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Abstract. In this article we present an incremental method for building
a mixture model. Given the desired number of clusters K ≥ 2, we start
with a two-component mixture and we optimize the likelihood by repeat-
edly applying a Split-Merge operation. When an optimum is obtained,
we add a new component to the model by splitting in two, a properly
chosen cluster. This goes on until the number of components reaches
a preset limiting value. We have performed numerical experiments on
several data–sets and report a performance comparison with other rival
methods.
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1 Introduction

Clustering, apart from being on its own a challenging field of research, is useful
to a wide spectrum of application areas, such as pattern recognition, machine
learning, computer vision, bioinformatics, etc. The large interest of the scientific
community for the problem of clustering is reflected by the growing appearance
of related monographs [6],[9],[4],[1], journal articles and conferences. With the
advent of the Internet and the World Wide Web, scientific data from a wide range
of fields have become easily accessible. This convenience has further raised the
interest and expanded the audience of clustering techniques. Clustering can be
viewed as the identification of existing intrinsic groups in a set of unlabeled data.
Associated methods are often based on intuitive approaches that rely on specific
assumptions and on the particular characteristics of the data sets. This in turn
implies that the corresponding algorithms depend crucially on some parameters
that must be properly tuned anew for each problem.

A plethora of clustering approaches has been presented over the last years.
Hierarchical methods are based on a tree structure over the data according to
some similarity criteria. Methods based on partitioning, relocate iteratively the
data points into clusters until the optimum position of some cluster represen-
tatives (e.g. centers) is found; the popular “K-means” algorithm for instance
belongs to this category. On the other hand, model-based methods are closer to
the natural data generation mechanism and assume a mixture of probability dis-
tributions, where each component corresponds to a different cluster[6],[4],[1]. In
these methods the Expectation-Maximization (EM) algorithm [3] is the preferred



framework for estimating the mixture parameters due both to its simplicity and
flexibility. Moreover, mixture modeling provides a powerful and useful platform
for capturing data with complex structure. A fundamental concern in applying
the EM algorithm, is its strong dependence on the initialization of the model
parameters. Improper initialization may lead to points corresponding to local
(instead of global) maxima of the log-likelihood, a fact that in turn may weigh
on the quality of the method’s estimation capability. Attempts to circumvent
this, using for example the K-means algorithm to initialize the mixture para-
meters, amounts to shifting the original problem to initializing the K-means.
Recently, several methods have been presented, aiming to overcome the problem
of poor initialization. They are all based on an incremental strategy for building
a mixture model. In most cases these methods start from a single component
and iteratively add new components to the mixture either by performing a split
procedure [7], or by performing a combined scheme of global and local search
over a pool of model candidates [11]. A similar in nature technique is to follow
an entirely opposite route and start with several components that iteratively will
be discarded [5]. An alternative strategy has been presented in [10] where a split-
and-merge EM (SMEM) algorithm was proposed. Initially the SMEM method
performs the usual EM algorithm to a K-order mixture model and an initial
estimation of the parameters. At a second level, repeated split-merge operations
are performed exhaustively among the K components of the mixture model that
re-estimate the model parameters until a termination criterion is met.

The idea of the SMILE method is to start with a mixture model with k = 2
and then to apply a Split & Optimize, Merge & Optimize (SOMO) sequence
of operations. If this leads to a model with higher likelihood we accept it and
repeat the SOMO procedure. In the opposite case we choose the model cre-
ated just after the Split & Optimize (SO) step, which corresponds to a mixture
model with an additional component. This is continued up to a preset number
of components. At that stage if the SOMO sequence does not produce a higher
likelihood value, the algorithm concludes. We have tested SMILE on a suite of
benchmarks, with both simulated and real data sets, taking in account a vari-
ety of cases, with promising results. Comparisons have been made with existing
methods of similar nature. The quality of the solutions offered by each method
is rated in terms of the associated log-likelihood value. An important test for
SMILE is its application to image segmentation problems. Here we have consid-
ered data arising from MRI images and the results are quite encouraging.

The rest of the paper is organized as follows. In section 2 we present the
mixture models and the EM algorithm for parameter estimation, in section 3
we present in detail our incremental scheme where we lay out an algorithmic
description, while in section 4 we report results obtained by applying SMILE
to several data sets. Our conclusions and a summary are included in section 5
along with some remarks and speculations.



2 Mixture models

Given a set of N data points A = {xi|xi ∈ Rd, i = 1, · · · , N}, the task of
clustering is to find a number of K subsets Aj ⊂ A with j = 1, · · · ,K, containing
points with common properties. These subsets are called clusters. We consider
here that the properties of a single cluster j, may be described implicitly via a
probability distribution with parameters θj .
A mixture model is a linear combination of these cluster-distributions, e.g.:

f(x|ΘK) =
K∑

j=1

πjp(x|θj) (1)

The parameters 0 < πj ≤ 1 represent the mixing weights satisfying
∑K

j=1 πj = 1,
while ΘK = {πj , θj}K

j=1 represents the vector of all unknown model parameters.
Mixture models provide an efficient method for describing complex data sets.
The parameters can be estimated by maximizing the log-likelihood, by using for
example the EM algorithm [3]. EM performs a two-step iterative procedure: The
E-step calculates the posterior probabilities:
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while the M -step updates the model parameters by maximizing the complete log-
likelihood function. If we assume multivariate Normal densities θj = {µj , Σj}
maximization yields the following updates:
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3 Split–merge mixture learning

In this section we describe in detail the proposed method. To begin with, we
describe the operations used in the SOMO sequence.

3.1 The split operation

Suppose that the model currently contains k ≥ 2 components (clusters). The
selection of the cluster to be split is facilitated with one of the criteria below.



1. Maximum Entropy:

H(j) = −
∫

p(x|θj) log p(x|θj)dx (4)

2. Minimum Mean Local Log-likelihood:

L(j) =
∑N

i=1 p(j|xiθj) log(p(xi|θj))∑N
i=1 p(j|xi, θj)

(5)

3. Maximum local Kullback divergence: (used also by SMEM [10])

J(j) =
∫

f(x|Θ) log
f(x|Θ)
p(x|θj)

dx (6)

where the density f(x|Θ) represents an empirical distribution [10].

Suppose that cluster j∗ is being selected for the split operation. Two clusters are
then created labeled as j∗1 and j∗2 . Their parameters are initialized as follows:

πj∗1 = πj∗2 =
πj∗

2
, Σj∗1 = Σj∗2 =

Σj∗

2
(7)

µj∗1 = µj∗ +
√

λmax

2
vmax , µj∗2 = µj∗ −

√
λmax

2
vmax , (8)

where λmax, vmax are the maximum eigenvalue and its corresponding eigenvector
of the covariance matrix Σj∗ .

3.2 The optimization operation

Let f(x|Θ∗
K) be the mixture without the j∗-th component, i.e.:

f(x|Θ∗K) = f(x|ΘK)− πj∗p(x|θj∗) =
K∑

j=1,j 6=j∗
πjp(x|θj) (9)

The resulting mixture after the split operation takes the following form:

f(x|Θk+1) = f(xi|Θ∗k) + (πj∗ − α)p(x|θj∗1 ) + αp(x|θj∗2 ) (10)

with 0 ≤ α ≤ πj∗ . In this mixture, the first term is inherited from the original
model, while the rest two, are the newly introduced components by the split
operation. The first term remains intact, while the other two are to be adjusted
so as to maximize the likelihood. This is facilitated by a partial application of
the EM algorithm, that modifies only the new component parameters α, θj∗1 , θj∗2 .
The following updates are obtained:
At the E-step:
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and at the M-step:
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After obtaining an optimum in the subspace of the newly introduced parameters,
a full space optimization is performed, again by the EM algorithm (Eq. 3).

3.3 The merge operation

During this operation two clusters are fused into one. Two clusters {k1, k2} are
selected according to any of the criteria that follow.

1. Minimum Distribution Distance (Symmetric Kullback Leibler)
∫

p(x|θk1) log
p(x|θk1)
p(x|θk2)

dx +
∫

p(x|θk2) log
p(x|θk2)
p(x|θk1)

dx (14)

2. Maximum Distribution Overlap (used also in [10])

N∑

i=1

p(k1|xi, θk1)p(k2|xi, θk2) (15)

Let the resulting cluster be labeled by k. Its parameters are then initialized as:

πk = πk1 + πk2 , µk =
πk1 ∗ µk1 + πk2 ∗ µk2

πk1 + πk2

, Σk =
πk1 ∗Σk1 + πk2 ∗Σk2

πk1 + πk2

(16)

The optimization step following the merge operation is in the same spirit as that
of section 3.2, e.g. we perform partial EM steps, allowing only the new (merged)
cluster parameters to vary. After obtaining an optimum in the subspace of the
newly introduced parameters, a full space EM optimization is performed.

3.4 Description of the method

Initially we construct a mixture with two components, i.e. k = 2. Denote by
Θ1

k the mixture parameters, and by L(Θ1
k) the corresponding value of the log-

likelihood function. We perform in succession a split and an optimization op-
eration, obtaining so a model Θm

k+1 with k + 1 components. Similarly in what
follows, we perform a merge and an optimization operation, that creates a model
again with k components. Let Θ2

k be the new mixture parameters after this split-
merge operation and L(Θ2

k) the corresponding log-likelihood. If L(Θ2
k) > L(Θ1

k)
then we update the k-order model to Θ2

k and we repeat the SOMO procedure.



In the case where L(Θ2
k) ≤ L(Θ1

k), i.e. when the SOMO procedure fails to ob-
tain a better value for the likelihood, we discard the last merge operation and
update our model to Θm

k+1, which was obtained after the last SO operation, with
k + 1 components. The algorithm proceeds so, until we obtain a model with the
prescribed number of components (K) and the SOMO iterations fail to provide
further improvement to the likelihood.
We now can proceed and describe our method algorithmically.

– Start with k = 2
– while k < K

1. Estimate the current log-likelihood L1

2. Perform SOMO operation:
• Split: select a cluster j∗ and divide it into two clusters j∗1 and j∗2 .
• Optimization operation: Perform partial-EM and then full EM.
• Merge: select two clusters k1 and k2 and merge them.
• Optimization operation: Perform partial-EM and then full EM.
• Estimate the log–likelihood L2

3. if L2 > L1 then:
Accept the fused cluster. Set L1 ← L2 and go to step 2.

else:
Reject the last merge operation. Set k ← k + 1.

– endwhile

4 Experimental results

We have performed several experiments to examine the effectiveness of the
SMILE method. We have considered both real and simulated data sets of varying
dimensionality. We compare against three incremental approaches, namely the
Greedy EM method1 [11], the Split and Merge EM (SMEM) [10], the MML-EM 2

[5], as well as with the simple K-means initialized EM. The initialization scheme
in SMILE is predetermined in distinction to the contestant schemes that depend
heavily on random numbers. Hence, in order to obtain a meaningful comparison,
we performed 30 different runs for each data set with different seeds and kept
records of the mean value and the standard deviation of the log-likelihood.
Experiments with simulated data sets
In Fig. 1 we give an example of the performance of our algorithm in a typical

2-dimensional data set that has been generated from a K = 5 Gaussian mixture.
Step 0 shows the solution with one cluster, which in step 1 is split into two,
with a log-likelihood estimation L1 = −1727. Then, SMILE tests the optimality
of this solution by performing a SOMO procedure (steps 2a, 2b), leading to a
solution with L2 = −1973. Since the SOMO fails (L2 < L1), we discard the last
MO operation leading to a K = 3 mixture model and continue with the next
SOMO process (steps 3a, 3b). In this case, this SOMO operation found a better
solution L2 = −1272 (step 3b) in comparison with the one L1 = −1537 of step
1 The software was downloaded from http://staff.science.uva.nl/∼vlassis/software/
2 The software was downloaded from http://www.lx.it.pt/∼mtf/
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Fig. 1. Visualization of the SMILE steps on a typical data set. Each figure shows the
current clusters and the corresponding value of the log-likelihood.

2a. Therefore, we accept this updated K = 3 model and perform another SOMO
operation (steps 4a, 4b), which however fails to further improve the likelihood.
Finally, two other SOMO calls are made that both fail before the final K = 5
solution is reached (step 5a).
Several experiments were conducted using simulated data sets created by sam-
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Fig. 2. Simulated data sets used during experiments. We give also the clustering solu-
tion obtained by our method, i.e. their centers and the elliptic shapes

pling from Gaussian mixture models. Figure 2 illustrates eight (8) such data sets
containing N = 500 points. The first four sets (a,b,c,d) are in 2-dimensions, while
(e,f) (g,h) are in 5 and 10-dimensions respectively. The visualization for the sets
with dimensionality 5 and 10, is performed by projecting on the plane spanned
by the first two principal components. The clustering obtained by SMILE is dis-



played in Fig. 2. Table 1 summarizes the results obtained by the application of
the five contestants to the above mentioned data sets. Note that SMILE has re-
covered the global maximum in all cases; from the rest, only the Greedy EM and
SMEM methods yielded comparable results. For the data set of Fig.2c, SMILE
was the only method that obtained the global solution.

Table 1. Comparative results obtained form the experiments in data sets of Fig. 2

Data set SMILE Greedy EM SMEM MML-EM K-means EM
(a) −2.82 −2.87(0.02) −2.82(0.00) −2.86(0.05) −2.89(0.01)
(b) −0.83 −0.83(0.01) −0.85(0.02) −0.98(0.13) −0.86(0.05)
(c) −3.92 −3.94(0.01) −3.94(0.00) −3.95(0.02) −3.93(0.01)
(d) −1.87 −1.87(0.00) −1.89(0.04) −2.00(0.17) −1.99(0.19)
(e) −2.67 −2.68(0.04) −2.68(0.05) −3.11(0.36) −2.92(0.23)
(f) −3.14 −3.14(0.00) −3.17(0.08) −3.44(0.27) −2.27(0.13)
(g) −2.77 −2.77(0.03) −2.83(0.11) −3.75(0.57) −2.85(0.11)
(h) −4.31 −4.31(0.00) −4.33(0.08) −4.98(0.59) −4.46(0.29)

Experiments with real data sets
Additional experiments were made using real data sets. In particular, we have
selected two widely used benchmarks. The first one is the CRAB data set of Rip-
ley [9], that contains N = 200 data belonging to four clusters (K = 4). Original
CRAB data are in five dimensions. Here we have also created a 2-dimensional
data set by projecting the data on the plane defined by the second and third
principal components. We have also considered the renowned Fisher-IRIS data
set [8] with N = 150 points in d = 4 dimensions belonging to three clusters
(K = 3). In Table 2 we summarize the results obtained by the 5 contestants.
Note, that in the case of the original CRAB data set, SMILE was the only one
that recovered the optimal solution.

Table 2. Comparative results obtained from the CRAB and the IRIS data sets.

Data set SMILE Greedy EM SMEM MML-EM K-means EM
CRAB d = 5 −6.14 −6.35(0.14) −6.35(0.12) −6.86(0.01) −6.60(0.19)
CRAB d = 2 −2.49 −2.50(0.01) −2.50(0.00) −2.55(0.06) −2.52(0.06)

IRIS d = 4 −1.21 −1.23(0.02) −1.23(0.04) −1.25(0.04) −1.28(0.09)

Another experimental benchmark used is the Phoneme data set [8]. This is a col-
lection of two-class five dimensional data points. In our study we have randomly
selected a training set with N = 2800 and a test set with 2604 data points. Fig-
ure 3 illustrates the performance of each method by plotting the log-likelihood
value versus the number of components K = [2, 10], in both the training and
the test sets. Observe that SMILE’s curve is consistently above all others, both
for the training and for the test set, implying superiority in performance and in



generalization as well. Note that again, there were cases where SMILE was the
only method that arrived at the global solution.
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Fig. 3. Plots of mean log-likelihood objective function estimated by each method
against number of components K to the Phoneme data set.

Application in image segmentation
In computer vision clustering finds application in image segmentation, i.e. the
grouping of image pixels based on attributes such as their intensity and spatial
location. We have tested SMILE to simulated brain MRI images available on the
site BrainWeb [2], where we have reduced them into half of their original size
(181 × 217). The segmentation of MRI mainly requires the classification of the
brain into three types of tissue: (GM, WM, CSF). Since we are aware of the true
class labels of the pixels we evaluate each method according to the computed
total classification error. Figure 4 illustrates four such MRI images together with
the segmentation result using a K = 5 Gaussian mixture, where in the recon-
structed images every pixel assumes the intensity value of the cluster center that
belongs. The overall classification error obtained from all the clustering methods
to these images are presented at Table 3. It is obvious that our method achieves
superior results for the tissue segmentation.

Original image

Segmentation result
(a) (b) (c) (d)

Fig. 4. Image segmentation results obtained by our method in four MRI images.



Table 3. Percentage of misclassified pixels for the MRI of Fig.4 using K = 5 Gaussians.

MRI image SMILE Greedy EM SMEM MML-EM K-means EM
(a) 36.76 37.24(0.23) 37.12(0.00) 38.31(0.94) 37.84(0.01)
(b) 35.88 36.50(0.04) 36.69(0.00) 37.48(0.89) 36.57(0.08)
(c) 35.48 35.60(0.12) 36.18(0.30) 37.05(0.48) 36.21(0.29)
(d) 37.88 38.20(0.19) 37.98(0.00) 39.37(0.58) 38.90(0.32)

5 Conclusions

In this study we have presented SMILE, a new incremental mixture learning
method based on successive split and merge operations. Starting from a two-
component mixture model, the method performs split-merge steps to improve
the current solution maximizing the log-likelihood. SMILE has the advantage
of not relying on good initial estimates, unlike the other rival methods studied
in this article. The results of the comparative study presented here, are very
promising and suggest that SMILE should be considered as a serious candidate
for the solution of tough problems. Several developments may be possible that
need further research. For example consecutive multiple split operations followed
by corresponding merge steps may lead to even better models. Also the persistent
issue of discovering the optimal number of clusters in a data set may be examined
in the framework of this method as well.
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