
Skeletal Rigid Skinning with

Blending Patches on the GPU

Andreas A. Vasilakis, Ioannis Fudos

Department of Computer Science - University of Ioannina

Ioannina, Greece

email:{abasilak, fudos}@cs.uoi.gr

Abstract

In this paper, we present a novel skeletal rigid skinning approach. First, we introduce a

skeleton extraction technique that produces refined skeletons appropriate for animation

from decomposed solid models. Then, to avoid the artifacts generated in previous rigid

skinning approaches and the associated high training costs, we develop an efficient and

robust rigid skinning technique that applies blending patches around joints. To achieve

real time animation, we have implemented all steps of our rigid skinning algorithm

on the GPU. Finally, we present an evaluation of our techniques against four criteria:

efficiency, quality, scope and robustness.

Keywords: skeleton extraction, rigid skinning, character animation, re-meshing, GPU im-

plementation, real time

1 Introduction

Rapid realistic animation of articulated characters is a key issue in video games, crowd sim-

ulations, computer generated imagery films and other applications of 3D computer graphics.

To achieve natural animation of articulated characters we seek intuitive mesh deformations,

often called in this context skinning techniques, that improve visual fidelity, computational

efficiency and robustness of the character animation process. Skeletal animation, due to its

1

versatility and ease of use, is one of the most popular animation techniques. Hence, in this

paper we focus on skinning techniques for skeletal animation of articulated objects.

In skeletal animation, a representation model consists of at least two main layers: a

highly detailed 3D surface representing the character’sskin, and an underlyingskeleton

which is a hierarchical tree structure ofjoints connected with rigid links (bones) providing

a kinematic model of the character. Quite often, it is commonpractice to add a third layer

to support realistic effects of the character’s musculature. A skeleton has usually much

simpler structure than the original object that aims at simplifying the skinning process by

avoiding the tedious task of animating each vertex independently. The process of extracting

a skeleton is calledskeletonization.

There are two approaches to obtaining a representation appropriate for skeletal anima-

tion:

• An expert provides a skeleton and a mesh for the object. Then we compute a de-

composition based on the skeleton, so that the decomposition is compatible with the

skeleton (see e.g. [49]).

• The user provides a mesh and a decomposition is either provided by an expert or is

extracted automatically based on the morphology of the overall mesh. Then we com-

pute a skeleton that is compatible with this decomposition.We follow this approach

because it can performed fully automated without any user intervention.

A skeleton acts as a special type of deformer transferring its motion to the skin by assigning

each skin vertex one (rigid skinning) or more (linear blend skinning- LBS) joints as guides.

In the former case, a skin vertex is fixed in the local coordinate system of the corresponding

bone following whatever motion this bone is subjected to. This technique suffers from inher-

ent flaws caused by elongations and inter-penetrations, especially in areas around joints. In

the latter case of LBS (also known asskeleton subspace deformation (SSD), vertex blending

or enveloping), each skin vertex is assigned multiple influences with associated blending

weights for each joint. This scheme provides more detailed control over the results. The

deformed vertex is computed by a convex combination of the corresponding joints. The

generated meshes exhibit volume loss as joints are rotated to extreme angles producing non-

natural deformations, such as the collapsing joint and the candy wrapper effect(Figure 1).

Despite these, variations of this method are widely used in real time computer graphics

applications because they are simple and easy to implement on GPUs.

2

Figure 1: “Collapsing elbow” defect (left) and “candy-wrapper” defect (right) [45].

Vertex weight tuning tends to be a tedious and cumbersome task which is applied on a

single mesh. [55] presented a direct weight manipulation tool which is time-consuming and

not easily applicable to other skinning methods. Other methods result in serious flaws on

characters with high-resolution meshes due to the irregularity of the surface weights [69] and

the skin resolution dependence [35]. More recently, example-based approaches have been

proposed to infer the character articulation from a training set of example poses [33, 63].

Example-based fitting is a complicated iterative process due to the implicit dependencies of

the deformed vertex positions. Researchers have identifiedas potential drawbacks of these

schemes the need for multiple example meshes and the complexity of avoidingover-fitting

caused by under-determined weights. Also, such techniquesrequire decomposition of the

articulated figures into several component meshes. This step however does not affect the

real time feasibility of the process, since it can be performed beforehand as a preprocessing

step and stored as part of the character representation.

For the purposes of seamless character animation we aim at building a system that elim-

inates the skin attachment (weight fitting) part and overcomes LBS shortcomings by pro-

ducing a single mesh for each frame. To support this functionality, we present an integrated

skeletal rigid-skinning framework that is given as input a character representation and a

motion description of its extracted skeleton, and producesnatural deformations. Given a

static character mesh, an effective decomposition method [5, 61, 19] or an experienced user

partitions the mesh into visually meaningful or otherwise appropriate with regards to the

application components. Additionally, a functional skeleton is extracted using centroids and

principal axes [47] of the character’s components by performing a depth-first traversal of the

skeleton hierarchy tree. We refine the produced skeleton segments to derive better skeletal

representations that are more appropriate for our application. Then, we use rigid skinning

3

Figure 2: Robust rigid skinning. From top left to bottom right: the initial model; rotating the
lower part; removing points; adding points; constructing arobust blending patch between
the two components.

by assigning each skin vertex to an influence bone to achieve mesh animation avoiding thus

weight fitting and training pose set production costs. We introduce a novel method to elim-

inate self-intersection flaws by performing alternative intuitive deformations in four steps:

(i) Remove skin vertices of the overlapping components.

(ii) Add new vertices in this area to fill in the generated gap by approximately preserving

local volume.

(iii) Construct a blending mesh that produces a smooth skin surface by using a robust

triangulation method.

(iv) Compute and adjust surface normal vectors.

Figure 2 illustrates this process.

We have designed and evaluated our framework against four criteria: scope, quality,

performance and robustness for the proposed skeletonization and skinning algorithms. In a

nutshell our work makes the following technical contributions:

4

• We explore a skeletonization strategy that uses a dynamic programming algorithm to

extract high-quality skeletal morphs using kernel centroids and principal axes of the

character’s modules.

• We introduce new approximate refinement methods to improve the produced skeleton

morphs using local and global criteria.

• Our skeletonization method is independent of the character’s component size, has no

convexity requirements and is invariant under distortion and deformation of the input

model which makes it applicable to several research areas such as character animation,

shape recognition and collision detection.

• We present an advanced real time rigid skinning method that overcomes LBS arti-

facts working on the overall mesh. We introduce novel blending patch construction

techniques that preserve the initial volume of the joint andensure mesh robustness.

• All the skinning and animation steps have been implemented on the GPU. This real-

ization achieves considerable parallelization and hence real-time performance.

A preliminary version of this work was presented in [66]. We have added a more complete

description of the skeleton extraction methods offering background material for principal

axis and kernel centroid computations. Moreover, we present a detailed evaluation of four

quality measures of the proposed deformation technique addressing volume conservation

and mesh smoothness. We have further improved the testing process accuracy by including

one extra plane-point test in the step of removing overlapping meshes. Finally, we provide a

full GPU realization of the entire skinning algorithm, which enables us to achieve real time

performance while increasing significantly the quality of the produced result as compared

to previous methods.

The rest of this paper is organized as follows. Section 2 provides a survey of related work

while Section 3 gives a brief overview of background definitions and tools. Sections 4 and

5 describe the skeleton extraction and refinement techniques developed for the purposes of

character animation. The basic rigid-skinning method along with its GPU implementation

is outlined in Section 6. Section 7 provides an analytical and experimental evaluation of

several quantitative and qualitative characteristics of our methods. Finally Section 8 offers

conclusions.

5

2 Related Work

There is an abundance of research work in the literature thattackles the skeleton extraction

and skinning of 3D objects from different perspectives. We focus on recent developments

most closely related to animation.

2.1 Skeletonization

Skeletonization algorithms are roughly classified based onwhether they process the bound-

ary surface (surface methods) or the inner volume (volumetric methods).

Surface methods. Medial Axis Transform (MAT)[12] is a popular topological skeletal rep-

resentation technique which consists of a set of curves which roughly run along the object’s

middle. MAT-based representations suffer from perturbation and noise dependence, high

computation cost for 3D [18] (O(n2 log n) in worst case [62]), shape complexity (because

in 3D they consist of surface elements). Researchers have proposed approximate MAT to

overcome some of the above inefficiencies, using Voronoi diagram [2, 21] or dual Delaunay

triangulation [4]. However MAT based skeletons are still not well fitted for character anima-

tion, i.e. for representing efficiently the bone hierarchy of an articulated figure.Reeb graphs

are a fundamental 1-D data structure for representing the configuration of critical points

and their relationships in an attempt to capture the intrinsic topological shape of the object

[64, 67, 57, 8]. However, a re-meshing technique [6, 31] is usually required to generate

accurate skeletons.

Volumetric methods. Several methods generate skeletons by constructing discrete field

functions by means of the object’s volume. In this directionresearchers have proposed using

distance transform [69], repulsive force field [48, 17] or radial basis [51]. Other volumetric-

based techniques make use of a multi-resolution thinning process applied on the model’s

voxelized representation [27, 50]. Although accurate, such methods are usually very time

consuming and they cannot be applied to animation since the volumetric information needed

is not usually part of the animation model.

Other methods. Other methods use different approaches to achieve more accurate and ef-

ficient skeletonization. [60] presents a method for extracting a hierarchical, rigid skeleton

from a set of example poses. Researchers also generate skeletons based on mesh contraction

[46, 7]. [35] extracts a skeleton using a hierarchical mesh decomposition algorithm. Finally,

6

[47] proposed an iterative approach that simultaneously generates hierarchical shape de-

composition and a corresponding set of multi-resolution skeletons. We have adapted the

technique presented in [47], that was initially targeted toreverse engineering, for the pur-

poses of character animation.

2.2 Skinning

We focus on skeleton-driven skinning introduced by [56]. Linear blend skinning (LBS) is

the most widely used technique for real-time animation in spite of its limitations [72] due

to its computational efficiency and straightforward GPU implementation [44]. LBS was

initially presented in the game development community [41,42]. LBS determines the new

vertex position by linearly combining the results of the vertex transformed rigidly with each

influence bone. A very high performance LBS method using a vertex shader program is

proposed in [24]. Further parallelism achieved in [59] using multiple passes to a fragment

shader. GPU progressive skinning [58] extends LBS to support a continuous level of anima-

tion detail.

Recent skinning algorithms are classified based on whether they use a single input mesh

(Geometric methods) or a training set of poses (Example-based methods) of input models.

Further, many methods have been devised for detailed geometric deformation combined

with dynamic deformation using physical constraints (Physics inspired methods). In the

first case, vertex weighting is usually specified manually. In the second case, researchers

have proposed to automatically approximate realistic skindeformation by training weights

with one [9] or multiple input meshes [34, 33]. Our rigid skinning approach falls under

geometric class of algorithms introducing a novel versatile, robust and efficient blending

approach based on rational quadratic Bezier patches.

Geometric methodsrevert to non-linear blending of rigid transformations since deforma-

tion is inherently spherical. Numerous proposed methods have replaced the linear blend-

ing domain with simple quaternions [30], [1] or have proposed matrix operators [52], log-

matrix [16] operators, spherical blending (SBS) [39] and dual quaternions (DQS) [37].

SBS and DQS has been implemented on the GPU achieving performance comparable to

LBS [3, 37]. The drawback of DQS is that dual quaternions do not exist in most existing

graphics libraries yet. A promising research direction with the same principle (no weights

used) as our approach was proposed by [75]. They used the skeleton to control the simplices

7

defining the model instead of the vertices yielding smooth transitions near joints. Another

alternative recently explored technique is the use of 3D free-form character articulation us-

ing sweep-based [32, 77] or spline-based techniques [76, 25]. Kanan et al. [38] introduce

a method for automatically constructing skinning approximations of arbitrary precomputed

animations, such as those of cloth or elastic materials. Finally, [36] demonstrates that any

nonlinear skinning technique can be approximated to an arbitrary degree of accuracy by

linear skinning, using just a few samples of the nonlinear blending function (virtual bones).

Example-based methodsremove artifacts by correcting LBS errors while the storageand

computation costs increase. Initial approaches combined rigid skinning with interpolation

examples using radial basis functions [45, 65]. EigenSkin [40] used principal component

analysis for approximating the original deformation modelbased on GPU vertex program-

ming. Multi-Weight Enveloping (MWE) [71] and Animation Space [53] are similar methods

that introduce more weights per influence bone to provide more precise approximations and

additional flexibility. [33] found the Animation Space technique to consistently perform

better than LBS and MWE while MWE also suffered from over-fitting. In addition, [54] in-

troduced extra bones to capture richer deformations than the standard LBS model. A recent

research work proposes a replacement of linear with rotational regression when examples

are available [70, 73]. Finally, [15] employs efficient dual-quaternion transformation blend-

ing to achieve real time viewpoint adaptable animation.

Physics inspired methods. Physics inspired methods simulate realistic skin motion with

high degree of realism [14, 29, 78] or add secondary deformations enriching skeleton driven

animations [43, 68, 63], by paying the price of increasing considerably the computational

complexity.

3 Preliminaries

Let CH(C) be the convex hull of a componentC that consists ofn triangles: T k =

{(pk, qk, rk), k = 0, 1, . . . n}. Then, the area and the centroid of thekth triangle are given

respectively byak = 1
2
|(qk − pk) × (rk − pk)| andmk = 1

2
(pk + qk + rk). Finally, the total

area of the convex hull is denoted byACH(C) =
∑

ak.

Joint Boundary. Joint boundaries are created when a component is split intosub-components

during mesh segmentation. We define asjoint boundarythe common (joining) points of two

adjacent components (Figure 3). LetBC(C) be the set of the joint boundary centroidsbci

8

P1P2 P3

Joint boundary centroid Joint boundary centroid

Figure 3: The generated joint boundary centroids between P1and the adjacent components
P2 and P3.

of a componentC, BC(C) = {bc1, . . . , bcn}, wheren is the number of joint boundaries of

C.

Kernel Centroid . Thekernelof a component is the locus of its internal points from which

all vertices are visible. Each facet of the component definesan interiorhalf-spacewhere

half-space is either of two parts into which a plane divides the 3D space. The kernel is the

intersection of all such inner half-spaces. The simple centroid computation of a kernel may

return nonintuitive results when applied on non-uniformlydistributed points. Instead, we

evaluate the kernel centroid as the weighted average of the triangle centroids of its convex

hull (since kernel is a convex set) weighted by their area. Hence, the centroid of the convex

hull is denoted bymCH(C) and is given bymCH(C) =
P

akmk

ACH(C) . Efficient algorithms for

computing the convex hull of a point set and the intersectionof a set of half-spaces are

publicly available. In this work we have used theqhull implementation [10].

Principal Axis . The principal directions are three mutually perpendicular axes of a rigid

body and may be used to find an approximation of the object’s minimal bounding box axes.

To derive principal directions, we use Principal ComponentAnalysis in a covariance matrix

computed across the entire faces of the primitives instead of using only the vertices [28]. The

principal axis is the eigenvector of the covariance matrix which corresponds to the largest

eigenvalue. The covariance matrix for the aforementioned case is given by:

Cij =

∑n

k=0 ak(9mk
i m

k
j + T k

i · T k
j)

12ACH(C)
− mch

i m
CH(C)
j (1)

9

P1

P2

P3 P4

Parent - Root

Child 1

Child 2 Child 3

P1

: Joint boundary centroid

: Skeleton line

: Component centroid

(a) (b)

Figure 4: (a) A simple example of a skeletal representation using the Boundary Method.
(b) An example that illustrates the inappropriate skeletonextraction that arises when this
method is applied to non convex components.

4 Skeleton Extraction

We have built on techniques introduced by [47] that producesrefined local skeletal morphs

from the components of modular models. We have adapted thesetechniques for the purposes

of our application and we have introduced appropriate refinements of the produced skele-

tons. The global skeleton of the character is then reconstructed by connecting the refined

skeleton components.

4.1 Previous Approaches to Skeleton Extraction

4.1.1 Boundary Method

A straightforward approach to building the skeleton of a component is to connect the joint

boundary centroids. Note that for the component identified as root the skeleton is derived by

connecting the component centroid with the joint boundary centroids. Although the method

is very efficient it may generate unacceptable skeletons even for simple non convex objects.

Its major drawback is that it may produce skeletal segments that intersect arbitrarily the

component boundary (see for example Figure 4).

10

P1

P1 P3

P2

Parent

Child 1

Child 2

(a) (b)

: Joint boundary centroid

: Skeleton line

: Kernel centroid

Figure 5: (a) A simple example of a skeletal representation using the Centroid Method.
Skeleton of componentP1 does not capture its shape accurately. (b) The Boundary Method
artifact of Figure 3(b) addressed using the Centroid Method.

4.1.2 Centroid Method

An improvement over the boundary method is to build local skeleton segments by connect-

ing joint boundary centroids to the center of the component’s mass [47]. Sometimes, how-

ever, the centroid may lie outside the component boundary producing erroneous skeletons.

To overcome this shortcoming we propose to use the centroid of its kernel forstar-shaped

components (polyhedra with non-empty kernel)(Figure 5).

In non star-shaped components the center of their mass is used instead. This approach

is efficient and addresses some of the flaws that occur in the boundary method. However,

frequently it does not capture the component shape accurately.

4.1.3 Principal Axis Method

In [47], the authors proposed to overcome failures of previous methods by extracting a

skeleton from a component by connecting the joint boundary centroids to a principal axis

segment. To achieve this, the principal axis is segmented inline segments of equal length

by defining a number of equidistantlink pointson the axis. This method maps the joint

boundary centroids on the principal axis by minimizing the total interconnection length and

the number of link points used. This is reduced to an optimization matching problem. The

final skeleton of the component contains line segments that connect joint boundary centroids

to link points and line segments that interconnect link points.

11

(b)(a)

: Principal axis

: Joint boundary centroid

: Skeletal joint

: SkeletonConnecting

: SkeletonGrouping

: Projection point

Figure 6: Skeleton extraction based by the principal axis method.

4.2 Optimized Skeleton Extraction

Our approach adopts and improves this skeleton extraction technique for use in an animation

context. To ensure that skeleton segments have the least possible intersection with the com-

ponent border we use as major axis an axis parallel to the principal axis that goes through

the kernel centroid of the component. We denote this major axis segment aspa. In addition,

we select the principal axis segment of the convex hull that resides within the interior of the

component instead of the one that lies within the convex hull.

Moreover, the method outlined in [47] depends on a scalar that defines the minimum

skeleton linkage length, making it not versatile. Since thecardinality of the link points

varies from 1 to|BC|, we propose to subdividepa in a number of uneven segments by

picking as link points the projections of the joint boundarycentroids onpa. Let Ppa(bci)

be the projection of a joint boundary centroidbci on pa. If this projection lies outsidepa

then we use instead the end point ofpa that lies closer to the projection. Then, we sort

the joint boundary centroids according to their closest projection points by observing that

two centroids are likely to be grouped when their projected points are close enough (see

Figure 6).

Our matching algorithm uses a dynamic programming concept,based on novel score

functions which aim at minimizing the total interconnection length and the number of link

points used and maximizing the length of the utilizedpa (Section 4.2.1).

After grouping has been performed, we create the set of skeleton edges. Beyond the

standard connections between the joint boundary centroidsand the link points and line seg-

ments that interconnect link points, we use extra skeleton edges based on the mapping result

(Section 4.2.2).

12

Finally, we propose to add four more joints which represent the two ends of the other

axes segments hence adding more topological information toskeletal representation.

The principal axis algorithm is more expensive to compute than the other two meth-

ods due to the principal axis and kernel centroid computation but achieves a higher quality

skeleton by encoding the topology of the character’s shape more effectively.

4.2.1 Grouping Algorithm

In this step our goal is to group the sorted joint boundary centroids so as to minimize the

total mapping length and the cardinality of the set of link points (score functionFbc), while

at the same time maximize the length of the used principal axis (score functionFgr). First,

each group contains only a joint boundary centroid.

The main concept behind the score function for grouping a projection of a joint bound-

ary centroid set,bcij = 〈bci, . . . , bcj〉, it should be monotone on the distance among joint

boundary centroids.

First, we compute their link point on the principal axis as the mean of their projections.

By doing so, the sum of their distances to the principal axis is minimized,

Lpa(bcij) =

∑j

k=i Ppa(bck)

|bcij |
(2)

Let d(p1,p2) be the Euclidean distance between pointp1 and pointp2. Then∀ bck ∈

bcij , we measure their interconnection cost with respect to thisgrouping. We denote this

asnormalized variationof the joint boundary centroid and is evaluated as the normalized

distance of the joint boundary centroid to the principal axis,

V (bck) =
d(bck, Lpa(bcij)) − dmin(bck)

dmax(bck) − dmin(bck)
, where (3)

dmin(bck) = d(bck, Ppa(bck)) and (4)

dmax(bck) = max
1≤l≤|BC|

{d(bck, bcl)} (5)

So, the total mapping length cost among these joint boundarycentroids and the principal

axis is computed as the average of their normalized variations,

13

V (bcij) =

∑j

k=i V (bck)

|bcij |
(6)

Moreover, we compute the normalized length of the principalaxis which is vanished after

merging these joint boundary centroids. This factor equalsto the length of the principal axis

which is generated among their projections divided by the length of the maximum principal

axis segment that can be constructed,

palost(bcij) =
d(Ppa(bci), Ppa(bcj))

d(Ppa(bc1), Ppa(bc|BC|)
(7)

Sometimes, the value of the maximum constructible principal axis length is very small as

compared to the actual length ofpa. In that particular case, the value of the lost skeleton

score will be very large, which is undesirable since the bestsolution is to group joint bound-

ary centroids to one link point. Hence, we set the maximum constructible principal axis

length toc|pa|, wherec is an experimentally determined constant in[0.1, 0.2].

Definition 1. Thenormalized merging score functionFbc for a projection setbcij is defined

as the average of the total distance cost plus the ratio of length of the principal axis we lose,

Fbc(bcij) =
V (bcij) + palost(bcij)

2
(8)

The main idea of the score function for not merging two sequential groupsGx = 〈bcx
i , . . . , bc

x
l 〉

andGy = 〈bcy
l+1, . . . , bc

y
j 〉, is that as the distance between these groups becomes very small

the corresponding score function value increases.

The total mapping length cost between the joint boundary centroids of these groups and

the principal axis is computed again as the average of their normalized variations which

have been computed in previous steps (dynamic programming),

V (Gx, Gy) = V (bcil) + V (bcl+1j) (9)

Moreover, we define a factor that expresses how these two groups participate quantitatively

to the skeleton construction. This factor equals the normalized length of the principal axis

which is generated between these groups which is the distance from the last projection point

of the first group to the first projection point of the second group divided by the length of

the maximum principal axis segment that can be constructed,

14

bc2

bc1

bc3

pa
Ppa(bc1) Ppa(bc2)

Lpa(bc12)

d
m

in (bc
2)

d m
in
(b

c 1
)

d
max(bc2)

dmax(bc1)

d(
bc

1
,L

pa
)

d(
bc

2
,L

pa
)

Ppa(bc3)

d(Ppa(bc1),Ppa(bc2))

d(Ppa(bc1),Ppa(bc3))

d(Ppa(bc2),Ppa(bc3))

skeleton

d
m

in (bc
3)

Group 1 = {bc1 , bc2} Group 2 = {bc3}

Figure 7: An example of grouping with three joint boundary centroids.

gRpa =
d(Ppa(bc

x
l), Ppa(bc

y
l+1))

d(Ppa(bc1), Ppa(bc|BC|)
(10)

Definition 2. The normalized separating score functionFgr for two groups is defined as

the average of the sums of their total distance cost plus the complement of the normalized

utilized principal axis,

Fgr(Gx, Gy) =
V (Gx, Gy) + (1 − gRpa)

3
(11)

Figure 7 demonstrates a grouping example of a component withthree joint boundary cen-

troids. Algorithm 1 summarizes the grouping process. ByG[i, j] we denote the optimal

solution for the sub-problem〈oci, . . . , ocj〉.

4.2.2 Connecting Algorithm

The final skeleton of the component contains line segments that connect joint boundary cen-

troids to link points and line segments that interconnect link points. Joint boundary centroid

grouping often generates skeletons that do not capture important topological information.

Therefore, the connection algorithm works with the following rules:

1. If all joint boundary centroids are grouped to one link point and this point is closer to:

• pa’s centroid, we connect it with thepa’s end points on both sides of its centroid.

15

Algorithm 1 group(BC, pa)

1. for each bci ∈ BC do G[i, i] = bci;
2. for l = 2 to |BC| do
3. for i = 1 to |BC| − l + 1 do
4. j = i + l − 1;
5. G[i, j] = 〈bci, . . . , bcj〉;
6. s1 = F1(G[i, j], pa);
7. for k = 1 to j − l do
8. s2 = F2(G[i, k], G[k + 1, j], pa);
9. if s2 < s1 then
10. G[i, j] = G[i, k] ∪ G[k + 1, j];
11. s1 = s2;
12.return G[0, |BC|];

(a)

: Principal axis

: Joint boundary centroid

: Skeletal joint

: SkeletonConnecting

: SkeletonGrouping

(b)

Figure 8: The refined skeletons obtained by the connecting algorithm capture more infor-
mation about the shape of the components.

• one ofpa’s end points, we connect it with thepa’s end point on the other side of the

pa’s centroid.

2. If all joint boundary centroids are connecting to more than one link point and these

points are closer to:

• pa’s centroid, we connect the first and the last link points withthe pa’s end points on

both sides ofpa’s centroid, respectively.

• one ofpa’s end points, we connect the first or the last link point with thepa’s end point

on the other side ofpa’s centroid.

Figure 8 shows the resulting skeletons of two components using this technique.

16

Figure 9: Oriented bounding boxes and skeletons of “Human” model components: (left)
Original configuration (right) After alignment.

5 Skeleton Refinement

Covariance-aligned principal directions are not optimal due to the used approximation al-

gorithm. In this section we introduce a process that improves the alignment through small

corrective adjustments. Clearly, the PCA algorithm fails to derive a unique valid solution

when applied to point clouds that are characterized by a large degree of symmetry. However,

it can provide useful topological information that if combined with qualitative features may

improve the initial solution considerably. Our approach adjusts the principal direction ori-

entation using two individual processes; the first uses local characteristics while the second

uses inherited hierarchical information, i.e. knowledge derived from the ancestors. Figure 9

illustrates the qualitative improvement of the skeletons and the corresponding OBBs over

the original principal axis algorithm result.

5.1 Local Refinement

To achieve nearly optimal and visually satisfactory orientation results we approximately

align principal directions through slight modifications using qualitative features. We de-

fine these features as the extracted skeletons segments by the centroid method; i.e. vectors

defined by connecting the kernel’s centroid to the joint boundary centroids. The proposed

algorithm performsweightedvector alignment for each joint boundary centroid so that each

adjustment will not undo the benefits acquired during previous improvements (Figure 10).

If the component has more than one joint boundary centroids,we align with regards

to the closest principal direction byangle = αw, whereα is the angle between the given

vector and its closest axis and weightw = 1
|BC|+1

except from the joint boundary centroid

which lies at the root. Considering that this has more importance to the overall refinement,

17

BEFORE

.

AFTER

: Skeleton line

: Principal directions

: Joint boundary centroid

: Skeleton joint

: Kernel centroid

: Allignment vector

: Boundary

Figure 10: This example illustrates the result of a local refinement operation on a component
with one joint boundary centroid: (left) the initial principal axes orientation and (right) the
produced skeleton after local alignment.

we weighted it by2w, such that
∑|BC|

i=1 wi = 1. Closest is the principal direction that forms

the minimal angle with the given vector. When the component has only one joint boundary

centroid, we simply match its corresponding vector with itsclosest principal direction. If

the closest principal direction is different from the principal axis then the former will be the

selected as the principal axis. The upper bound for the rotation angle is a user determined

parameter and in practice is set in the range5◦ − 20◦ degrees interactively. Modifications

that require rotations beyond this upper bound are rejected.

5.2 Hierarchical Refinement

We extend the local refinement process by performing optimalfitting of the local principal

directions of neighbor components to achieve skeletal uniformity.

The algorithm starts from the children of the root node of theskeleton tree performing

the same process to their children and so on, until it reachesthe tree leaves. An inherent

drawback of this method is the dependence of the result on theselection of the root com-

ponent. For each component, theHierarchical Refinementprocess first aligns with regards

to the parent principal direction which is closest to the child principal axis. Subsequently,

18

Parent

Child

BEFORE AFTER

: Principal axes

: Joint boundary
centroid

Figure 11: Comparison of the extracted skeletons (left) before and (right) after using the
hierarchical refinement algorithm.

from the rest of the child and parent principal directions wedetect those that are closest and

aligns them (Figure 11) accordingly. Note that fitting two principal directions from different

components, results in rotating the other principal directions too.

6 Rigid Skinning with Blending Patches

With Rigid Skinning every motion is transferred to the character’s surface by assigning each

skin vertex one joint as driver. A skin vertex is pinned in thelocal coordinate system of

the corresponding joint, which is the one derived during theskeletonization procedure. By

using homogeneous coordinates, a joint transformation is represented through a4×4 matrix

W . The vertex then repeats whatever motion this joint experiences, and its position in world

coordinates is determined by forward kinematics, i.e it is transformed by the joint matrix

W : v′ = Wv. This will give the skin vertex position when moving rigidlywith the joint.

Similarly, the normal of each skin vertex is transformed by rotating it with the upper3 × 3

rotation matrixR of W : n′ = Rn. Despite its simplicity and computational efficiency, rigid

skinning makes it difficult to obtain sufficiently smooth skin deformation in areas around

the joints. This has led to the emergence of more specializedtechniques that improve the

undesirable rough skinning results. We have develop a noveltechnique to address these

major flaws. This technique is carried out in four steps:

19

Figure 12: The difference of the cutting result without and with applying hierarchical re-
finement.

1. Remove skin vertices of overlapping components.

2. Add new vertices in this area to fill the gap.

3. Construct a blending mesh that produces a smooth skin surface by using a robust

triangulation method around the new vertices area.

4. Compute and adjust the normal vectors of the patch faces.

6.1 Removing Vertices

First, we detect which vertices from each of the collided components are located inside each

other. A fast approximate test is to use the oriented bounding box (OBB) since accurate

methods require a lot of computational resources. A point isinside an OBB if all 6 plane-

point tests result having the same sign. We further improve the testing process accuracy

by making one extra plane-point test. Each point is tested against the plane which fits best

to the joint boundary points of the components. We denote this asjoint boundary plane

(see Figure 13). The use of the joint boundary plane decreases significantly the number of

removed points by 20% - 50% (see Figure 14).

The algorithm starts from the joint boundary points to perform the fewer tests since they

have the highest probability to lie inside the other component’s OBB and move through their

1-ring of neighbors until we reach points which lie in the outer side of the OBB. Two points

are 1-ring neighbors if they belong to the same triangle.

20

Figure 13: This is an example which shows the point classification for component 2 after
removing the unnecessary points when the joint boundary plane is used.

Figure 14: Reduction of removed points by introducing the joint boundary plane test.

21

The refined and aligned OBBs derived during the skeletonization process provide re-

duced overlapping between the moving adjacent components.An extreme example of the

result of not using hierarchical refinement is illustrated in Figure 12.

6.2 Adding Vertices

Definition 3. To facilitate the description of the blending mesh we define as:

• Openingis the set of joint boundary points of the component that havenot been re-

moved.

• Middle is the point set that we obtain if we subtract Opening set fromthe joint bound-

ary point set.

• Replacedis the point subset of the component that corresponds to new end points

created by the removed points that will be used to fill in the gap.

• In-Betweenis the point set which consists of the average of the initial and final posi-

tions of the joint boundary points of the component that havebeen removed (which

we denote them withBs
i andB

f
i , respectively).

• Extra is the point set that consists of all 1-ring neighbors of the points that belong to

Opening ∪ Replaced set.

We present two blending techniques; the first one is calledfront blending patch construction

and patches only theOpeningset and the second is calledrear blending patch construction

and patches theReplacedandIn-Betweenpoint sets.

6.2.1 Front Blending Patch Construction - FBPC

The observation enabling this mechanism is that the rotation of a component results in move-

ment of every pointOj ∈ Opening on a circular arc. The task is to find new points by

interpolating from the point’s position(Os
j = qsOjq

−1
s) before quaternion rotationqs to the

point’s position(Of
j = qfOjq

−1
f) after quaternion rotationqf (see Figure 15).

We have used fast linear interpolation of quaternions (QLERP) since the interpolation

along the shortest segment hardly causes any observable skin defect [39]. QLERP is com-

puted as

22

Figure 15: Blending Patch Construction processes

q(t; qs, qf) =
q′

‖ q′ ‖
, q′ = (1 − t)qs + tqf (12)

where the values assigned tot determine the interpolation step and depend on the proper

distance which is enforced between consecutive constructed points. We evaluate it as the

average of the median edge distances of the two components. To avoid square root operation

involved in th quaternion normalization, we convertq′ to a homogeneous rotation matrixQ′

and then normalize subsequently by dividing withq′q′ to provideQ. In order to translate the

center of rotation from the joint position (J) to the origin, we define a homogeneous matrix:

T =

[
I − ~J

~0T 1

]
(13)

whereI is a3 × 3 identity matrix. Finally, a new point is constructed using:

v′ = TQOs
jT

−1 (14)

23

6.2.2 Rear Blending Patch Construction - RBPC

We have to fill in the gap in the area where we have removed points from both components.

It is central to establish a correspondence between a pair ofReplaced pointsfrom each

component and then fill in the in between gap. Thus, we introduce a new point set, calledIn-

Betweenpoints.

A grouping algorithm is used to createtriplets from eachInBi ∈ In-Betweenand one

point from each of the child and parentReplacedsets (RC
j , RP

k selected points, respectively).

We seek triplets with the following property: the plane defined by the three points, and has

the minimum dihedral angle with the plane defined by the jointposition and the kernel

centroids of the participating components (planePL). To reduce the computational burden

of brute-force search of the best fitting triplet (≈ O(n3)), we reorder the search space by

sorting the three point sets with respect to the distance from planePL. Then, we search

for the best triplet which containsInBi by traversing the child and parentReplacedsets

(RC , RP) from theyC
i andyP

i start positions and continue for a limited number of steps

(lSC andlSP , respectively). Evidently,yC
0 andyP

0 values are initialized to zero. At thei-th

step of the iterative algorithm,yC
i andyP

i are evaluated as the next position of previous step

selected candidates(j, k) of RC , RP sets. Algorithm 2 summarizes the fitting triplet process,

whereNPL is the normal vector ofPL plane. The number of steps for each component are

initialized tolSC = 0.1 ∗ |RC| andlSP = 0.1 ∗ |RP |. Finally, the tangent vectors atRC
j , RP

k

are defined as the projections on the triplet plane of the outgoing vectors from the child and

parent centroids to the joint positionJ.

If we construct the patch with interpolated points of a circle equation, artifacts will arise

due to the discontinuities at the end points of the two components. To avoid these, we

construct blending arcs given the triplet vertices as control points using a Rational Bezier

representation: LetP C andP P be the two end points of the conic arc, let(vC
x , vC

y) and

(vP
x , vP

y) be the tangent vectors that we wish to enforce at the end points and letP I be the

third in between point we wish to interpolate. Furthermore,letU = (vC
x M2−vP

x M1, vyM2−

uyM1), whereM1 = P C
x vC

y − P C
y vC

x andM2 = P P
y vP

y − P P
x vP

x .

Then the rational quadratic Bezier curve segment has the form [26]:

c(t) =
(1 − t)2P C + 2t(1 − t)W + t2P P

(1 − t)2 + 2wt(1 − t) + t2
(15)

24

Algorithm 2 triplet(In-B, RC , RP , NPL)

1. Sort(In-B); Sort(RC); Sort(RP);
2. j � 0; k � 0;
3. lSC

� 0.1 ∗ |RC |; lSP
� 0.1 ∗ |RP |;

4. for each InBi ∈ In-B do
5. minA � MAXfloat; iC � 0; yC

� j;
6. while iC + + < lSC && yC < |RC | do
7. DC

� RC
yC − InBi;

8. iP � 0; yP
� k;

9. while iP + + < lSP && yP < |RP | do
10. DP

� RP
yP − InBi;

11. NC,P
� normalize(cross(DC , DP));

12. angle � arccos(dot(NPL, NC,P));
12. if angle < minA then
13. minA � angle;
14. j � yC ; k � yP ;
15. yP + +;
16. yC + +;
17. rationalBezierInterpolation(InBi, R

C
j , RP

k);

25

where

W =
Area(P C , P I , P P)U

R
, w =

Area(P C , P I ,)P P ~vC × ~vP)

R

R =

√
d(P P , ~vC , P C)d(P I , ~vC , P C)d(P C, ~vP , P P)d(P I , ~vP , P P)

d(S,~r, R) = (Sy − Ry)rx − (Sx − Rx)ry

Area(C, P, D) : The signed area of the trianglêCPD

To prevent the generated meshes from exhibiting volume lossand from decreasing mesh

smoothness as joints rotate to extreme angles we are using alternativeInB point sets and

tangent vectors. To illustrate this we use the following notation:

• Ip is the intersection ofT C andT P vectors.

• Vm is the average ofInBi andIp points.

• Vk is the terminal point of the negative vector going fromInBi to Vm.

• TC
InB, T P

InB are the vectors going fromRC
j , RP

k to InBi, respectively.

• TC
Vm

, T P
Vm

are the vectors going fromRC
j , RP

k to Vm, respectively.

To this end, we present and evaluate four alternatives for replacing theInBi points and the

associated tangent vectors (see Figures 15 and 16). These four alternative selections are

evaluated in Section 7 in terms of quality and robustness.

1. : Vm with TC
InB, T P

InB, and the resulting gap filling process is calledMean Point Inter-

polation.

2. : Ip with TC
InB, T P

InB, and the resulting process is calledIntersection Point Interpola-

tion.

3. : Ip with TC
Vm

, T P
Vm

, and the resulting process is calledReduced Volume Intersection

Point Interpolation.

4. : InB with T C
Vk

, T P
Vk

, and the resulting process is calledIn-Between Point Interpola-

tion.

26

PL plane

dihedral angle

Triplet plane

Child

Parent

Boundary

: Joint boundary centroid

: Kenrel centroid

: In-Between point

: Vm point

: Ip point

: Replaced point

: Child-Parent axes

: TC-TP

: TIp
C-TIp

P

: TInB
C-TInB

P

: TVk
C-TVk

P

: Vk point

Figure 16: Rear Blending Patch Construction process alternatives and notation.

Finally, we ensure that the constructed points are uniformly sampled by adjusting the inter-

polation step. In the special case oftwisting, adding vertices process is not necessary since

the articulation remains constant, so we omit this step.

6.3 Blending Mesh

The points derived through the two blending processes constitute the blending 3D point

cloud which will be triangulated to form the blending patch between the two components.

To ensure the robustness of the whole mesh we expand the blending point cloud to include

the 1-ring neighbors of the component’sReplacedpoints (part of theExtrapoint set). In the

CPU version of this work, we have used theTight Cocone[20] algorithm to build water-tight

surfaces around the newly inserted points. Since we need only two parts of the generated

spheroid to fill the holes, we must eliminate a number of unnecessary faces to derive optimal

lighting results. To this end, we adjust the normal vector orientation and then we remove the

faces that belong exclusively to either the child or the parent component and whose normal

vector is not nearly parallel with all normal vectors of its defining points. The evaluation

27

Figure 17: The normal vector evaluation of all possible meshpoints.

of the patch point normal vector is achieved by averaging thenormals of the output surface

faces that contain this vertex. We adjust the normal values of the Opening and Replaced

points by averaging the normals of the newly built surface faces and the normals of the

original component faces that share this vertex. In this process we take care as to not include

component faces that have been removed. Finally, the normalvectors of extra inserted points

remain unaffected since the above adjustment is not necessary (Figure 17).

6.4 Porting the Rigid Skinning Algorithm on a GPU Platform

The performance of the GPU is potentially much faster than the CPU to handle streaming

input data working on large amounts of data in parallel in conjunction with the reduced

data transfer advantage of the graphics hardware. The proposed Rigid Skinning algorithm

is based on per-vertex computations which is independent for each vertex and so can be

parallelized on a GPU architecture using five render stages.We have significantly improved

the overall performance of the proposed method by employingGPU which takes advantage

of the SIMD programming model (Single Instruction MultipleData) to accelerate the whole

rigid skinning process with minimal CPU involvement. By doing so, we achieve real time

performance, while maintaining the quality of our rigid skinning result.

We distinguish between two types of data, varying and uniform data. Varying data is

the streaming input data, while uniform data is data independent from the input stream that

28

do not change between stream elements. Further, we have exploited an advanced usage

of theTransform Feedbackextension [23], which stores selected vertex attributes for each

primitive and writes into buffer objects, thus feeding the data through one shader program to

another. Furthermore, according to recent benchmarks, theuse of the transform feedback is

proven to be highly efficient even for simple trasformationson large data sets as compared

to standard GPU data communication schemes [74].

Geometry information from the rest pose is stored intovertex buffer objects(VBO) to

reduce data transfer between CPU and GPU. Figure 18 illustrates the GPU work flow for

our implementation. The vertex, geometry and fragment shader programs were written

in GLSL. The framework was developed using OpenGL as graphics library under C++.

Unfortunately for porting these complicated graph-based operation on the GPU we have

used extensions that are supported only on NVIDIA Geforce 8800 and later series. As

geometry shaders will be supported by other GPUs as well it isstraightforward to port this

code to other GPU brands, since we use only the extensions of OpenGL 2.1 GLSL shaders.

6.4.1 Removing Vertices

VerticesVBOs of the overlapping components along with an array of each joint boundary

point indices and the corresponding BBs are transfered to the Remove Pointsvertex shader

program. If a point is inside the BB then we set itsw position coordinate to zero, so that the

Render Modelgeometry shader program will not emit it (Removed VerticesVBO). More-

over, besides the BB collision detection, this shader will also characterize the exported point

using one float value [1,2,0] asMiddle, Opening, or neither of them, by checking whether

it belongs to the joint boundary point array and storing thisinformation intoBoundary Ver-

ticesVBO. Finally, we construct atexture buffer object(TBO) to maintain a large global

data store of vertex attributes that will be accessed afterwards by theReplacedandExtra

shader programs. This TBO is calledReplaced attributeand stores for each point a 2D vec-

tor whosex andy coordinates determine whether this point is removed and whether it is an

Openingpoint, respectively.

TheReplacedshader programs are used to obtain a TBO which contains theReplaced

vertices. The generated output will be used to extract theExtra point set and to assist with

the construction process. A point is aReplacedpoint if it is not removed, is not anOpening

point and one of its neighbors is removed. Similarly, theExtrashader programs (vertex and

29

geometry) are responsible to export a TBO which contains theExtra vertices which will

expand the blending point cloud. AnExtra point is returned if is not removed, all of its

neighbors are not removed and one of them is eitherOpeningor Replacedpoint.

All the computation process is done using vertex shader programming. OnlyReplaced

or Extra points are emitted by the corresponding geometry shader. For bothReplacedand

Extra vertex shader programs, we have used ”unnormalized” integer texture formats [23]

looking up the neighbor indices of each point.

6.4.2 Adding Vertices

At first, a vertex shader program defines if testing vertex isOpeningor Middle point using

Boundary VerticesVBO. If it belongs to theOpeningpoint set then we generate new points

using the equations presented in detail in Section 6.2.1. Onthe other hand, if it belongs

to theMiddle point set, we first compute its correspondingIn-Betweenpoint and then the

grouping algorithm is carried out to create the besttriplet using the overlapping components

info stored in theReplacedTBOs. The difference from the CPU-based implementation is

that we cannot use Algorithm 2 due to its sequential nature. After this step, a geometry

shader is used to construct points interpolating rational Bezier arcs given the triplet vertices

as control points 6.2.2. Finally, we copy theExtra TBO to the generatedPatch Vertices

VBO for the purposes of expanding the blending point cloud toachieve better robustness.

6.4.3 Triangulation

To triangulate the newly constructed unorganized point cloud we adapt a GPU interpolating

reconstruction algorithm based on local Delaunay triangulation [13]. Triangulation is un-

dertaken locally around each point, so that points do not depend on each other. Hence, it can

be performed in a parallel. We have used a similar algorithm with [13], but we have made

the following modifications to best suit the purposes of our application and to allow faster

execution and utilization of the state of the art hardware used:

• We do not divide the point cloud into smaller sets or passes, which are independently

processed in the GPU, the graphics memory of the new GPUs can easily accommodate

all data.

• We have implemented the k-nearest neighbor algorithm inCreate Patchvertex shader

30

Figure 18: The GPU implementation work flow.

program, thus maximizing parallelization. Normal estimation, rotational projection,

angle computation and radial sorting are also computed in the same shader.

• We have used the simple Bubble sort for finding k-NN neighborsand Radial sorting

generated neighbors, due to the small number of each point’sneighbors.

• The geometry shader program computes the valid Delaunay neighbors and outputs

zero or more point primitives per-vertex. Triangle indicesare stored into emitted

point position vectors. Since the generated primitive stream is in the same order as

given in the input, we can recompute the normal vectors for each vertex by averaging

the normals of neighboring constructed facets.

7 Evaluation Results

The input to our algorithm is a segmented polyhedron model and its associated hierarchy

information. Then, the character components are set to motion using forward kinemat-

ics guided by a key-framing animation controller by altering joint angles of the embedded

skeleton. In the following experiments we have decomposed characters into components us-

ing theBlender(http://www.blender.org/) software and animate them using manually sup-

plied motion data. Table 1 summarizes the characteristics of the solid models used in the

experiments.

The experiments were performed on a MS Windows XP Professional 64-bit Platform

with a 64 bit 2.6GHz Intel Core Duo with 3GB of main memory and anVidia GeForce

31

8800 Ultra graphics card. We evaluate our proposed techniques with respect to four criteria:

performance, quality, versatility and robustness.

Model Components Vertices Triangles
Cow 16 3825 7646
Horse 17 8964 17924
Dilo 37 26214 48924
Human 31 74014 140544

Table 1: Number of components, vertices and triangles of themodels used in the experi-
mental evaluation.

7.1 Performance Evaluation

Table 2 gives computation times for extracting skeletons from the above models. The largest

computation time corresponds to the principal directions and kernel centroid calculation

which are performed in
∑k

i=0 O(ni log ni) and
∑k

i=0 O(ni log ni) + O(ri log ri) time re-

spectively, for an articulated character model withk components where theith component

hasni vertices andri kernel points. The refinement times are negligible as compared to

the overall performance. In Table 2, we observe that the average overall skeleton extraction

complexity appears to be almost linear on the number of triangles.

It would be meaningless to quantitatively compare our method with other competitive

skeleton extraction methods, since most such methods are bound with a suitable decompo-

sition method. In general, our method generates refined skeletons in less than half a minute

for dense models (Figures 9, 20, 19). Thus, if our method is used in conjunction with a fast

decomposition method, it will be a very efficient overall process.

Model Kernel Centroid Principal Axis Total

Cow 1.982 0.868 2.995
Horse 2.086 0.924 3.178
Dilo 4.701 2.022 7.150
Human 10.244 4.649 14.893

Table 2: Time performance of skeletonization steps measured in seconds.

We have compared the performance of the GPU realization overour optimal sequential

CPU implementation [66] for rigid skinning animation of a human knee (see Figure 2)

32

Table 3: Comparison of GPU vs CPU implementation.

from the initial pose to extreme angles (articulation anglegoing from170◦ to 80◦). where

the parent and child components consist of 891 and 1000 vertices, respectively. Table 3

illustrates the computation times for both implementations which shows that using the GPU

we obtain an average speed-up around 10x compared to the CPU implementation.

7.2 Quality Evaluation

Figures 19 and 9 illustrate the qualitative superiority of our refined skeletons and aligned

OBBs over the original principal axis algorithm. Figure 20 illustrates the similarity be-

tween the default skeletons generated byPoser[22] software and skeletons extracted by our

method.

To measure thesmoothnessof the deformed meshes derived from our skinning tech-

nique, we define:

Definition 4. Let v be a vertex with an associated setV a of k adjacent verticesV a =

{va
1 , . . . , v

a
k}. Then we define the approximate measureCurv for the curvature ofv as the

maximum of the angles between the normal vector ofv (N(V)) with the normal vectors of

the vertices ofV a (N(V a
i)),

Curv(V) = max
1≤i≤k

{arccos(N(V)·N(V n
i))} (16)

Then, the total curvature of a bone component can be defined asthe median of curvature of

33

Figure 19: Refined oriented bounding boxes and skeletons of the components of the horse
model.

Figure 20: Comparison on human and dino skeletons (left) derived by applying our refine-
ment process and (right) built manually by the creator of themodels.

34

all the vertices connected to this bone. Lower curvature measure numbers means smoother

meshes. As the model segment approaches to the mathematically smooth surface, the cur-

vature approaches to zero.

A graph of the curvature variation of the components involved in the human knee joint

movement is illustrated in Figure 21. From this figure we deduce that the total deformed skin

smoothness of the participating components exhibits negligible variation from the smooth-

ness of the reference posture during large articulations. Moreover, curvature results of the

patch component are increased since the change in the curvature of the blending patch in-

creases as the joint is imposed to large angle movement.

In addition, despite the fact that exact volume preservation of the surrounding skinned

mesh was not among our primary goals, our method exhibits a very good behavior in terms

of preserving the original volume. Figure 22 illustrates the volume variation percentage

computed as:100 ·
|V olnew−V olref |

V olref
, whereV olref is the volume of the two components at

the reference posture andV olnew is the volume of the two patched components at the cor-

responding articulation angle. The deformed poses retain the same volume as the reference

pose within a small deviation of up to0.1%.

Overall, theReduced Volume Intersection Point Interpolationexhibits very good results

in extreme angles and overall good results in terms of both volume preservation and cur-

vature variation. TheIn-Between Point Interpolationexhibits the best volume preservation

for small angles, while theMean Point Interpolationexhibits better smoothness for smaller

angles.

7.3 Versatility and Robustness Evaluation

We create animations by re-targeting hand-made BVH motion sequences [11] to the skele-

tons extracted from the original meshes. This format describes each motion frame as a

sequence of the Euler angles of the skeleton joints. The sequence of parameters can then be

applied to each bone component transformation matrix. We adjust the local matrices in the

beginning to reflect the initial pose of the motion capture data, and then refresh the angle

deformation to produce the different animation frames.

The main limitation when using geometry shaders to perform point and triangle ampli-

fication is that the level of geometry upsampling is limited by the hardware. For instance,

35

Figure 21: Skin curvature variation (% percentage with regards to the reference posture)
during articulation: (top) for the blending patch and (bottom) for the two involved compo-
nents

Figure 22: Volume variation of blending patch constructionalternatives

36

only 1024 floating point numbers can be used with the current settings which sets a bound

of 256 on the number of the constructed points or triangles.

Figures 23 and 24 show animated poses using our rigid skinning technique. We have ap-

plied our technique to all types of joints of several models decomposed manually in various

ways. We have not encountered any incompatible types of joints or solid models. This fact

experimentally establishes the versatility of our approach.

We also provide snapshots depicting a closer view of a human knee mesh to demonstrate

the robustness of the skinning process (Figure 2). The visual results confirm that our method

is indeed free of all the unnatural rigid skinning flaws modeling realistic skin motion without

distortion artifacts.

8 Conclusions

We have introduced a suite of techniques for robust skeletalanimation of 3D characters. The

contribution of this work can be summarized in three directions. First we have presented a

method for producing refined skeletons appropriate for articulated character animation. To

this end, we have developed an improved local skeletonization method which in conjunction

with approximate refinement algorithms increase the appropriateness and expressiveness of

the produced skeletons. Then, to avoid artifacts that occurin linear blending skinning and

the associated sample pose generation costs, we have developed a robust skinning method

that eliminates the potential shortcomings from self-intersections, providing plausible char-

acter mesh deformations using blending patches around joints. Finally, to achieve real-time

performance we have developed GPU compatible software for all steps of our rigid skinning

method.

Considering completeness there are many subtasks that could be carried out regarding

our improved principal axis skeletonization technique. There is need for further investigat-

ing in a more quantitative manner the grouping functions. Further, one could try replacing

the angle-weighted algorithm with an optimization approach which will compute the prin-

cipal axis orientation more accurately.

Finally, since geometry shader was not designed to handle large-scale complex geo-

metric operations, we could benefit from splitting the geometry amplification into multiple

passes. A partial solution for this problem would be be the independent execution of the

FBCP and RBCP on the GPU, would lead to the triangulation process being divided into

37

Figure 23: Avoidance of the typical LBS “candy-wrapper” artifact. (Left) is a reference
pose, (middle) upper arm is rotated90o about its axis, and on (right) upper arm is rotated
180o about its axis.

38

Figure 24: Multiple part animation of the “Cow” model. Patched parts are highlighted in
yellow.

two smaller independent subtasks.

References

[1] Marc Alexa. Linear combination of transformations.ACM Trans. Graph., 21(3):380–

387, 2002.

[2] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. Thepower crust. InSMA ’01:

Proceedings of the sixth ACM symposium on Solid modeling andapplications, pages

249–266, New York, NY, USA, 2001. ACM.

[3] Kasper Amstrup Andersen. Spherical blend skinning on gpu. -, 2007.

[4] Dominique Attali and Jean-Daniel Boissonnat. Approximation of the medial axis.

Technical report, INRIA, 2002.

[5] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh seg-

mentation - a comparative study. InSMI ’06: Proceedings of the IEEE International

39

Conference on Shape Modeling and Applications 2006, page 7, Washington, DC, USA,

2006. IEEE Computer Society.

[6] Marco Attene, Silvia Biasotti, and Michela Spagnuolo. Re-meshing techniques for

topological analysis. InSMI ’01: Proceedings of the International Conference on

Shape Modeling & Applications, page 142, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[7] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, DanielCohen-Or, and Tong-

Yee Lee. Skeleton extraction by mesh contraction. InSIGGRAPH ’08: ACM SIG-

GRAPH 2008 papers, pages 1–10, New York, NY, USA, 2008. ACM.

[8] Grégoire Aujay, Franck Hétroy, Francis Lazarus, and Christine Depraz. Harmonic

skeleton for realistic character animation. InSCA ’07: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 151–160, Aire-

la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[9] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d characters.

ACM Trans. Graph., 26(3):72, 2007.

[10] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm

for convex hulls.ACM Trans. Math. Softw., 22(4):469–483, 1996.

[11] Biovision. Bvh format.

[12] Harry Blum. A transformation for extracting new descriptors of shape. In Weiant

Wathen-Dunn, editor,Models for the Perception of Speech and Visual Form, pages

362–380. MIT Press, Cambridge, 1967.

[13] C. Buchart, D. Borro, and A. Amundarain. Gpu local triangulation: an interpolating

surface reconstruction algorithm.Computer Graphics Forum, 27:807–814(8), 2008.

[14] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. Inter-

active skeleton-driven dynamic deformations. InSIGGRAPH ’02: Proceedings of the

29th annual conference on Computer graphics and interactive techniques, pages 586–

593, New York, NY, USA, 2002. ACM.

40

[15] P. Chaudhuri, G. Papagiannakis, and N. Magnenat-Thalmann. Self adaptive animation

based on user perspective.The Visual Computer, 24(7–9):525–533, 2008.

[16] Frederic Cordier and Nadia Magnenat-Thalmann. A data-driven approach for real-time

clothes simulation. InPG ’04: Proceedings of the Computer Graphics and Applica-

tions, 12th Pacific Conference, pages 257–266, Washington, DC, USA, 2004. IEEE

Computer Society.

[17] Nicu D. Cornea, Deborah Silver, Xiaosong Yuan, and Raman Balasubramanian. Com-

puting hierarchical curve-skeletons of 3d objects.The Visual Computer, 21(11):945–

955, 2005.

[18] Tim Culver, John Keyser, and Dinesh Manocha. Exact computation of the medial axis

of a polyhedron.Comput. Aided Geom. Des., 21(1):65–98, 2004.

[19] Fernando de Goes, Siome Goldenstein, and Luiz Velh. A hierarchical segmentation of

articulated bodies.Computer Graphics Forum, 27(5):–, 2008.

[20] Tamal K. Dey and Samrat Goswami. Tight cocone: a water-tight surface reconstruc-

tor. In SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and

applications, pages 127–134, New York, NY, USA, 2003. ACM.

[21] Tamal K. Dey and Jian Sun. Defining and computing curve-skeletons with medial

geodesic function. InSGP ’06: Proceedings of the fourth Eurographics symposium on

Geometry processing, pages 143–152, Aire-la-Ville, Switzerland, Switzerland, 2006.

Eurographics Association.

[22] e frontier. Poser 7, 2006.

[23] OPENGL: Opengl extension registry.

[24] R. Fernardo. Gpu gems: Programming techniques, tips, and tricks for real-time graph-

ics. nvidia corporation.

[25] Sven Forstmann, Jun Ohya, Artus Krohn-Grimberghe, andRyan McDougall. Defor-

mation styles for spline-based skeletal animation. InSCA ’07: Proceedings of the 2007

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 141–150,

Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

41

[26] Ioannis Fudos and Christoph M. Hoffmann. Constraint-based parametric conics for

CAD. Computer-aided Design, 28(2):91–100, 1996.

[27] Nikhil Gagvani and Deborah Silver. Animating volumetric models. Graph. Models,

63(6):443–458, 2001.

[28] Stefan Aric Gottschalk.Collision queries using oriented bounding boxes. PhD thesis,

-, 2000. Director-Dinesh Manocha and Director-Ming C. Lin.

[29] Zheng Guo and Kok Cheong Wong. Skinning with deformablechunks. Computer

Graphics Forum, 24(3):373–381, 2005.

[30] Jim Hejl. Hardware skinning with quaternions. InGame Programming Gems, vol-

ume 4, pages 487–495. Charles River Media, 2004.

[31] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, andTosiyasu L. Kunii. Topol-

ogy matching for fully automatic similarity estimation of 3d shapes. InSIGGRAPH

’01: Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 203–212, New York, NY, USA, 2001. ACM.

[32] Dae-Eun Hyun, Seung-Hyun Yoon, Jung-Woo Chang, Joon-Kyung Seong, Myung-

Soo Kim, and Bert Juttler. Sweep-based human deformation.The Visual Computer,

21(8–10):542–550, 2005.

[33] David Jacka, Ashley Reid, Bruce Merry, and James Gain. Acomparison of linear

skinning techniques for character animation. InAFRIGRAPH ’07: Proceedings of the

5th international conference on Computer graphics, virtual reality, visualisation and

interaction in Africa, pages 177–186, New York, NY, USA, 2007. ACM.

[34] Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Trans.

Graph., 24(3):399–407, 2005.

[35] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy clustering

and cuts.ACM Trans. Graph., 22(3):954–961, 2003.

[36] Ladislav Kavan, Steven Collins, and Carol O’Sullivan.Automatic linearization of

nonlinear skinning. In2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games, page to appear. ACM Press, February/March 2009.

42

[37] Ladislav Kavan, Steven Collins, Jiřı́Žára, and Carol O’Sullivan. Geometric skinning

with approximate dual quaternion blending.ACM Trans. Graph., 27(4):1–23, 2008.

[38] Ladislav Kavan, Rachel McDonnell, Simon Dobbyn, Jiř´ı Žára, and Carol O’Sullivan.

Skinning arbitrary deformations. InI3D ’07: Proceedings of the 2007 symposium on

Interactive 3D graphics and games, pages 53–60, New York, NY, USA, 2007. ACM.

[39] Ladislav Kavan and Jiri Zara. Spherical blend skinning: A real-time deformation of

articulated models. In2005 ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games, pages 9–16. ACM Press, April 2005.

[40] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin:real time large defor-

mation character skinning in hardware. InSCA ’02: Proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 153–159, New

York, NY, USA, 2002. ACM.

[41] Jeff Lander. Slashing through realtime character animation. InGame Developer Mag-

azine, pages 13–15. -, 1998.

[42] Jeff Lander. Over my dead polygonal body. InGame Developer Magazine, pages

17–22. -, 1999.

[43] Caroline Larboulette, Marie-Paule Cani, and Bruno Arnaldi. Dynamic skinning:

adding real-time dynamic effects to an existing character animation. InSCCG ’05:

Proceedings of the 21st spring conference on Computer graphics, pages 87–93, New

York, NY, USA, 2005. ACM.

[44] Matt Lee. Seven ways to skin a mesh character skinning revisted for modern gpus,

2007.

[45] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified

approach to shape interpolation and skeleton-driven deformation. InSIGGRAPH ’00:

Proceedings of the 27th annual conference on Computer graphics and interactive tech-

niques, pages 165–172, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-

lishing Co.

43

[46] Xuetao Li, Tong Wing Woon, Tiow Seng Tan, and Zhiyong Huang. Decomposing

polygon meshes for interactive applications. InI3D ’01: Proceedings of the 2001

symposium on Interactive 3D graphics, pages 35–42, New York, NY, USA, 2001.

ACM.

[47] Jyh-Ming Lien.Approximate Convex decomposition and its Applications. PhD thesis,

National ChengChi University, 2006.

[48] Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, Rung-Huei Liang,and Ming Ouhyoung.

Automatic animation skeleton construction using repulsive force field. InPG ’03:

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications,

page 409, Washington, DC, USA, 2003. IEEE Computer Society.

[49] Lin Lu, Franck Hetroy, Cedric Gerot, and Boris Thibert.Atlas-based character skin-

ning with automatic mesh decomposition. Technical report,INRIA, 2008.

[50] Cherng-Min Ma, Shu-Yen Wan, and Jiann-Der Lee. Three-dimensional topology

preserving reduction on the 4-subfields.IEEE Trans. Pattern Anal. Mach. Intell.,

24(12):1594–1605, 2002.

[51] Wan-Chun Ma, Fu-Che Wu, and Ming Ouhyoung. Skeleton extraction of 3d objects

with radial basis functions. InSMI ’03: Proceedings of the Shape Modeling Interna-

tional 2003, page 207, Washington, DC, USA, 2003. IEEE Computer Society.

[52] N. Magnenat-Thalmann, F. Cordier, H. Seo, and G. Papagianakis. Modeling of bodies

and clothes for virtual environments.International Conference on Cyberworlds, -

:201–208, Nov. 2004.

[53] Bruce Merry, Patrick Marais, and James Gain. Animationspace: A truly linear frame-

work for character animation.ACM Trans. Graph., 25(4):1400–1423, 2006.

[54] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from

examples. InSIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 562–568, New

York, NY, USA, 2003. ACM.

[55] Alex Mohr, Luke Tokheim, and Michael Gleicher. Direct manipulation of interactive

character skins. InI3D ’03: Proceedings of the 2003 symposium on Interactive 3D

graphics, pages 27–30, New York, NY, USA, 2003. ACM.

44

[56] R. Laperriere N. Magnenat-Thalmann and D. Thalmann. Joint-dependent local de-

formations for hand animation and object grasping. InGraphics Interface 1988: Pro-

ceedings of the GI 88 Canadian Graphics Conference, pages 26–33. Canadian Human-

Computer Communications Society, 1988.

[57] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas. Ro-

bust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph.,

26(3):58, 2007.

[58] Simon Pilgrim, Anthony Steed, and Alberto Aguado. Progressive skinning for charac-

ter animation.Comput. Animat. Virtual Worlds, 18(4-5):473–481, 2007.

[59] Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. Real-time weighted pose-space de-

formation on the gpu.Computer Graphics Forum, 25(3):439–448, 2006.

[60] S. Schaefer and C. Yuksel. Example-based skeleton extraction. InSGP ’07: Proceed-

ings of the fifth Eurographics symposium on Geometry processing, pages 153–162,

Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[61] Ariel Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum,

27:1539–1556(18), 2008.

[62] Evan C. Sherbrooke, Nicholas M. Patrikalakis, and ErikBrisson. An algorithm for the

medial axis transform of 3d polyhedral solids.IEEE Transactions on Visualization and

Computer Graphics, 2(1):44–61, 1996.

[63] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo.

Example-based dynamic skinning in real time. InSIGGRAPH ’08: ACM SIGGRAPH

2008 papers, pages 1–8, New York, NY, USA, 2008. ACM.

[64] Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannick L.Kergosien. Surface coding

based on morse theory.IEEE Comput. Graph. Appl., 11(5):66–78, 1991.

[65] Peter-Pike J. Sloan, III Charles F. Rose, and Michael F.Cohen. Shape by example.

In I3D ’01: Proceedings of the 2001 symposium on Interactive 3Dgraphics, pages

135–143, New York, NY, USA, 2001. ACM.

45

[66] Andreas Vasilakis and Ioannis Fudos. Skeleton-based rigid skinning for character ani-

mation. InGRAPP, pages 302–308, 2009.

[67] A. Verroust and F. Lazarus. Extracting skeletal curvesfrom 3d scattered data.Shape

Modeling and Applications, 1999. Proceedings. Shape Modeling International ’99.

International Conference on, -:194–201, Mar 1999.

[68] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Elastic secondary de-

formations by vector field integration. InSGP ’07: Proceedings of the fifth Euro-

graphics symposium on Geometry processing, pages 99–108, Aire-la-Ville, Switzer-

land, Switzerland, 2007. Eurographics Association.

[69] Lawson Wade and Richard E Parent. Automated generationof control skeletons for

use in animation.Visual Computer, 18(2):97–110, 2002.

[70] Robert Y. Wang, Kari Pulli, and Jovan Popović. Real-time enveloping with rotational

regression. InSIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 73, New York,

NY, USA, 2007. ACM.

[71] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares

approximation techniques for skin animation. InSCA ’02: Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 129–138,

New York, NY, USA, 2002. ACM.

[72] Jason Weber. Run-time skin deformation. Game Developers Conference, 2000.

[73] Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotsman. Context-aware skele-

tal shape deformation.Computer Graphics Forum (Proceedings of Eurographics),

26(3):265–274, 2007.

[74] GPGPU with OpenGL and VisualWorks.

http://www.cincomsmalltalk.com/userblogs/mls/blogview?entry=3412284871.

[75] Han-Bing Yan, Shimin Hu, Ralph R. Martin, and Yong-Liang Yang. Shape deforma-

tion using a skeleton to drive simplex transformations.IEEE Transactions on Visual-

ization and Computer Graphics, 14(3):693–706, 2008.

46

[76] Xiaosong Yang, Arun Somasekharan, and Jian J. Zhang. Curve skeleton skinning for

human and creature characters: Research articles.Comput. Animat. Virtual Worlds,

17(3-4):281–292, 2006.

[77] Seung-Hyun Yoon and Myung-Soo Kim. Sweep-based freeform deformations.Com-

puter Graphics Forum, 25(3):487–496, 2006.

[78] Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. Skeleton-based varia-

tional mesh deformations.Computer Graphics Forum, 26(3):255–264, 2007.

47

	1: Department of Computer Science, University of Ioannina, TR-2009-22, October 12, 2009

