Department of Computer Science, University of loannina, TR-2009-22, October 12, 2009

Skeletal Rigid Skinning with
Blending Patches on the GPU

Andreas A. Vasilakis, loannis Fudos
Department of Computer Science - University of loannina
loannina, Greece
email: {abasilak, fudos}@cs.uoi.gr

Abstract

In this paper, we present a novel skeletal rigid skinningagagh. First, we introduce a
skeleton extraction technique that produces refined skedetppropriate for animation
from decomposed solid models. Then, to avoid the artifagteated in previous rigid
skinning approaches and the associated high training, sestdevelop an efficient and
robust rigid skinning technique that applies blending pescaround joints. To achieve
real time animation, we have implemented all steps of oud r&inning algorithm
on the GPU. Finally, we present an evaluation of our teclescagainst four criteria:
efficiency, quality, scope and robustness.

Keywords: skeleton extraction, rigid skinning, character animati@ameshing, GPU im-
plementation, real time

1 Introduction

Rapid realistic animation of articulated characters isyaigsue in video games, crowd sim-
ulations, computer generated imagery films and other agpics of 3D computer graphics.
To achieve natural animation of articulated charactersee& etuitive mesh deformations,
often called in this context skinning techniques, that iowervisual fidelity, computational

efficiency and robustness of the character animation pso&k®letal animationdue to its

versatility and ease of use, is one of the most popular aiemé&tchniques. Hence, in this
paper we focus on skinning techniques for skeletal animatf@rticulated objects.

In skeletal animation, a representation model consistd téast two main layers: a
highly detailed 3D surface representing the charactkig and an underlyingkeleton
which is a hierarchical tree structure jofnts connected with rigid linkskfone$ providing
a kinematic model of the character. Quite often, it is commpiattice to add a third layer
to support realistic effects of the character's muscutatuh skeleton has usually much
simpler structure than the original object that aims at $iiyipg the skinning process by
avoiding the tedious task of animating each vertex indepetigl The process of extracting
a skeleton is calledkeletonization

There are two approaches to obtaining a representatiomapgte for skeletal anima-
tion:

e An expert provides a skeleton and a mesh for the object. Thecampute a de-
composition based on the skeleton, so that the decompostimompatible with the
skeleton (see e.qg. [49)]).

e The user provides a mesh and a decomposition is either @a\ag an expert or is
extracted automatically based on the morphology of theadMeresh. Then we com-
pute a skeleton that is compatible with this decompositida. follow this approach
because it can performed fully automated without any ugenmntion.

A skeleton acts as a special type of deformer transferrgugdtion to the skin by assigning
each skin vertex oneigjid skinning or more (inear blend skinning LBS) joints as guides.
In the former case, a skin vertex is fixed in the local coordirsgstem of the corresponding
bone following whatever motion this bone is subjected tas Téchnique suffers from inher-
ent flaws caused by elongations and inter-penetrationscedly in areas around joints. In
the latter case of LBS (also known siseleton subspace deformation (SSI2)ytex blending
or enveloping, each skin vertex is assigned multiple influences with @ased blending
weights for each joint. This scheme provides more detaitgdrol over the results. The
deformed vertex is computed by a convex combination of threesponding joints. The
generated meshes exhibit volume loss as joints are romdreme angles producing non-
natural deformations, such as the collapsing joint and #melg wrapper effect(Figure 1).
Despite these, variations of this method are widely usedah time computer graphics
applications because they are simple and easy to implemeaPtJs.

2

Figure 1: “Collapsing elbow” defect (left) and “candy-wysgy” defect (right) [45].

Vertex weight tuning tends to be a tedious and cumbersonkewhgh is applied on a
single mesh. [55] presented a direct weight manipulatiohwdich is time-consuming and
not easily applicable to other skinning methods. Other odthesult in serious flaws on
characters with high-resolution meshes due to the irregyla the surface weights [69] and
the skin resolution dependence [35]. More recently, exarplsed approaches have been
proposed to infer the character articulation from a trajrset of example poses [33, 63].
Example-based fitting is a complicated iterative processtdihe implicit dependencies of
the deformed vertex positions. Researchers have idensifigubtential drawbacks of these
schemes the need for multiple example meshes and the catgpé&avoiding over-fitting
caused by under-determined weights. Also, such techniepgesre decomposition of the
articulated figures into several component meshes. Thishsie/ever does not affect the
real time feasibility of the process, since it can be pertxirbeforehand as a preprocessing
step and stored as part of the character representation.

For the purposes of seamless character animation we ainild@inigua system that elim-
inates the skin attachment (weight fitting) part and overe®iBS shortcomings by pro-
ducing a single mesh for each frame. To support this funatitypwe present an integrated
skeletal rigid-skinning framework that is given as inputte@cter representation and a
motion description of its extracted skeleton, and produxsral deformations. Given a
static character mesh, an effective decomposition methogtl], 19] or an experienced user
partitions the mesh into visually meaningful or otherwigpprpriate with regards to the
application components. Additionally, a functional sketeis extracted using centroids and
principal axes [47] of the character's components by perfog a depth-first traversal of the
skeleton hierarchy tree. We refine the produced skeletamesets to derive better skeletal
representations that are more appropriate for our apjitafhen, we use rigid skinning

Figure 2: Robust rigid skinning. From top left to bottom rigthe initial model; rotating the
lower part; removing points; adding points; constructinglust blending patch between
the two components.

by assigning each skin vertex to an influence bone to achieghmnimation avoiding thus
weight fitting and training pose set production costs. Wiophice a novel method to elim-
inate self-intersection flaws by performing alternativieiitive deformations in four steps:

(i) Remove skin vertices of the overlapping components.

(i) Add new vertices in this area to fill in the generated gg@mpproximately preserving
local volume.

(iif) Construct a blending mesh that produces a smooth skifase by using a robust
triangulation method.

(iv) Compute and adjust surface normal vectors.

Figure 2 illustrates this process.

We have designed and evaluated our framework against faeriar scope, quality,
performance and robustness for the proposed skeletamzantid skinning algorithms. In a
nutshell our work makes the following technical contribuats:

4

e We explore a skeletonization strategy that uses a dynaragr@mming algorithm to
extract high-quality skeletal morphs using kernel cenis@nd principal axes of the
character’s modules.

e We introduce new approximate refinement methods to impiw@toduced skeleton
morphs using local and global criteria.

e Our skeletonization method is independent of the charaatemponent size, has no
convexity requirements and is invariant under distortiod deformation of the input
model which makes it applicable to several research areisasucharacter animation,
shape recognition and collision detection.

e We present an advanced real time rigid skinning method thatcomes LBS arti-
facts working on the overall mesh. We introduce novel bleggiatch construction
techniques that preserve the initial volume of the joint angure mesh robustness.

¢ All the skinning and animation steps have been implementeiti®@ GPU. This real-
ization achieves considerable parallelization and hesaktime performance.

A preliminary version of this work was presented in [66]. Wevé added a more complete
description of the skeleton extraction methods offeringkigapound material for principal
axis and kernel centroid computations. Moreover, we ptes@letailed evaluation of four
guality measures of the proposed deformation techniqueeasdithg volume conservation
and mesh smoothness. We have further improved the testiiwg$s accuracy by including
one extra plane-point test in the step of removing overlagppmeshes. Finally, we provide a
full GPU realization of the entire skinning algorithm, whienables us to achieve real time
performance while increasing significantly the quality loé foroduced result as compared
to previous methods.

The rest of this paper is organized as follows. Section 2igesva survey of related work
while Section 3 gives a brief overview of background defams and tools. Sections 4 and
5 describe the skeleton extraction and refinement techsidexeloped for the purposes of
character animation. The basic rigid-skinning method gterth its GPU implementation
is outlined in Section 6. Section 7 provides an analytical arperimental evaluation of
several quantitative and qualitative characteristicsusfroethods. Finally Section 8 offers
conclusions.

2 Related Work

There is an abundance of research work in the literaturedbktes the skeleton extraction
and skinning of 3D objects from different perspectives. \W&eus on recent developments
most closely related to animation.

2.1 Skeletonization

Skeletonization algorithms are roughly classified basedtoether they process the bound-
ary surface gurface methodor the inner volumevolumetric methods

Surface methods Medial Axis Transform (MAT]L2] is a popular topological skeletal rep-
resentation technique which consists of a set of curvestwioigghly run along the object’s
middle. MAT-based representations suffer from pertudmatind noise dependence, high
computation cost for 3D [18]((n?log n) in worst case [62]), shape complexity (because
in 3D they consist of surface elements). Researchers haypoged approximate MAT to
overcome some of the above inefficiencies, using Vorongjrdia [2, 21] or dual Delaunay
triangulation [4]. However MAT based skeletons are stiliwell fitted for character anima-
tion, i.e. for representing efficiently the bone hierarchgarticulated figureReeb graphs
are a fundamental 1-D data structure for representing théguoation of critical points
and their relationships in an attempt to capture the intitegological shape of the object
[64, 67, 57, 8]. However, a re-meshing technique [6, 31] isallg required to generate
accurate skeletons.

Volumetric methods. Several methods generate skeletons by constructingetistield
functions by means of the object’s volume. In this directiesearchers have proposed using
distance transform [69], repulsive force field [48, 17] aliedbasis [51]. Other volumetric-
based techniques make use of a multi-resolution thinnionggss applied on the model’s
voxelized representation [27, 50]. Although accuratehsmethods are usually very time
consuming and they cannot be applied to animation sincediluenetric information needed
is not usually part of the animation model.

Other methods Other methods use different approaches to achieve moweadeand ef-
ficient skeletonization. [60] presents a method for exingca hierarchical, rigid skeleton
from a set of example poses. Researchers also generatmakdlased on mesh contraction
[46, 7]. [35] extracts a skeleton using a hierarchical mestochposition algorithm. Finally,

[47] proposed an iterative approach that simultaneoushegges hierarchical shape de-
composition and a corresponding set of multi-resolutiogletions. We have adapted the
technique presented in [47], that was initially targetedeteerse engineering, for the pur-
poses of character animation.

2.2 Skinning

We focus on skeleton-driven skinning introduced by [56]ndar blend skinning (LBS) is
the most widely used technique for real-time animation iibespf its limitations [72] due
to its computational efficiency and straightforward GPU liempentation [44]. LBS was
initially presented in the game development community g?l], LBS determines the new
vertex position by linearly combining the results of thetegrtransformed rigidly with each
influence bone. A very high performance LBS method using &éexeshader program is
proposed in [24]. Further parallelism achieved in [59] gsmultiple passes to a fragment
shader. GPU progressive skinning [58] extends LBS to suppoontinuous level of anima-
tion detail.

Recent skinning algorithms are classified based on whetkgnise a single input mesh
(Geometric methodor a training set of pose&kample-based methgdsf input models.
Further, many methods have been devised for detailed geicndeformation combined
with dynamic deformation using physical constrain®hysics inspired methofis In the
first case, vertex weighting is usually specified manualtythle second case, researchers
have proposed to automatically approximate realistic deiiormation by training weights
with one [9] or multiple input meshes [34, 33]. Our rigid sking approach falls under
geometric class of algorithms introducing a novel versatibbust and efficient blending
approach based on rational quadratic Bezier patches.

Geometric methodsrevert to non-linear blending of rigid transformationscardeforma-
tion is inherently spherical. Numerous proposed methods heplaced the linear blend-
ing domain with simple quaternions [30], [1] or have progbsaatrix operators [52], log-
matrix [16] operators, spherical blending (SBS) [39] andldguaternions (DQS) [37].
SBS and DQS has been implemented on the GPU achieving pamocercomparable to
LBS [3, 37]. The drawback of DQS is that dual quaternions dbexdst in most existing
graphics libraries yet. A promising research directiorhviite same principle (no weights
used) as our approach was proposed by [75]. They used thet@kéd control the simplices

defining the model instead of the vertices yielding smoahsitions near joints. Another
alternative recently explored technique is the use of 3B-foem character articulation us-
ing sweep-based [32, 77] or spline-based techniques []6,KZhan et al. [38] introduce
a method for automatically constructing skinning appradions of arbitrary precomputed
animations, such as those of cloth or elastic materialsallyir{36] demonstrates that any
nonlinear skinning technique can be approximated to arrarpidegree of accuracy by
linear skinning, using just a few samples of the nonlineanding function (virtual bones).
Example-based methodsemove artifacts by correcting LBS errors while the storage
computation costs increase. Initial approaches combiigéd skinning with interpolation
examples using radial basis functions [45, 65]. EigenS&0] bsed principal component
analysis for approximating the original deformation mdol@sed on GPU vertex program-
ming. Multi-Weight Enveloping (MWE) [71] and Animation Spa[53] are similar methods
that introduce more weights per influence bone to providesmpoegcise approximations and
additional flexibility. [33] found the Animation Space tethue to consistently perform
better than LBS and MWE while MWE also suffered from oveliffgt In addition, [54] in-
troduced extra bones to capture richer deformations thestdndard LBS model. A recent
research work proposes a replacement of linear with rotaticegression when examples
are available [70, 73]. Finally, [15] employs efficient dugglaternion transformation blend-
ing to achieve real time viewpoint adaptable animation.

Physics inspired methods Physics inspired methods simulate realistic skin motiath w
high degree of realism [14, 29, 78] or add secondary defoomaenriching skeleton driven
animations [43, 68, 63], by paying the price of increasingsiderably the computational
complexity.

3 Preliminaries

Let CH(C') be the convex hull of a component that consists of: triangles: 7% =
{(p*,¢*,r*),k = 0,1,...n}. Then, the area and the centroid of #th triangle are given
respectively byt = 1|(¢" — p¥) x (r¥ — p*)| andm* = L(p* + ¢" + r*). Finally, the total
area of the convex hull is denoted By 7(©) = 3~ o*.

Joint Boundary. Joint boundaries are created when a component is splgiftacomponents
during mesh segmentation. We defingast boundarythe common (joining) points of two
adjacent components (Figure 3). LB (C) be the set of the joint boundary centrofds

8

Joint boundary centroid Joint boundary centroid

Figure 3: The generated joint boundary centroids betweesnElhe adjacent components
P2 and P3.

of a component’, BC(C) = {bcy, ..., bc,}, wheren is the number of joint boundaries of
C.

Kernel Centroid. Thekernelof a component is the locus of its internal points from which
all vertices are visible. Each facet of the component defaremteriorhalf-spacewhere
half-space is either of two parts into which a plane divides3D space. The kernel is the
intersection of all such inner half-spaces. The simpleroghtomputation of a kernel may
return nonintuitive results when applied on non-uniformigtributed points. Instead, we
evaluate the kernel centroid as the weighted average ofidrgyte centroids of its convex
hull (since kernel is a convex set) weighted by their areanddethe centroid of the convex
hull is denoted byn“?(©) and is given bym©#(©) = %c“;f;f. Efficient algorithms for
computing the convex hull of a point set and the intersectiba set of half-spaces are
publicly available. In this work we have used tiieull implementation [10].

Principal Axis. The principal directions are three mutually perpendicabes of a rigid
body and may be used to find an approximation of the objectsmal bounding box axes.
To derive principal directions, we use Principal Comporfemlysis in a covariance matrix
computed across the entire faces of the primitives insteasing only the vertices [28]. The
principal axis is the eigenvector of the covariance matrintclv corresponds to the largest
eigenvalue. The covariance matrix for the aforementiorzese ¢s given by:

v ab(OmEmk +TF . Tk
_ Zk_o (1 110 i J) m;hmcH(C) (1)

12ACH(C) v J

Child 1

s

O : Component centroid

. : Joint boundary centroid

: Skeleton line

Parent - Root

Child 3

g ;

(b)

Figure 4: (a) A simple example of a skeletal representatginguithe Boundary Method.
(b) An example that illustrates the inappropriate skeledwimaction that arises when this
method is applied to non convex components.

4 Skeleton Extraction

We have built on techniques introduced by [47] that produeésed local skeletal morphs
from the components of modular models. We have adaptedtibeseiques for the purposes
of our application and we have introduced appropriate refergs of the produced skele-
tons. The global skeleton of the character is then recoetsilby connecting the refined
skeleton components.

4.1 Previous Approaches to Skeleton Extraction
4.1.1 Boundary Method

A straightforward approach to building the skeleton of a ponent is to connect the joint
boundary centroids. Note that for the component identifseabat the skeleton is derived by
connecting the component centroid with the joint boundantiids. Although the method
is very efficient it may generate unacceptable skeletons fresimple non convex objects.
Its major drawback is that it may produce skeletal segmérasintersect arbitrarily the

component boundary (see for example Figure 4).

10

Parent

Child 2

Child 1

-

— .

@ (b)

Figure 5: (a) A simple example of a skeletal representatginguthe Centroid Method.
Skeleton of componen?, does not capture its shape accurately. (b) The Boundaryddeth
artifact of Figure 3(b) addressed using the Centroid Method

4.1.2 Centroid Method

An improvement over the boundary method is to build localetk® segments by connect-
ing joint boundary centroids to the center of the compomsengss [47]. Sometimes, how-
ever, the centroid may lie outside the component boundargyming erroneous skeletons.
To overcome this shortcoming we propose to use the centfatd kernel forstar-shaped
components (polyhedra with non-empty kernel)(Figure 5).

In non star-shaped components the center of their massdsinstead. This approach
is efficient and addresses some of the flaws that occur in thedasy method. However,
frequently it does not capture the component shape acturate

4.1.3 Principal Axis Method

In [47], the authors proposed to overcome failures of previmethods by extracting a
skeleton from a component by connecting the joint boundantroids to a principal axis
segment. To achieve this, the principal axis is segmentédaensegments of equal length
by defining a number of equidistalimk pointson the axis. This method maps the joint
boundary centroids on the principal axis by minimizing tbitinterconnection length and
the number of link points used. This is reduced to an optitiimranatching problem. The
final skeleton of the component contains line segments tmatect joint boundary centroids
to link points and line segments that interconnect link pgin

11

: Principal axis
: Skeletongrouping

: Skeletonconnectin 9
: Joint boundary centroid|

: Skeletal joint

: Projection point

Figure 6: Skeleton extraction based by the principal axithog

4.2 Optimized Skeleton Extraction

Our approach adopts and improves this skeleton extragamtque for use in an animation
context. To ensure that skeleton segments have the leasbl@istersection with the com-
ponent border we use as major axis an axis parallel to theipahaxis that goes through
the kernel centroid of the component. We denote this majgrssegment aga. In addition,
we select the principal axis segment of the convex hull thsitles within the interior of the
component instead of the one that lies within the convex hull

Moreover, the method outlined in [47] depends on a scaldrdabfines the minimum
skeleton linkage length, making it not versatile. Since ¢hedinality of the link points
varies from 1 to|BC|, we propose to subdividea in a number of uneven segments by
picking as link points the projections of the joint boundagntroids orpa. Let P,,(bc;)
be the projection of a joint boundary centrdid on pa. If this projection lies outsidea
then we use instead the end pointyaf that lies closer to the projection. Then, we sort
the joint boundary centroids according to their closesjqution points by observing that
two centroids are likely to be grouped when their projectethis are close enough (see
Figure 6).

Our matching algorithm uses a dynamic programming condegsted on novel score
functions which aim at minimizing the total interconneatiength and the number of link
points used and maximizing the length of the utilized Section 4.2.1).

After grouping has been performed, we create the set of tskekdges. Beyond the
standard connections between the joint boundary centamidshe link points and line seg-
ments that interconnect link points, we use extra skeledge® based on the mapping result
(Section 4.2.2).

12

Finally, we propose to add four more joints which represhatttvo ends of the other
axes segments hence adding more topological informatiskel@tal representation.

The principal axis algorithm is more expensive to computntthe other two meth-
ods due to the principal axis and kernel centroid computdiiat achieves a higher quality
skeleton by encoding the topology of the character’'s shame effectively.

4.2.1 Grouping Algorithm

In this step our goal is to group the sorted joint boundarytrogas so as to minimize the
total mapping length and the cardinality of the set of linky® (score functiorF;.), while
at the same time maximize the length of the used principal @dore functiorf,). First,
each group contains only a joint boundary centroid.

The main concept behind the score function for grouping gption of a joint bound-
ary centroid sethc;; = (bc;, ..., bc;), it should be monotone on the distance among joint
boundary centroids.

First, we compute their link point on the principal axis as thean of their projections.
By doing so, the sum of their distances to the principal axisinimized,

i:i Iy pa(bck)
|besj]

Lpa(bcz-j) = (2)

Let d(p1, p2) be the Euclidean distance between pgntand pointps. ThenV be, €
be;j, we measure their interconnection cost with respect togrosiping. We denote this
asnormalized variatiorof the joint boundary centroid and is evaluated as the nozexl
distance of the joint boundary centroid to the principakaxi

d(bcg, Lpa(bcij)) — dpmin(bek)

V(bey) = o (00n) — donon(be) , Where (3)
dmm(bck) = d(bck, Ppa(bck)) and (4)
Amaz(bex) = max {d(beg, be)} (5)

1<I<|BC|

So, the total mapping length cost among these joint bouncimyroids and the principal
axis is computed as the average of their normalized vanstio

13

iV (be)

[Zen

V(bcz-j) = (6)

Moreover, we compute the normalized length of the princgas which is vanished after
merging these joint boundary centroids. This factor equeetise length of the principal axis
which is generated among their projections divided by thgtle of the maximum principal
axis segment that can be constructed,

d(Ppa(bci), Ppa(bey))
d(Ppa(ber), Ppa(beipey)
Sometimes, the value of the maximum constructible prin@gés length is very small as
compared to the actual length pd. In that particular case, the value of the lost skeleton
score will be very large, which is undesirable since the bekittion is to group joint bound-
ary centroids to one link point. Hence, we set the maximunstrantible principal axis
length toc|pa|, wherec is an experimentally determined constanfdn, 0.2].

(7)

palost<bcij> =

Definition 1. Thenormalized merging score functidt. for a projection setc;; is defined
as the average of the total distance cost plus the ratio gthesf the principal axis we lose,

V(bcij) + palost(bcij)

Fbc(bcij) = 9 (8)
The main idea of the score function for not merging two setjigbgroupsG,. = (bc?, . .., bcy)
andG, = (bc/, ,, ..., bcj), is that as the distance between these groups becomes vaity sm

the corresponding score function value increases.

The total mapping length cost between the joint boundaryroets of these groups and
the principal axis is computed again as the average of tlemalized variations which
have been computed in previous steps (dynamic programming)

V(Gx, Gy) = V(bcll) + V(bcl+1j) (9)

Moreover, we define a factor that expresses how these tw@gmarticipate quantitatively
to the skeleton construction. This factor equals the naemadllength of the principal axis
which is generated between these groups which is the destamm the last projection point
of the first group to the first projection point of the secondugr divided by the length of
the maximum principal axis segment that can be constructed,

14

Group 1 = {bc, , bcy} Group 2 = {bcs}

Figure 7: An example of grouping with three joint boundarptceids.

d(Ppa(bCf)a Ppa(bc?-rl))
d(Ppa(bcl)v Ppa(bC\BCI>

nga = (10)
Definition 2. The normalized separating score functidr, for two groups is defined as
the average of the sums of their total distance cost plusahetement of the normalized
utilized principal axis,

V(Gs, Gy) + (1 — gRpa)
3

Figure 7 demonstrates a grouping example of a componenttkige joint boundary cen-

troids. Algorithm 1 summarizes the grouping process. (By, j] we denote the optimal

solution for the sub-problerve;, . . ., oc;).

Fgr(va Gy) = (11)

4.2.2 Connecting Algorithm

The final skeleton of the component contains line segmeatstnnect joint boundary cen-
troids to link points and line segments that interconnedt foints. Joint boundary centroid
grouping often generates skeletons that do not capturertangcdopological information.
Therefore, the connection algorithm works with the follogirules:

1. Ifall joint boundary centroids are grouped to one linkrg@ind this point is closer to:

e pa’s centroid, we connect it with thea's end points on both sides of its centroid.

15

Algorithm 1 group BC, pa)
1. for eachbe; € BC do GJi, i| = be;
2.for l =2to |BC|do

3 fori=1to |BC|—1+1do

4 j=1+1-1;

5. Gli, j] = (bey, . .., bej);

6. s1 = F1(Gi, j], pa);

7 fork=1toj—1[do

8 52:F2(G[i7k]7G[k+17j]7pa>;

9. if s, < 51 then

10. Gli,j] = G[i, k] U Gk + 1, j];
11 S1 = S9;

12return G0, |BC|;

: Principal axis
: Skeletongrouping
<. n <. . : Skeleton
: Joint boundary centroid|
: Skeletal joint

(@ (b)

Figure 8: The refined skeletons obtained by the connectggyi#thm capture more infor-
mation about the shape of the components.

e one ofpa’s end points, we connect it with the:'s end point on the other side of the
pa’s centroid.

2. If all joint boundary centroids are connecting to morentleae link point and these
points are closer to:

e pa’s centroid, we connect the first and the last link points wfitbpa’'s end points on
both sides opa’s centroid, respectively.

e one ofpa’s end points, we connect the first or the last link point withjta’s end point
on the other side gfa’s centroid.

Figure 8 shows the resulting skeletons of two componentgubis technique.

16

Figure 9: Oriented bounding boxes and skeletons of “Humaatieh components: (left)
Original configuration (right) After alignment.

5 Skeleton Refinement

Covariance-aligned principal directions are not optima do the used approximation al-
gorithm. In this section we introduce a process that impsdiae alignment through small
corrective adjustments. Clearly, the PCA algorithm fadlslerive a unique valid solution
when applied to point clouds that are characterized by & ldegree of symmetry. However,
it can provide useful topological information that if combd with qualitative features may
improve the initial solution considerably. Our approacfuats the principal direction ori-
entation using two individual processes; the first used Idtaracteristics while the second
uses inherited hierarchical information, i.e. knowledgewkd from the ancestors. Figure 9
illustrates the qualitative improvement of the skeletond the corresponding OBBs over
the original principal axis algorithm result.

5.1 Local Refinement

To achieve nearly optimal and visually satisfactory omioin results we approximately
align principal directions through slight modificationsngs qualitative features. We de-
fine these features as the extracted skeletons segments bgrttroid method; i.e. vectors
defined by connecting the kernel’s centroid to the joint lmarng centroids. The proposed
algorithm performsveightedvector alignment for each joint boundary centroid so thahea
adjustment will not undo the benefits acquired during presionprovements (Figure 10).
If the component has more than one joint boundary centrewdsalign with regards
to the closest principal direction yhgle = aw, wherea is the angle between the given
vector and its closest axis and weight= —~— except from the joint boundary centroid

|BC|+1
which lies at the root. Considering that this has more inmgraré to the overall refinement,

17

BEFORE AFTER

o : Allignment vector
€ =9 : Principal directions
: Boundary

: Skeleton line

: Skeleton joint

o
(O : Joint boundary centroid
@

: Kernel centroid

v

Figure 10: This example illustrates the result of a locahesfient operation on a component
with one joint boundary centroid: (left) the initial prigp@l axes orientation and (right) the
produced skeleton after local alignment.

we weighted it by2w, such that"/”“!w, = 1. Closest is the principal direction that forms
the minimal angle with the given vector. When the componeastdnly one joint boundary
centroid, we simply match its corresponding vector withcitssest principal direction. If
the closest principal direction is different from the pipad axis then the former will be the
selected as the principal axis. The upper bound for theiootaingle is a user determined
parameter and in practice is set in the rafge- 20° degrees interactively. Modifications
that require rotations beyond this upper bound are rejected

5.2 Hierarchical Refinement

We extend the local refinement process by performing optiittizg of the local principal
directions of neighbor components to achieve skeletabuamiity.

The algorithm starts from the children of the root node ofgkeleton tree performing
the same process to their children and so on, until it reatifeesree leaves. An inherent
drawback of this method is the dependence of the result osdleetion of the root com-
ponent. For each component, tHeerarchical Refinemerrocess first aligns with regards
to the parent principal direction which is closest to thddtprincipal axis. Subsequently,

18

BEFORE AFTER

% : Principal axes

(O : Joint boundary
centroid

Figure 11: Comparison of the extracted skeletons (leftpteefind (right) after using the
hierarchical refinement algorithm.

from the rest of the child and parent principal directionsdeéect those that are closest and
aligns them (Figure 11) accordingly. Note that fitting twanpipal directions from different
components, results in rotating the other principal dioes too.

6 Rigid Skinning with Blending Patches

With Rigid Skinning every motion is transferred to the cltaea's surface by assigning each
skin vertex one joint as driver. A skin vertex is pinned in tbeal coordinate system of
the corresponding joint, which is the one derived duringskeletonization procedure. By
using homogeneous coordinates, a joint transformatiapieesented throughdax 4 matrix
W. The vertex then repeats whatever motion this joint expegs, and its position in world
coordinates is determined by forward kinematics, i.e itams$formed by the joint matrix
W: o = Ww. This will give the skin vertex position when moving rigidlyith the joint.
Similarly, the normal of each skin vertex is transformed bating it with the uppeB x 3
rotation matrixRk of W: n’ = Rn. Despite its simplicity and computational efficiency, dgi
skinning makes it difficult to obtain sufficiently smooth sldeformation in areas around
the joints. This has led to the emergence of more speciateagdthiques that improve the
undesirable rough skinning results. We have develop a rneebhique to address these
major flaws. This technique is carried out in four steps:

19

Figure 12: The difference of the cutting result without anithvapplying hierarchical re-
finement.

1. Remove skin vertices of overlapping components.
2. Add new vertices in this area to fill the gap.

3. Construct a blending mesh that produces a smooth skiacguldy using a robust
triangulation method around the new vertices area.

4. Compute and adjust the normal vectors of the patch faces.

6.1 Removing Vertices

First, we detect which vertices from each of the collided ponents are located inside each
other. A fast approximate test is to use the oriented bognddox (OBB) since accurate
methods require a lot of computational resources. A poimsgle an OBB if all 6 plane-
point tests result having the same sign. We further imprbeetésting process accuracy
by making one extra plane-point test. Each point is testathagthe plane which fits best
to the joint boundary points of the components. We denote dkjoint boundary plane
(see Figure 13). The use of the joint boundary plane decsesageificantly the number of
removed points by 20% - 50% (see Figure 14).

The algorithm starts from the joint boundary points to perféhe fewer tests since they
have the highest probability to lie inside the other compb’s€®BB and move through their
1-ring of neighbors until we reach points which lie in theengide of the OBB. Two points
are 1-ring neighbors if they belong to the same triangle.

20

: Joint boundary pla@
of component 1

-
O : Deleted point
O : Opening point
O : Replaced point

: Middle point

Figure 13: This is an example which shows the point classifiogor component 2 after
removing the unnecessary points when the joint boundanegkused.

Removed Points
s ith JBP ==——=without JBP
250
202 207
192 197
200 B
182
167
151 159
150 nad 138 e
127
114 116

103 98

100 85
76
67
56
48
50 —=
0
170 160 150 140 130 120 110 100 90 80
Articulation angle

Figure 14: Reduction of removed points by introducing thetjpboundary plane test.

21

The refined and aligned OBBs derived during the skeletoioizgirocess provide re-
duced overlapping between the moving adjacent componémt&xtreme example of the
result of not using hierarchical refinement is illustratedrigure 12.

6.2 Adding Vertices

Definition 3. To facilitate the description of the blending mesh we defsie a

e Openingis the set of joint boundary points of the component that hetebeen re-
moved.

e Middleis the point set that we obtain if we subtract Opening set fitegrjoint bound-
ary point set.

e Replaceds the point subset of the component that corresponds to neMpeints
created by the removed points that will be used to fill in the.ga

¢ In-Betweens the point set which consists of the average of the initia final posi-
tions of the joint boundary points of the component that Hasen removed (which
we denote them witl? andBZ.f , respectively).

e Extrais the point set that consists of all 1-ring neighbors of tbm{s that belong to
Opening U Replaced set.

We present two blending techniques; the first one is céited blending patch construction
and patches only th®peningset and the second is callezhr blending patch construction
and patches thReplacedandin-Betweemoint sets.

6.2.1 Front Blending Patch Construction - FBPC

The observation enabling this mechanism is that the ratatia component results in move-
ment of every poinD; € Opening on a circular arc. The task is to find new points by
interpolating from the point’s positiofO; = ¢:0,q; ") before quaternion rotatiog to the
point’'s position(O{ = qijqJZI) after quaternion rotatioq, (see Figure 15).

We have used fast linear interpolation of quaternions (QRES&Nce the interpolation
along the shortest segment hardly causes any observabldedieict [39]. QLERP is com-
puted as

22

A TOP A T O TSP TSP

.~ : Reduced Volume Arc
.~ :Intersection Point Arc

.~ : Mean Point Arc
. In-Between Point Arc

o of : Front Blending Arc

Figure 15: Blending Patch Construction processes

/

q
q(t;qs,qr) = m,q’ = (1—1t)qs +tgy (12)

where the values assignedtaetermine the interpolation step and depend on the proper
distance which is enforced between consecutive constiymiets. We evaluate it as the
average of the median edge distances of the two componengsoid square root operation
involved in th quaternion normalization, we convgrto a homogeneous rotation mattx

and then normalize subsequently by dividing wjtif to provideQ. In order to translate the
center of rotation from the joint positiod)to the origin, we define a homogeneous matrix:

I —J
T = [(ﬁ |] (13)

wherel is a3 x 3 identity matrix. Finally, a new point is constructed using:

v =TQOT™! (14)

23

6.2.2 Rear Blending Patch Construction - RBPC

We have to fill in the gap in the area where we have removed $b&imm both components.
It is central to establish a correspondence between a pdRepfaced point$rom each
component and then fill in the in between gap. Thus, we inttedunew point set, calldd-
Betweerpoints.

A grouping algorithm is used to creati@plets from each/nB; € In-Betweerand one
point from each of the child and pardRéplacedsets ch, R}’ selected points, respectively).
We seek triplets with the following property: the plane defirby the three points, and has
the minimum dihedral angle with the plane defined by the jpiogition and the kernel
centroids of the participating components (pldng). To reduce the computational burden
of brute-force search of the best fitting triple¢ (O(n?)), we reorder the search space by
sorting the three point sets with respect to the distanaa fptane PL. Then, we search
for the best triplet which containg:B; by traversing the child and pareReplacedsets
(R, RY) from they" andy! start positions and continue for a limited number of steps
(1S andlS”, respectively). Evidently,§ andy!” values are initialized to zero. At theth
step of the iterative algorithng¢ andy! are evaluated as the next position of previous step
selected candidatég k) of R, RF sets. Algorithm 2 summarizes the fitting triplet process,
where N** is the normal vector oPL plane. The number of steps for each component are
initialized tolS“ = 0.1+ |R°| andlS” = 0.1« |R”|. Finally, the tangent vectors &, R}’
are defined as the projections on the triplet plane of theadggvectors from the child and
parent centroids to the joint positidn

If we construct the patch with interpolated points of a @refjuation, artifacts will arise
due to the discontinuities at the end points of the two coreptsy To avoid these, we
construct blending arcs given the triplet vertices as @bqoints using a Rational Bezier
representation: LeP“ and P” be the two end points of the conic arc, [ef’,v) and
(v, v}) be the tangent vectors that we wish to enforce at the endspaintt letP’ be the
third in between point we wish to interpolate. Furtherméetl] = (v¢ M, —vE M, vy My —

u, M), whereM; = P{vS — PEvS andM, = Plvf — PPol.
Then the rational quadratic Bezier curve segment has tine [26]:

(1—t)2PC +2t(1 —)W + 3PP
(1 —1)2 4 2wt(1l —t) +¢2

o(t) = (15)

24

Algorithm 2 triplet(In-B, R¢, RF, NT'L)

1. Sort(In-B); Sort(R®); Sort(R?);
2.7« 0k« 0

3.159 « 0.1 % |RC|; 1S « 0.1 % |R?
4. foreach InB; € In-B do

5. minA < MAX fioar; i¢ < 0; y° < j;

6. while i¢ + + < IS¢ && y© < |R| do

7. D¢ « Rgc — InB;;

8. i« 0;yf « k;

9. while i + + < 1S && y* < |RT| do
10. DP « R?];p — InB;;

11. NEF « normalize(cross(D¢, DF));
12. angle « arccos(dot(NFE NOF)):
12. if angle < minA then

13. minA « angle;

14. jeySk ey

15. y? + +;

16. y© + +;

17. rationalBezierInterpolatioUnB;, RS, Ry);

25

where
Area(P¢, P1, PPYU Area(PC, P,)PPU_é X 1173)
7w =
R R
R= \/ d(PP,vC, PO)d(PT,vC, PO)d(PC,v”, PP)d(P!, v, PP)
d(S,7, R) = (Sy — Ry)ry — (Sz — Ry)ry
Area(C, P, D) : The signed area of the triangleP D

W =

To prevent the generated meshes from exhibiting volumedasisfrom decreasing mesh
smoothness as joints rotate to extreme angles we are usergalve/n B point sets and
tangent vectors. To illustrate this we use the followingation:

e I, is the intersection of © andT'* vectors.

e 1, is the average ofnB; andl, points.

e V. is the terminal point of the negative vector going frémB; to V,,,.
e T}, 5, T}, are the vectors going from{’, R to InB;, respectively.
e T\, ,T{ are the vectors going from{', R to V,,, respectively.

To this end, we present and evaluate four alternatives fidaceng the/n B; points and the
associated tangent vectors (see Figures 15 and 16). Thasalfernative selections are
evaluated in Section 7 in terms of quality and robustness.

1. 1V, with TS 5, TF 5, and the resulting gap filling process is calléan Point Inter-
polation.

2. : I, with TS . TF -, and the resulting process is calledersection Point Interpola-
tion.

3. : I, with T¢ , T , and the resulting process is callBeéduced Volume Intersection
Point Interpolation.

4. : InB with T&;,T‘Z, and the resulting process is calledBetween Point Interpola-
tion.

26

PL plane

Boundary

Parent

: Joint boundary centroid
: Kenrel centroid

. In-Between point

: Replaced point

Vi point

: Vi point

: lp point

: Child-Parent axes
(TOTP

CTST

. TInBC‘TInBP
CTuS-Tw

NYVNNO 0000 OO

/ -~ - idihedral angle
— —
—

—

Figure 16: Rear Blending Patch Construction process at&es and notation.

Finally, we ensure that the constructed points are unifpsampled by adjusting the inter-
polation step. In the special casetwoisting adding vertices process is not necessary since
the articulation remains constant, so we omit this step.

6.3 Blending Mesh

The points derived through the two blending processes itotesthe blending 3D point
cloud which will be triangulated to form the blending patatween the two components.
To ensure the robustness of the whole mesh we expand tharmgoaint cloud to include
the 1-ring neighbors of the componerReplacegoints (part of théextra point set). In the
CPU version of this work, we have used ffight Cocond20] algorithm to build water-tight
surfaces around the newly inserted points. Since we negdtwol parts of the generated
spheroid to fill the holes, we must eliminate a number of ueasary faces to derive optimal
lighting results. To this end, we adjust the normal vect@m@ation and then we remove the
faces that belong exclusively to either the child or the pecemponent and whose normal
vector is not nearly parallel with all normal vectors of iwficiing points. The evaluation

27

: Face normal
Vertex nomal

: Extra point

) :Deleted point

: Constructed point

: Opening / Replaced point
/% :Patch Face

/N :Deleted Face

: Component Face

Figure 17: The normal vector evaluation of all possible nyasihts.

of the patch point normal vector is achieved by averagingqititenals of the output surface
faces that contain this vertex. We adjust the normal valiiegseoOpening and Replaced
points by averaging the normals of the newly built surfacee$aand the normals of the
original component faces that share this vertex. In this@se we take care as to not include
component faces that have been removed. Finally, the naeuotirs of extra inserted points
remain unaffected since the above adjustment is not negg$sgure 17).

6.4 Porting the Rigid Skinning Algorithm on a GPU Platform

The performance of the GPU is potentially much faster th@@RU to handle streaming
input data working on large amounts of data in parallel injgoction with the reduced
data transfer advantage of the graphics hardware. The gedpRigid Skinning algorithm
is based on per-vertex computations which is independergdoh vertex and so can be
parallelized on a GPU architecture using five render stagjeshave significantly improved
the overall performance of the proposed method by emplo@iRg which takes advantage
of the SIMD programming model (Single Instruction Multifidata) to accelerate the whole
rigid skinning process with minimal CPU involvement. By dgiso, we achieve real time
performance, while maintaining the quality of our rigidraking result.

We distinguish between two types of data, varying and umifdata. Varying data is
the streaming input data, while uniform data is data inddpanfrom the input stream that

28

do not change between stream elements. Further, we haveitedpan advanced usage
of the Transform Feedbackxtension [23], which stores selected vertex attributegéeh
primitive and writes into buffer objects, thus feeding tla¢adthrough one shader program to
another. Furthermore, according to recent benchmarksishef the transform feedback is
proven to be highly efficient even for simple trasformationdarge data sets as compared
to standard GPU data communication schemes [74].

Geometry information from the rest pose is stored weaex buffer objectévBO) to
reduce data transfer between CPU and GPU. Figure 18 iltastthe GPU work flow for
our implementation. The vertex, geometry and fragment ehadograms were written
in GLSL. The framework was developed using OpenGL as grapliticary under C++.
Unfortunately for porting these complicated graph-baspeeration on the GPU we have
used extensions that are supported only on NVIDIA Geforc@088nd later series. As
geometry shaders will be supported by other GPUs as welkirégghtforward to port this
code to other GPU brands, since we use only the extensionpei@L 2.1 GLSL shaders.

6.4.1 Removing Vertices

VerticesVBOs of the overlapping components along with an array ohgamt boundary
point indices and the corresponding BBs are transferede®émove Pointgertex shader
program. If a point is inside the BB then we setitposition coordinate to zero, so that the
Render Modebeometry shader program will not emit Rémoved VerticegBO). More-
over, besides the BB collision detection, this shader uslb@haracterize the exported point
using one float value [1,2,0] adiddle, Opening or neither of them, by checking whether
it belongs to the joint boundary point array and storing thisrmation intoBoundary Ver-
ticesVBO. Finally, we construct &exture buffer objec(TBO) to maintain a large global
data store of vertex attributes that will be accessed aftetsvby theReplacedand Extra
shader programs. This TBO is callBgplaced attributand stores for each point a 2D vec-
tor whoser andy coordinates determine whether this point is removed andhehd is an
Openingpoint, respectively.

The Replacedshader programs are used to obtain a TBO which containRéipéaced
vertices. The generated output will be used to extracEttea point set and to assist with
the construction process. A point iRR&placedoint if it is not removed, is hot a@pening
point and one of its neighbors is removed. Similarly, Ex¢rashader programs (vertex and

29

geometry) are responsible to export a TBO which containstktea vertices which will
expand the blending point cloud. Afxtra point is returned if is not removed, all of its
neighbors are not removed and one of them is ef@@eningor Replacegoint.

All the computation process is done using vertex shaderranogning. OnlyReplaced
or Extra points are emitted by the corresponding geometry shaderbdib Replacedand
Extra vertex shader programs, we have used "unnormalized” integéure formats [23]
looking up the neighbor indices of each point.

6.4.2 Adding Vertices

At first, a vertex shader program defines if testing verte@p&ningor Middle point using
Boundary Vertice¥BO. If it belongs to theDpeningpoint set then we generate new points
using the equations presented in detail in Section 6.2.1th@rother hand, if it belongs
to theMiddle point set, we first compute its correspondingBetweerpoint and then the
grouping algorithm is carried out to create the ligptet using the overlapping components
info stored in theReplacedTBOs. The difference from the CPU-based implementation is
that we cannot use Algorithm 2 due to its sequential naturiterAhis step, a geometry
shader is used to construct points interpolating ratiorai® arcs given the triplet vertices
as control points 6.2.2. Finally, we copy thxtra TBO to the generate®atch Vertices
VBO for the purposes of expanding the blending point clouddioieve better robustness.

6.4.3 Triangulation

To triangulate the newly constructed unorganized poinid¢he adapt a GPU interpolating
reconstruction algorithm based on local Delaunay triaagom [13]. Triangulation is un-
dertaken locally around each point, so that points do no¢épn each other. Hence, it can
be performed in a parallel. We have used a similar algorithth {&3], but we have made
the following modifications to best suit the purposes of quuligation and to allow faster
execution and utilization of the state of the art hardwaezlus

e We do not divide the point cloud into smaller sets or passégware independently
processed in the GPU, the graphics memory of the new GPUssiy accommodate
all data.

¢ We have implemented the k-nearest neighbor algorith@r&ate Patchvertex shader

30

SR Ree—
E Texture Bufier Object O Variable
\E Elementary Buffer Otject O Shader

e

Figure 18: The GPU implementation work flow.

program, thus maximizing parallelization. Normal estiimat rotational projection,
angle computation and radial sorting are also computeceiséime shader.

e We have used the simple Bubble sort for finding k-NN neighlamd Radial sorting
generated neighbors, due to the small number of each pagitghbors.

e The geometry shader program computes the valid Delaunghineis and outputs
zero or more point primitives per-vertex. Triangle indi@e stored into emitted
point position vectors. Since the generated primitivesstreés in the same order as
given in the input, we can recompute the normal vectors foh @artex by averaging
the normals of neighboring constructed facets.

7 Evaluation Results

The input to our algorithm is a segmented polyhedron modelitsnassociated hierarchy
information. Then, the character components are set toomatsing forward kinemat-
ics guided by a key-framing animation controller by altgrjoint angles of the embedded
skeleton. In the following experiments we have decompobkadacters into components us-
ing theBlender(http://www.blender.org/ software and animate them using manually sup-
plied motion data. Table 1 summarizes the characterisfitiseosolid models used in the
experiments.

The experiments were performed on a MS Windows XP Profeak®ftbit Platform
with a 64 bit 2.6GHz Intel Core Duo with 3GB of main memory and\4ddia GeForce

31

8800 Ultra graphics card. We evaluate our proposed techrigyith respect to four criteria:
performance, quality, versatility and robustness.

| Model | Components| Vertices | Triangles |

Cow 16 3825 7646

Horse 17 8964 17924
Dilo 37 26214 48924
Human 31 74014 | 140544

Table 1: Number of components, vertices and triangles ofitbdels used in the experi-
mental evaluation.

7.1 Performance Evaluation

Table 2 gives computation times for extracting skeletoosifthe above models. The largest
computation time corresponds to the principal directiond kernel centroid calculation
which are performed is_"_, O(n;logn;) and 31, O(n;logn,) + O(r;logr;) time re-
spectively, for an articulated character model witbomponents where th#éh component
hasn; vertices and-; kernel points. The refinement times are negligible as coetphty
the overall performance. In Table 2, we observe that theagecoverall skeleton extraction
complexity appears to be almost linear on the number ofgtes

It would be meaningless to quantitatively compare our methith other competitive
skeleton extraction methods, since most such methods aredlwith a suitable decompo-
sition method. In general, our method generates refine@teked in less than half a minute
for dense models (Figures 9, 20, 19). Thus, if our methodes urs conjunction with a fast
decomposition method, it will be a very efficient overall pess.

| Model || Kernel Centroid | Principal Axis | Total |

Cow 1.982 0.868 2.995
Horse 2.086 0.924 3.178
Dilo 4,701 2.022 7.150
Human 10.244 4.649 14.893

Table 2: Time performance of skeletonization steps medsunreeconds.

We have compared the performance of the GPU realizationaweoptimal sequential
CPU implementation [66] for rigid skinning animation of arhan knee (see Figure 2)

32

0,8 -

0,7 -

0,6 -

0,5 -

0,4 -

0,298

0,333

Rigid Skinning Time Performance

0,364

W GPU-based M CPU-based

0,456

0,572

0,654

0,732

0,04

0,042

0,044

03 -
02 -
01 “0038

0 - -

170 160 150 140

0,51
0,42
0011057 = -)
130 120 110 100 90

Articulation angle-

08
80

Table 3: Comparison of GPU vs CPU implementation.

from the initial pose to extreme angles (articulation arggéeng from170° to 80°). where
the parent and child components consist of 891 and 100Qcesrtrespectively. Table 3
illustrates the computation times for both implementatiaich shows that using the GPU
we obtain an average speed-up around 10x compared to ther@iehnentation.

7.2 Quality Evaluation

Figures 19 and 9 illustrate the qualitative superiority of cefined skeletons and aligned
OBBs over the original principal axis algorithm. Figure 2istrates the similarity be-
tween the default skeletons generatedPbger[22] software and skeletons extracted by our
method.

To measure themoothnessf the deformed meshes derived from our skinning tech-
nique, we define:

Definition 4. Let v be a vertex with an associated 3ét of k£ adjacent verticed’* =
{v{,...,v}. Then we define the approximate meastite-v for the curvature ob as the
maximum of the angles between the normal vectar V(1)) with the normal vectors of
the vertices of/* (N (V2)),

Curv(V) = max{arccos(N(V)- N(V*))}

1<i<k

(16)

Then, the total curvature of a bone component can be definte asedian of curvature of

33

Figure 19: Refined oriented bounding boxes and skeletortseafdmponents of the horse
model.

Figure 20: Comparison on human and dino skeletons (leftyel@by applying our refine-
ment process and (right) built manually by the creator ofittoelels.

34

all the vertices connected to this bone. Lower curvaturesmnmeanumbers means smoother
meshes. As the model segment approaches to the matheigatioaloth surface, the cur-
vature approaches to zero.

A graph of the curvature variation of the components invdlvethe human knee joint
movementis illustrated in Figure 21. From this figure we dedihat the total deformed skin
smoothness of the participating components exhibits gidgi variation from the smooth-
ness of the reference posture during large articulationstebVer, curvature results of the
patch component are increased since the change in the are\@tthe blending patch in-
creases as the joint is imposed to large angle movement.

In addition, despite the fact that exact volume presermatiiothe surrounding skinned
mesh was not among our primary goals, our method exhibitsyageod behavior in terms
of preserving the original volume. Figure 22 illustrates tfolume variation percentage
computed as100 - W‘;“T_Vfolf' whereVol,. is the volume of the two components at
the reference posture antbl,,.., is the volume of the two patched components at the cor-
responding articulation angle. The deformed poses reta@iisame volume as the reference
pose within a small deviation of up 1%.

Overall, theReduced Volume Intersection Point Interpolatexhibits very good results
in extreme angles and overall good results in terms of bolhive preservation and cur-
vature variation. Thén-Between Point Interpolatioaxhibits the best volume preservation
for small angles, while th&¥lean Point Interpolatiorexhibits better smoothness for smaller

angles.

7.3 Versatility and Robustness Evaluation

We create animations by re-targeting hand-made BVH mogguences [11] to the skele-
tons extracted from the original meshes. This format dessreach motion frame as a
sequence of the Euler angles of the skeleton joints. Theeseguof parameters can then be
applied to each bone component transformation matrix. \Wesathe local matrices in the
beginning to reflect the initial pose of the motion capturtagdand then refresh the angle
deformation to produce the different animation frames.
The main limitation when using geometry shaders to perfoomtgand triangle ampli-

fication is that the level of geometry upsampling is limitgdtbe hardware. For instance,

35

Smoothness Variation (in degrees)

= =w=w= Mean Point Interpolation

-~ In-Betwean Point Interpolation

/\ =ma Intersection Point Interpolation

10 —

=ww= Reduced Volume Intersection Point Interpolation

5 /
?M‘Jd/_/
o
170 160 150 140 130 120 110 100 90
Articulation angle

Figure 21: Skin curvature variation (% percentage with régdo the reference posture)
during articulation: (top) for the blending patch and (bat) for the two involved compo-
nents

Signed Volume Variation (%)

=g==Mean Point Interpolation w=fli==Intersection Point Interpolation ====In-Bet Point i duced Volume fon Point

09

0,8

0,7

£

/
/
06 #
/ V/

4

/1)
1
/|

0.5

04

03

180 170 160 150 140 130 120 110 100

Figure 22: Volume variation of blending patch constructadternatives

36

only 1024 floating point numbers can be used with the currettings which sets a bound
of 256 on the number of the constructed points or triangles.

Figures 23 and 24 show animated poses using our rigid skgriachnique. We have ap-
plied our technique to all types of joints of several mod@saimposed manually in various
ways. We have not encountered any incompatible types dfijoinsolid models. This fact
experimentally establishes the versatility of our apphoac

We also provide snapshots depicting a closer view of a humaa kesh to demonstrate
the robustness of the skinning process (Figure 2). The Migsalts confirm that our method
is indeed free of all the unnatural rigid skinning flaws manalgtealistic skin motion without
distortion artifacts.

8 Conclusions

We have introduced a suite of techniques for robust skedeiatation of 3D characters. The
contribution of this work can be summarized in three diatsi First we have presented a
method for producing refined skeletons appropriate focaldied character animation. To
this end, we have developed an improved local skeletonizatiethod which in conjunction
with approximate refinement algorithms increase the ap@atgmess and expressiveness of
the produced skeletons. Then, to avoid artifacts that oicclimear blending skinning and
the associated sample pose generation costs, we have gy aobust skinning method
that eliminates the potential shortcomings from selfyisgetions, providing plausible char-
acter mesh deformations using blending patches arountsjdtimally, to achieve real-time
performance we have developed GPU compatible softward! fete@s of our rigid skinning
method.

Considering completeness there are many subtasks that lbewdarried out regarding
our improved principal axis skeletonization techniqueerkhis need for further investigat-
ing in a more quantitative manner the grouping functionsttar, one could try replacing
the angle-weighted algorithm with an optimization apptoatich will compute the prin-
cipal axis orientation more accurately.

Finally, since geometry shader was not designed to handie-lcale complex geo-
metric operations, we could benefit from splitting the getsynamplification into multiple
passes. A partial solution for this problem would be be tlieependent execution of the
FBCP and RBCP on the GPU, would lead to the triangulationgs®deing divided into

37

Figure 23: Avoidance of the typical LBS “candy-wrapper’ifadt. (Left) is a reference
pose, (middle) upper arm is rotatéd® about its axis, and on (right) upper arm is rotated
180° about its axis.

38

Figure 24: Multiple part animation of the “Cow” model. Pagchparts are highlighted in
yellow.

two smaller independent subtasks.

References

[1] Marc Alexa. Linear combination of transformatio’CM Trans. Graph.21(3):380—
387, 2002.

[2] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. fosver crust. IISMA '01:
Proceedings of the sixth ACM symposium on Solid modelingagptications pages
249-266, New York, NY, USA, 2001. ACM.

[3] Kasper Amstrup Andersen. Spherical blend skinning om. gp2007.

[4] Dominique Attali and Jean-Daniel Boissonnat. Approation of the medial axis.
Technical report, INRIA, 2002.

[5] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolaogd &. Tal. Mesh seg-
mentation - a comparative study. Ml '06: Proceedings of the IEEE International

39

[6]

[7]

[8]

[9]

Conference on Shape Modeling and Applications 20@6§e 7, Washington, DC, USA,
2006. IEEE Computer Society.

Marco Attene, Silvia Biasotti, and Michela Spagnuoloe-Reshing techniques for
topological analysis. I'8MI '01: Proceedings of the International Conference on
Shape Modeling & Applicationpage 142, Washington, DC, USA, 2001. IEEE Com-
puter Society.

Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Dan@hen-Or, and Tong-
Yee Lee. Skeleton extraction by mesh contraction. SIGGRAPH '08: ACM SIG-
GRAPH 2008 paperpages 1-10, New York, NY, USA, 2008. ACM.

Grégoire Aujay, Franck Hétroy, Francis Lazarus, artti€line Depraz. Harmonic
skeleton for realistic character animation.S&A '07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animagiages 151-160, Aire-
la-Ville, Switzerland, Switzerland, 2007. EurographicssAciation.

llya Baran and Jovan Popovit. Automatic rigging andnaation of 3d characters.
ACM Trans. Graph.26(3):72, 2007.

[10] C. Bradford Barber, David P. Dobkin, and Hannu Huhdan@de quickhull algorithm

for convex hulls. ACM Trans. Math. Softw22(4):469-483, 1996.

[11] Biovision. Bvh format.

[12] Harry Blum. A transformation for extracting new degdars of shape. In Weiant

Wathen-Dunn, editoriModels for the Perception of Speech and Visual Fopaiges
362-380. MIT Press, Cambridge, 1967.

[13] C. Buchart, D. Borro, and A. Amundarain. Gpu local tgaiation: an interpolating

surface reconstruction algorithr@omputer Graphics Forun27:807-814(8), 2008.

[14] Steve Capell, Seth Green, Brian Curless, Tom Duchamg,Zoran Popovic. Inter-

active skeleton-driven dynamic deformations.SI6GRAPH '02: Proceedings of the
29th annual conference on Computer graphics and interaddehniquespages 586—
593, New York, NY, USA, 2002. ACM.

40

[15] P. Chaudhuri, G. Papagiannakis, and N. Magnenat- TémmSelf adaptive animation
based on user perspectivihe Visual ComputeR4(7-9):525-533, 2008.

[16] Frederic Cordier and Nadia Magnenat-Thalmann. A diigen approach for real-time
clothes simulation. IfPG '04: Proceedings of the Computer Graphics and Applica-
tions, 12th Pacific Conferenc@ages 257—266, Washington, DC, USA, 2004. IEEE
Computer Society.

[17] Nicu D. Cornea, Deborah Silver, Xiaosong Yuan, and RaBalasubramanian. Com-
puting hierarchical curve-skeletons of 3d objeckbe Visual Computel1(11):945—
955, 2005.

[18] Tim Culver, John Keyser, and Dinesh Manocha. Exact aaatpn of the medial axis
of a polyhedronComput. Aided Geom. De21(1):65-98, 2004.

[19] Fernando de Goes, Siome Goldenstein, and Luiz Velh.efanchical segmentation of
articulated bodiesComputer Graphics Forun27(5):—, 2008.

[20] Tamal K. Dey and Samrat Goswami. Tight cocone: a waggrtsurface reconstruc-
tor. In SM '03: Proceedings of the eighth ACM symposium on Solid fimzdand
applications pages 127-134, New York, NY, USA, 2003. ACM.

[21] Tamal K. Dey and Jian Sun. Defining and computing cukeletons with medial
geodesic function. I8GP '06: Proceedings of the fourth Eurographics symposiom o
Geometry processingages 143-152, Aire-la-Ville, Switzerland, Switzerlag606.
Eurographics Association.

[22] e frontier. Poser 7, 2006.
[23] OPENGL: Opengl extension registry.

[24] R. Fernardo. Gpu gems: Programming techniques, tigbiracks for real-time graph-
ics. nvidia corporation.

[25] Sven Forstmann, Jun Ohya, Artus Krohn-Grimberghe, Ryan McDougall. Defor-
mation styles for spline-based skeletal animatiorSGA '07: Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer animgpiages 141-150,
Aire-la-Ville, Switzerland, Switzerland, 2007. Euroghags Association.

41

[26] loannis Fudos and Christoph M. Hoffmann. Constraiasdd parametric conics for
CAD. Computer-aided Desigr28(2):91-100, 1996.

[27] Nikhil Gagvani and Deborah Silver. Animating volumetmodels. Graph. Models
63(6):443-458, 2001.

[28] Stefan Aric GottschalkCollision queries using oriented bounding box$D thesis,
-, 2000. Director-Dinesh Manocha and Director-Ming C. Lin.

[29] Zheng Guo and Kok Cheong Wong. Skinning with deformaifianks. Computer
Graphics Forum24(3):373—-381, 2005.

[30] Jim Hejl. Hardware skinning with quaternions. Game Programming Gemsol-
ume 4, pages 487-495. Charles River Media, 2004.

[31] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, @osiyasu L. Kunii. Topol-
ogy matching for fully automatic similarity estimation ofl 3hapes. '8sIGGRAPH
'01: Proceedings of the 28th annual conference on Computgstycs and interactive
techniquespages 203-212, New York, NY, USA, 2001. ACM.

[32] Dae-Eun Hyun, Seung-Hyun Yoon, Jung-Woo Chang, Jopurl§ Seong, Myung-
Soo Kim, and Bert Juttler. Sweep-based human deformafitwe. Visual Computer
21(8-10):542-550, 2005.

[33] David Jacka, Ashley Reid, Bruce Merry, and James Gaincofparison of linear
skinning techniques for character animation AlRRIGRAPH '07: Proceedings of the
5th international conference on Computer graphics, vireality, visualisation and
interaction in Africg pages 177-186, New York, NY, USA, 2007. ACM.

[34] Doug L. James and Christopher D. Twigg. Skinning mesimations. ACM Trans.
Graph, 24(3):399-407, 2005.

[35] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposiusing fuzzy clustering
and cuts ACM Trans. Graph.22(3):954-961, 2003.

[36] Ladislav Kavan, Steven Collins, and Carol O’Sullivautomatic linearization of
nonlinear skinning. 11”2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Gamegspage to appear. ACM Press, February/March 2009.

42

[37] Ladislav Kavan, Steven Collins, J¥@ra, and Carol O'Sullivan. Geometric skinning
with approximate dual quaternion blendil§CM Trans. Graph.27(4):1-23, 2008.

[38] Ladislav Kavan, Rachel McDonnell, Simon Dobbyn) Zi&ra, and Carol O'Sullivan.
Skinning arbitrary deformations. 8D '07: Proceedings of the 2007 symposium on
Interactive 3D graphics and gamgsages 53-60, New York, NY, USA, 2007. ACM.

[39] Ladislav Kavan and Jiri Zara. Spherical blend skinniAgreal-time deformation of
articulated models. 18005 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Gamegspages 9-16. ACM Press, April 2005.

[40] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskeal time large defor-
mation character skinning in hardware. $€A '02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animapages 153—-159, New
York, NY, USA, 2002. ACM.

[41] Jeff Lander. Slashing through realtime character atiom. InGame Developer Mag-
azine pages 13-15. -, 1998.

[42] Jeff Lander. Over my dead polygonal body. Game Developer Magazinpages
17-22. -, 1999.

[43] Caroline Larboulette, Marie-Paule Cani, and Bruno &ddh Dynamic skinning:
adding real-time dynamic effects to an existing charactémation. InSCCG ’05:
Proceedings of the 21st spring conference on Computer geapbages 87—-93, New
York, NY, USA, 2005. ACM.

[44] Matt Lee. Seven ways to skin a mesh character skinnimigtezl for modern gpus,
2007.

[45] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose spafermhation: a unified
approach to shape interpolation and skeleton-driven geftion. INSIGGRAPH '00:
Proceedings of the 27th annual conference on Computer geajgimd interactive tech-
niques pages 165-172, New York, NY, USA, 2000. ACM Press/Addi¥desley Pub-
lishing Co.

43

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Xuetao Li, Tong Wing Woon, Tiow Seng Tan, and Zhiyong Hga Decomposing

polygon meshes for interactive applications. I8D '01: Proceedings of the 2001
symposium on Interactive 3D graphjgsages 35-42, New York, NY, USA, 2001.
ACM.

Jyh-Ming Lien. Approximate Convex decomposition and its ApplicatiéttD thesis,
National ChengChi University, 2006.

Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, Rung-Huei Liaagd Ming Ouhyoung.
Automatic animation skeleton construction using repedorce field. InPG '03:
Proceedings of the 11th Pacific Conference on Computer Gea@nd Applications
page 409, Washington, DC, USA, 2003. IEEE Computer Society.

Lin Lu, Franck Hetroy, Cedric Gerot, and Boris ThibeAtlas-based character skin-
ning with automatic mesh decomposition. Technical repbiRIA, 2008.

Cherng-Min Ma, Shu-Yen Wan, and Jiann-Der Lee. Thrigeetisional topology
preserving reduction on the 4-subfield$EEE Trans. Pattern Anal. Mach. Intell.
24(12):1594-1605, 2002.

Wan-Chun Ma, Fu-Che Wu, and Ming Ouhyoung. Skeletomaetion of 3d objects
with radial basis functions. I8MI '03: Proceedings of the Shape Modeling Interna-
tional 2003 page 207, Washington, DC, USA, 2003. IEEE Computer Saciety

N. Magnenat-Thalmann, F. Cordier, H. Seo, and G. Papedis. Modeling of bodies
and clothes for virtual environmentslnternational Conference on Cyberworlds
:201-208, Nov. 2004.

Bruce Merry, Patrick Marais, and James Gain. Animasipace: A truly linear frame-
work for character animatiorACM Trans. Graph.25(4):1400-1423, 2006.

Alex Mohr and Michael Gleicher. Building efficient, agate character skins from
examples. II'SIGGRAPH '03: ACM SIGGRAPH 2003 Papgpsiges 562-568, New
York, NY, USA, 2003. ACM.

Alex Mohr, Luke Tokheim, and Michael Gleicher. Directamipulation of interactive
character skins. 13D '03: Proceedings of the 2003 symposium on Interactive 3D
graphics pages 27-30, New York, NY, USA, 2003. ACM.

44

[56] R. Laperriere N. Magnenat-Thalmann and D. Thalmannntd#ependent local de-
formations for hand animation and object graspingGhaphics Interface 1988: Pro-
ceedings of the GI 88 Canadian Graphics Conferepeges 26—33. Canadian Human-
Computer Communications Society, 1988.

[57] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremand Ajith Mascarenhas. Ro-
bust on-line computation of reeb graphs: simplicity andeshbéACM Trans. Graph.
26(3):58, 2007.

[58] Simon Pilgrim, Anthony Steed, and Alberto Aguado. Resgive skinning for charac-
ter animation.Comput. Animat. Virtual World4.8(4-5):473—-481, 2007.

[59] Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. Read-tiveighted pose-space de-
formation on the gpuComputer Graphics Forun25(3):439-448, 2006.

[60] S. Schaefer and C. Yuksel. Example-based skeletoaaidan. INSGP '07: Proceed-
ings of the fifth Eurographics symposium on Geometry praogspages 153-162,
Aire-la-Ville, Switzerland, Switzerland, 2007. Euroghags Association.

[61] Ariel Shamir. A survey on mesh segmentation technig@esnputer Graphics Forum
27:1539-1556(18), 2008.

[62] Evan C. Sherbrooke, Nicholas M. Patrikalakis, and Brilsson. An algorithm for the
medial axis transform of 3d polyhedral solidEEE Transactions on Visualization and
Computer Graphics2(1):44-61, 1996.

[63] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun,jtiuBao, and Baining Guo.
Example-based dynamic skinning in real time SIGGRAPH '08: ACM SIGGRAPH
2008 paperspages 1-8, New York, NY, USA, 2008. ACM.

[64] Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannickkergosien. Surface coding
based on morse theorfeEE Comput. Graph. Appl11(5):66—78, 1991.

[65] Peter-Pike J. Sloan, Ill Charles F. Rose, and Micha&dhen. Shape by example.
In I3D '01: Proceedings of the 2001 symposium on Interactiveg8&phics pages
135-143, New York, NY, USA, 2001. ACM.

45

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Andreas Vasilakis and loannis Fudos. Skeleton-baggdiskinning for character ani-
mation. INnGRAPR pages 302-308, 2009.

A. Verroust and F. Lazarus. Extracting skeletal curfresn 3d scattered dat&Shape
Modeling and Applications, 1999. Proceedings. Shape Mogdhternational '99.
International Conference QnR:194—-201, Mar 1999.

Wolfram von Funck, Holger Theisel, and Hans-Peter 8eicElastic secondary de-
formations by vector field integration. I8GP '07: Proceedings of the fifth Euro-
graphics symposium on Geometry processpages 99-108, Aire-la-Ville, Switzer-
land, Switzerland, 2007. Eurographics Association.

Lawson Wade and Richard E Parent. Automated generaficontrol skeletons for
use in animationVisual Computerl8(2):97-110, 2002.

Robert Y. Wang, Kari Pulli, and Jovan Popovic. Reatdienveloping with rotational
regression. IISIGGRAPH '07: ACM SIGGRAPH 2007 papepage 73, New York,
NY, USA, 2007. ACM.

Xiaohuan Corina Wang and Cary Phillips. Multi-weightveloping: least-squares
approximation techniques for skin animation. S&€A '02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animgpiages 129—-138,
New York, NY, USA, 2002. ACM.

Jason Weber. Run-time skin deformation. Game Devetopenference, 2000.

Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotam@ontext-aware skele-
tal shape deformation.Computer Graphics Forum (Proceedings of Eurographics)
26(3):265-274, 2007.

GPGPU with OpenGL and VisualWorks.
http://www.cincomsmalltalk.com/userblogs/mis/blogwPentry=3412284871.

Han-Bing Yan, Shimin Hu, Ralph R. Martin, and Yong-LegaiWang. Shape deforma-
tion using a skeleton to drive simplex transformatioSEE Transactions on Visual-
ization and Computer Graphic$4(3):693—-706, 2008.

46

[76] Xiaosong Yang, Arun Somasekharan, and Jian J. ZhangveGkeleton skinning for
human and creature characters: Research arti€esnput. Animat. Virtual Worlds
17(3-4):281-292, 2006.

[77] Seung-Hyun Yoon and Myung-Soo Kim. Sweep-based freefdeformations Com-
puter Graphics Forum25(3):487-496, 2006.

[78] Shin Yoshizawa, Alexander Belyaev, and Hans-Petedebei Skeleton-based varia-
tional mesh deformation€€omputer Graphics Forun26(3):255-264, 2007.

a7

	1: Department of Computer Science, University of Ioannina, TR-2009-22, October 12, 2009

