
Creating and maintaining replicas in

unstructured peer-to-peer systems

Elias Leontiadis∗ Vassilios V. Dimakopoulos Evaggelia Pitoura

Technical Report 2006-1

Department of Computer Science, University of Ioannina

P.O. Box 1186, Ioannina, Greece GR-45110

Jan. 2006

Abstract

Peer-to-peer systems have received much attention as a way of sharing data

among a large and dynamic population of nodes. In such systems replication

is an important issue as it improves search performance and data availability.

It has been shown that optimal replication is attained when the number of

replicas per item is proportional to the square root of their popularity. In

this paper, we focus on updates in the case of optimal replication. In particu-

lar, we propose a new practical strategy for achieving square root replication

called pull-then-push replication (PtP). With PtP, after a successful search,

the requesting node enters a replicate-push phase where it transmits copies of

the item to its neighbors. We show that updating the replicas can be signifi-

cantly improved through an update-push phase where the node that created

the copies propagates any updates it has received using similar parameters as

in replicate-push. Our experimental results show that replicate-push coupled

with an update-push strategy achieves good replica placement and consistency

with small message overhead.

∗This work was done mainly while E. Leontiadis was with the University of Ioannina. He is

currently with the Department of Computer Science, University College London, United Kingdom.





1. Introduction 1

1. Introduction

The popularity of file sharing systems (such as Napster and Gnutella) has resulted

in attracting much current research in peer-to-peer (p2p) systems. Peer-to-peer sys-

tems offer a means for sharing data among a large, diverse and dynamic population

of users. An issue central in such systems is resource location, i.e. given a user query

for data, to discover the peers with matching data items.

There are two basic approaches for building p2p systems for efficiently locating

data. In structured p2p systems, data items are assigned to specific peers using some

form of distributed hashing. Locating peers with matching data is then guaranteed

to take place by visiting a bounded number of peers, normally logarithmic to the

total number of peers in the system. In unstructured p2p systems, there is no

assumption about the placement of data items. New nodes connect to some other

nodes in the p2p system randomly. When compared with structured p2p systems,

unstructured p2p systems usually provide no guarantees for search performance but

do not suffer from the cost induced from maintaining the structure and from load

balancing procedures necessary in structured p2p systems.

In this paper, we focus on the problem of replication in unstructured p2p sys-

tems. Replication improves the performance of search as well as data availability.

Availability issues are especially critical in p2p systems, since peers leave the system

very often, thus making their data unavailable.

Previous work on the topic [1, 8] has shown that optimal (with respect to search

performance) replication is achieved when the number of copies per data item is

proportional to the square root of their popularity. In this paper, we propose a

new practical strategy for achieving square root replication called pull-then-push

replication (PtP). With PtP replication, after a successful search for a data item,

the node that posed the query enters a replicate-push phase during which it pushes

copies of the item to its neighbors.

Then, we propose consistency maintenance protocols for copies created using the

optimal replication strategy. We show that updating the copies can be significantly

improved through an update-push phase where the node that created the copies

propagates any updates it receives to its neighbors. Although, replica consistency



2 Creating and maintaining replicas in unstructured peer-to-peer systems

protocols have been previously proposed (e.g., in [2]), our main contribution is that

we study the problem in conjunction with the strategy used to create the copies.

Our experiments show that the best results are achieved when update-push uses

similar parameters with replicate-push.

The remainder of this paper is structured as follows. In Section 2, we summarize

previous work on optimal replication and we present our own PtP strategy for

achieving it. We also evaluate its performance experimentally. In Section 3, we

introduce our consistency maintenance protocols, along with experimental results.

Finally, Section 4 concludes the paper.

2. Optimal replication

Suppose there are in total m different data items in the network, and that, collec-

tively, the peers have capacity for storing R items1. Also, assume that the query

rate for item i is qi, i = 1, . . . , m. Cohen and Shenker [1] developed a theory for

optimally replicating the data items in unstructured peer-to-peer networks, given

the restriction of R. In particular, they studied different replication strategies and

showed that the expected search cost is minimized when the ith item has ri replicas,

where ri is proportional to
√

qi.

In their analysis, the authors assumed a theoretical random probes (RP) search

method: the inquiring node repeatedly probes peers in random and asks for the

item, until the item is found. As the authors argued, the RP method captures the

essential behavior of the blind search strategies usually employed in p2p systems

(such as flooding) because in unstructured networks the topology is unrelated to

the location of data.

The problem with square-root (SR) replication is that it requires knowledge of the

query rate for each item. To alleviate this, the following scheme was proposed: after

each successful search, the item is copied to a number of nodes equal to the number

of probes. It can be shown that, assuming an analogous rate of item removals, this

scheme leads to SR replication.

1Data items can be actual copies of the data or just pointers to them.



2. Optimal replication 3

However, even this scheme is not easily implementable. Keeping track of the

number of queried nodes is simply impractical when the usual flooding-based search

algorithms are used, due to the excessive number of messages required. But even

if a practical way of counting the queried nodes existed, this number would not be

equal to the number of random probes that would have been required. The reason

is that the theoretic RP strategy stops immediately after locating the item. All

practical strategies, however, unleash parallel search paths — if the item is found in

one of the search paths, the rest might continue querying nodes until, for example

a time-to-live (TTL) parameter was exhausted.

In conclusion, practical strategies for approximating the number of probes are

required. In [8], the authors examined a number of such algorithms, namely owner-

replication, path-replication and random-replication. In owner-replication, the in-

quiring node is the only one that makes a copy of the resource — leading clearly

to suboptimal replication. In the other two strategies, the node that provides the

resource creates a number of replicas, equal to the distance (in hops) between the

inquiring and the offering node. The only difference between the last two strate-

gies is where the replicas are placed. Path and random replication approach SR

replication but not quite accurately. The reason is that if the distance between the

inquiring and the offering node is t hops, the RP strategy may not have located the

item within just t probes, unless a single path was used for the search. The authors

used multiple random walkers, which naturally visit a multiple of t nodes. We next

propose a simple but effective scheme.

2.1. Pull-Then-Push replication

The proposed scheme is based on the following idea: the creation of replicas is

delegated to the inquiring node, not the providing node. The scheme consists of

two phases. The pull phase refers to searching for a data item. After a successful

search, the inquiring node enters a push phase, whereby it transmits the data item

to other nodes in the network in order to force creation of replicas for that item. We

call this the Pull-then-Push (PtP) replication. One can conceive variations of the

PtP strategy by utilizing different algorithms for the pull and push phases. Path



4 Creating and maintaining replicas in unstructured peer-to-peer systems

replication as suggested in [8] could be considered as a type of PtP replication,

where the pull phase uses multiple random walkers, while the push phase uses a

single path.

In order to reach SR replication, we need to create a number of replicas equal to

the number of probed nodes2. Consequently, one should utilize the same algorithm

for the push and the pull phases, so that the push phase visits approximately the

same nodes the pull phase visited. Thus, for example, if a random BFS [4] or teeming

[3] search algorithm is used for the pull phase, the same algorithm should be used

to broadcast the item during the push phase.

All practical search strategies produce multiple search routes, and utilize some

form of TTL to limit the search space (and the resulting message overhead). If

during the pull phase the item was found at distance t hops from the inquirer, then

the push phase should also stop after t hops. This means that the TTL utilized

for the push phases should not be set according to the TTL used during pull, but

rather according to t.

However, because of the multiple search routes produced, the tth step may con-

tact quite a large number of nodes. In [3], it was shown that for pure flooding, the

number of messages grows exponentially with the TTL; most of those messages are

sent in the last step of the search. For example, assume a random network with

each peer connected to d other nodes, and a pure flooding strategy, where each peer

propagates the query to all its neighbors. If a search returned an item at the 3rd

step, approximately d + d2 + d3 different peers would have been visited, although

only one node at distance 3 had the item. This means that d + d2 + 1 probes could

be enough and as a result, the best strategy for the push phase would be to use a

TTL of 2, not 3. In general, the TTL used for the push phase should be equal to

the hop distance at which the item was found minus one.

Recapping, our proposed PtP strategy adheres to the following rules:

• After a successful search, the requester pushes the item back to the network.

• The same algorithm is used for both pull (search) and push.

• The TTL for push is equal to t − 1, where t is the hop distance where the

2To be more precise, equal to the number of probes the RP search strategy would require.



2. Optimal replication 5

resource was found.

• All peers receiving the push message create a replica of the item.

In the next section we provide simulation results which confirm that this simple

PtP strategy does indeed lead to square-root replication.

2.2. Experimental results

The PtP strategy has been evaluated through extensive simulations. In our simula-

tor, we construct a network of peers/nodes, where each peer is connected to d other

peers in random, called its neighbors. Each peer offers a number of data items and

also has a fixed number of slots for replicating other items. Initially, all replica slots

are empty. Then, we continuously perform searches originating at random peers, for

random items. After each search, a push phase occurs, where replication is forced

according to the strategy used. If a peer has to replicate an item and has no avail-

able slot, a uniformly random slot is emptied so that room is created for the new

replica. Results are collected after a sufficiently large number of searches; the single

most important metric we extract is the number of replicas, ri, for each item.

The simulator is capable of utilizing a number of different search (pull) strategies.

In all these strategies, a peer that receives a query for a data item, first checks

whether it knows about the item; if not, it propagates the query to its neighbors.

The strategies differ in the set of neighbors where the queries are propagated, and

include:

• Pure flooding. Peers propagate the query to all their neighbors. This is the

strategy with the highest message overhead and the poorest scalability.

• Random walkers or random paths [8]. Each peer propagates the query to

exactly one of its neighbors, in random. A single random path incurs quite

few message transmissions but has the disadvantage of requiring quite a large

number of hops before locating the data item. Multiple walkers searching in

parallel is a variation to decrease the average number of hops: the inquiring

node sends the query to a number of its neighbors, each one unleashing a

random walker.



6 Creating and maintaining replicas in unstructured peer-to-peer systems

• Random BFS or teeming [4, 3]. Peers propagate the query to each of their

neighbors with some fixed probability φ. For φ = 1 we have pure flooding.

Smaller values of φ produce a smaller message count, at the expense of an

increased number of steps to locate an item.

• Teeming with decay [7]. This works like teeming but the probability φ decreases

with the distance from the inquiring node, so as to avoid the high message

count in later steps. If a node is in distance t from the inquiring peer, then

the probability is given by:

φt = φ(1− c)t,

where φ0 = φ and c is the decay parameter. For c = 0 we have simple teeming,

while if in addition φ = 1, the strategy is pure flooding. The higher the value of

c, the faster the probability decreases and the fewer the message transmissions

become.

The same algorithms are used for the push phase. Of course, in this case the peers

do not receive queries but just messages/items which they propagate immediately

to some of their neighbors, according to the method used.

Figure 1. Distribution of replication ratios under various replication strategies

In Fig. 1, we present results for a network of 1000 peers where each one has

storage space for 10 items, out of a total of R = 100 different items. The replication

strategies employed are owner, path, and PtP replication. For PtP, we experimented



3. Consistency maintenance 7

with all the algorithms presented above and with different parameters. In Fig. 1,

we show the results for two of them, one with 5 random walkers and TTL = 10 and

one with teeming, TTL = 5 and a decay parameter of c = 0.4. The other algorithms

exhibited the same behavior, and were omitted for clarity.

The plot shows the normalized number of replicas (ri/R) for each of the items.

To make the square-root trend clearer, for this particular plot, we have assumed

query rates proportional to the id of the item, so the x-axis could also be named

‘query rate’. The plot includes the optimal square-root distribution (SR), drawn

with a thick line. We have also experimented with other query rates, including

Zipf-like ones, and the results were identical.

It should be clear from Fig. 1, that owner replication is far from the optimum.

Path replication is better, but does not result in SR replication. Both PtP strategies,

although different by nature, led to almost perfect SR replication. This also comes

to confirm our intuition that the exact strategies used for the pull/push phases of

PtP are not very important, as long as they are the same in both phases.

3. Consistency maintenance

Replication induces the need for consistency maintenance, that is, keeping the repli-

cas up to date whenever changes occur. For the discussion that follows, we assume

that each data item has a single owner, which is also the single peer that is allowed

to modify the item3. Upon modification, the replicas which have been spread over

the network must be made consistent with the most recent version of the data item.

The problem of consistency maintenance appears in many contexts [9, 10]. In

[2, 6], various strategies were proposed in the context of peer-to-peer systems. In

general, updates of a data item are broadcast by the owner and/or are searched for

by the peers that have the replicas of the items. Thus, solutions to the consistency

maintenance problem utilize:

• owner-initiated update push, so that peers with replicas are communicated the

3Actually, as noted in [6], others could also be allowed to modify it, by first notifying the owner,

and then letting the latter update the replicas.



8 Creating and maintaining replicas in unstructured peer-to-peer systems

update,

• replica holder-initiated pull, either when needed or periodically, so as to dis-

cover new updates, if any, or

• a combination of the above.

It has been shown that usually a combined push/pull strategy (P/P for short)

constitutes the best tradeoff between consistency levels and message overhead. The

owner performs a limited push of the updates and the peers pull periodically, just

in case the owner-initiated push did not reach them.

A basic problem in these P/P protocols is when should a peer pull. Pulling too

often creates substantial message overhead. Pulling infrequently may result in miss-

ing important updates. Adaptive pull strategies try to minimize the communication

overhead, while maintaining good consistency levels by having each replica holder

pull at specific intervals. These intervals are determined by a time-to-refresh (TTR)

parameter, which is adaptively adjusted depending on the previous pull results. If

after the last pull the item was found unchanged, TTR is increased so as to pull less

frequently; otherwise, TTR is decreased so as to check for updates more often.

Our premise is that efficient consistency maintenance can be achieved only in

conjunction with efficient replication. That is, if the number of replicas and their

placement is well-planned, then the algorithms for maintaining them under updates

can be much more effective. To this end, we propose a novel push/pull update

strategy that utilizes knowledge about replica creation so as to improve update

efficiency.

Our experiments have shown that consistency maintenance can be achieved quite

efficiently when replication is done in the optimal way, using the PtP strategies.

Optimal replication not only minimizes the average search costs but also reduces

the average update costs when combined with a suitable update strategy.

3.1. Updates under optimal replication

From now on we assume that items have been replicated in the network and that

replication has been done using the PtP strategy. As discussed earlier, the PtP

strategy requires that, after a successful search, the peer that found the item creates



3. Consistency maintenance 9

a number of replicas, through a replicate-push phase, or R-push for short, with an

appropriate TTL value. The basic idea now is to let this peer be held “responsible”

for updating the replicas it created, as explained next. With respect to a particular

data item, the nodes in the network fall into one of the following three categories:

• owner : the single peer that produces new versions of the data item

• responsible: a peer that searched for the item in the past (and thus forced the

creation of replicas of the item)

• indifferent : a peer that was forced to hold a replica of the item.

The strategy, which we call PtPU, is a combination of push/pull. The owner

broadcasts new updates to the network, through an update-push, or U-push for

short. Whenever a “responsible” peer receives a new version of the item (either

through an update-pull that it itself performed or an U-push that the item owner

initiated), it undertakes the task of updating the replicas it created. In other words,

it performs a U-push itself for the new version of the item. Moreover, this U-push

should employ the same TTL parameter as the one used in the R-push, thereby

reaching approximately the same nodes that were previously reached in order to

create replicas.

This scheme has the potential of reducing the overhead of consistency mainte-

nance significantly. A peer that is “responsible” for a resource should check (pull)

frequently for newer updates of the item, using a smaller TTR value. Peers which

were forced to have replicas of this item (“indifferent” peers) do not need to pull4,

relying on some “responsible” peer to provide an update for them.

Summarizing, our strategy behaves as follows:

• The owner pushes the new versions of the item

• “Responsible” peers:

– pull periodically,

– push any updates they become aware of to their neighborhood exactly as

when they created the replicas (i.e. with the same parameters as in the

push phase of PtP).

4Or, they could pull quite infrequently (cf. the discussion in Section 4).



10 Creating and maintaining replicas in unstructured peer-to-peer systems

• The other (“indifferent”) peers do nothing; they rely on “responsible” peers

to keep them updated.

For the periodic pulls of the “responsible” peers, we follow an adaptive scheme

[6], whereby the time-to-pull-next (TTR) is decreased or increased according to the

perceived version of the item. If the last pull did not return a newer version, the

estimate for the next TTR will be increased by some constant:

TTRe = TTR + C.

If, on the other hand, a more recent version of the item was found, the next TTR

should be decreased. It should be decreased in proportion to the difference, D,

in versions between the pulled item and the one the peer had — the higher the

difference D, the more the missed updates, and hence the more frequent the pull

(or, equivalently, the higher the decrease in TTR) should be. Thus, the estimate for

the new TTR is:

TTRe = TTR/(D + β),

where β is a parameter that provides some reduction in TTR in the case of D = 1.

The next TTR is a weighted average of the current TTR and the estimate, as

follows:

TTR←− wTTRe + (1− w)TTR,

where, w is a parameter determining the rate of change — smaller values of w make

TTR change very slowly, while larger values make TTR adapt quickly to variations.

3.2. Experimental Evaluation

We have evaluated the performance of both the P/P and the PtPU strategies through

extensive simulations. The network of peers is constructed and the data items are

replicated using the PtP strategy as described in Section 2.2. After creating the

replicas, we initiate simulation sessions. Each session runs for a number of rounds

(turns). During each turn, the owner of an item creates a new version of the item

with a given update probability pu (update rate) and pushes it to the network. In the

P/P strategy, all peers with replicas pull for new versions using adaptive pull. With



3. Consistency maintenance 11

PtPU, only the “responsible” peers pull using, again, adaptive pull. In addition,

the “responsible” peers push any received updates to their neighbors using exactly

the same strategy used when the replicas were created (for example, using teeming

with the same decay and TTL values).

We evaluate the performance of the update strategies with respect to two parame-

ters: the achieved consistency and the associated message overhead. The consistency

level is measured as the percentage of replicas that are up-to-date.

We experimented with different strategies for propagating the updates (i.e., pure

flooding, random walkers, teeming and teeming with decay). The results attained

were qualitative the same, thus, we report here only the results obtained when using

teeming with decay, which is the method that gives us the most flexibility in terms

of tuning the extend of the propagation. In particular, we present results when using

three variations of teeming as summarized in Table 1. Wide teeming visits more

peers, while narrow teeming produces smaller message overhead.

Table 1. Versions of teeming

Extend of teeing c (decay) TTL

Wide 0.1 5

Medium 0.3 5

Narrow 0.4 4

Regarding the adaptive pull, the tuning of its parameters is beyond the scope

of this paper. A set of values that were found to work well in adapting the TTR

is: w = 0.8, b = 0.5, and C = 10 turns, and those are the values that were used

in all the experiments presented here. The reader is referred to [5, 9] for a detailed

discussion of the topic.

3.2.1. Performance with respect to the update rate

The goal of the first set of experiments is to depict the behavior of plain P/P

and PtPU under different update rates. We consider two cases: frequent updates

(pu = 0.1), and infrequent updates (pu = 0.025).



12 Creating and maintaining replicas in unstructured peer-to-peer systems

Figure 2. Performance of the two strategies under high update rates.

The owner pushes the updates using narrow teeming. The reason for using such

a rather limited push is for making the effect of pull more clear5. To discover a

general trend, we let both strategies utilize exactly the same pull characteristics

(i.e. the same variations of teeming) and see how they compare with each other.

The results are shown in Fig. 2 for high update rates and in Fig. 3 for infrequent

updates. Each strategy is simulated for pulling with wide, medium and narrow

teeming. In the case of high update rates, peers are forced to a high pull overhead

in the P/P strategy so as to be frequently updated. In the PtPU case, though, pull

is limited. Push messages are more since the “responsible” peers also propagate

any updates they receive. For a low update rate, it is easier for any strategy to

keep good consistency levels, utilizing fewer messages. Even in this case, though,

PtPU achieved consistency levels above 92%, while plain P/P is, at best, a little

5A wide push would cause excessive message overhead and would keep most of the nodes

updated, which in effect would make the pull phases useless.



3. Consistency maintenance 13

Figure 3. Performance of the two strategies under low update rates.

above 80%. PtPU consistently outperforms P/P by any measure. It results in better

consistency levels and, at the same time, with fewer messages.

3.2.2. Comparison of the two update policies

In this set of experiments, we compare further the two methods. In particular, we

show (i) the level of consistency achieved when the two methods produce the same

number of messages and (ii) the number of messages required by each method for

achieving the same consistency level.

Here, we consider a medium update rate (pu = 0.05). For each strategy we

repeatedly alter the pull parameters until we achieve the same value for the metric

of interest (i.e. the consistency level or the number of messages) among all strategies.

The results are presented in Figs. 4–6. In the plots, we also consider the perfor-

mance of P/P and PtPU, for the case where the creation of replicas does not follow



14 Creating and maintaining replicas in unstructured peer-to-peer systems

the PtP strategy. Instead, after the replication phase, the replicas get scattered

across the network. Our goal is to show that loosing the locality induced by the PtP

strategy results in worsening the performance of both the P/P and PtPU strategies.

Note that the number of replicas is kept the same; what differs is their placement

in the network. The strategies under random placement of the replicas are marked

with an “(R)” in the plots.

In Fig. 4 the owner uses a narrow push to propagate the updates. We run the

simulator tuning the pull parameters until all strategies achieved approximately the

same consistency level of 82%. The resulting message counts show that plain P/P

required 43% more messages than PtPU to achieve the same consistency.

In Fig. 5 the owner uses a medium push to propagate the updates, so as to

make it easier for the inferior strategies to achieve higher consistency levels (but,

of course, with higher message overhead). The achieved consistency levels where

approximately 95%. Once again, plain P/P required 46% more messages than PtPU.

In Fig. 6 all strategies generated approximately 62000 messages. PtPU required

a narrow pull while P/P’s adaptive pull resulted in a wider teeming. The consistency

levels observed show vividly the superiority of the PtPU strategy, which managed

to achieve more than 90% consistency.

Another general conclusion from these plots is that, indeed, the random place-

ment of replicas makes the performance of P/P and PtPU worse. This validates our

intuition that the inherent locality of replica creation through PtP results in more

efficient updates.

4. Discussion

In this paper, we consider replication in unstructured peer-to-peer systems. The

idea behind our approach is that developing protocols for consistency maintenance

which utilize knowledge about the strategy used to create the copies increases the

efficiency of such protocols. Based on this, we develop a simple strategy for achieving

square-root replication, which was previously proved to be optimal for unstructured

peer-to-peer systems, and a consistency maintenance protocol that is tuned for our

replication strategy.



4. Discussion 15

Figure 4. Comparison of the number of messages when all strategies result in con-

sistency levels of approximately 82%.

Figure 5. Comparison of the number of messages when all strategies result in con-

sistency levels of approximately 95%.

Figure 6. Comparison of consistency quality when when all strategies generate the

same number of messages.



16 Creating and maintaining replicas in unstructured peer-to-peer systems

Our experimental results show that our protocols achieve significantly better

consistency for a smaller communication cost than protocols that do not exploit

knowledge of the underlying replication strategy.

In our experiments we have assumed that the network does not change during

the replication and update phases. We are currently studying the behavior of our

strategies in more dynamic settings where peers enter or leave the system at will.

In such an environment the PtPU strategy may encounter the following problem: a

“responsible” peer could depart from the network, leaving thus a number of “indif-

ferent” nodes without anybody to update their replicas for them. Thus, it is almost

imperative that “indifferent” peers should pull, too, just in case the “responsible”

node is not near them anymore.

References

[1] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer
Networks,” in Proc. ACM SIGCOMM’02, Aug. 2002.

[2] A. Datta, M. Hauswirth, and K. Aberer, “Updates in highly unreliable, repli-
cated peer-to-peer systems,” in Proc. of ICDCS 2003, 23rd Int’l Conference

on Distributed Computing Systems, Providence, Rhode Island, May 2003, pp.
76–85.

[3] V. V. Dimakopoulos and E. Pitoura, “Performance analysis of distributed
search in open agent system,” in Proc. IPDPS ’03, International Parallel and

Distributed Processing Symposium, Nice, France, May 2003.

[4] V. Kalogeraki, D. Gunopoulos, and D. Zeinalipour-Yazti, “A local search mech-
anism for peer-to-peer networks,” in Proc. CIKM ’02, 11th ACM Int’l Con-

ference on Information and Knowledge Management, McLean, Virginia, USA,
Nov. 2002, pp. 300–307.

[5] J. Lan, “Cache Consistency Techniques for Peer-to-Peer File Sharing,” MSc
Thesis, Dept. of Computer Science, Univ. of Massachusetts, Tech. Rep., June
2002.

[6] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham, “Consistency maintenance in
peer-to-peer file sharing networks,” in Proc. of WIAPP’03, 3rd IEEE Workshop

on Internet Applications, San Jose, CA, USA, June 2003, pp. 76–85.

[7] E. Leontiadis, V. V. Dimakopoulos, and E. Pitoura, “Cache Updates in a Peer-



References 17

to-Peer Network of Mobile Agents,” in Proc. P2P2005, 4th Int’l Conference of

Peer to Peer Computing, Zurich, Switzerland, Aug. 2004, pp. 10–17.

[8] D. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Un-
structured Peer-to-Peer Networks,” in Proc. ICS’02, 16th ACM International

Conference on Supercomputing, New York, USA, June 2002.

[9] R. Srinivasan, C. Liang, and K. Ramamritham, “Maintaining temporal co-
herency of virtual data warehouses,” in Proc. RTSS ’98, 19th IEEE Real Time

Systems Symposium, Madrid, Spain, Dec. 1998.

[10] B. Urgaonkar, A. Ninan, M. Raunak, R. Shenoy, and K. Ramamritham, “Main-
taining mutual consistency for cached web objects,” in Proc. ICDCS 2001, 21st

Int’l Conference Distributed Computing Systems, Phoenix, AZ, USA, Apr. 2001.


