that asynchronous workloads may behave

as synchronous under conditions of high update rate [17].
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Figure 5.3: We depict the average latency of 1000 streams along a sequence of 200 disk

writes. Each stream asynchronously writes once per second 125 bytes (1Kbps). In com-

parison to selective journaling, the write latency of ordered mode tends to be highly

variable and orders of magnitude longer.

5.2.2 Postmark and Filebench

We use the Postmark benchmark to examine the performance of small writes as seen

in electronic mail, netnews and web-based commerce [97]. We apply version 1.5 with

the option of synchronous writes added by FSL of Stony Brook Univ. The experiment

duration varies depending on the e�ciency of the requested operations. In order to

keep the runtime reasonable, we assume an initial set of 500 �les and use 100 threads

to apply a total workload of 10,000 mixed transactions with �le read, append, create

and delete operations. We set equal to 5 the ratio of read/append operations and equal

to 9 the ratio of create/delete. We draw the �le sizes from the default range between

500 bytes and 97.66KB, while I/O request sizes lie in the range between 128 bytes and

128KB. In Figure 5.4a, we observe that the transaction rate (higher is better) of wasteless

journaling gets as high as 738 transactions/s. Wasteless journaling combines the sequential

throughput of journaling with the reduced amount of written data to the journal and the

�lesystem during small updates. Across di�erent request sizes between 128 bytes and

128KB, wasteless journaling consistently remains faster than the other modes, including

data journaling (max rate 663 transactions/s). It is notable that wasteless journaling

improves by 85% the performance of ordered mode (max rate 399 transactions/s). Instead,

selective journaling with max rate 473 transactions/s lies between the data journaling and
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Figure 5.4: (a) With the Postmark benchmark, wasteless journaling consistently outper-

forms the other modes in terms of operation transaction rate (higher is better). (b) We

consider up to 128 concurrent Jetstress instances. In comparison to the other modes,

selective journaling maintains the latency of log writes lower up to several orders of mag-

nitude. (c) We examine the three 
ushing methods of MySQL/InnoDB. With respect to

the ordered mode, wasteless journaling reduces up to an order of magnitude the latency

required to 
ush the transaction log to the disk.

ordered modes.

As application-level workloads with asynchronous writes, we used the fileserver

and oltp personalities of Filebench v.1.4.9.1 [62]. Similarly to SPECsfs, the fileserver

emulates the I/O activity of a simple �leserver using an operation mix of �le create, delete,

append, read, write and attribute accesses. By default the number of threads is set to

50 and the mean size of appends is 16KB. We let the tool automatically con�gure the

number of �les to 250K based on the memory size of the server. From Table 5.1 it follows

that the operation throughput (higher is better) of ordered mode is improved by 12.6%

with data journaling and 17.5% with wasteless, respectively. Subsequently, we con�gured

the mean append size of fileserver to 4KB. Then, the respective improvement became

21.4% with data journaling and 23.3% with wasteless. Selective journaling splits the data

writes between the journal and the �lesystem leading to operation throughput below that

of ordered.

In the case of the oltp personality, Filebench performs the �le system operations
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Fileserver (16KB) Fileserver (4KB) OLTP

Mount Thput Latency Thput Latency Thput Latency

Mode (Ops/s) (ms) (Ops/s) (ms) (Ops/s) (ms)

Ordered 579.2 314.6 576.8 315.5 779.8 182.2

Selective Jrn 493.8 368.9 559.2 326.1 810.2 156.3

Data Jrn 652.2 278.2 700.0 260.1 826.8 146.6

Wasteless Jrn 680.4 266.9 711.0 255.5 825.2 146.7

Table 5.1: We measure the performance of the fileserver and oltp personalities in

Filebench. In fileserver we alternatively examine mean append size equal to 16KB

(default) or 4KB.

of the Oracle 9i I/O model. By default, it uses 200 reader processes, 10 processes for

asynchronous writing and a synchronous log writer. The tool automatically con�gures

the �le size to 600MB. The workload involves small random reads and writes, and it is

sensitive to the latency of the moderate-sized (128KB+) writes to the log involved. Data

and wasteless journaling achieve a limited throughput improvement (6%) with respect to

the ordered mode, while selective journaling lies between the wasteless and ordered.

Overall, wasteless journaling improves the operation throughput of the ordered mode

at improved bandwidth e�ciency. The performance of selective journaling lies between

the ordered and data journaling modes, while it reduces the respective bandwidth waste

by transferring data updates either to the journal, or to the �lesystem device. In the

following section, we further examine the logging latency of databases by considering

multiple concurrent workloads [32, 116].

5.2.3 Groupware and Database Logging

System administrators prefer to devote a separate device for the logs of I/O-intensive

applications for e�ciency [127]. Distributed systems place multiple log �les locally at

each machine for improved performance and autonomy [66, 32]. Also, database engines

optimized for multi-core hardware maintain multiple log �les on the same host [116]. Given

the high cost of maintaining extra spindles in a machine, we investigate the possibility of

serving multiple log �les e�ciently over a single disk with appropriate �lesystem support.
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In the present section, we measure the latency to serve the I/O tra�c of log traces that

we gathered from groupware and database workloads.

Jetstress

We consider the Jetstress Tool that emulates the disk I/O load of the Microsoft Exchange

messaging and collaboration server [92]. We run Jetstress for two hours in a Windows

Server 2003 system with 1GB RAM and two SATA disks in mirrored mode. We used 50

mailboxes with 100MB each and 1 operation per second for each mailbox. With these

parameter values, we stress the hardware but also keep the reported measurements within

acceptable levels to successfully pass the Jetstress test. The tool �xes the database cache

to 256MB. Using the MS Process Monitor, we recorded a system-call trace of the Jetstress

I/O activity. The I/O tra�c of the database log contains appends of size from 512 bytes

to tens of KB. The writes are tagged as uncached, i.e., they are con�gured to bypass the

bu�er cache and directly reach the disk.

Over Linux, we use the original inter-arrival times to replay a 15min extract from the

middle of the log trace. We consider di�erent ext3 modes with the O SYNC option enabled

at �le open for synchronous access. Additionally, we consider the ordered mode with the

O DIRECT option at �le open to bypass the page cache. In order to study di�erent loads

and serve multiple logs from the same device, we varied the number of concurrent replays

from 1 to 128. In Figure 5.4b, both selective and wasteless journaling keep write latency

up to tens of milliseconds even at high load. Unlike wasteless journaling that writes to

the journal all the a�ected data modi�cations, selective distributes across both spindles

|of the journal and �lesystem| the incoming appends. As a result, selective journaling

achieves logging latency that is half that of wasteless or less. At high load, data journaling

and ordered mode incur write latency that reaches hundreds of milliseconds, an order of

magnitude longer than our two modes. These results indicate that the default uncached

writes of Jetstress can be outperformed with appropriate �lesystem support. We assume

that the durability of synchronous writes is similar to that of bypassing the page cache.
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TPC-C

We also examine the logging activity of the OLTP performance benchmark TPC-C [185] as

implemented in Test 2 of the Database Test Suite [52]. We used the MySQL open-source

database system with the default InnoDB storage engine [129]. After consideration of our

hardware capacity, we tested a con�guration with 20 warehouses and 20 connections, 10

terminals per warehouse and 500s duration. Running the benchmark led to insigni�cant

di�erences of the measured transaction throughput among ordered mode, wasteless and

selective journaling. This is reasonable because most updates in the workload have size

above the write threshold; as a result, the disk operations are sequential regardless of

whether they update the journal or the �lesystem.

The InnoDB storage engine supports three di�erent methods for 
ushing to disk the

transaction log of the database. In default method 1 (Cmt/Disk), the log is 
ushed directly

to disk at each transaction commit. It is considered the safest to avoid transaction loss

in case of database, operating system or hardware failure. In method 0 (Prd/Disk), a

performance improvement is expected by having the transaction log written to the page

cache and 
ushed to disk periodically. Finally, in method 2 (Cmt/Cache), the transaction

log is written to the page cache at each transaction commit and periodically 
ushed to

disk. A transaction loss is probable in case of operating system or hardware failure.

During an execution of TPC-C, we collect a system-call trace of the MySQL trans-

action log. Subsequently, we replay a number of concurrent instances of the log trace

over the ordered and wasteless journaling. We measure the average latency to 
ush the

transaction log to disk. In Figure 5.4c, we see that wasteless journaling takes up to tens

of seconds to complete each log 
ush across the three methods of InnoDB at high load.

Instead, at 64 or 128 instances, ordered mode takes hundreds of seconds. We also exper-

imented with selective journaling (not shown) and found it close to wasteless journaling

and well below ordered. The reported behaviour is anticipated because wasteless and se-

lective journaling sequentially store the small appends of the database log into the system

journal.
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Figure 5.5: We measure the data throughput (higher is better) of MPI-IO as client of

PVFS2. (a) At 1KB writes, wasteless journaling almost doubles the performance of the

default ordered mode. (b) At request size 47001 bytes, the prevalence of writes above the

write threshold keeps similar the relative performance of the mount modes.

5.2.4 MPI-IO over PVFS2

Workload characterization of parallel applications shows the need for improved perfor-

mance in small I/O requests over small and large �les that arise due to normal execution

and checkpointing activity [79, 34]. Especially small requests of 1KB are known to be

problematic because they incur high rotational overhead even after they are transformed

into sequential [147]. Writes of 47001 bytes also appear often in parallel applications and

lead to poor performance due to alignment mis�t [19]. In the present section, we examine

the performance gain of a parallel multi-tier con�guration with our mount modes running

directly in the kernel-based �lesystem of the storage server.

We chose the PVFS2 as an open-source scalable parallel �le system [150]. We con�g-

ured a networked cluster of �fteen quad-core machines with thirteen clients, one PVFS2

data server and one PVFS2 metadata server. By default, each server uses a local Berke-

leyDB database to maintain local metadata. Through system-call tracing, we observed

that the data server uses a single thread for local metadata updates and multiple threads

for data updates. To focus our study on multi-stream workloads, at the data server we

placed the BerkeleyDB on one partition of the root disk, and dedicated the entire sec-
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Figure 5.6: We measure the disk tra�c (lower is better) of BerkeleyDB (BDB), the journal

(Journal) and the �lesystem (Final) over a PVFS2 data server. (a) At 1KB writes,

selective and wasteless reduce the journal tra�c of data journaling and the �lesystem

tra�c of ordered. (b) At 47001 bytes, wasteless is similar to data journaling, and selective

comparable to ordered mode, in terms of total disk tra�c.

ond disk to the user data (�lesystem and journal). We �xed the BerkeleyDB partition

to ordered mode and tried alternative mount modes at the data disk. We used the de-

fault thread-based asynchronous I/O of PVFS2. Also, we enabled data and metadata

synchronization, as suggested in the system guide to avoid write losses at server failures.

We used the LANL MPI-IO Test to generate a synthetic parallel I/O workload on top

of PVFS2 [126]. In our con�guration each process writes to a separate unique �le ("N

processors to N �les"). According to previous studies, this is the write pattern suggested

to application developers for best performance [19]. We varied between 4 and 40 the

number of processes on each of the thirteen quad-core clients leading to total processes

between 52 and 520. We tried 65,000 writes with alternative write sizes of 1024 and 47001

bytes. In Figure 5.5, we compare the data throughput of MPI-IO across di�erent write

sizes and loads. With 1KB writes, wasteless journaling almost doubles the throughput of

ordered mode, while data journaling and selective lie between the other two. With writes
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of 47001 bytes, the write throughput remains about the same across the di�erent modes.

In Figure 5.6, we depict the total volume of write tra�c across the BerkeleyDB,

the journal and the �lesystem. At 1KB requests, data journaling transfers to the journal

415MB, while wasteless and selective journaling reduce this amount by 42% (Figure 5.6a).

The ordered mode writes to the journal 139MB, but transfers to the �lesystem a total

of 255MB. This amount is at least a factor of four higher with respect to the other

three modes, which accumulate multiple small writes in memory before transferring them

coalesced into the �lesystem. At requests of 47001 bytes, selective journaling closely

tracks the ordered mode in terms of total write volume. In contrast, data and wasteless

journaling almost double the total disk tra�c by double-writing the updated data blocks

(Figure 5.6b).

In summary, wasteless and selective journaling at small writes improve substantially

the performance of ordered mode, while they avoid the excessive journal tra�c of data

journaling. At larger write sizes, performance remains similar across the mount modes,

but the journal tra�c is higher for the data and wasteless journaling as they enforce

stricter consistently between the data and metadata updates.

5.2.5 Recovery Time

In a di�erent experiment, we evaluate the ability of the system to recover quickly after

a system crash, which leaves the journal with log records before the respective updates

are checkpointed to the �lesystem, when the free journal space lies between 1
4
and 1

2
of

the journal size, the original ext3 system automatically checkpoints the updates to the

�nal location [148]. In order to do a fair comparison across the di�erent modes, we use

writes that are small enough to prevent checkpointing before the crash, but also useful for

some application classes, e.g., event stream processing [29]. Thus, we start 100 threads

each doing 100 synchronous writes of request size 8 bytes. Then we cut the power of the

system. At the subsequent reboot, we verify that all modes fully and correctly recover the

unique written data, while in the kernel we measure the duration of �lesystem recovery.

In Figure 5.7, we breakdown the total recovery across the three passes that scan

the transactions, revoke blocks, and replay the committed transactions, respectively. In

comparison to data journaling, the scan pass of selective and wasteless journaling is an
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Figure 5.7: In comparison to data journaling, wasteless and selective journaling reduce

the scan time of recovery by an order of magnitude but increase the replay time by about

40%. In total, they reduce the recovery time of data journaling by 20-22%.

order of magnitude shorter. This di�erence arises from journaling entire data blocks by

data journaling, which signi�cantly increases the amount of scanned data. The replay pass

of selective and wasteless journaling takes about 40% more time than the ordered and

writeback modes due to the extra block reads involved. Overall, selective and wasteless

journaling reduce by 20-22% the recovery time of data journaling. In comparison to these

modes, the recovery time of ordered and writeback is an order of magnitude lower at the

cost of weaker consistency guarantees across the stored data and metadata.

5.2.6 Device Issues

We examine the sensitivity of our performance results to the settings of the on-disk

cache and the use of write barriers (Section 4.1.4). The disk we experimented with

(ST3300655SS) organizes the cache into multiple logical segments. It supports the SYN-

CHRONIZE CACHE command to force the transfer of all cached write data to the medium,

and the FORCE UNIT ACCESS bit to enforce medium access on the basis of individual reads

and writes [38, 160]. We kept the read cache always activated, and used the sdparm utility

to con�gure the write cache. In Figure 5.8a we disable the on-disk write caches at both

the �lesystem and the journal, while we mount the �lesystem with the option barrier=0
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Figure 5.8: (a) With disabled the on-disk write caches, wasteless journaling improves the

performance of ordered mode by a factor of 4 at 1KB requests and 73% at 128KB size.

(b) We enable the on-disk write caches and mount the ext3 �lesystem with barrier=1.

Wasteless journaling improves the performance of ordered mode by a factor of 4.3 at

1KB requests. (c) If we enable the on-disk write caches with mount option barrier=0

(default ext3), the performance of ordered mode improves up to 18% at 1KB. However,

the relative advantage of wasteless journaling with respect to the ordered mode remains

signi�cant (e.g. 3.52 times at 1KB).

(default ext3). We run the Postmark workload with the con�guration of Section 5.2.1. It

is not surprising that, for requests of subpage size 1KB, wasteless journaling maintains

a performance advantage of four times in comparison to the ordered mode. The relative

improvement drops to 50% at 4KB requests, and becomes 73% at 128KB requests.

In Figure 5.8b, we enable the write caches of the disks and mount the �lesystem with

barrier=1. Write barriers ensure that the write cache of the journal device is 
ushed

before the commit block is written and also 
ushed to the medium. With enabled the write

caches, the two mount modes improve their performance by 21-53% with respect to (a). In

comparison to the ordered mode, wasteless journaling maintains performance advantage

up to a factor of 4.25 at 1KB requests. In Figure 5.8c, we enable the on-disk write

caches and mount the �lesystem with barrier=0. In comparison to (b), the performance

of ordered mode increases from 62 transactions/s to 73 transactions/s at 1KB, and up

to 4.6% at larger request sizes. The performance of wasteless journaling without write
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barriers (c) remains within 3.5% of that achieved with write barriers (b). Also, wasteless

journaling improves the performance of ordered mode up to a factor of 3.52 at 1KB. We

conclude that enabling the write caches improves the benchmark performance, while the

use of write barriers incurs a relatively low cost, mostly noticeable in the ordered mode.

In all the other experiments, we kept the write caches enabled on our disks and used the

default ext3 mount option of barrier=0.

Arguably, wasteless journaling takes advantage of the two spindles that store the

journal and the �lesystem, respectively. Instead, the ordered mode mostly uses the spindle

of the �lesystem and less the spindle of the journal. To address this asymmetry, we

also run our stream microbenchmarks over two SAS disks in RAID0 con�guration with

hardware controller support. We examine the two modes with the journal instantiated

as a hidden �le rather than a separate partition. With 1Kbps streams over RAID0, the

write latency of ordered mode drops to half, while the write latency of wasteless does not

change. Nevertheless, wasteless journaling remains one to two orders of magnitude faster

than ordered mode across di�erent numbers of streams. Also, wasteless journaling is up

to an order of magnitude faster than ordered mode with 1Mbps streams.

5.3 Summary

Our experimental results include measurements of streaming microbenchmarks, application-

level workloads, database logging traces and multi-stream I/O over a parallel �lesystem

in the local network. Across di�erent cases, we demonstrated reduced write latency and

recovery time along with improved transaction throughput with low journal bandwidth

requirements. Especially we noticed that coalescing small data updates to the journal

sequentially preserves �lesystem consistency, but it reduces consumed bandwidth up to

several factors, decreases recovery time up to 22%, and lowers write latency up to orders of

magnitude. Furthermore, with a parallel �lesystem, we showed that wasteless journaling

doubles the throughput of parallel checkpointing over small writes, while it reduces the

total tra�c to disk.
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Chapter 6

Improving the Durability of

Distributed Filesystems

6.1 Motivation

6.2 System Architecture

6.3 Summary

In the cloud infrastructure, a �le-based storage interface is desirable because it provides

improved performance and native �le sharing support among di�erent virtual machines.

In this thesis, we set as main objective to improve the performance and durability of

shared storage access in the datacenter. We recognize that a stateful �lesystem client is

part of the system failure model, since recently updated blocks that reside in the volatile

memory of the client can be lost upon a crash. In order to improve the durability and

e�ciency of shared data storage, we increase the statefulness of each �lesystem client

with a local journal. Next, we specify the proposed design goals, describe the Arion ar-

chitecture, and investigate the consistency semantics of the storage protocol along with

its implications to the e�ciency. Especially, we explain our design decisions regarding the

event ordering and the resolution of con
icting client accesses in case of client failures,

such as network disconnection and reboot.
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6.1 Motivation

In a virtualization environment, network storage is often provided by scalable server

clusters through protocols operating at the �le, block or object level. The �le interface is

attractive for its sharing and e�ciency properties [145, 80, 120, 191, 23, 112, 9]; the block

interface provides convenient virtualization 
exibility but incurs undesirable translation

overheads [119, 106, 176, 177, 121]; and the object interface is scalable and e�cient because

it carries semantical information for specialized storage management [145, 189, 193].

Loss or corruption of committed updates to critical data is recognized as a particularly

damaging class of failure [84]. This observation is highly relevant in a large-scale multi-tier

environment, with mean time between failures inversely proportional to the number of

machines. Several studies conclude that hardware failures contribute much less to service-

level failures in comparison to causes related to software bugs and faults from operator

or maintenance tasks [136, 84]. In particular, a recent study from Google reveals that

miscon�guration and software errors account for the 29% and 34% respectively of the

failures, while the hardware failures are below 10% [84]. Similar statistics from Facebook

show that host failures are typically rare, with an observed Annualized Failure Rate

around 1% of their disks [128]. Additionally, only a small percentage (0.5%-1%) of the

nodes in a datacenter has been reported to not come back to life after power outages [45].

Another design dimension in datacenter storage applies client-side caching for im-

proved performance and durability at reduced network and server load. Existing solu-

tions often apply block-level caching at the client-side host, and they adopt write-through

or writeback policy according to the application and hardware characteristics. A write-

through policy is preferred for read caching without data loss at device failure. Instead, a

writeback policy improves the resource e�ciency and application performance but makes

the cache device part of the failure model [119, 166, 31, 101, 151, 89].

The Arion system is a new design point that we introduce in cloud storage to improve

the durability of the �le interface at the client side (Figure 6.1). We integrate the client

software of a distributed �lesystem with persistent host-based storage over a journal

device. We enhance the 
ushing functionality of the �lesystem client with tunable control

of both the amount of dirty pages that are staged at the host, and the time period taken by

dirtied pages to reach the backend servers. At increased 
ushing frequency to the journal
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Figure 6.1: Dirty data that remains un
ushed in the volatile memory of the client in Ceph

and the proposed Arion system.

device, we practically minimize the recovery point objective (RPO) close to zero under

the following condition: the dominant cause of a client crash is operator or software bug

rather than permanent hardware loss, such as that of the local storage device [136, 84].

In traditional Unix, written data is acknowledged asynchronously to the application

but only 
ushed periodically to the local disk. This approach has been adopted by several

distributed �lesystems in the form of asynchronous data transfer from the volatile memory

of the client to the servers [131, 115]. Although durable caching at the client side can

reduce the network load of the servers, it complicates the maintenance of replication

consistency among di�erent clients or between the clients and the servers [85].

In Figure 6.1, we measure the amount of dirty data that remains un
ushed at the

client memory over time. We compare Ceph [193] under default 
ushing parameters with

the proposed Arion system (Section 6.2). In the environment of Section 8.1, we used the

�leserver mode of Filebench [62] running for 2min over 10000 �les. The Linux pd
ush

daemon wakes up every 5s and transfers dirty data older than 30s from the client to the

servers [28]. Additionally, the Arion client every 1s 
ushes dirty data to the local journal

of the host. On average over time, the Ceph client keeps 24.3MB of dirty data solely in

volatile memory, i.e., unrecoverable from a crash. Instead, the Arion host-side journaling

reduces to 5.4MB the vulnerable data in the volatile memory of the client.

Our main contributions are the following:

1. We improve the durability of frontend memory caching by integrating disk-based
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journaling into the client of a distributed �lesystem.

2. We implement a prototype of the proposed storage layer in the kernel-level client of

the Ceph object-based �lesystem.

3. We carefully investigate the consistency semantics of the proposed storage protocol.

4. We experiment with several application-level benchmarks over a virtualized host

and a clustered storage backend.

Overall, in a host machine with reliable local storage, we approximate the consis-

tency ordering and durability of write-through caching with the con�gurable e�ciency of

periodic writeback.

6.2 System Architecture

Next we outline our assumptions and goals before we describe the main design ideas of

Arion.

6.2.1 Assumptions and Goals

We aim to improve the durability and performance of shared storage in the datacenter

at reduced utilization of the server resources. User is the application-level entity that

initiates I/O requests to the �lesystem, and client is the host-based software that provides

�lesystem access to users. We target host hardware with reliability characteristics on par

with those of the server machines. The host provides directly-attached storage with

su�cient redundancy to tolerate the occasional failure of a single device. Appropriate

storage technologies include hard disks, solid-state drives, or non-volatile memory. In the

proposed storage architecture we aim to support the following properties:

i) Interface Stored data is directly accessible for regular use and maintenance tasks

over the network with a POSIX-like �le-based interface [181].

ii) Sharing Heterogeneous clients on the same or di�erent hosts can natively share data

at the storage level but may also apply synchronizations at the application level.
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Figure 6.2: Host-side journaling in the Arion architecture.

iii) DurabilityMost recent writes survive client reboots but require redundant hardware

support to tolerate permanent failures of individual storage devices at the host.

iv) Performance Client writes are safely stored at sequential disk throughput, but the

read performance depends on the e�ciency of the client memory cache.

v) Scalability The storage backend linearly scales out to e�ciently hold increasing

amounts of data.

6.2.2 Design

We rely on an object-based scale-out backend of multiple data and metadata servers

(Figure 6.2). The client runs over either a guest system on virtualized hardware or a

standalone system on bare metal. A read operation synchronously returns the latest

version of the requested state. A synchronous write reaches a con�gurable number of

durable replicas before it returns. An asynchronous write returns as soon it updates the

bu�er cache of the client system, but the modi�ed blocks have to reach a con�gurable

number of durable replicas before they are considered safely stored.

We regard the frontend logging to a persistent storage medium as a complementary

form of replication. Unlike the traditional replication that is homogeneously applied

across functionally equivalent backend servers, the frontend logging adds heterogeneity

with respect to the storage format, the logical layer and the time duration of the replica1.

The metadata server (MDS) enables shared �lesystem access at �le granularity through

di�erent types of tokens leased to the clients. Supported access types include exclusive

write (cached) by a single client, and concurrent read (cached) or concurrent write (un-

cached) by multiple clients. A client can only cache the writes of data and metadata

1The Coda �lesystem previously introduced the concept of two-tier replication in the context of dis-

connected operation [100](see also Section 9.3).
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accessed with exclusive permission. The �le interface provides valuable semantical infor-

mation about the consistency dependencies of modi�ed data and metadata. When a client

transfers the �le updates to the servers, the metadata is written only after the referenced

data blocks have safely reached the server state.

The key innovation of our design is the integration of a local journal with the kernel-

level client of a distributed �lesystem (Figure 6.2). The host-side journal is distinct for

each guest in virtualized hosts. The client inserts into the journal both the data and

metadata modi�ed by an I/O request. Thus we ensure that a metadata version matches

the version of the data it refers to (version consistency [43]). We only keep one transaction

active to accept all the (redo) records of low-level I/O operations corresponding to an

atomic �lesystem request. An active transaction closes as a result of timeout expiration,

explicit 
ush request, or reclamation of journal space [28].

A journaled block remains cached in the client memory until it is safely written to

the servers. If an MDS revokes the write token from a client due to some con
ict (e.g.,

concurrent writes to the same �le), the client is forced to write (checkpoint) the con
icting

writes to the servers and invalidate the respective journal records. On client disconnection

from the servers, the leased tokens may expire and the client will no longer be able to

access the �les locally [115]. At network reconnection, the client writes to the servers the

mutated blocks of each �le whose token has been refreshed and whose metadata cached

at the client is newer than the �le metadata at the MDS, but it discards the remaining

blocks.

The primary bene�t from host-side journaling in a distributed �lesystem is the reduced

vulnerability of outstanding writes in the volatile memory of the client. If a client crashes

and reboots without hardware failure at the host, then the client replays the completed

transactions and transfers the recorded updates to the �lesystem servers. We update a

�le only if the replaying client con�rms token ownership, and the journaled metadata is

newer than the �le metadata at the MDS. In case of client crash during the recovery, the

replay is repeated until the client journal is fully checkpointed.

The durable storage of recent writes over the host-side journal improves the server

writeback e�ciency with respect to the utilized network and disk bandwidth. The con-

sumed shared resources are reduced through batching applied to repetitive writes over

the same blocks, or to small writes. At synchronous writes, we journal the updates lo-
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cally and postpone the server writeback as permitted by the 
ushing parameter settings.

Thus, performance improves depending on the pressure over the shared resources and the

resulting queuing delays in the I/O path of the Arion networked storage.

6.2.3 Consistency

We strengthen the durability of memory-based caching in clients that provide native

support for �le sharing. The �le interface di�erentiates the data blocks from the metadata.

Thus, our system cleanly addresses issues of vertical (client-server) and horizontal (client-

client) consistency across di�erent replicas [31]. In the order imposed by their arrival time

and structural dependencies, the data and metadata updates are �rst journaled at the

local host and subsequently persisted at the backend servers. Additionally, the �lesystem

arbitrates the con
icts among di�erent clients through lease-based tokens. In contrast,

block-based schemes typically operate transparently to the �lesystem, and as a result

explicitly track the order and relax the durability of block updates [42, 101, 121].

Traditionally, the �lesystem state comprises three di�erent types of entities: the ex-

ternal namespace, the internal structure and the user data. The state of each entity type

has to meet speci�c conditions in order to remain consistent over time. Respectively, we

refer to the consistency of each entity type as name, structural and data consistency. For

brevity, we use the metadata consistency for referring to both the name and structural

consistency.

The system consists of client and server nodes. A client node runs applications along

with the software that makes the �lesystem visible to the applications. The server nodes

undertake all the functions |except for the client functionality| related to the storage of

the namespace, the structure and the data. From the �lesystem point of view, the servers

are replicated and the clients are not. A client failure results into network disconnection

from the servers, or complete termination of operation. The network disconnection is

temporary; instead, the operation termination can be temporary, such as a common

reboot, or permanent, such as a malfunction of the local storage hardware. We assume

that the probability of permanent client failure can be substantially reduced through

appropriate redundancy in the local storage hardware.

We strengthen the role of the client because it can partly undertake responsibilities of
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the server. Although the client does not vote for the persistence of an update as regular

servers do in quorum-based consistency [182], it maintains a copy of the update in durable

medium and is responsible to assign the timestamp that will order the update with respect

to the other activity of the system. In that sense, our storage architecture is asymmetric

and the replication heterogeneous.

Durability semantics

Namespace updates are transferred synchronously from a client to the servers for ensuring

consistent maintenance of the namespace state. Instead, other metadata and the user data

can be cached at the client for improved performance but somewhat weakened consistency.

We regard the system call of a �lesystem operation as the system unit of atomicity.

Operation atomicity is ensured by forcing to the servers the data updates before the

respective metadata updates. As a result, an interrupted data update is not visible to

subsequent readers unless it is successfully retried by the client.

All namespace operations are synchronous. In our design this means that the names-

pace updates are transferred to the servers and subsequently acknowledged to the client.

The updates of data and other metadata are either synchronous or asynchronous, depend-

ing on the type of the requested operation and whether there are other clients concurrently

accessing the same object. In case of concurrent client accesses, an update has to be syn-

chronously transferred to the server. Otherwise, we transfer the updates of a synchronous

operation to the journal before we acknowledge it to the client. Instead, we acknowl-

edge an asynchronous operation as soon as the modi�ed blocks are copied to the kernel

memory, but we only periodically append them to the local journal.

During normal operation, the lease token granted to a client allows the client to locally

cache the updates and periodically transfer them to the server. In case of synchronous

writes, the client transfers to the server the prior synchronous writes that are already

locally journaled, before it appends to the journal the latest synchronous writes. If a

client receives a lease revocation for an object, it disables the caching of the a�ected

object and transfers all the locally journalled updates to the server. The above operation

ensures that incoming updates are made durable according to the order at which the

operations arrive to the client and the respective writeback period expires for each of

them. The system achieves version consistency because the version of the data matches
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that of the metadata as a result of the metadata updates propagating to the server after

the respective data updates [43]. This is held assuming that the journaled updates can

be replayed in case of a temporary client crash, otherwise data consistency is o�ered.

Network disconnection

In case of network disconnection, we have to consider the duration of lost connectivity.

If the client remains disconnected after the expiration of a lease, the server can grant the

lease to a di�erent client. This means that the �rst client has not necessarily transferred

to the server all the updates that were temporarily copied into memory and/or appended

to the journal. The clients that subsequently access the same object are given the right

to read or write the object.

We aim to approximate the POSIX semantics in a distributed �lesystem to the degree

that we can also provide a reasonable performance and e�ciency. According to the POSIX

semantics a write should be visible to any subsequent read in the system [181]. In normal

operation, this semantics is o�ered by the fact that clients either alternate exclusive access

to an object, or concurrently read the object with local caching, or synchronously update

the object without local caching. This behavior approximately allows the updates to

become visible across the system through the appropriate arbitration by the server. In the

case of disconnection with expired lease, some updates remain at the client memory. An

intervening access by a di�erent client is recorded through the updated object timestamp

at the server.

Event ordering

We need a total order of the reads and writes to an object by the clients and servers of

the system. When a client c modi�es the object o, it assigns a timestamp Tw
c (o) = T l

c

of the local modi�cation time T l
c . When the server s receives an updated object o from

a client c, the server assigns the write timestamp Tw
s (o) = Tw

c (o). Accordingly, when a

server s transfers a copy of an object o to a client, the server assigns to the object the

timestamp T r
s (o) = T l

s of the local read time T l
s. Similarly, if a client c obtains a local

copy of an object o, it assigns a local timestamp T r
c (o) = T r

s (o).

In the case of concurrent writes to the same object, clients have to synchronously
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transfer the updates to the server before con�rming them as completed to the applications.

It is possible that a received update from client c has write timestamp Tw
c ≤ Tw

s . This is

possible as a result of the variance in the delay of transferring the update from di�erent

clients to the server. One possibility for handling this case is to de�ne a con�gurable time

window W within which we accept incoming updates from the clients that have been

delayed with respect to the current server time, e.g., in the time interval [T l
s −W;T l

s].

If multiple clients obtain shared read access to the same object, each of the clients

creates a local copy of it and maintains it as long as there is no con
icting operation at

the server, i.e., object write. If a client obtains a lease token for exclusive write access to

an object, then the client creates a local copy on which it can apply updates as long as the

lease remains valid. Such an object carries the write timestamp of the most recent local

update. Thus, if the system operates normally, the system makes visible to the clients

the latest state of each object.

Throughout the duration of a write lease token, the client is allowed to apply updates

and accompany them with a locally-generated timestamp. This is possible because the

write token guarantees that there is no concurrent access to the same object by a di�erent

client. Additionally, the token has been granted su�ciently recently to ensure that the

client has interacted with the server and synchronized its clock. The lease model provides

mutual exclusion that allows di�erent clients to alternate write access to the same object

at concurrency granularity in the order of the lease duration. Therefore, we should be

able to order the accesses of di�erent clients according to the relative order of the leases

to which they belong. In our model the unit of atomicity is an individual operation that

a�ects a small number of objects in a prede�ned way.

Our model places less strict requirements of concurrency control in comparison to tra-

ditional transaction processing. The main source of complexity in transaction processing

arises from the existence of concurrent operations to di�erent objects and the grouping of

operations into atomic transactions that should be serializable [22] (or linearizable [77])

for reasons of consistency. Transaction processing prevents deadlocks typically by as-

signing to each transaction a timestamp used to resolve con
icts among the concurrent

operations from di�erent transactions. The parallelism at di�erent parts of the system

requires a centralized entity (called oracle) to grant monotonic timestamps, or a complex

infrastructure for high synchronization accuracy.
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The requirements of total event ordering across the di�erent system nodes can be

achieved by Lamport's logical clocks [105]. Alternatively, the real-time clocks of di�erent

nodes can be synchronized at su�cient accuracy in the order of a millisecond (NTP [123])

or even microsecond (PTP [59]). We assume that a timestamp is derived from the logical

or real-time clock concatenated with the client identi�er in order to resolve ties among

the clients [182, 154].

Con
ict resolution

At network disconnection, the client will not be able to obtain new lease tokens. Addi-

tionally, it will be impossible for the client to renew tokens that it already holds or receive

revocation noti�cations for con
icting requests from other clients. Consequently, it is pos-

sible that a token will expire or be unilaterally revoked by the server before the respective

client is able to transfer the latest updates to the server. Subsequently, a di�erent client

may obtain the token and read or write the object. If the �rst client is reconnected later,

it may obtain the lease for the same object. At this point, the client has to decide how to

treat the locally cached updates that were not previously transferred to the server. We

assume that the updates of the client carry the local timestamp of the update event.

We treat each read or write operation as a separate atomic event. The writes that have

been locally cached at the client, are already acknowledged to the application. Therefore,

we have to make them durable to the server at the respective timestamp. If before the

reconnection, a di�erent client has already read the same object, then it missed the cached

update. In this case, we decided to completely skip the respective update and notify the

local client accordingly. A similar approach is followed by early work on atomic actions to

preserve the correctness of object reads [154], and in the handling of read-write con
icts

in multi-version timestamping [21]. More recently, Tango rejects a write whose reads are

found obsolete at commit time [15].

We disregarded the alternative option of transferring the update to the server and

attaching to it the current server timestamp. This approach could be confusing for the

application, especially if the disconnection period is longer than a few seconds. The pos-

sibility of network disconnection exists in all distributed systems. Typically, writes are

asynchronous for reasons of performance but with open the possibility that an acknowl-

edged write will be lost in the case of client failure.
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In another case, one or more di�erent clients update the object before the �rst client

manages to reconnect to the server. Inspection of the update timestamp at the server

informs the client about this event. The client cannot transfer the locally cached updates

to the server, for several reasons. The updates can be based on object value potentially

read before the recent update by di�erent clients. The update of the client bears a

timestamp that is earlier than the timestamp of the latest updates. Therefore, the updates

of the client for the same object are no longer valid, and have to be discarded. This

approach is similar to Thomas' write rule, previously proposed for the synchronization

of database replicas [182]. We presume that the order at which leases for an object are

granted by the server to di�erent clients allows to overcome reported concerns about the

accuracy at which writes from di�erent clients are ordered [167].

In the case of large objects |such as the �les in a distributed �lesystem| it is likely

that the con
icting writes refer to di�erent o�sets of the object. Therefore, the con
ict is

a result of false sharing rather than true o�set overlap in the modi�ed bytes. We believe

that the probability of false sharing can be substantially reduced if the leases refer to

byte ranges rather entire objects. This is similar to the notion of range locking that was

proposed in early work on distributed �lesystems [99].

The disconnection case results into dropped updates at the a�ected client even though

these updates were previously acknowledged as completed to the user. Depending on the

nature of the application, this can be avoided if the client can request synchronous write

with disabled local journaling. In practice, asynchronous writes are the norm due to

their improved performance and the rarity of the network failures. In our approach, we

cannot follow approaches developed in transaction processing, because the �lesystem does

not inherently support transactions over arbitrary groups of operations across di�erent

objects. Similarly, we cannot rely on methods of eventual consistency, because eventual

consistency by de�nition requires that all updates are eventually reaching all the servers

of the system [144]; this is not possible in our system given the correctness constraints

that lead to discarded updates in some corner cases.

In the above cases, the system satis�es the requirements of data consistency, in the

sense that the metadata of a �le point to the data of the �le itself.
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Client reboot

It is possible that the client disconnection is accompanied by a local reboot. In this case,

the memory contents are wiped out, but we can rely on the local journal for recovering

most of the previously acknowledged updated that were not transferred to the server.

We follow the same rule that we described above for the network disconnection. The

only di�erence is that we need to retrieve the updates from the journal to the memory

of the client and then transfer them to the server as long as there was no occurrence of

con
icting read or write from a di�erent client in the meantime. It is reasonable that all

the data and metadata updates which were not safely copied to the journal before the

client crash, are lost.

In the case that we have a sequence of back-to-back reboots, the recovery procedure

spans multiple reboots. By following the con
ict-resolution rule based on timestamps, an

update that has been already restored at the server from the recovering client, is simply

discarded by the client when retried at a subsequent reboot. Instead, those updates that

were not completed, will eventually be restored, as long as the recovery is not intervened

from a di�erent client accessing the same �le.

According to our approach, updates from a client are propagated to the server in the

order at which occurred. This is ensured by having a constant time period for each update

at the expiration of which the update is transferred to the server. Similarly, in the case of

recovery, the updates are propagated to the server in the order at which they are found

within the journal. However, journaling occurs in the order at which a �xed time period

expires after the completion of an update in memory. Updates to di�erent objects are

relatively ordered according to their attached local timestamps. Concurrent updates to

the same object are forced synchronously with the possibility of con�gurable out-of-order

tolerance and the assumption that strict ordering is enforced at a higher level through

locking.

6.3 Summary

In order to enhance the end-to-end durability of shared storage, we propose the integration

of the client of a distributed �lesystem with a host-based journal. We explored the possi-
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bility to combine the performance and durability of the local device with the availability

and manageability of a distributed �lesystem. We focused on the provided consistency se-

mantics of the proposed storage protocol, with special interest on handling client failures

such as network disconnection and reboot. Finally, we argued about our design decisions

regarding the event ordering and the resolution of con
icting client accesses.
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Chapter 7

The Arion Prototype

7.1 Background

7.2 Implementation

7.2 Summary

In this chapter we initially present the necessary background information in order to

subsequently give a detailed description of the Arion prototype. In our prototype imple-

mentation, we integrated the Linux JBD into the CephFS kernel-based �lesystem client

of Ceph. We implemented the Arion host-side journaling based on Linux JBD2 and the

kernel-level client of Ceph (v0.80.1). The Arion development required 3417 new com-

mented lines across 15 �les of Linux kernel (v3.6.6). Our current prototype implemen-

tation fully supports (i) the journaling of mutated data and metadata from the client

memory to the host-side journal, (ii) the �lesystem recovery to a consistent state after

a client crash that leaves the host hardware operational, and (iii) the checkpointing of

journaled data to the storage servers for journal space reclamation.
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7.1 Background

7.1.1 Linux

The Linux kernel maintains in memory a page cache with data and metadata blocks of

recently accessed disk �les [28]. A page descriptor stores bookkeeping information about

the address space and the inode of a page. For every disk block cached in memory, there

is a block bu�er that stores the actual data, and a bu�er head structure that maintains

bookkeeping information about the block. The dirty pages are written to disk in several

cases: at timeout expiration, under space pressure in the main memory or the journal

device, and by explicit 
ush request from the user.

The Linux kernel implements �lesystem journaling with a special kernel layer, the

Journaling Block Device (JBD). The journal is physically implemented as either a device

partition or a hidden local �le. The records of multiple low-level operations from a system

call are stored as a single transaction in the journal. For the journaling I/O of each block

bu�er, the kernel dedicates a separate bu�er head structure. Additionally, a journal head

structure links each block bu�er with the respective transaction.

The journal commit operation writes to the journal the dirty bu�ers of a transaction

followed by a commit block. The kernel also allocates bu�ers for one or more journal

descriptor blocks. The corresponding journal blocks are used to mark the beginning of

the transaction and store the list of tags that identify the journal blocks of the transaction.

7.1.2 Ceph Architecture

The Ceph is an object-based parallel �lesystem designed for scalability, performance and

high availability [193]. It consists of four main components: the clients provide a POSIX-

like �lesystem interface; the metadata servers (MDS) manage the namespace hierarchy;

the object storage devices (OSD) reliably store data and metadata; and the monitors

(MON) manage the server cluster map. Figure 7.1 depicts the interaction between the

four components.

Ceph targets scalability by separating the management of �lesystem metadata from

the storage management of the respective data. It also improves the scalability of the

system further through dynamic distributed metadata management. Ceph decouples data
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Figure 7.1: The relation between di�erent Ceph components.

and metadata operations by eliminating �le allocation tables and replacing them with

CRUSH ; a pseudo-random data distribution algorithm. Instead of relying on a central

lookup table, Ceph clients and OSDs can e�ciently compute information regarding the

object distribution across the cluster by means of the CRUSH mapping function. In

particular, a cluster of MDSs is responsible for the metadata operations, whereas each

client communicates directly with the OSDs for the �le I/O operations. Besides providing

high scalability and improved performance, CRUSH also ensures data safety and high

availability in case of server failures. An asynchronous communication model is used for

the inter-node communication, whereas TCP guarantees the ordered and reliable delivery

of the exchanged messages. In case of communication failure, the sender is asynchronously

noti�ed.

7.1.3 Ceph Data and Metadata Management

A set of MDSs acts as a scalable, consistent, distributed cache of the �le namespace. The

metadata is cached in memory, but it is also persistently stored across the OSDs as a

collection of regular objects. A journal of recent metadata updates in each MDS allows

their e�cient transfer to storage media.

Ceph OSD servers collectively provide the abstraction of a single shared object store.

For this purpose, OSDs are organized into a Reliable Autonomic Distributed Object Store

(RADOS) cluster. In order to forward an I/O request to the proper OSD servers, Ceph

utilizes a cluster map to specify which OSDs participate in the storage cluster and how

data is distributed among them. The cluster map allows RADOS to perform tasks such

67



Client

1. write 2. write

3. ack4. ack

2

Primary 

OSD

Secondary 

OSD

Figure 7.2: A replication example with two replicas.

as data migration, replication, failure detection and recovery. A monitor service, which

consists of a small set of monitor processes coordinated through Paxos, is responsible for

manipulating the cluster map.

Ceph maps each object to a placement group of multiple OSDs identi�ed through

CRUSH. In particular, each object is mapped to a speci�c placement group, while each

placement group for replication purposes is stored in multiple OSDs. Placement groups

can also be dynamically assigned to OSDs for load balancing. Each OSD manages its

local storage typically using the B-tree �lesystem (btrfs) for its advanced features. A local

journal allows an OSD to maintain multiple versions of every updated object, and serialize

the individual updates within the placement group. Generally the journal improves the

I/O performance, since small writes can be safely delayed and batched before reaching

the �lesystem. Moreover, random writes can bene�t from the sequential disk throughput

of the journal. Upon a write request, an OSD writes to the journal a description of the

request and 
ushes the update to the �lesystem. Periodically, the OSD has to synchronize

the journal with the �lesystem to reclaim journal space. In case of an OSD recovery after

a crash, the OSD replays the operations from the journal to bring the �lesystem to a

consistent state.

RADOS manages the replication of data across multiple OSDs for fault tolerance.

A variant of the primary-copy replication policy is used to serialize all the incoming

updates that refer to a particular placement group. Writes are replicated synchronously

in order to provide strong consistency. Speci�cally, a write request is initially directed

to the primary OSD of the group. Then, the primary OSD forwards the request to the

remaining replicas. The client is acknowledged only when the update has been safely

written to the disk of all the replicas in the placement group (Figure 7.2). Especially,

with respect to acknowledging a write operation, an OSD applies the update both to the

journal and the local �lesystem in parallel.
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7.1.4 Ceph Client

A Ceph client can take advantage of one of the following service interfaces:

• The CephFS service, which provides a POSIX �lesystem usable with mount or as a

�lesystem in user space (FUSE ).

• The Ceph Block Device (RBD) service, which provides thin-provisioned block de-

vices with features such as snapshotting and cloning.

• The Ceph Object Storage (RGW) service, which provides RESTful APIs with inter-

faces that are compatible with Amazon S3 and OpenStack Swift.

Upon a write request in an address space, the kernel-based �lesystem client prepares

a page in the cache. A partial page update �rst fetches the original page from the OSDs;

subsequently, the kernel copies the user modi�cations to the page and marks the inode

object as dirty. The writeback of dirty pages occurs asynchronously as the Linux pd
ush

threads wake up periodically to scan the list of dirty inodes and writes their dirty pages to

the OSDs. In Linux, the writeback time refers to the wake-up period, and the expiration

time refers to the time length after which a dirty page is 
ushed. At noti�cation by the

OSD for the data writeback completion, the client transfers the dirty inode to the MDS

and receives acknowledgement when the inode update is safely stored.

The client access to the data and metadata of a �le is controlled by the MDS by means

of capabilities. A capability is a set of bits that indicate which operations are permitted

to the client for a particular inode. In order to cache an inode, the client must hold the

respective capability. A client can hold an exclusive access capability, which allows it to

modify the inode locally and propagate the updates to the MDS asynchronously. In case

of a shared access capability, the client is assured that it has a consistent view of the

inode. The MDS can revoke con
icting client capabilities to prevent inconsistencies. In

addition, locks ensure the correct serialization of updates that span multiple objects. A

Ceph client keeps an open session with every MDS in the cluster. It periodically contacts

an MDS to renew its held capabilities from the respective session. A capability can be

released when it is no longer needed.
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7.2 Implementation

7.2.1 Mounting Ceph

In our prototype implementation, we incorporate a local journal at the CephFS client

(Figure 7.3). At mount time, Ceph initially parses the mount options and creates a

Ceph �lesystem client. It also allocates a special ceph fs client data structure to store

client-related information. At this point the kernel initializes a messenger instance for

the communication with the other hosts in the system, and a monitor client which is

responsible for the interaction with the monitor instances. The monitor client always

keeps an active connection with a monitor so as to receive map updates and send periodic

keep-alive messages for the detection of connection failures. An OSD client is responsible

to calculate the data layout according to CRUSH and submit read and write requests

to the proper OSDs. In addition to that, the OSD client keeps track of pending I/O

requests and in case of communication failures it retries the a�ected operations. Ceph

also initializes an MDS client for the metadata handling operations. The MDS client

keeps an open session with a set of metadata servers and forwards any metadata requests.

Keep-alive messages ensure the liveness of any held cap or lease.

We expanded the ceph fs client data structure of CephFS by adding two extra

�elds: the journal bdev refers to a speci�c block-device control structure in the ker-

nel, and the s journal refers to the journal control structure of the journal block de-

vice. We pass the journal block device to the kernel through the new mount option

journal dev=<journal path> that we added. The function ceph load journal() is

responsible to initialize the journal control information at mount time. Particularly, it

reads the journal from the block device and allocates the appropriate in-memory control
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structures. Eventually, the journal is released when the Ceph client is destroyed (e.g.,

umount).

7.2.2 Bu�er Management

Upon an asynchronous write request, the kernel client invokes the ceph aio write()

function. The client initially gets the appropriate capability for write and bu�ering,

marks the capability as dirty, and invokes the generic file aio write() function. For

every page involved in the I/O, the ceph write begin() method of the address space

object is used to prepare the page cache. It searches into the page cache and, if necessary,

it creates a new page at a given page cache position. This step also ensures that only

clean pages or pages that were dirtied within the same snapshot context can be modi�ed.

In case of partial page updates, the corresponding page is fetched from the proper OSD.

Next, the kernel copies the modi�cations from the user-mode address space to the page

cache and the ceph write end() method marks the corresponding bu�er page as dirty.

The inode object is also marked as dirty for writeback. Additionally, when the client

closes the �le, it relinquishes the corresponding capability to the MDS.

For the journaling support in the CephFS client, we modi�ed the ceph write begin()

function to allocate disk block bu�ers and bu�er heads during a write. We insert each

block bu�er into the active transaction of the journal by creating a journal head. When

a block bu�er is eventually updated, it should be added to the dirty list of the active

transaction.

The actual data transfer takes place during writeback. The client calculates the lo-

cation of the data objects and communicate directly with the proper OSDs. The Linux

kernel pd
ush threads periodically scan the list of dirty inodes and asynchronously 
ush

their dirty bu�ers to stable storage. For a particular inode, the ceph writepages start()

function prepares and schedules an OSD message including the modi�ed pages. When

the writeback is complete, the OSD sends a reply message to the client. An asynchronous

callback function at the client is assigned to 
ush the inode along with the dirty capability

to the MDS. Finally the MDS sends back an acknowledgement to state that it has safely

committed the inode updates. Figure 7.4 depicts the the above steps.

In our prototype, we adjust properly the writeback timeouts of the kernel in order to
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delay the actual network transfer. When a particular page is invalidated or written back,

we invalidate the related journal entry through the ceph journal invalidate journal

entries() function. Speci�cally, we (i) unmap the journalled bu�er in order to ensure

that it won't be checkpointed; (ii) free the corresponding journal block bu�er; and, if

possible, (iii) drop any related transaction.

A kernel page can be in various states which are indicated by speci�c 
ags. In a

journalled �lesystem, upon a write request the corresponding page is allocated and marked

as up-to-date. The page is later marked dirty during the commit phase. Eventually,

the page can be safely cleaned and freed after being persisted, either written back or

checkpointed. Since Ceph is not a journaling �lesystem, the updated page is by default

marked as dirty during ceph write end(). Instead, we add an intermediate state, called

JBD state, to indicate that a page has been marked as ready for journaling but has not

been committed yet to the journal. For this purpose we use the PG JBD 
ag. Thus upon a

write request, the page is also marked as JBD and, subsequently marked as dirty during

commit.

The private �eld of a page descriptor is typically used by the local �lesystem to

link the page with the respective block bu�er. Instead, Ceph uses the private �eld to

record the context required to support the snapshot service. In Arion, we introduce a

special data structure, called ceph metapage, to associate a page with the block bu�er,

the snapshot context, and inode-speci�c information. We use the private �eld for linking

the page descriptor to the respective metapage.
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7.2.3 Metadata Management

The journaling of metadata operations within Ceph was particularly challenging to im-

plement because there are several cases in the I/O path at which an inode is marked as

dirty. Unlike a local �lesystem, an inode object of Ceph does not correspond to speci�c

disk blocks known by the client. Instead, we initially store into the ceph metapage the

inode information of each block bu�er including the inode version in order to re
ect the

corresponding write modi�cation. We also introduce new Ceph-speci�c tags in the journal

descriptor block to store the inode-related information.

In particular, during commit the descriptor block �lls with �xed-length tags, with each

tag corresponding to the block updates of a particular inode (Figure 7.5). We replace the

descriptor tag of the traditional JBD with a new journal block tag that we introduce.

Originally in JBD each tag corresponded to one block bu�er and contained the �lesystem

location of the modi�ed block, one 
ag for the journal-speci�c properties of the block and

a checksum. In our design, we remove the �rst attribute and we introduce Ceph-speci�c

�elds for the modi�ed data blocks and related o�sets, along with the respective inode

number, version, size, access permissions and times of di�erent types. These �elds are

necessary for the replay of the journaled updates during crash recovery.

7.2.4 Journal Commit

Normally, JBD associates each journal block bu�er with (i) an extra bu�er head which

speci�es the respective block number in the journal, and (ii) a new journal head which
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keeps the corresponding bookkeeping information. In our design, this supplementary

bu�er head is unnecessary since our initial bu�er head has no corresponding disk block.

Therefore, we simply use the initial bu�er head for the I/O needs of journaling (Fig-

ure 7.6). Similarly, there is no need to allocate any additional journal head. This decision

results in several modi�cations during the commit process.

In our design, the commit procedure is initiated when either the commit interval

expires, a maximum number of journal bu�ers threshold is reached, or some updates

need to be synchronously written to disk. When the transaction moves to commit state,

the kernel acquires a journal descriptor block. The descriptor block contains tags that

map the journal block bu�ers to the corresponding metadata information. We associate

every block bu�er that should be journalled with the next available journal block. Then,

we copy the inode-related information from the corresponding metapage to the current

descriptor tag. We also allocate a new tag when a block bu�er belongs to a di�erent

inode. Thus, we accumulate multiple block bu�er updates of the same inode into a single

tag. Every time a block bu�er of the same inode is met, we increase the number of the

involved data blocks in the tag, and re-calculate the o�set �elds properly, as well as the

inode properties inside the tag (i.e., access and modi�cation times, inode size etc.). When

the descriptor block is �lled with tags, we move it to the journal along with the involved

block bu�ers, followed by a commit block. The transaction is eventually inserted in the

74



journal list of transactions that need to be checkpointed.

7.2.5 Journal Recovery

Client-side journaling allows the client to recover its recent state after a crash. During

the recovery process of the client journal, the �lesystem scans the journal in chronolog-

ical order for complete transactions, and applies them by contacting the proper OSDs.

At mount time, the Ceph client �rst veri�es that there are no log records in the jour-

nal after a crash, otherwise it initiates a recovery procedure by invoking the function

ceph journal recover(). In order to apply the updates from the journal, the client (i)

checks whether the inode has been accessed after the crash; (ii) obtains the proper capa-

bilities from the MDS; (iii) sends the updates to the OSDs; and (iv) modi�es the actual

inode.

In particular, for a given inode we initially read the corresponding metadata informa-

tion from the journal descriptor block during the replay phase. According to the respective

�eld of the tag, we also read from the journal the appropriate number of the following data

blocks. After reading all the involved pages, we call the ceph recover inode pages()

function. In this way, we locate the respective inode and contact the MDS in order to get

the latest inode attributes. We skip write requests that refer to an older inode version

than the one that the server holds after a crash, assuming that during the client failure

the write capability expired and was granted to another client. Speci�cally, we use the

�le modi�cation time (mtime), the �le access time (atime), and the inode change time

(ctime) as an indication that the �le has been accessed during the client downtime of the

client. Hence we avoid to recover obsoleted writes.

If the �le has not been modi�ed after the crash, we contact the MDS to obtain the

capability for writing and bu�ering in order to recover the inode along with its corre-

sponding data pages. Afterwards, based on the starting and the ending o�set �elds from

the descriptor tag, we send the data pages to the proper OSDs with a single synchronous

request invoking the ceph recover osd pages() function (Algorithm 7.2). When the

update is acknowledged we (i) update the inode accordingly, (ii) mark the corresponding

capabilities as dirty, (iii) inform the MDS, and (iv) release the capabilities and the inode.

The above procedure is repeated for every inode that resides in the journal descriptor
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Algorithm 7.1 Recover data and metadata corresponding to a speci�c journal tag

1: function ceph recover inode pages(journal tag; fs client; pages)

2: Extract inode attributes from the journal tag

3: Locate the proper inode object

4: Contact the MDS for the latest inode attributes

5: if mtimejrn < mtimeMDS OR ctimejrn < ctimeMDS OR

atimejrn < atimeMDS then

6: return 0 . The inode has been modi�ed since the crash occured

7: end if

8: Get the required capabilities for writing and bu�ering

9: if we received the required capabilities then

10: ceph recover osd pages(cephfs client; inode; endoff; startoff; pages; cnt)

11: Update the inode attributes according to the journal tag

12: else . Missing the capabilities required to recover

13: return 0

14: end if

15: Mark the capabilities dirty

16: Inform the MDS about the updated metadata

17: return 1

18: end function

Algorithm 7.2 Recover the OSD pages for a speci�c inode

1: function ceph recover osd pages(fs client; inode; endoff; startoff; pages; cnt)

2: Prepare a new OSD request for the inode's pages according to the input o�sets

3: Register and send the OSD request

4: Wait for pages to reach the OSD disk

5: Release pages

6: return cnt

7: end function

tags. The above procedure is described in Algorithm 7.1.

If the system crashes again before the recovery �nishes, the same journal records

can be reused in order to complete the recovery. The journalled data blocks are replayed
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normally, unless the corresponding metadata information was updated during the previous

replay phase. In this case, the �lesystem already holds a consistent view of the journalled

data since the previous recovery procedure. Finally, when the replay phase is completed,

the system can safely invalidate the recovered journal entries.

7.2.6 Journal Checkpoint

The limited amount of space in the journal leads to the need for e�cient space reclamation.

Besides, committed transactions that have all their blocks written to the �nal on-disk

location, no longer need to be kept in the journal. Checkpointing is the process of ensuring

that a section of the log is fully committed to disk, so that this area can be reclaimed.

The checkpointing process 
ushes the metadata and data bu�ers of a journal transac-

tion not yet written to their �nal location on disk, allowing the transaction to be safely

removed from the journal. Checkpointing is initiated when either the journal is being


ushed to the disk (e.g., umount), or a new handle is started and the required number of

bu�ers is not guaranteed. Especially, a checkpoint process is triggered when the amount

of free journal space is between 1/4 and 1/2 of the journal size.

In our prototype, checkpointing begins with the �rst chronologically transaction on the

list of transactions that need to be checkpointed, and synchronously sends its modi�ed

bu�ers to the remote OSDs. Finally, it removes the corresponding journal entries and

updates the journal tail properly.

7.2.7 Flushing Dirty Data to Disk

In Table 7.1 we summarize the alternative types of disk I/O and the respective data

destination in case of the original Ceph and the Arion systems. In particular, in both

systems the updates are initially bu�ered in main memory until they are �nally written

back to the servers due to a timeout expiration, memory pressure, or a write-bu�ering

capability revocation. Additionally, in the original Ceph design, a synchronous 
ush

request forces data to the servers. Instead, upon a synchronous 
ush request, the Arion

client writes dirty data to the local journal by forcing a journal commit. Similarly, a

journal commit is initiated to persist dirty data to the local journal due to a timeout

expiration, or when a maximum number of journal bu�ers threshold is reached. During
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Type of I/O
Destination

Arion Ceph

Writeback

servers servers

Timeout expiration

dirty expire centisecs (30s)

dirty writeback centisecs (5s)

Memory pressure

dirty background ratio (10%)

dirty ratio (20%)

Revocation of write bu�ering capability

Explicit 
ush request
client journal servers

fsync

Journal commit

client journal {
Timeout expiration (1s)

Max bu�ers threshold (journal size=4)

unmount

Journal recovery
servers {

Replay journaled data

Journal checkpoint

servers {Unavailable journal space

unmount

Table 7.1: Types of disk I/O and the respective data destination in case of Arion and

Ceph. For di�erent types of disk I/O, Arion achieves data durability by directing the

I/O tra�c either to the client-side journal, or to the �lesystem servers. Instead Ceph

transfers the corresponding data over the network to the servers. The parentheses include

the default parameter values.

normal operation, checkpointing also 
ushes journaled data to the servers in order to

reclaim the journal space. In case of a client failure, Arion replays journaled data to the

proper servers during recovery. Finally, when the Arion client unmounts the �lesystem, a

commit and a checkpoint process are typically initiated to 
ush dirty data to the servers.

78



7.3 Summary

We increase the statefulness of the client in a large-scale object-based �lesystem, by

incorporating the Linux JBD layer into the CephFS kernel-based �lesystem client of Ceph.

The Arion prototype provides the following functionality: (i) the commit of updated data

and metadata from the memory of the client to the local journal, (ii) the �lesystem

recovery in case of a client failure using a properly designed con
ict resolution approach,

and (iii) the checkpointing of journaled data for journal space reclamation.
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Chapter 8

Performance Evaluation of the Arion

System

8.1 Experimentation Environment

8.2 Performance Evaluation

8.3 Summary

In this chapter, we describe our experimentation environment, the measured performance

and resource consumption of Arion and original Ceph over a local cluster and a large-scale

setup. Moreover, we evaluate the scalability of our system on top of a large-scale public

cloud environment consisting of up to 114 �lesystem server and client nodes.

We study the performance and resource e�ciency of microbenchmarks and application-

level workloads (e.g., mail server, OLTP, desktop workloads). We also investigate the

performance of the database logging activity with real traces, or by directly running a

memory-based NoSQL store on top of the shared storage system. Additionally, over a

multi-tier con�guration we examine the storage layer of a commonly-used key-value store.

Finally, we measure the time needed to recover the system to a consistent state after a

crash. Given the endurance and performance characteristics of novel devices such as solid-

state drives based on 
ash memory, we also evaluate our prototype over an alternative

storage setup based on SSDs.
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8.1 Experimentation Environment

Local Cluster. In the local cluster setup, the host machine is a rack server with 2

quad-core x86 2.66GHz processors, 7GB RAM, 2 bonded 1GbE links, and two 300GB

15KRPM SAS HDs in RAID0 con�guration. The host uses Linux kernel v3.14.14 with

Xen v4.4.0 for virtualization, and the guest runs Linux v3.6.6 over 2GB RAM and 2

pinned VCPUs. Arion uses a 2GB disk partition at the host for local journal. The guest

client mounts directly the distributed �lesystem, and the hypervisor provides local access

to the network and journal devices.

Each of Ceph and Arion uses 5 nodes consisting of 3 OSDs, 1 MON and 1 MDS

(Ceph v0.80.1). The nodes are rack-based servers, each with 2 quad-core x86 2.66GHz

processors, 3GB RAM, 1 GbE link, and two 300GB 15KRPM SAS HDs used separately.

The servers run Linux kernel v3.10.41. We keep the replication level of the OSDs at the

default value of 3. Every OSD dedicates one disk for journaling (1 GB partition).

We clear the caches before each experiment. At the host the write bu�ers of the

hard disks are disabled, but on the servers of Ceph and Arion all the disks have their

write bu�ers activated [152]. The use of RAID0 with two disks does not give unfair

advantage to host journaling because the storage backend already consists of multiple

servers with two disks each. In the shown graphs we include 95% con�dence intervals

from 5 repetitions, unless speci�ed otherwise.

Public Cloud. Additionally, we examine the scalability of the proposed system in a

public cloud environment. Our testbed consists of EC2 instances from the US East region

of the Amazon Web Services (AWS). We use up to 114 instances of types m1.large

(HDD-based) or c3.large (SSD-based) as �leservers and �lesystem clients, as described

in Table 8.1. All instances run Debian8.

In particular, each of Ceph and Arion uses up to 114 nodes consisting of a varying

number of OSDs and clients, 1 MON and 1 MDS (Ceph v0.94.2). The servers run Linux

kernel v3.10.41. We keep the replication level of the OSDs at the default value of 3.

Every OSD dedicates a 5GB disk partition for journaling. Each client mounts directly

the distributed �lesystem. At the Arion clients we set the two storage devices in RAID0

con�guration, and use a 5GB disk partition for local journal.
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AMI vCPU RAM(GiB) Storage Network

HDD-based Setup

m1.large 2 7.5 2x420GB Moderate

SSD-based Setup

c3.large 2 3.75 2x16GB Moderate

Table 8.1: Amazon Web Services experimentation environment.

In case of the original Ceph we keep the default timeout intervals, whereas we extend

the writeback and expiration intervals of Arion to 120 seconds. Similarly to the previous

experimental setup, we set the commit interval of Arion equal to 1 second. As previously,

we clear the caches before each experiment.

8.2 Performance Evaluation

In this section, we present the extensive experimental evaluation of the Arion prototype

through microbenchmarks, application-level workloads, and real-world applications across

alternative local and large-scale storage setups. We also measure the time needed to

recover the system to a consistent state after a crash.

8.2.1 Filebench

Our �rst set of experiments is based on the Filebench v1.4.9.1 macrobenchmark (�leserver,

varmail, create�les). In Figure 8.1 we use the default settings of two Filebench modes to

compare the performance and e�ciency of Ceph and Arion in the local cluster setup. We

examine Ceph with the writeback and expiration time respectively set to the default 5s

and 30s (Ceph), or both set equal to 1s (Ceph-1), or the �lesystem mounted in synchronous

mode (Ceph-sync). We also examine Arion with dirty blocks periodically copied to the

host-side journal every 1s, and the writeback and expiration times both set equal to 60s

(Arion-60) or in�nity (Arion-inf) to minimize writeback.
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Figure 8.1: Operation throughput and normalized network load with the varmail (a,b)

and create�les (c,d) modes of Filebench across di�erent settings of Ceph and Arion.

Mail Server. Varmail emulates multi-threaded I/O activity of a server synchronously

storing email messages across 50000 �les. In Figure 8.1a, Arion-60 achieves opera-

tion throughput of 842.8 operations/second, which is 55% higher than the 544.6 oper-

ations/second of the default Ceph. Also, Arion-60 increases the data throughput of Ceph

(2MB/s) by 50% and reduces the average latency of Ceph (95ms) by 38%. Ceph-1 has

performance similar to that of Ceph. In Figure 8.1b, we show the received and trans-

mitted OSD network tra�c normalized by the number of completed operations during

the experiment. Arion-60 reduces the received network load of Ceph |normalized in

KB/IO| by 30% and the transmitted by 31%. In the above experiments, the server disk

I/O is the bottleneck due to the synchronous writes.

Metadata-intensive Workload. We examine a metadata-intensive workload with �le

creations in Figures 8.1c,d. It is interesting that Ceph-sync manages to improve the per-
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formance of Arion-60 by 12% but also increases the network load by 6.2% in the received

and transmitted cases. With respect to the default Ceph, Arion-60 has comparable perfor-

mance and load. Ceph-sync has slightly better performance probably because it handles

the metadata updates directly at the MDS. Thus, Ceph-sync avoids the extra load of

transferring metadata to the client required by the asynchronous settings.

8.2.2 Microbenchmarks

In the local setup we further explore the relative behavior of the two systems using the

FIO v2.1.7 microbenchmark assuming Zip�an write pattern with �=1.0001 (e.g., [93]).

Accordingly, there is a high percentage of overwrites: ∼66.7% of the write requests refer

to overlapping �le o�sets. The benchmark asynchronously writes a total of 2GB data

in a preallocated �le of 2GB size with block size in the range 2-16KB. In the following

experiments we examine the performance and the resource e�ciency of Ceph and Arion in

the local cluster setup, and also evaluate the scalability of the two systems in a large-scale

public cloud environment.

Local Cluster Setup. From Figure 8.2a, in comparison to Ceph (1ms) and Ceph-

1 (1.5ms), Arion-60 achieves lower latency (0.6ms) by 40% and 53%, respectively. In

Figure 8.2b, we examine the total network tra�c received over time at one OSD of each

system. We notice that Ceph terminates at instance 249 with 2.2GB total received tra�c.

In contrast, Arion-60 ends the experiment at 159s (36% shorter) with received volume

1.3GB (41% lower).

In Figures 8.2c,d we examine the bandwidth utilization of the journal and �lesystem

storage device at one of the OSDs. In particular, we depict the percentage of CPU time

during which I/O requests were issued to the device, according to the iostat monitoring

tool. We show Ceph-1 that keeps the durability characteristics similar to those of Arion.

The depicted Arion-60 OSD utilizes the journal and �lesystem device at 22.3% and 20.7%

on average; the respective utilizations of Ceph-1 are 21.4% and 88.2%. We conclude that

Arion-60 reduces the �lesystem device utilization by 76.5% with respect to Ceph-1 in the

examined case.

In the same experiment we also evaluate the performance of Arion with alternative

writeback timeouts. In Figures 8.3a-c we examine Arion with dirty blocks periodically
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Figure 8.2: Average latency (a), cumulative network load at OSD (b), and disk utilization

at the journal (c) and �lesystem (d) OSD disks across di�erent settings of Ceph and Arion.

copied to the host-side journal every 1s, and the writeback and expiration times set

equal to 5s, 30s, 60s, 120s or in�nity to minimize writeback. We observe that Arion's

performance depends highly on the frequency of the writeback process. In particular,

the high network and disk load at the server-side under short-time intervals (e.g., 5s and

30s) results in lower write throughput and higher latency. Instead, an extended interval

(e.g, 120s and in�nity) can lead to the client memory or journal space pressure, which

eventually degrades the overall system performance by forcing dirty data to the servers.

Hence, in the following experiments we set the writeback timeout to 60 seconds as the

appropriate time interval.

Public Cloud Setup. We repeat the same experiment in the public cloud environment.

We evaluate three alternative con�gurations. Initially, we use 30 nodes consisting of 12

85



 0

 300

 600

 900

 1200

 1500

 1800

5 30 60 120 inf

O
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d

Arion Timeout (s)

Random Writes

834.6

1163.4

1609.8

1247.8 1261.2

(a)

 0

 0.5

 1

 1.5

 2

5 30 60 120 inf

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Arion Timeout (s)

Random Writes

1.2

0.9

0.6

0.8 0.8

(b)

 0

 2

 4

 6

 8

5 30 60 120 inf

T
o
ta

l 
D

u
ra

ti
o
n
 (

m
in

)

Arion Timeout (s)

Random Writes

5.2

3.8

2.7

3.5 3.5

(c)

Figure 8.3: Arion performance under di�erent writeback timeouts.
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Figure 8.4: FIO random writes throughput.

OSDs, up to 16 clients, 1 MDS and 1 MON. In the second setup we have 24 OSDs, up to

32 clients, 1 MDS and 1 MON, and lastly we have a total of 114 machines consisting of

48 OSDs, up to 64 clients, 1 MDS and 1 MON. In the following graphs we include 95%

con�dence intervals from 3 repetitions1.

In Figures 8.4a-c we measure the rate of the total amount of written data over the

average experiment duration across the clients. Arion improves the throughput of the

original Ceph by up to 80% with 12 OSDs and 16 clients, 57% with 24 OSDs and 32 clients,

1In the experiment of the 24 OSDs with 32 clients we only show the results of a single run due to a

budget limitation.
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Figure 8.5: FIO average request latency.
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Figure 8.6: FIO average experiment duration.

and 21% with 48 OSDs and 32 clients. Similarly, Arion reduces the average latency by

up to 50%, 32% and 22% with 12, 24 and 48 OSDs respectively (Figures 8.5a-c). Figures

8.6a-c present the average duration of the experiment under di�erent con�gurations. In all

cases, Arion takes shorter time to complete the I/O requests of the experiment, improving

the average duration up to 44.4% (12 OSDs and 16 clients).

Next, in Figures 8.7 we depict the device utilization of the �lesystem and the journal

disks at one OSD over time, according to the iostat monitoring tool. We present a

speci�c time window starting at the beginning of the experiment for di�erent number of

OSDs and 16 �lesystem clients. It is interesting that the device utilization across the
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Figure 8.7: FIO device utilization over time with 16 clients for (a,c,e) the �lesystem and

(b,d,f) the journal disks at one OSD.

two systems remains comparable, but the device utilization per OSD drops as the system

scales out.

Overall, we observe that under alternative con�gurations, Arion consistently improves

the performance of the original Ceph by taking advantage of the local journal device

throughput at the clients.
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8.2.3 Databases

In order to investigate the performance, resource e�ciency and scalability of Arion with

synchronous database workloads, we run the MySQL OLTP benchmark from Sysbench

v0.4.12 [175]. We use MySQL with the default InnoDB storage engine con�gured for high

durability (i.e., the log is 
ushed to disk at each transaction commit). We run a varying

number of virtualized MySQL servers over shared storage. More speci�cally, we store

both the database and log �les over Ceph and Arion, in the local cluster and public cloud

setups. In the following experiments, we also evaluate Arion over an alternative storage

setup based on solid-state drives which are attractive due to their intrinsic characteristics.

Local Cluster Setup. In the local cluster setup, we run up to two virtualized MySQL

servers (v5.1) with shared storage, and generate requests on another node with 3GB RAM

and CPU 8x2.66GHz. We examine the non-transaction mode of Sysbench, which consists

of insert or update-key requests. Each table contains 10000 rows and we use 1 and 10

threads to issue a total of 20000 requests per server.

In Figures 8.8a-d we measure the average number of insert and update-key operations

per second with one and two MySQL instances running on top of di�erent host machines.

In the �rst set of experiments (Figures 8.8a,b) we examine the update-key operations. In

case of a single MySQL instance, Arion improves the throughput of Ceph by 4.9 times

for a single thread, and by 2.3 times for 10 threads (Figure 8.8a). In Figure 8.8b we

evaluate the performance scalability of Arion and Ceph using two concurrent MySQL

instances. We show that with two instances Arion achieves aggregate operation through-

put improved by 83.1% and 39.8% for 1 and 10 threads respectively. On the contrary,

the performance of Ceph doesn't scale at all, since the journal device of the servers be-

comes the resource bottleneck, with an average disk utilization of ∼85%. Indeed, Arion

increases the operation throughput of Ceph by 8.2 times for 1 thread and by 3.2 times for

10 threads. The same observations also apply to the operation throughput of the insert

requests (Figures 8.8c,d).

Overall, Arion manages to improve up to 8 times the operation throughput of OLTP

workloads in a local setup with respect to Ceph. In particular, Arion services the syn-

chronous write requests locally through the host-side journal, reducing the I/O tra�c

directed to the remote servers, thus allowing higher performance scalability.
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Figure 8.8: (a,b) Update-key and (c,d) insert operations per second in a local cluster

setup.

Public Cloud Setup. We further investigate the performance scalability of Arion in

case of a synchronous database workload over a large-scale cloud setup. We run a separate

MySQL server (v5.5) on each �lesystem client, and generate requests from a di�erent node

with 1GB RAM and 1 vCPU. Each table contains 100000 rows, and we have 10 threads

issuing a total of 100000 update-key requests per server. In the following experiments,

we examine two deployments with 12 OSD servers and 1-48 Ceph or Arion clients. The

�rst setup is based on HDD and consists of m1.large instances; the second one is based

on SSD and consists of c3.large instances (Table 8.1). In the shown graphs we include

95% con�dence intervals from 3 repetitions.
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Figure 8.9: Operations throughput of update key requests in a public cloud setup based

on (a) HDD and (b) SSD.
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Figure 8.10: 99th percentile latency of update key requests in a public cloud setup based

on (a) HDD and (b) SSD.

In Figures 8.9a,b we measure the rate of the total number of completed operations at

the servers over the average duration of the experiment across the clients. At the �rst

setup based on HDD, Arion improves the operations throughput of Ceph from 40% with

8 �lesystem clients up to 92% with 16 clients (Figure 8.9a). Similarly, in the setup based

on SSD, Arion achieves up to 59% improved throughput in comparison to Ceph in case of

8 clients (Figure 8.9). Figures 8.10a,b depict the 99th percentile latency of the Arion and
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Figure 8.11: HDD device utilization over time with 16 and 48 concurrent clients for (a,b)

the �lesystem and (c,d) the journal device at one OSD.

Ceph systems. Arion reduces the request latency of Ceph by up to 42% with 8 clients in

the setup based on HDD (Figure 8.10a), and up to 62% with 48 clients in the setup based

on SSD (Figure 8.10b).

In Figure 8.11 we examine the HDD device utilization of the �lesystem and the jour-

nal disks at one OSD during the duration of the experiment according to the iostat

monitoring tool. In both systems, the OSD devices' utilization is comparable. Notably,

we observe that the same experiment takes shorter time to complete in case of the Ar-

ion system. In Figure 8.12 we show the SSD device utilization of the �lesystem and the

journal disks at one OSD over time by extending the time window by a few seconds after

the completion of the experiment. Likewise the setup based on HDD, both Arion and

Ceph have similar device utilization, while Arion additionally reduces the duration of the

experiment.

In general, the above experimental results validate our previous observations about
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Figure 8.12: SSD device utilization over time with 16 and 48 concurrent clients for (a,b)

the �lesystem and (c,d) the journal device at one OSD.

the performance improvement, resource e�ciency, and scalability of Arion in comparison

to Ceph over a large-scale public cloud environment. Additionally, we observe that both

systems bene�t from the performance characteristics of solid state disk drives, further

resulting in higher scalability. Interestingly, the relative behavior of Arion with respect

to the original Ceph is comparable over the alternative storage device setups.

8.2.4 Groupware and Database Logging

In the following set of experiments we evaluate the ability of Arion to e�ciently serve

the synchronous I/O tra�c of groupware and database logging activity. In particular, we

examine the logging activity of an email server and a well-known memory-based key-value

store.
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Latency (99th ms)

Mode Single VM Two VMs

Ceph/osync 4.11 4.37

Ceph/fsync 4.07 4.59

Arion-60/fsync 1.98 2.11

Arion-60/nosync 0.03 0.04

Table 8.2: The 99th percentile latencies across di�erent log 
ushing con�gurations.

Jetstress. We consider the Jetstress Tool that emulates the disk I/O load of the Mi-

crosoft Exchange messaging and collaboration server [92]. The experimental setup is the

same with the one described in Section 5.2.3. We use the original interarrival times to

replay a 15min extract from the middle of the log trace on top of a one and two virtualized

�lesystem clients. Each VM runs over a separate host machine. In Table 8.2 we present

the 99th percentile latencies for the log writes to be 
ushed to stable medium across 3

repetitions. We examine four alternative log 
ushing con�gurations. Initially, both Ceph

(Ceph/fsync) and Arion (Arion-60/fsync) have each log write followed by a disk 
ush re-

quest. We also consider Ceph with the O SYNC option at �le open to immediately force

log writes to the remote storage (Ceph/osync). Finally, we also present the baseline case

of asynchronous write requests where Arion periodically persists dirty blocks to the host-

side journal every 1s (Arion-60/nosync). We assume that the durability of synchronous

writes is similar to that of bypassing the page cache.

In case of a single VM, Arion-60/fsync reduces the 99th percentile write latency by

51.8% and 51.4% with respect to Ceph/fsync and Ceph/osync. Similarly, the latency is

reduced by up to 54% when we have two concurrently-running instances. Therefore, Arion

manages to reduce the write latency of the logging activity by persisting the synchronous

writes to the client-side journal without penalizing the disk and network bandwidth of

the servers.

Redis NoSQL Store. The role of DRAM in storage systems has been strengthened over

the last years in order to meet the needs of latency-sensitive large-scale web applications.

As a result, several memory-based key-value stores have been developed recently, such as
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Figure 8.13: Average operation throughput of Redis NoSQL store under di�erent syn-

chronization policies.

RAMCloud [134] and Redis [153]. These systems typically use a persistence log at the

server for durability. In fact, the log can be replicated across multiple storage servers

for high availability in case of hardware failures. For instance, RAMCloud keeps a single

copy of data in DRAM, and stores the redundant copies on disk or 
ash using striping.

In case of Redis, availability can be provided by storing the log over a replicated network

�lesystem.

In this experiment, we examine the logging activity of Redis; a memory-based key-

value store which persists each write to an append-only operational log [153]. Traditionally

the log is stored at the local �lesystem of the server. Instead, a replicated network �lesys-

tem can be used for reasons of reliability and manageability. In our experimental setup,

we evaluate Redis on top of a shared storage system by storing the persistence log over

Ceph or Arion. There are three di�erent synchronization policies: (i) fsync/never allows

the operating system to 
ush dirty data to the append-only log periodically according

to the pd
ush kernel daemons, (ii) fsync/always synchronizes every write to the log with

fsync(), and (iii) fsync/everysec synchronizes dirty data to the log once per second. The

second option provides the highest level of durability since it ensures that dirty data

will be stable before an acknowledge is returned to the client. However, for performance

reasons, fsync/everysec is the default option.

We use the benchmarking tool distributed with Redis v2.8.17 and con�gure it to

execute SET requests to a range of 1000000 random keys with the default value size of 3
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bytes and concurrency of 1,10, 100 and 1000 connections from a single benchmark client

with 3GB RAM and CPU 8x2.66GHz. We run a Redis server on a separate node at the side

of the �lesystem client. In Figures 8.13a,b we present the average transaction throughput

of SET operations for Ceph and Arion under the second and the third synchronization

policies.

In the case of a single virtualized Redis server, Arion/always increases the average

operation throughput of Ceph/always up to 7 times, from 233 operations/second to 1669

operations/second for a single connection. Similarly, Arion/always improves the through-

put of Ceph/always by an order of magnitude in the case of two separate virtualized

Redis servers. We observe that the performance gain decreases as we increase the number

of connections. Especially, the write request sizes range from several tens of bytes for a

single connection, to hundreds of kilobytes for 1000 connections. Thus, fewer connections

result in many small synchronous write requests which can bene�t from the sequential

disk throughput of the local journal device. In the same �gures we also measure the

performance of the fsync/everysec synchronization policy, which results in signi�cant op-

eration throughput improvement in both systems, with respect to fsync/always due to

batching multiple write requests into memory before 
ushing them to stable media. As a

result, the operation throughput of Arion is comparable to that of Ceph.

The above results strengthen our previous observations regarding the synchronous I/O

workloads. Overall, Arion improves the operation throughput and reduces the application-

perceived latency with regard to Ceph by 
ushing synchronous write requests to the

client-side journal.

8.2.5 LevelDB

In large-scale cloud environments, it is typical to have a distributed database running

on top of a cloud-scale �lesystem. Prominent examples include Google's Bigtable over

GFS [37] and Apache HBase over HDFS [74]. In a scalable datastore, the data is dynam-

ically partitioned across the available servers for resource e�ciency and fault-tolerance.

At each server, a storage layer is responsible for the memory and disk management [173].

Data is arranged on disk over a tree-based data structure which is usually stored on top of

a large-scale �lesystem. In this experiment, we focus on the storage layer of such a multi-
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tier architecture. We evaluate the performance of an open-source key-value database

library over shared storage using Ceph and Arion as the storage backend.

We examine the LevelDB key-value store from Google, which is layered on a variation

of the Log-Structured Merge Tree (LSM) and provides a simple API with GET, PUT,

SCAN and DELETE operations [53]. LevelDB initially appends an incoming update to

a write-ahead log for durability, and then it inserts the update into a memory bu�er,

called memtable. When a memtable reaches a prede�ned threshold (4MB by default),

the memory contents are sorted and written to disk as an SSTable. Furthermore, SSTa-

bles are organized into a series of ordered levels. By default, each write to LevelDB is

asynchronous; it returns as soon as it is bu�ered in the page cache of the operating system.

We examine the performance of LevelDB over shared storage with the Yahoo! Cloud

Serving Benchmark (YCSB)[47]. We evaluate two of the built-in YCSB workload con-

�gurations. Workload A is considered write-heavy with 50 percent reads and 50 percent

updates, whereas workload F consists of 50 percent reads and 50 percent read-modify-

write operations. Each YCSB experiment has a load and a run phase. We set the number

of keys in the workloads to 100000 with Zip�an key access, keeping the default value size

of 1KB. We con�gure LevelDB to synchronously write the update requests to disk before

responding to the benchmarking client. In these experiments we examine LevelDB with

cache sizes 256MB and 1GB.

In Figures 8.14a,b we show the operation throughput of YCSB load and run phases for

Arion and Ceph under the workloads A and F. Arion improves the operation throughput

of the load phase of workloads A and F with respect to Ceph by 2.5 times (from ∼225

operations/second to ∼563 operations/second), regardless of the actual cache size. Sim-

ilarly, the operation throughput of the run phase of both A and F is increased by up to

5.6 times, from 441 operations/second to 2490 operations/second for workload A.

Figures 8.15a,b depict the average write latency over time for the run phase of workload

A. In particular, Arion reduces the update latency of workloads A and F from 4.4ms to

0.7ms. The read latency of Arion and Ceph remains the same, around 0.1ms. Overall,

in Figures 8.15a,b, Arion reduces the total duration of the run phase of workload A from

225s to 39s and from 228s to 41s, for caches 1GB and 256MB respectively.

Next, we demonstrate the resource utilization over time of workload A during the load

(Figure 8.16) and the run phases (Figure 8.17). We observe that the bottleneck resource
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Figure 8.14: YCSB throughput for workloads A and F over LevelDB with cache sizes (a)

256MB and (b) 1GB.
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Figure 8.15: YCSB update latency over time with cache sizes (a) 256MB and (b) 1GB.

of Ceph is the server's disk due to the small synchronous update requests. In accordance

to previous measurements, we also notice that Arion also decreases the incoming network

tra�c at the server-side.

In the evaluated setup, we conclude that under synchronous workloads Arion achieves

higher operation throughput and lower update latency in comparison to Ceph. More

importantly, the client-side journal of Arion reduces the resource consumption (disk and

network) at the �lesystem servers, and thus results in improved overall system performance
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Figure 8.16: Resource utilization for workload-A load phase with 256MB cache.
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Figure 8.17: Resource utilization for workload-A run phase with cache size 256MB.

and e�cient resource utilization. We also experimented (not shown) with asynchronous

workloads, and noticed that the performance of Arion and Ceph is comparable, because

in both systems asynchronous write operations are acknowledged to the application when

they reach the memory of the client.

8.2.6 Desktop Applications

In a shared workspace environment, the home directories of collaborating users can be

maintained in a shared �lesystem. Typical �le exchanges of unstructured data (e.g.,

documents, multimedia �les) are enabled through shared folders in a Dropbox-like man-

ner [56]. In this experiment, we evaluate the behavior of Arion when used as shared

storage backend in desktop environments.
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Workload RD/WR Accesses RD% WR% fsync-cnt

itunes-importm 57 48.0 52.0 32

itunes-imports 139 66.3 33.7 95

imovie-add 547 47.8 52.2 185

Table 8.3: iBench workload characteristics.
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Figure 8.18: Average duration of iBench desktop workloads.

In particular, we examine several multimedia traces collected from a desktop envi-

ronment and provided with the iBench trace suite [75]. We select three di�erent iLife

workloads with su�cient write-to-read ratio. We use the iTunes media player traces of

importing (i) an album of ten MP3 songs (itunes-imports), and (ii) a 3-minute MPEG-4

movie (itunes-importm). We also evaluate the iMovie video editor's trace of adding a clip

from a 3-minute MPEG-4 movie into a project (imovie-add). We replayed the traces with

Magritte [194] over a single virtualized �lesystem client. Table 8.3 describes the detailed

characteristics of the three workloads.

Figure 8.18 depicts the total duration of the workloads for the Ceph and Arion systems.

Arion reduces the runtime of itunes-importm, itunes-imports and imovie-add by 41%,

79% and 19% respectively with regard to Ceph. This performance increase is due to

the high frequency of fsync() calls observed in the above workloads, according to a
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Figure 8.19: Average time to recover the completed transactions from the journal device

after a client crash.

related study [75]. Furthermore, each explicit 
ush request typically synchronizes small

amounts of data leading to small synchronous I/O write tra�c to the �lesystem. Overall,

we demonstrate the performance advantage of Arion with respect to Ceph, in case of

general-purpose desktop environments.

8.2.7 Recovery

Finally, we evaluate the ability of the system to recover quickly after a system crash,

which leaves the journal with log records before the respective updates are checkpointed

to the �lesystem. It is known that when the free journal space lies between 1
4
and 1

2
of the

journal size, JBD2 automatically checkpoints the updates to the �nal location. Therefore,

we use writes that are small enough to prevent checkpointing before the crash, but also

useful for some application classes, e.g., event stream processing [29].

In Figure 8.19, we have 1 thread doing 1, 10 or 100 writes per second with request

size 4KB for a total duration of 30 seconds. Then we cut the power of the system. At the

subsequent reboot, we verify that Arion fully and correctly recovers the unique written

data, while in the kernel we measure the duration of �lesystem recovery. We breakdown

the total recovery across the passes that scan and replay the committed transactions. We
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observe that the recovery time of the Arion client lies in the range of 77.4ms-852.2ms,

depending on the load of client write activity before the crash.

8.3 Summary

We conducted our experimental evaluation over a local cluster setup and a large-scale

public cloud environment consisting of up to 114 �lesystem server and client nodes. We

experimentally demonstrated improved performance for speci�c durability guarantees,

and reduced network and disk bandwidth at the storage servers over a wide range of

microbenchmarks, application-level workloads and multi-tier storage setups. We exam-

ined both synchronous and asynchronous I/O tra�c. Especially in case of synchronous

workloads, Arion reduces signi�cantly the I/O load directed to servers by 
ushing write

requests to the client-side journal. We observed that Arion improves the OLTP operation

throughput up to a factor of 8 in a local cluster setup, and up to 92% with 12 �lesystem

clients and 12 OSDs in the public cloud environment, with respect to Ceph. We validated

the above results with several application-level workloads, real traces of database logging

activity, or by directly running a memory-based NoSQL store on top of the shared storage

system in a local cluster setup. On a multi-tier con�guration, Arion increases the opera-

tion throughput of a commonly-used key-value store by 5.7 times in comparison to Ceph,

at improved disk and network utilization. We also measured the recovery time of the

Arion client in the range 77.4ms-852.2ms, depending on the load of client write activity

before the crash. Finally we also demonstrated the performance advantage and resource

e�ciency of Arion over alternative storage device setups in the cloud environment.
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Chapter 9

Related Research

9.1 Virtualization Environments

9.2 Cloud Storage

9.3 Distributed Filesystems

9.4 Transaction Processing

9.5 Flash Memory

9.6 Filesystem Logging

9.7 Other Reliability Issues

9.8 Summary

In this chapter we review the related research that was published over the past decades

regarding the reliable storage management in local and large-scale environments. Initially,

we survey the previous work on the storage management in virtualization and cloud envi-

ronments. Then we present a study of the research on distributed �lesystems and trans-

action processing systems. We also outline the most important studies on 
ash-based

caching and �lesystem logging. Finally, we discuss several device and application-speci�c

reliability issues based on other related research.

103



9.1 Virtualization Environments

Existing solutions of cloud storage typically provide centralized management of virtual

disks over a common backend, either block-based (e.g., Amazon EBS [2], OpenStack

Cinder [135], Microsoft's Blizzard [121]) or object-based for improved scalability (e.g.,

Ceph RBD [35], Amazon S3 [4], OpenStack Swift [174]). VMFS stores disk volumes over

shared cluster-based block storage [188]. VMFS employs a log-based checkpoint facility,

known as distributed journaling, which enables the fast recovery from individual servers'

failures.

Parallax maintains block-level virtual disk images on centralized block storage with-

out write sharing [119]. Within each host, a dedicated storage VM translates requests

for virtual blocks into requests for physical blocks on the shared blockstore. Further-

more, each host contains a local disk cache in order to hold persistent data, without the

need to contact the primary shared storage immediately. Similarly, Capo uses the local

disks of the hosts for multicast-based preload and block-based write-through or writeback

caching [166]. Lithium implements the block-level volumes of virtual machines as a log

distributed across the local storage of compute nodes [73]. The above approaches have

been criticized for the semantic gap, the limited sharing opportunities and the increased

performance overheads due to unnecessary multiple translations between the �le and block

interface [80, 106, 176].

Existing systems already apply �le-based protocols in virtualization environments [58,

9]. Guests can use a standard �le protocol to access a �leserver commonly installed at

the host, at the cost of limited scalability and sharing [94, 145]. The host uses either a

�le-based protocol to connect to a �leserver, or an object-based protocol to access multiple

object servers. Then, a local guest uses a �le interface to access the �leserver exported

by the intermediate node. However, the host may become a performance bottleneck

since it eventually acts as a caching proxy and all the I/O tra�c passes through it. For

instance, Ventana combines �le-based sharing with the versioning, migration and access

control of virtual disks [145]. A client-side manager o�ers disk-based caching but relies

on NFSv3 at the host to connect the virtual machines with object-based storage servers.

Similarly, VirtFS uses a network protocol to connect a host-based �leserver to multiple

local guests [94]. The scalability of Ventana and VirtFS is limited by the centralized
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NFS-like server running at the host. Instead in Arion we advocate the networked access

of a scalable distributed �lesystem directly by the guests.

OpenStack Manila enables the integration of �lesystem shares with guest machines

[114]. The architecture securely connects guests to a pluggable storage backend through

a logical private network, a hypervisor-based paravirtual �lesystem, or a storage gateway

at the host. For 
exibility reasons, alternative scalable backend �lesystems are supported

(e.g., NFSv4, GPFS). Similarly, the Amazon Elastic Filesystem (EFS) service supports

the NFSv4 protocol to provide shared �lesystem access to Elastic Compute Cloud (EC2)

instances [58]. The design of Arion can further improve the durability of the memory-

based cache of the �lesystem client.

Recent studies also examined the isolation of the �lesystem data structures and the

I/O data path among di�erent virtual machines co-located over a single host [165, 112].

In this context, for improved performance the authors propose transaction splitting over

either the same physical journal, or via multiple physical logs.

9.2 Cloud Storage

Cloud-scale �lesystems such as the Google File System (GFS) and the Hadoop Distributed

File System (HDFS), are designed for high throughput, write-once sequential I/O [65,

171]. The above systems achieve high scalability and fault tolerance by striping and

replicating the data in large chunks across the locally attached storage of the cluster

servers. However, they provide weaker consistency guarantees by relaxing the POSIX

semantics. Also, a centralized master node is responsible for the metadata management,

resulting in scalability and performance bottleneck.

Cloud-backed �lesystems use unmodi�ed cloud storage services as backend storage

[191, 23]. BlueSky provides on-site NFS-based proxy service of remote cloud storage

through local disk caching of journal and log segments [191]. However, it lacks support for

controlled �le sharing and the proxy results in limited scalability. Instead, SCFS provides

FUSE-based caching of entire �les at the client memory and disk without the proxy

bottleneck [23]. However, it lacks the journaling integration with a scalable distributed

�lesystem of Arion for 
exible �le sharing. CacheFS supports local disk-based caching
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but is practically limited to read-only �lesystems [86].

A recent study proposed the preliminary design of a high-performance scalable dis-

tributed �lesystem with special focus on large-scale parallel and distributed applica-

tions [83]. DiDAFS aims to provide direct user-level access to remote shared storage.

It also allows for client-side memory-based caching by providing alternative epoch-based

consistency semantics. However, the above system depends on specialized hardware sup-

port (i.e., RDMA-aware disk controllers).

RAMCloud is a memory-based object-based storage system designed for high avail-

ability and quick recovery in case of failures [134]. RAMCloud distributes data, in the

form of log segments, to secondary storage across multiple machines for fault tolerance

and reconstructs lost data in parallel. A write request is acknowledged to the application

when the update reaches the memory of several backup servers, while dirty data remains

un
ushed until the memory bu�er reaches a prede�ned size. Nevertheless, despite the

signi�cant performance improvement of the memory-based approach, there is at least two

orders of magnitude discrepancy between the memory and disk capacities [6].

9.3 Distributed Filesystems

Andrew pioneered client disk-based caching but lacked the explicit separation in data and

metadata management of object-based storage [158, 193]. Coda exploited data caching

strictly for availability during disconnected operation [100]. During a communication

failure, a Coda client logged locally the mutating system calls. At network reconnection,

each server received and replayed all the logged operations together as one transaction.

On the contrary, Arion continuously logs mutations during normal operation and writes

them back to e�ciently maintain consistency.

The DEcorum �lesystem introduced tokens to track di�erent types of access accross the

clients [99]. The Sprite distributed �lesystem disabled client caching of �les concurrently

updated by di�erent clients [131]. Echo introduced ordered write-behind to delay the

automatic writing of cached blocks to server disks [115]. NFSv4 delegates request handling

to the client for reduced latency and network tra�c [142]. The client caches modi�ed

data for a prede�ned time period, and 
ushes it to the server at �le close (close-to-open-
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Filesystem
Cache Update

Validation
Client

Location Policy Durability

Arion [193] disk write-behind capabilities X

AFS [158] disk on close callbacks X

Coda [100] disk on close callbacks X1

DEcorum [99] disk write-back tokens -

Sprite [131] memory write-behind callbacks -

NFSv4 [142] memory on close delegations -

Echo [115] memory write-behind leases -

Table 9.1: Comparison of distributed �lesystems.

consistency). The safe asynchronous write of NFSv3 lets the server reply to a write before

the data is stable on disk.

Unlike Arion, traditional �lesystems limit client caching to volatile memory, or do not

apply durable host-side caching for improved performance and reduced resource utilization

at high scalability. Table 9.1 summarizes the main features of the above systems.

CalvinFS is a replicated, scalable �lesystem that leverages a high-throughput dis-

tributed database system for metadata management [183]. The database relies on a

log to store a global totally-ordered sequence of transaction requests over a replicated,

distributed storage layer. Deterministic locking is a scheduling protocol that resembles

two-phase locking, but requires from transactions to request all the locks that they need in

their lifetime atomically and in the relative order in which they appear in the log. Unlike

Arion, CalvinFS lacks the client support for local storage integration that we advocate.

9.4 Transaction Processing

Database consistency can be preserved through transaction correctness [22]. SiloR is

a multicore database system that uses logging and checkpointing for fast recovery to a

transactionally-consistent state without replication [204].

1during disconnected operation only
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Early work focused on the update synchronization of multiple database copies [182].

Mutual consistency refers to the state convergence of the copies, and internal consistency

refers to the preservation of invariant relations in the stored items of a copy. A majority

consensus algorithm requires that a request be accepted and applied to all database copies

only if it is approved by a majority of the copies. A named element has a value and a

timestamp of the time at which the current value was received. Base variables are the

data elements used by a query, and update variables are the data elements modi�ed by

a request. Two requests are con
icting if the base variables of the one and the update

variables of the other have non-empty intersection. The voting rule mandates that the

timestamps of the base variables in an update request be compared to the timestamps

stored in the database copy. If after the initiation of a new request, in the meantime its

base variables have been modi�ed by an appoved con
icting request, then the new request

is rejected as invalid by the respective voting copy.

An atomic action Ap is de�ned as a computation speci�ed by program P and composed

of primitive computational steps executed at di�erent times and places [154]. Concur-

rency atomicity suggests that each step not in Ap either precede or follow all steps in Ap,

and failure atomicity requires that either all steps in Ap or none of them complete. A

decentralized system consists of nodes with storage blocks that do not lose their content

due to failure, and support atomic read and write actions of an entire block. Pseudo-

time allows the relative ordering of read and write operations and enables decentralized

reservation of pseudotime ranges without communication among the participants. If a

write arrives at a node and has pseudotime less than that of an already-executed read it

is rejected because otherwise it would cause the value returned by the previous read to

be incorrect.

Viewstamped replication guarantees that the concurrent execution of transactions

on replicated data is equivalent to a serial execution on non-replicated data (one-copy

serializability) [133]. A system consists of networked nodes, and a distributed program

consists of modules, each running at a single node. A module group consists of multiple

module copies, called cohorts, which behave as a single entity. One cohort is designated

as the primary, which executes procedure calls, and the remaining cohorts are backups,

which are essentially passive recipients of state information from the primary. View is a

set of cohorts that are capable of communicating with each other and have a designated
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primary; only active views process transactions. Clients create transactions, make remote

calls, and coordinate two-phase commit, while servers process remote calls and participate

in two-phase commit.

Weak consistency allows database copies at di�erent servers to vary and eventual con-

sistency enables the servers to converge towards identical database copies in the absence of

updates [179]. Eventual consistence relies on two properties: total propagation requires

that each write be eventually received by each server, and consistent ordering requires

that all servers apply non-commutative writes to their databases in the same order.

Snapshot isolation is a type of multiversion concurrency control in which a transaction

reads the committed data from a snapshot as of the time the transaction started [20]. The

transaction can only commit, if in the time period from the start to the commit, no other

transaction wrote the same data written by the committing transaction. Snapshot iso-

lation is non-serializable and provides concurrency advantage for read-only transactions,

but it is not considered advantageous for long-running update transactions.

Spanner is a replicated database that assigns globally-meaningful commit transactions

to distributed transactions for re
ecting serialization order [48]. It supports external

synchrony according to which the commit timestamp of a transaction is lower than that

of another transaction if the former transaction commits before the latter starts. It

also serves globally-consistent reads at a timestamp. The TrueTime API exposes clock

uncertainty to assign write timestamps in monotonically increasing order and serve reads

from su�ciently up-to-date replicas.

Inconsistent Replication (IR) is a protocol that o�ers fault-tolerance without order-

ing consistency [201]. The Transaction Application Protocol for Inconsistent Replication

(TAPIR) provides optimistic transaction ordering on top of IR. Based on loosely syn-

chronized clocks, the clients order their transactions according to proposed timestamps

generated from their local clock and identi�er. A read to a speci�c version of a key con-


icts with a write to the same key completed before the proposed timestamp. A write

con
icts with a read or write to the same key occurring after the proposed timestamp.

Although the above rules provide linearizability, they can be slightly weakened to sup-

port serializability by allowing reads of past versions and writes in the past under speci�c

timestamp conditions.

Highly Available Transactions (HAT) provide to groups of multiple operations over
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multiple data items transactional guarantees that do not su�er unavailability during sys-

tem partitions and do not incur high network latency [12]. HAT systems are shown to

achieve a wide range of isolation levels, but fail to support prominent semantics that

include snapshot isolation and one-copy serializability.

In a di�erent semantical formulation, clients are system participants that reside on

physically distinct devices and all the operations of a client are parts of a transaction [30].

The activities from each device are represented as a stream of operations interrupted

by special yield operations that mark the transaction boundary. Eventually consistent

transactions uphold atomicity and isolation guarantees without serialization. They pro-

vide strong guarantees that all code runs in transactions, and transactions never fail or

roll back. They order transactions by both visibility and arbitration relations, unlike

traditional transactions that only use a single order relation.

9.5 Flash Memory

Non-volatile memory can be used at the client and server of a distributed �lesystem for

I/O e�ciency [14]. Writeback caching can improve performance, reduce server load, and

eliminate cache warmup on restart [11]. In-place commit over non-volatile memory uni�es

the bu�er cache with journaling [108]. O�ering disk-based caching through journaling is

an extension of Arion that we plan for future work.

Mercury pointed out the zero recovery point objective (RPO), i.e., no recently-written

data lost from a crash. It uses 
ash memory in the block I/O virtualization stack of

the hypervisor to provide write-through caching [31]. Non-zero RPO can be applied

for improved performance via block-level writeback caching at the host. Update order

is preserved by explicit tracking of the dependency between I/O requests or transaction

grouping of modi�ed blocks [101]. Due to concerns about the consistency and durability of

these ordering schemes, a recent block-level solution satis�es asynchronously but explicitly

the ordering constraints of application-speci�ed write barriers [151]. Nevertheless, host-

side block-based caching lacks native support for writeable �le sharing within or across

hosts [31, 101, 151, 11, 89].

FVP is a fault-tolerant layer that pools together all the host-side 
ash devices in a
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cluster [24]. By intercepting the VM I/O and redirecting it to host-side 
ash devices,

the layer leads to predictable write throughput. By replicating the VM writes to peer

host-side 
ash devices, it preserves VM mobility and tolerates cascading host and 
ash

failures. Unlike FVP, Arion achieves improved I/O performance and durability by relying

on a separate local journal per VM rather a shared caching pool across the cluster. We

leave for our future work the study of the related caching and replication issues.

9.6 Filesystem Logging

The log-structured �lesystem addresses the problems of synchronous metadata updates

and small writes by coalescing data writes sequentially to a segmented log [156]. Previous

research reported cleaning overheads and performance limitations under particular work-

loads [164]. We also experimentally notice reduced read performance of the log-structured

approach in some cases (Section 5.2.1). Group commit is a known database logging op-

timization that is used to amortize the I/O cost of inserting transaction commits to the

log. It accumulates the log records from multiple transactions, and periodically 
ushes

them to the log [55]. Instead, we emphasize �tting multiple subpage modi�cations from

concurrent synchronous writes into a single block, and investigate the related bene�ts in

a general-purpose journaled �lesystem.

The virtual log uses a tree to logically link non-contiguous disk blocks and uses free sec-

tors close to the head to minimize the latency of small synchronous writes [192]. StreamFS

is a modi�ed version of the log-structured �lesystem for storing high-volume streams [54].

Instead, we also handle the storage tra�c of low-rate streams. The hFS �lesystem stores

metadata and small �les in a separate partition from large �les. It di�erentiates updates

by �le size rather than write size that Okeanos does [203].

In the Ceph distributed �lesystem, the storage servers support journaling of both

data and metadata similarly to the data journaling mode of ext3 [193]. Ceph provides

two new journaling modes: (i) In the writeahead mode, a write transaction returns as

soon as it reaches the journal. (ii) In the parallel mode, a write transaction is written

to both the journal and the �lesystem, and returns when either of the two commits.

The Ceph designers admit that they write all data twice for safety, and mention the
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related performance tradeo� between write latency and write throughput. For the e�cient

storage of the journal, they support several hardware options. In our study, we extensively

examine the resource requirements of data journaling, and propose two new modes to

retain high performance at moderate journal tra�c.

The general idea of subpage logging is not new. Previously, researchers at DEC proto-

typed and used the Echo distributed �lesystem [26]. For improved performance and avail-

ability, Echo logged subpage updates, and bypassed the logging of page-sized or larger

writes [81]. The development of Echo was discontinued in early 1992, partly because it

run on hardware that lacked fast enough computation relative to communication.

Recent research introduced semantic trace playback (STP) to rapidly evaluate al-

ternative �lesystem designs without the cost of real system implementation or detailed

�lesystem simulation [148]. STP was used to emulate journaling of block modi�cations

instead of entire modi�ed blocks in a �lesystem. Although the authors showed reduced

amount of data written to the journal, they did not examine the general performance and

recovery implications. Due to the obsolete hardware characteristics or the high emulation

level of the above studies, they leave questionable the general architectural �t and actual

performance bene�t of journal bandwidth reduction in current �lesystems. A recent work

examine the performance overhead in case of journaling of journal, where the logging

activity of applications runs on top of journaling �lesystems [168]. This work can be

complementary to Okeanos.

Optimistic crash consistency decouples ordering from durability to recover the �lesys-

tem in consistent state without expensive cache 
ushes [42]. Incorrect ordering is de-

tected through transactional checksums or completely avoided through delayed block

reuse; data journaling is optionally activated to preserve the storage layout at block

overwrites. Backpointer-based consistency eliminates the need for ordering by adding a

backpointer to every block using the out-of-band bytes provided by some devices [43].

Corrupted �les are detected upon access, rather than at mount-time.

Similarly, several studies try to reduce the overhead of blocking when writing in-

memory pages to disk. Externally synchronous I/O guarantees durability to an external

observer of application output rather than the application itself [132]. If an applica-

tion does not produce output, xsyncfs commits data periodically and asynchronously.

Non-blocking writes decouple the writing of data to a page from its presence in mem-
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ory [33]. However, synchronous fetching is still required under synchronous writes and

writes directed to the journal device.

In earlier work, Hagmann described metadata update logging in the Cedar File System

to improve performance and achieve consistency [72]. Soft updates track and enforce

metadata update dependencies so that the �lesystem can safely delay writes for most �le

operations [163]. Also, subpage journaling of metadata updates is made widely available

today through popular commercial �lesystems, such as the IBM JFS and MSNTFS [148]

Unlike Okeanos, the above systems only focus on metadata rather than data updates.

Subpage updates have been previously handled e�ciently in the context of distributed

shared memory by the Millipage system [90]. Instead, we introduce wasteless and selective

journaling as a general �lesystem service.

9.7 Other Reliability Issues

Device Issues High-performance synchronous writes can be handled through special-

ized hardware, such as battery-backed main memory (NVRAM) [40]. WAFL improves

write performance by writing �le system blocks to any location on disk and in any order,

while deferring disk space allocation with the help of non-volatile RAM [82]. Reportedly,

NVRAM creates a single point of failure over disk arrays, while dual-copy NVRAM cache

can be costly [87]. Disk-speci�c knowledge can be exploited to align the data accesses on

track boundaries, and avoid rotational latency and track-crossing overhead [161, 5]. This

approach operates at the disk level and could complement our methods, when we update

the �lesystem.

High Performance Computing The I/O characteristics of parallel applications have

led to middleware techniques (e.g. data sieving or collective I/O) that handle as contigu-

ous the non-contiguous requests from parallel processes [180]. Additionally, checkpointing

has a prominent role in the robust execution of high-performance parallel applications [60].

The Parallel Log-Structured Filesystem (PLFS) introduces an interposition layer that

transparently writes to di�erent �les the checkpoint data from di�erent processes instead

of having all data written to a single shared �le [19]. The Checkpoint-Restart File System
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(CRFS) is a user-level �lesystem that aggregates per-�le writes in memory [139]. When

the writes �ll up a precon�gured chunk size (e.g. 4MB), they are asynchronously trans-

ferred to disk. The above approaches are complementary to Okeanos because they are

specialized for parallel applications or checkpoints, and operate at the middleware or the

user level rather than within a general-purpose �lesystem.

Real-time Stream Processing In real-time data processing, application operators can

recover from failures through synchronous logging at high latency [104]. Recent research

combines software transactional memory with asynchronous logging to optimistically par-

allelize stream operators [29]. However, this approach is limited to operators that do not

perform external actions such as I/O [36].

9.8 Summary

In this chapter we presented an extensive study of the related research across a wide range

of storage systems. In virtualization environments a block-based interface is typically used

at the cost of limited sharing opportunities and increased performance overheads. Further-

more, the proposed �le-based approaches in virtualization and cloud environments either

face limited scalability, or limit client caching to volatile memory, similarly to traditional

distributed �lesystems. We also reviewed the most important studies on transaction pro-

cessing. Several studies over the last years have outlined the importance of host-side

caching, but operate at the block-level and hence lack native support for controlled �le

sharing. Finally, we summarized previous work on �lesystem logging, and discussed sev-

eral device and application-speci�c reliability issues.
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Chapter 10

Discussion and Future Work

10.1 Alternative Storage Technologies

10.2 Journaling in Virtualization Environments

10.3 Host-side caching

10.4 Live VM Migration

10.5 Journal Replication

10.6 Rollback Recovery

10.7 Filesystem Multi-tenancy

10.8 Flash-aware Filesystems

10.9 Summary

In this chapter we discuss some challenging topics that have arised during the design

and development of the proposed systems. We also present our plans for future work, and

describe our ongoing work on related open research issues.
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10.1 Alternative Storage Technologies

Across a range of consistency conditions, existing �lesystems can be wasteful or under-

performing. We propose and implement several improvements that address these weak-

nesses without penalizing the behavior of the �lesystem beyond a reasonable increase

in disk tra�c. The main theme in the Okeanos design is to improve performance and

consistency at low cost. Thus, adding extra spindles to improve I/O parallelism or a

properly-sized NVRAM to absorb small writes, are alternative approaches likely to re-

duce latency and raise throughput [40, 82]. However, such solutions carry some notable

drawbacks that primarily have to do with increased cost and maintenance concerns about

additional faulty parts in the system.

Our e�ort to favor sequential writes at moderate storage tra�c is compatible with

the endurance and performance characteristics of novel devices such as solid-state drives

based on 
ash memory [39]. Flash memory exhibits a number of attractive features related

to low power consumption and improved access performance but also several hardware

idiosyncrasies that make its behavior workload dependent. Flash memory usually consists

of multiple blocks, each of which contains several pages. Data is written in units of pages,

and space is erased in units of blocks. Usually a log-structured approach organizes the


ash space so that writes incur low cost [196, 49]. A cleaning process periodically merges

valid pages into clean blocks and reclaims the invalidated ones. The append-only nature of

journaling keeps writes over 
ash memory relatively cheap [124]. Simple block remappings

of the metadata can transform journaled updates into permanent state without relocations

that lead to duplicate writes [44]. Native support of atomic writes at the 
ash �rmware

was shown to avoid duplicate writes for the safe update of database state from logged

deltas of data pages [138].

In contrast, Okeanos focuses on a general-purpose local �lesystem. We coalesce con-

current subpage writes to the same storage block of the journal, while we safely delay

and batch small writes to the �lesystem. Additionally, with selective journaling we avoid

duplicate tra�c to the device for sequential workloads. Our proposed modes could be

directly applied as a journaled �lesystem over 
ash memory to serve two needs: (i) re-

duce the amount of data sequentially written to a 
ash-based journal device and the wear

it causes [44], (ii) decrease the number of random writes reaching the storage device of
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a �lesystem, because random writes are reported as harmful for the performance and

lifespan of 
ash memory [124].

10.2 Journaling in Virtualization Environments

In virtualization environments, the block-based interface of the guest virtual machine

makes small writes appear as full-block updates to the underlying �lesystem. Recently,

the interaction of nested �lesystems has been experimentally investigated. Application

workloads with reads and writes smaller than 4KB su�er the most from the full-page I/Os

of the guest [80]. The data and metadata of the guest disk image are treated as data by the

host �lesystem. Consequently, write-intensive workloads lead to signi�cant consistency

degradation if the �lesystem at the host provides metadata-only journaling. Additionally,

the journaling of both data and metadata is considered non-practical due to the caused

performance degradation [106]. As one solution to the performance problem of data

journaling, it was recently proposed to maintain the journals of multiple virtual machines

in the main memory of the host presuming that the hardware and virtual machine monitor

are su�ciently reliable [88].

Instead, the wasteless and selective journaling modes could be used either as guest

�lesystems to reduce the downward write tra�c, or as host �lesystem to consistently

serve the disk images of multiple virtual machines. In particular, we envision that the

implementation of the proposed journaling modes at the client-side journal of a large-scale

�lesystem can further improve the resource e�ciency of the Arion system. On the other

hand, application at the host �lesystem would make sense under the assumption that

the guests communicate with the host through a virtualization-optimized I/O interface

that 
exibly supports requests of di�erent sizes. Accordingly, we could safely serve the

incoming small writes from multiple concurrent threads running across di�erent guests

and persistently store both the data and metadata of the guest �lesystems. Thus, we an-

ticipate increased consistency in the recovery of virtual images from crashes and improved

guest performance during normal operation. In ongoing research, we investigate possible

extensions of the proposed journaling modes in virtualization environments.
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10.3 Host-side Caching

Persistent host-side caching primarily targets the improved performance and e�ciency of

networked storage. Typically, it uses a block-based interface that inherently lacks both

the support for data sharing across di�erent hosts and the ability for interposition in the

�le-based protocol of a distributed �lesystem. It also makes the consistency preservation

of network storage a challenging problem because the semantic gap between the �le and

block interfaces complicates the atomic grouping of dirty blocks by I/O request, and

their ordering according to �lesystem-imposed dependencies. Finally, the persistence of

mapping metadata in block-based caching and the repetitive translation of I/O requests

across di�erent storage layers can introduce considerable overheads in networked storage

I/O [11, 80].

The original design of Ceph cannot recover any writes that returned after they were

only placed at the volatile memory of the client before a crash. Therefore, the Arion

architecture is innovative because it adds durability into the client memory cache through

journal-based recovery, conditionally propagates the updates to the servers after client

reconnection, and also permits the clients to scalably communicate directly with the

object servers of the storage backend. Overall, assuming host machines with su�ciently

reliable local storage, our approach overcomes several sharing, scalability, and consistency

limitations of related existing solutions. In our future work we plan to extend the host-

based journaling to support caching of blocks evicted from memory [108].

10.4 Live VM Migration

A key functionality in virtualization environments is the live virtual machine migration

across di�erent hosts. Live migration involves the transfer of the memory and device

state of a running VM to a di�erent host without service interruption. Consequently,

the virtual machine should only hold a limited amount of local persistent state in order

to enable e�cient dynamic live transfer. Although the memory requirements of virtual

machines are reduced with memory deduplication and compression, disk based caching at

the host provides additional bene�t in that direction [71].
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Client-side journaling facilitates the live migration of client virtual machines across

di�erent hosts. Essentially, each log �le safely stores recent storage updates sequentially.

A live migration iteratively transfers modi�ed VM state between two hosts, until the

amount of concurrently modi�ed state drops below a threshold [117]. Eventually, the

VM is suspended and resumed at the destination after the transfer of the last modi�ed

blocks. In the Arion design, the client-side journal plays the role of a write queue that

naturally separates the more recent updates of each individual client and permits their

e�cient copy from source to destination at sequential disk throughput. Furthermore, we

can trivially skip repetitive transfers of hot blocks, because they naturally appear multiple

times at the front of the journal. Therefore, a client system is migrated with relatively

low transfer volume across di�erent hosts, unlike the migration of a storage server that

requires relocation of the entire storage state. In our future work, we plan to extend the

Arion system in order to natively support the live storage migration of virtual machines

across di�erent hosts.

10.5 Journal Replication

Loss or corruption of committed updates to critical data is recognized as a particularly

damaging class of failure [84]. Hardware failures have been reported to contribute much

less to service-level failures in comparison to causes related to software bugs and faults

from operator or maintenance tasks [136, 84]. Similar studies also report the low frequency

of disk failures at the hosts [128]. In the Arion design we assume su�ciently reliable local

storage at the hosts, similar to that of the server machines. However, the availability of

the client journal depends on the host recoverability in case of hardware failures.

One way to tolerate hardware failures is to replicate the client log across multiple

physical hosts [73, 134, 95]. Nevertheless, replicating the log across multiple machines can

be costly in terms of resource consumption, such as network and disk bandwidth. One

possible approach to avoid disk bandwidth waste is to replicate the log in the memories

of several servers, leaving the system susceptible to correlated failures. For instance,

RAMCloud uses asynchronous replication and allows a write request to return as soon as

it reaches the memory of a prede�ned number of nodes [134].
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In our future work we aim to improve the availability of the Arion client-side journal

by replicating it across multiple physical machines. A write request could be acknowl-

edged to the application when the update reaches the memory of several secondary hosts.

Alternatively, we could use an isolated pool of storage servers speci�cally for the needs of

the log management. Further investigation is required in order to explore the tradeo�s

among performance, durability and e�ciency of the above approaches.

10.6 Rollback Recovery

Version consistency ensures that the �lesystem correctly associates the metadata of a

particular �le with the data of the matching version. During the normal system operation,

Arion achieves version consistency by propagating the metadata updates to the server

after the respective data updates. However, a network disconnection or client reboot can

happen in the middle of the writeback process of the modi�ed data from the client memory

to the servers. At this point, it is possible that the client has not transferred to the servers

all the locally journaled data updates along with the corresponding metadata. In case of

a con
icting access by a di�erent client during the duration of lost connectivity, the Arion

client aborts the transfer of the remaining locally cached updates for the con
icting �le.

Therefore, in case of a client failure, the metadata of the �le does not necessarily match

the version of the data.

In order to satisfy the requirements of version consistency, it is important to undo

any partial updates that were not completed at the servers due to the client failure [125].

One possible solution is to keep a server-side write-ahead log of undo records during the

forward operation. Thus, each server will be able to revert the e�ects of any incomplete

updates that were active at the time of the client failure by applying its local undo log.

To minimize the involved resource overhead, we can simply use memory-based logs at the

servers of the �lesystem. In the near future, we aim to extensively study rollback recovery

in the Arion system.
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10.7 Filesystem Multi-tenancy

In a multi-tenant virtualization environment the storage consolidation at the �lesystem

level is desirable for its data sharing, administration e�ciency, and performance charac-

teristics [145, 94, 120, 51]. Multi-tenant access control of shared �les should isolate the

storage access paths of di�erent users in a secure way. Access control in a multi-tenant

environment is hindered by the large number of the involved end users and the isolation

of security administration required across independent organizations.

Authentication and authorization have already been extensively studied in the context

of distributed systems [195]. However, a cloud environment introduces unique character-

istics that necessitate the reconsideration of the assumptions and solution properties.

Existing �le-based solutions face scalability limitations because they either lack support

for multiple tenants, rely on global-to-local identity mapping to support multi-tenancy,

or have the guests and a centralized �lesystem (or proxy) running at the same physical

host [145, 94, 51].

In our recent work, we propose the Dike authorization architecture [96]. Dike combines

native access control with tenant namespace isolation and compatibility to object-based

�lesystems. The �lesystem natively manages the access control metadata of each tenant,

and ensures that each tenant can only access its own namespace. Overall, Dike securely

isolates the namespaces of the tenants, and enables con�gurable �le-sharing among users

of di�erent tenants at limited performance overhead.

10.8 Flash-aware Filesystems

Flash storage is increasingly o�ering competitive advantages as either a standalone storage

device in mobile systems or a distinct layer in the storage hierarchy of enterprise servers. It

exhibits a number of attractive features related to low power consumption and improved

access performance. However, it is also relatively expensive and bears idiosyncrasies

that render its performance highly workload-dependent [39]. Compatibility with legacy

systems is possible through a typical block interface o�ered by a 
ash-translation layer

embedded in the device controller. A log-structured �lesystem is often used to write data
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sequentially to the 
ash medium and avoid the high cost of random writes [98]. However,

a costly cleaning process is required to periodically merge valid pages into clean blocks

and reclaim the invalidated blocks.

Alternatively, only a few 
ash-aware �lesystems have been recently developed specif-

ically for the underlying hardware characteristics [107, 93]. Flash-aware �lesystems are

attractive for various reasons. First, they can avoid duplication of functionality across

the �lesystem and the device �rmware. Second, they can leverage semantical information

about the application access patterns to optimize the tra�c to the storage medium with-

out compromising data persistence. Third, they can minimize the data relocation tra�c

occurring inside the device. Finally, they can provide end-to-end guarantees about the

reliability and endurance properties that they promise.

In our ongoing work, we are developing a 
ash-optimized �lesystem to further explore

the above observations [76]. In order to achieve our goals, we propose to directly manage

the 
ash storage with a composite �lesystem that combines journaling with the log-

structured �lesystem (LFS) [156]. In the proposed design, 
ash storage will consist of

two partitions, the journal partition and the LFS partition. The LFS partition organizes

the permanent state of written pages into a segmented log, while the journal partition

temporarily stores data and metadata writes in the form of transactions. Hence, the

journal undertakes the additional responsibility to proactively clean the permanent state

from frequently updated data and metadata.

Essentially, we rely on the cache timers to natively categorize pages into hot or cold and

store them into the journal or LFS, respectively. With proper page expiration period, we

are able to adjust the hotness boundary to current workload conditions. Additionally, the

operation of journaling fully invalidates older blocks and allows the batching of multiple

update requests in the operating system page cache. Overall, we expect that the proposed

system will signi�cantly improve the utilization and lifetime of the device by proactively

cleaning the �lesystem through the journal.
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10.9 Summary

Our plans for future work include the extension of the proposed journaling modes for

virtualization environments, and 
ash memory systems. Additionally, we plan to extend

the host-based journaling to support caching of blocks evicted from memory. Another

interesting future direction is the client journal replication across multiple physical ma-

chines for improved availability in case of hardware failures at the host. We also aim to

investigate the extension of the Arion client-side journaling to support the live storage mi-

gration of virtual machines across di�erent hosts. Finally, the undo of partially completed

updates at the servers of the �lesystem due client failures requires further investigation.

In this chapter, we also presented our ongoing work on providing namespace isolation

and secure �le-sharing over object-based �lesystems in a multi-tenant virtualization en-

vironment. Lastly, we outlined the design of a 
ash-aware �lesystem that we proposed

recently, which combines journaling with the log-structured �lesystem in order to improve

the utilization and lifetime of the device.
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Chapter 11

Conclusions

11.1 Contributions

11.1 Contributions

In a multi-tier cloud environment, the constantly growing amount of data that needs

to be stored and processed by a large number of concurrent users, has introduced new

challenges in the design of large-scale storage systems. In this thesis we argue that the

speci�c characteristics of multi-tier environments impose the fresh reconsideration of the

I/O path for high performance, resource e�ciency and improved consistency semantics.

In this study we carefully investigate the implications of the consistency semantics on the

resource e�ciency and the performance across di�erent tiers of the storage stack.

First, we focus on the local �lesystem of the storage backend layer with the aim to

strengthen the provided consistency semantics at improved bandwidth e�ciency. We rely

on journaling of data updates in order to ensure their safe transfer to disk at low latency

and high operation throughput for their fast recovery in case of system failures. We design

and implement the wasteless journaling mode which merges concurrent subpage writes

to the journal into page-sized blocks. Additionally, we develop the selective journaling

mode that only logs updates below a write threshold, and transfers the rest directly to the

�lesystem. Our experimental results include measurements from streaming microbench-

marks, application-level workloads, database logging traces, and multistream I/O over a
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parallel �lesystem in the local network. Across a wide range of realistic workloads over

standalone servers and a multi-tier networked system, we demonstrate reduced write la-

tency and recovery time, along with improved transaction throughput with low journal

bandwidth requirements.

In the second part of this thesis, we concentrate on the frontend layer of a multi-tier

environment. We set as our primary goal to improve the performance, resource e�ciency,

and durability of shared storage in the datacenter. We rely on a �le-based interface for

its performance, �ne-grained sharing, and clear consistency properties. For enhanced

end-to-end durability of shared storage, we integrate the client of a distributed �lesystem

with a host-based journal. At the host, we provide local durable storage to dirty data

and metadata until they are written to the network servers. We carefully investigate the

consistency semantics of the proposed design under normal system operation, and in case

of client failures, such as network disconnection and reboot. We implement a prototype

of the proposed Arion design over the Ceph production distributed �lesystem. Over a

local cluster and a public-cloud environment, we experimentally demonstrate promising

e�ciency and performance results for speci�c durability levels con�gured through the

frequency of copying dirty blocks to the host-side journal, across alternative storage tech-

nologies.

To summarize, we believe that the resource e�ciency at each storage tier of a multi-

tier environment is critical to the overall system performance. Across di�erent tiers,

we combine improved �lesystem consistency with high performance and e�cient resource

utilization, and explore interesting tradeo�s among performance, durability and e�ciency

for demanding real-world applications.
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