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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Αντώνιος Πρωτοψάλτης του Ιωάννη και της Χρυσούλας. PhD, Τμήμα 
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Νοέμβριος, 2009.  
Ανακατασκευή 3Δ μοντέλων σχεδίασης με υπολογιστή βασισμένη σε γεωμετρικά 
προσδιορισμένες τομές. 
Επιβλέποντας:  Ιωάννης Φούντος. 
 
 
Η ανάστροφη μηχανική (reverse engineering) είναι μια διαδικασία μέσω της οποίας 

ανακατασκευάζουμε μια εύκολα τροποποιήσιμη αναπαράσταση ενός αντικείμενου 

του οποίου την επιφάνεια έχουμε πάρει με τη μορφή νέφους σημείων. Στην εργασία 

αυτή μελετάμε την χρήση τομών (cross sections) που στην ανάστροφη μηχανική είναι 

μια ειδική περίπτωση χαρακτηριστικών (features). Τα μοντέλα αναπαράστασης 

στερεών τα οποία βασίζοντα σε χαρακτηριστικά και περιορισμούς είναι από τη φύση 

τους κατάλληλα για την χρήση σε συστήματα σχεδίασης με υπολογιστή και παρέχουν 

τη δυνατότητα εύκολης τροποποίησης και μπορούν να μοντελοποιήσουν την πρόθεση 

του χρήστη-σχεδιαστή (design intent).  

 

Το νέφος σημείων αρχικά τεμαχίζεται σε έναν αριθμό από δισδιάστατες τομές οι 

οποίες περιέχουν ένα σύνολο από σημεία στο επίπεδο. Κατόπιν, επεξεργαζόμαστε το 

κάθε τέτοιο 2Δ σύνολο λεπταίνοντας το πάχος των συσσωρεύσεων του νέφους 

σημείων ώστε να περιγράφει μια 2Δ καμπύλη. Αυτό επιτυγχάνεται χρησιμοποιώντας 

πεδία δυνάμεων προσαρμοσμένα για να έχουν βέλτιστη απόδοση σε νέφη σημείων 

που περιγράφουν περιβλήματα. Η κάθε τέτοια ακολουθία διατεταγμένων σημείων 

κατόπιν χωρίζεται αυτόματα σε έναν αριθμό από τμήματα ώστε το κάθε ένα να 

μπορεί να περιγραφεί ικανοποιητικά από μια ρητή καμπύλη Bezier 2ου βαθμού. Με 

τον τρόπο αυτό, εξαλείφεται ο θόρυβος και η τομή αυτή του περιβλήματος μπορεί να 

προσφέρει πολλές πληροφορίες στα μετέπειτα στάδια της ανάθεσης γεωμετρικών 

περιορισμών και της 3Δ ανακατασκευής. 
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Κατόπιν εισάγονται αυτόματα αλλά και διαδραστικά γεωμετρικοί περιορισμοί τόσο 

εντός της ίδιας τομής όσο και μεταξύ διαφορετικών τομών. Λύνοντας το προκύπτον 

σύστημα γεωμετρικών προσδιορισμών μπορούμε να διαμορφώσουμε τόσο την 

μορφολογία της κάθε τομής όσο και να αλλάξουμε την σχετική τοποθέτηση των 

τομών μεταξύ τους. 

 

Οι προκύπτουσες τροποποιημένες τομές ανακατασκευάζονται με μια νέα μέθοδο 

ανακατασκευής τομών που μπορεί να λειτουργεί ακόμη και αν δύο γειτονικές τομές 

διαφέρουν πάρα πολύ. Αυτό επιτυγχάνεται χρησιμοποιώντας έναν σκελετό ορίων που 

ανταποκρίνεται στις δύο τομές, ο οποίος οδηγεί την αυτόματη κατασκευή ενδιάμεσων 

τομών. 

 

Τέλος προσφέρουμε ποσοτικά και ποιοτικά αποτελέσματα σχετικά με την απόδοση 

και την ευχρηστία της μεθόδου που παρουσιάσαμε. 
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ABSTRACT 

Protopsaltis, Antonios, A.P. PhD, Computer Science Department, University of 
Ioannina, Greece. January, 2010.  
Reconstructing 3D CAD Models based on geometrically constrained cross sections 
Thesis Supervisor:  Fudos, Ioannis. 
 
We introduce a novel approach to reconstructing 3D objects from cross sections of 

point clouds acquired by laser scanning. Cross sections are almost planar clusters of 

3D points. We first thin each cluster to obtain an ordered one dimensional set of 

points. We then partition the point set to subsets that can be approximated adequately 

by piecewise quadratic or cubic rational Bezier curves using an optimal fitting 

method.  For each curve we select a number of representative points that lie on the 

fitting curves which are then used for reconstructing the object surface.  Inter-cross 

section and intra-cross section constraints are imposed to support parameterization 

and editing of the derived model.  Shape and topological differences between adjacent 

object contours pose several issues for the 3D reconstruction process. By using the 

contour skeleton information we produce intermediate cross sections representing 

places where ramifications occur to achieve robust covering (meshing) of adjacent 

slices. Finally we describe a proof of concept implementation of our method and 

several examples that demonstrate its effectiveness and efficiency. 
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CHAPTER 1. INTRODUCTION 

The creation of an appropriate computer representation of existing objects from vast 

sets of scanned data points has been an important necessity in many areas of 

engineering, medical sciences and arts.  The process of capturing the geometry of 

existing physical objects and then using the data obtained as a basis for creating a new 

design is called Reverse Engineering of solids.  Due to recent advances in laser 

scanning, the process of deriving accurate and topologically consistent models that are 

ready to use in CAD/CAM systems has become a realistic expectation in the 

geometric modeling community. 

While conventional engineering transforms engineering concepts and models into real 

parts, in reverse engineering actual parts are transformed into computer models 

suitable for reproducing or redesigning these parts.  In conventional computer-aided 

design the computer representation of objects is performed by means of operations 

typically defined interactively using advanced geometric and graphics primitives. The 

resulting representation is then used for further design, and finally for numerically 

controlled manufacturing, layered manufacturing or other manufacturing techniques.  

In reverse engineering, engineering concepts are derived from actual parts when no 

drawings or documentation are available.  The required degree of accuracy may only 

be obtained if the geometric modeling technique employed precisely represents the 

shapes being analyzed. 

The process of reverse engineering is usually decomposed into the following steps: 

data acquisition, point cloud segmentation, surface fitting, and model creation (figure 

1.1). 

 

 

 

Figure 1.1 Phases of Reverse Engineering 

Data Acquisition 
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Data acquisition is accomplished by means of 3D laser scanners or other less accurate 

techniques such as 3D reconstruction from 2D snapshots using correspondence and 

epipolar geometry.  The data acquired is in the form of an unorganized 3D point cloud 

where each point corresponds to a point on the surface of the object.  The measured 

data is pre-processed before further operations are performed.  In many cases where 

the object is large or very complicated one point cloud is not enough to describe the 

entire object.  In such cases we obtain multiple point clouds each one covering a 

different part of the object.  These point clouds are either merged in one master point 

cloud or are considered as segments from the beginning. 

The object may be anything from a combination of smaller objects to an open surface.  

Segmentation partitions the point cloud into disjoint subsets each represented by a 

boundary representation that consists of surfaces.  Each derived subset may be 

classified for its surface types (planar, spherical, conical, etc) [7] or approximated in 

the fitting step with free-form surfaces. 

The fitting surface step fits an appropriate surface to the point set. This is an open 

research field in CAGD (see e.g. [8]). 

Finally, stitching together these surfaces (with appropriate continuity) creates a 

Boundary Representation that could be used in subsequent phases of CAD/CAM. 

Traditionally, the result of this process is a Brep model [42] of the real object that is 

adequate to describe positional information and therefore it is suitable for 

reproduction but cannot capture any of the higher-level structure of the object or the 

designer’s intent.  Therefore, it is not suitable for redesign.  Modification of a part is 

often a tedious task that requires experienced users and state of the art software and 

hardware.  For instance, a Brep representation might be able to approximate the shape 

of a cylindrical hole, but the fact that the hole is actually cylindrical is not captured.  

As a result, it is difficult for a designer to perform a simple modification such as 

altering the diameter of the hole.  Also, the initial model suffers from inaccuracies 

caused by sensing errors inherited from the data acquisition phase, approximation and 

numerical errors arising from successive transformations or other geometric 

manipulations, or possible wear of the actual part.  All these errors introduce 

distortion and may act accumulatively.  Redesign may be accomplished through 

geometric regularities and constraints that have been derived from the original cloud 

point. 



3 

 

 

We present a novel computer aided reengineering paradigm based on careful slicing 

of the 3D point cloud and advanced post processing of the resulting cross sections. 

Post processing aims to eliminate noise and partition the point set to point sequences 

that correspond to low degree curve segments.  The curve segments are then 

approximated using quadratic rational Bezier curves. We then subdivide the curve 

segments in equal length chord segments and use the corresponding points to perform 

3D mesh reconstruction.  The final model should be editable which is succeeded by 

the incorporation of geometric constraints and feature recognition. 

Figure 1.2 illustrates the overall process: 

 

Figure 1.2 Our Reverse Engineering Framework 

The rest of this thesis is structured as follows: Chapter 2 provides a review of reverse 

engineering approaches in computer aided design. In Chapter 3 we present our 

approach to extracting and processing cross sections from a 3D point cloud. A fast 

and efficient curve approximation method for fitting rational quadratic Bezier curves 

to 2D points is presented in Chapter 4. Chapter 5 focuses on incorporating local and 

global constraints to our model. In Chapter 6 we present our object reconstruction 

method, based on constrained cross sectional contours, and the model editing 

methodology. Implementation issues and experimental evaluation of our object 

reconstruction framework are presented in Chapter 7. Chapter 8 provides conclusions. 
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CHAPTER 2. REVERSE ENGINEERING IN 

COMPUTER AIDED DESIGN 

2.1 Introduction 

2.2 Related Work 

2.3 Raw data 

2.4 Boundary representation (Brep) 

2.5 Volume modeling 

2.6 Higher level representations for CAD 

 

2.1. Introduction 

Reverse Engineering is a complex process that is central to industry, arts, archaeology 

and architecture. The creation of CAD models appropriate for computer-aided 

manufacturing is an expensive and demanding task.   In this thesis we focus on re-

engineering solid objects for which we have acquired the point cloud of their 

boundary surface. Subsequently, we wish to obtain a 3D CAD model which is 

editable and manufacturable. Most related previous approaches have dealt with this 

problem considering only mechanical parts and employing feature-based knowledge 

to detect and represent holes, chamfers, extrusions or protrusions. It is important to 

provide means for editing 3D objects that respect all types of object morphology and 

topology. 

There is a variety of geometric representations that can be used at different levels of 

CAD applications. The suitable representation scheme for each application depends 

on the scope of the application and its peculiarities. Some modeling types are simple 

and aim at providing only an external representation of the object, whereas others aim 
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at encapsulating and providing additional knowledge and data, such as design intent, 

functionality, and editability. 

In this chapter we study common modeling schemes used in CAD applications. An 

object can be represented in the simple form of raw data, such as a point cloud 

corresponding to points on the surface of the object. A widespread scheme in solid 

modeling is the Boundary Representation (B-rep) model where the facets and edges 

that describe the boundary of a solid are modeled using a connectivity graph and a 

collection of surface and edge patches.  This type of model is not always suitable for 

redesign because of the lack of expected regularities and constraints.  This 

information is not present because each facet is determined independently.  On the 

other hand, Constructive Solid Geometry (CSG) and volume models handle objects as 

3D solids. There are also higher-level representation schemes that capture not only the 

shape of the object but also provide information pertaining to design intent and 

functionality, which can be used later on for re-parameterization and modification. 

We briefly describe each scheme and evaluate its suitability for various CAD 

applications. 

2.2. Related Work 

Various authors have considered creating reverse engineered 3D models.  Sensor 

based reverse engineering makes possible the creation of CAD models appropriate for 

computer-aided manufacturing directly from existing physical prototypes or similar 

objects for which usable CAD models don’t exist.  Some researchers have dealt with 

the tedious task of making their model editable.  This is often accomplished by 

incorporating local and global geometric constraints in the CAD model.  In plain solid 

reconstruction, a geometric model is captured directly from the geometry of the point 

cloud acquired by 3D laser scanning. This method is commonly used in modeling 

sculptures in arts. These techniques are quite accurate but do not support large scale 

modifications, additions or other high level operations to the extracted model. 

Ko et al. [38] discuss a method that uses a set of points to model a human face.  The 

discussion focuses on the reorganization of the points, facet modeling and tool path 

generation.  Ma and He [50] present an approach to shape a single B-spline surface by 
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a cloud of points. The discussion concentrates on the parameterization of these 

unorganized points. 

Varady et al [81] compute a “feature skeleton” on the mesh that determines the 

primary regions of the object. The final surface structure comprises the optimally 

located boundaries of the connecting features and setback type vertex blends, which 

are faithfully aligned with the actual geometry of the object. This CAD-like surface 

structure is sufficient for high-quality surface approximations. Stamati [71] is using an 

advanced surface analysis technique to extract the morphology of the reconstructed 

point cloud. This technique is very powerful and accurate but is not suited for rapid 

reverse engineering since it requires an extensive analysis process. 

A feature-based reverse engineering method was also used by Au et. al [2] for reverse 

engineering a mannequin for garment design. Generic models of mannequin torsos are 

fit to 3D point clouds of human torsos for garment modelling applications. The basic 

concept in this method is to create a generic mannequin model of a human torso, 

which is appropriately aligned with the 3D point cloud of the desired human torso 

model, and the generic model is fit to the point cloud by matching up characteristic 

points of the models e.g. peaks. This method creates parameterized models by 

exploiting the features of the object and by using them to constrain the fitting process. 

It is an automated approach to reverse engineering human torsos that creates 

parameterized models with good accuracy. 

Researchers such as [77],[78] have focused on creating high accuracy models of 

manufactured mechanical parts. The REFAB project uses a feature-based and 

constraint-based method to reverse engineer mechanical parts. REFAB is a human 

interactive system where after the 3D point cloud is presented to the user, the user 

selects a feature from a predefined list of features, and specifies the approximate 

location of the feature in the point cloud.  The system then fits the specified feature to 

the actual point cloud data using a least square means method iteratively. The authors 

give emphasis on the fitting of pockets, where the user draws a profile of the pocket 

on the point cloud and the system then fits the profile to the data and the profile is 

then extruded to create the pocket. This feature-fitting process is made more accurate 

by using constraints that are detected by the system, verified by the user and then 

exploited to achieve a better fitting of the features according to the data. The system 

supports constraints such as parallelism, concentricity, perpendicularity and 
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symmetry. The constraints defined and used in REFAB seek to reduce the degrees of 

freedom associated with the object as much as possible, so as to achieve high 

precision models in less time. 

Chen and Hoffman [14], define semantics for the creation of generated features.  This 

work is based on a neutral, high-level design representation, called Erep (editable 

representation), which allows design modifications based on a general design 

paradigm.  This framework considers generated features based on a planar profile and 

then revolved, swept and extruded in 3D shape. 

Dobson et al [23] discuss the fitting of a non-uniform rational B-spline curve to a set 

of co-planar points. The fitting process uses characteristic points and is demonstrated 

by fitting a facial 2D profile. 

Langbein et al [40] [41] analyze the type of symmetries and shape regularities that 

may be observed in a Brep model and efficiently apply them in a reverse engineering 

process to create accurate and aesthetically robust models.  The process of model 

improvement, called beautification, modifies surface parameters to produce a model 

that is more suitable for redesign.  

Sato et al [63] propose a laser projection system and an image processor which are 

used for determining a fixed set of horizontal cross sections of the recognized object 

which is placed on a turntable in a stable vertical orientation.  For each horizontal 

cross section they compute the Fourier shape descriptors of the boundary.  Constraints 

between two cross sections may be defined such as horizontal strain, section shape, 

torsion, and displacement. 

Werghi et al [85], suggest a general incremental framework whereby constraints may 

be added and integrated in the model reconstruction process. 

Hoppe et al. [33] propose a method for surface fitting based on polygonal meshes.  

They produce a surface that approximates the original object surface based 

considering data points in close. 

2.3. Raw data 

The most basic and simple way to represent a 3D object is as raw data. By raw data 

we mean an unstructured collection of geometric primitives such as a point cloud or a 

range image. Such data are usually produced directly from a 3D object scanning or 



8 

 

 

3D reconstruction setting. The density of the data sets produced by these methods 

depends on the sampling rate used to acquire information from the object’s surface. 

Also, very often the point clouds obtained contain noisy data due to physical 

characteristics of the object or limitations and regulations of the acquisition method 

used. However, this problem has been dealt with and processing methods have been 

suggested that overcome this problem. The characteristic of this representation model 

is that it describes the object as discrete data, i.e. points, without providing any 

information about the connectivity, the topological relation among geometric 

primitives or the design intent. This type of representation is mainly used in point-

based modeling, i.e. [19][39] and reverse engineering applications [33].  

2.4. Boundary Representation (Brep) 

The appearance of an object depends largely on the exterior of the object.  Boundary 

representations (Brep) [42] models are commonly used in computer graphics and 

CAD applications.  This type of model consists of a collection of connected surface 

elements: facets, edges and vertices.  A facet is a bounded portion of a surface, an 

edge is a bounded piece of a curve and a vertex lies at a point. Other elements are the 

shell (a set of connected facets), the loop (a circuit of edges bounding a facet).  

Surfaces can capture objects of complex and freeform design. Thanks to 

advancements in computer graphics hardware we are able to handle efficiently the 

CPU-intensive processing required by Brep. These factors have resulted in the 

increased usage of this representation in a wide spectrum of applications. A Brep 

model is often realized as a mesh of triangular or quadrilateral (and in general 

polygonal) planar or higher degree surface facets.  

Planar polygonal meshes (called polyhedral representations) are mostly suited for 

rendering and virtual reality and not for CAD applications since they do not provide 

sufficient detail. Often, other representation schemes are converted to polygonal 

representations for the purpose of rendering. Polyhedral representations such as 

triangulations are also used in reverse engineering applications, usually as 

intermediate representations during the re-engineering process. A drawback of 

representing a 3D object with a polygonal mesh is that it cannot capture design 

semantics, such as design intent, inter part relations and overall behavior. Also model 
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editing is only feasible in a local corrective sense. Smooth object surfaces cannot 

efficiently and accurately be represented by a polygonal mesh, even when a large 

number of polygons are used, since the polyhedral representation by definition cannot 

accommodate for G1 continuity. For example, to render areas of high curvature quite 

accurately we need to increase the number of polygons and decrease significantly the 

facet size.  

Overall, polyhedral representation is not suitable for describing objects with specific 

design characteristics and functionality, such as mechanical and industrial parts. Also 

it is not appropriate for describing complex and detailed objects since the large 

number of polygons needed to sufficiently approximate the initial object makes the 

method unaffordable both time-wise and space-wise.  

Applications such as aesthetic and industrial engineering, reverse engineering and 

jewellery design use commonly non-planar surfaces to capture the boundaries of 

complex objects [7]. A Brep model may be constructed using NURBS (Non-Uniform 

Rational B-Splines) or other parametric surface patches. This type of representation is 

useful in applications where free-form surfaces are part of the repertoire of primitive 

geometric entities. Brep can capture almost any type of object, such as mechanical 

parts and objects of aesthetic design. Surfaces can be described using appropriate 

parametric representations. Brep models make editing of local features feasible by 

interactively placing control points, therefore modifying the shape or curvature of the 

object’s feature. However, Brep models on their own do not capture higher design 

characteristics of the object such as functionality and part relationships. The 

information provided through this type of model is limited and does not provide tools 

for modifying parts of the model that affect the whole design. Therefore, Brep models 

are used in combination with other techniques (e.g. features, constraints) to obtain 

higher-level descriptions that correspond to more flexible and useful models that are 

suitable for CAD applications. For instance, in [40], the authors present a 

beautification process based on constraints which is performed on B-rep models 

constructed from reverse engineering range data. B-rep models acquired by re-

engineering can present various inaccuracies and errors, therefore the authors suggest 

the beautification of the models by describing topological regularities in terms of 

geometric constraints. 
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2.5. Volume Modeling  

While surface raw data and Brep modeling schemes provide data concerning the 

boundary of a model, constructive solid geometry (CSG) [42] and volumetric models 

represent the objects as a volume. This type of representation can be used for objects 

that B-rep cannot sufficiently describe. For example, a Brep model cannot represent 

unambiguously a sphere containing a hollow, whereas a volume model can easily 

capture such solids. 

Constructive solid geometry (CSG) models are created by performing Boolean 

operations on solid primitives e.g. spheres, cones, cylinders and cubes. We perceive 

that CSG models represent objects that can be created from solid primitives. CSG 

may model higher degree free-form objects using a small number of special free-form 

primitives.  In general, the CSG representation scheme is well suited for mechanical 

part design and for all applications where the design history can be expressed as a tree 

of Boolean operations on geometric primitives. Also editing and local shape 

modification is performed by intervening in the appropriate operation (internal tree 

node). Converting CSG models to render-able ones is extremely difficult and 

therefore CSG is commonly used in conjunction to Brep. In this case a Brep model is 

always maintained and every modification is transformed to an incremental Brep 

editing operation. Constraints may also be used in conjunction to CSG for performing 

multiple internal node modifications at a single step. 

Volume pixels (voxels) are used in a volumetric approach to 3D object representation. 

A voxel is a geometric primitive and represents the smallest discrete volume used in 

this representation scheme. Voxel-based representations are commonly used for 

visualizing unstructured 3D volume date such as data from scientific computing, 

medical imaging etc. Although used in early CAD/CAM settings, volumetric 

representations have been proven to be very inefficient for computer aided editing, 

rendering and manufacturing. This representation scheme may be used as redundant 

auxiliary information in CAD applications [35] such as solid modeling, reverse 

engineering and feature-based and constraint-based modeling for the purposes of 

physical modeling and simulation.  
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2.6. Higher-level Representations for CAD 

A current promising trend in computer-aided design is to use higher-level structures 

for model representation. These structures are based on one of the former 

representation types in combination with additional structural, topological or other 

information. A feature-based representation scheme describes the object as a 

combination of features, which are surfaces or solid parts with specific characteristics. 

A constraint-based representation scheme uses geometric constraints enforced on the 

model and its features to obtain a more accurate representation that captures designer 

requirements. The skeleton of a model can also be considered as a higher-level CAD 

representation that can be used for specific operations such as feature detection and 

extraction.     

More specifically, the feature-based model is a representation scheme that is growing 

more and more popular. The model is described by defining collections of feature 

elements and relationships among them. The features are collections of points, 

surfaces or other features. For example a commonly used feature type is a cross-

section of a solid. Constraints are applied to the features to create more accurate and 

robust models, but also for enforcing global criteria such as tolerance and 

beautification. This type of model representation has been established initially for 

manufacturing mechanical parts, where a library of features is created and then 

relationships among feature elements are enforced. The feature-based scheme is well 

suited to industrial design in general since it provides for advanced editability. This is 

due to the knowledge encapsulated by the model concerning tolerances, constraints, 

relationships and connectivity. For this reason, feature-based methods are often 

characterized as knowledge-based. Their main objective is to exploit any knowledge 

and information pertaining to design intent, functionality and construction process. 

Besides, this representation scheme supports collaborative CAD, reverse engineering 

and VLSI applications. This type of model also provides the user-designer with the 

capability of editing, redesigning and reconstructing the original design, depending on 

her preferences and needs by tailoring the model features [32].  

A powerful higher-level structure for representing objects is the constraint-based 

scheme, which is often used in combination with features [8]. This representation 

scheme is particularly preferred in CAD applications where the objects being 

modeled, modified and manufactured are of geometric or freeform design and must 
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conform to constraints determined locally on specific components or globally on the 

whole model [1]. Constraints defined on a model or its individual components can 

refer to almost any characteristic, i.e. geometric attributes, such as size and shape, 

topological characteristics, such as placement and connectivity, functionality and 

behavior. Constraint-based models are widely used in architecture, mechanical 

engineering, electronic design, aesthetic and industrial design, for design, modeling or 

re-engineering. The types of constraints defined depend on the nature of the CAD 

application. For example, in VLSI CAD a geometric constraint scheme may be used 

in conjunction to feature-based or other graph-based connectivity modeling. 

Constraints are imposed on each design feature used in the VLSI circuit referring to 

the feature’s intra-connectivity and its local characteristics (i.e. area, size, geometry). 

Constraints may also be imposed to express inter-feature connectivity requirements. 

Finally, constraints are also enforced globally on the circuit, and are targeted to 

optimize the overall placement and routing of the features on the chip.  

An object can also be represented by its skeleton. By skeleton we mean the closure of 

all points that have more than one closest point on the shape boundary (for example 

the medial axis transform). This representation provides the topology and shapes that 

exist in the object and also reflects the symmetries of an object. Depending on the 

type of application the skeleton is used for, it may be a 2D or 3D representation. For 

instance, in 3D the medial axis transform produces a medial surface. The exact 

computation of the 3D skeleton is a computationally intensive problem that returns a 

skeleton as complex as the object itself. Therefore we usually seek for an 

approximation. A skeleton representation scheme is used in various CAD applications 

for object recognition and retrieval [18], animation [9] and other solid modeling 

operations ([66], [72]). It is widely used in feature-based modeling, where it can be 

employed to describe the shape of features, in feature detection and extraction 

applications and shape deformation, for instance refer to [47] and [86]. 

2.7. Feature-Based / Constraint-Based Models 

A product model can be built by using (design) features; this is known as design by 

features or feature based modeling.  One can start either with a more or less complete 

geometric model and define form features on it, or one starts from scratch by 
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combining form features from a standard library. Design with pre-defined form 

features can reduce the number of input commands substantially. This is especially 

advantageous in re-design. The parametric representation of features provides a 

powerful way to change features with respect to their dimensions.  

Features can serve as functional elements to designers.  They may be defined 

interactively. Most often, this is carried out by identifying the faces belonging to a 

certain feature on the product model that is under consideration. Generic features may 

be used over and over again in CAD.  This type of model representation is very 

convenient for mechanical engineering and manufacturing, where there is a need for 

connectivity and continuity between the different elements of the model.  Most 

machined parts are made using a relatively small number of manufacturing 

operations.  Reverse engineering of such parts can be done using a form of parametric 

fitting where the primitives correspond to these features.  Also, feature-based models 

are ideal for industrial design and manufacturing because the model can be easily 

modified. This is due to the knowledge provided by the model concerning the 

tolerances, the constraints, the relationships and connectivity between the features. 

Feature-based and constraint-based methods are often characterized also as 

knowledge-based. Their main objective is to exploit any knowledge and information 

that is connected to the design intent, functionality and construction process of the 

object being reverse engineered. Consequently, it is useful to exploit the design intent 

and feature relationships that exist in models created for industrial use because they 

justify some of the attributes of the object that might look like they make no sense. 

These elements are exploited through the usage of geometric constraints. 

The main focus in all of the above works is to exploit any knowledge that is 

available about the initial object and the parameters, features and constraints that it 

contains. By using this information we can more efficiently create and manipulate 

part characteristics so as modify and create more advanced models. 
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CHAPTER 3. CROSS SECTION EXTRACTION 

AND PROCESSING 

3.1 Introduction 

3.2 Related Work 

3.3 Slice Extraction 

3.4 Preprocessing and Thinning  

3.5 Ordering 

 

3.1. Introduction 

The reconstruction of an object from a set of cross-sections has intrigued computer 

science researchers for the last decades. The need for such reconstructions is a result 

of the advances in medical imaging technology. Technologies such as magnetic 

resonance imaging (MRI), computed tomography (CT), ultrasound imaging or other 

systematic scanning devices, allow measurements of internal properties of objects to 

be obtained in a nondestructive fashion such that contours representing the boundaries 

of the objects may be extracted on slices, and then interpolated in order to reconstruct 

and visualize the analyzed objects.  These measurements are usually obtained one 

slice at a time, where each slice is a 2D array of scalar values corresponding to 

measurements distributed over a plane passing through the object. The set of planes 

generating the slices are usually parallel to each other and equispaced along some axis 

through the object.  3D reconstructions of organs are widely considered to be an 

important diagnostic aid in the medical world. 
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3.2. Related Work 

In recent years, some novel cloud data modeling approaches take into account a direct 

manufacturing of cloud data without involving surface reconstruction for more 

efficient rapid product development.  

[67] et al directly slice a point set utilizing implicit quadric surfel, so as to obtain 

contour curves for Rapid Prototyping (RP). 

Most of RP technologies utilize layered manufacturing, which is to make very thin 

layers and accumulate them [88].  One such approach is to directly slice the point 

cloud along the part building direction and generate a layer-based model for the use of 

rapid prototyping technique. Liu [49] developed an automated segmentation method 

for generating layer-based models from cloud data. The developed algorithm is 

efficient in terms of computation. However, the main drawback is the difficulty to 

control the shape error of the final generated model, in comparison with the original 

cloud data.  [89] et al present an adaptive point cloud data slicing method creating a 

layer-based RP model ready to be fed to RP machines for fabrication. Much emphasis 

is given on how to control the layer thickness so that a user-specified shape error is 

met. 

Dedieu et al [21] presented an algorithm for ordering unorganized points assuming all 

points are on the reconstructed curve.  Taubin et al [74] reconstructed a planar curve 

from unorganized data points using an implicit simplicial curve defined by a planar 

triangular mesh and the values at the vertices of the mesh. 

Levin [44] used a method called Moving least squares to thin a point cloud.  This 

method computes a simple regression curve/surface Ci for each data point Pi which 

locally fits a certain neighborhood of Pi using a weighted regression scheme. 

In this work, we present an intuitive method of point cloud segmentation by using the 

shape error to control the layer thickness so that each layer will yield the same shape 

error. 

3.3. Slice Extraction 

Our reconstruction process starts by slicing the point cloud data into a number of 

cross sections along a user-specified slicing direction.  A single slicing direction may 

not be sufficient for complex objects.  For such cases the original point cloud is 
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decomposed into meaningful components using advanced segmentation techniques.  

Shape decomposition has been studied for decades and there is a large amount of 

previous work [31][62].  Approximate convex decomposition [46] method 

decomposes a given component by ‘cutting’ its most concave features based on the 

convex hull of the input model and a user defined concavity tolerance τ. 

Slice thickness is controlled by a user defined thickness threshold value that specifies 

the maximum allowable width of a projected point set.  The thickness threshold value 

is adapted iteratively until it falls under the user specified levels. Since slice thickness 

is in general greater than zero, virtually no point is exactly located on a given slicing 

plane.  For this reason, the cloud points in each slice are projected onto a plane 

perpendicular to the slicing direction cutting the slice in half.  Slice selection may be 

controlled by a user defined parameter called slicing distance.  Slicing distance 

specifies the fixed distance between two adjacent slices.  There may be cases where 

the slicing distance is too large for a certain object.  As a consequence, the exact 

geometry of the object is not recorded accurately.  The slicing distance parameter 

should be set according to the object particular features. 

In many cases we obtain adjacent slices that are very similar.  This might happen 

when the sliced object feature is symmetric such as a cylinder or parallelepiped part.  

Many of these slices may be eliminated from the entire process of reconstruction.  If 

three adjacent slices are of similar shape, then the in between slice is eliminated.  

Similarity of slices may be detected using principal component analysis and skeleton 

extraction so as to achieve rotational and translational invariance. 

3.4. Preprocessing and Thinning 

Depending on the data acquisition and the slicing process a cross-section may contain 

points that form a shape with thick border.  Thinning is the process that identifies the 

specific points from the data set that are essential to form the actual 2D shape of the 

cross-section.  We call the outcome of this thinning process a thin data set. 

The Medial Axis, is a well defined process for extracting a skeleton, but does not 

always produce a skeleton for the purposes of thinning due to the complexity of the 

result.  Most thinning algorithms work iteratively.  The edge pixels are examined 

against a set of criteria to decide whether they are essential skeleton pixels or not.  A 
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common disadvantage of many thinning algorithms is the deformation that is induced 

on the shape of the skeleton at regions where corners or boundary crossings are 

formed.  Single pixel irregularities may yield unintuitive changes in an otherwise 

simple skeleton.  Furthermore, the extraction of the skeleton does not often preserve 

the connectivity of the shape.  Necking, tailing and spurious projection (line fuzz) are 

some common flows of many thinning methods [57]. 

The Force Based thinning algorithm [58] is based on the idea that the boundary 

should be used to locate the skeletal pixels by exerting a force towards the inner 

pixels.  In that way, the skeleton of the shape lies at pixels where the forces imposed 

have opposite directions (Figure 3.1). 

 

Figure 3.1  Force Based Thinning Strategy 

Thinning algorithms need as input a 2D array of points.  To convert our unordered set 

of points to a 2D array we will use an anti-aliasing algorithm.  Supersampling [84] (or 

post-filtering) is the most common form of anti-aliasing.  It involves calculating a 

virtual image at a spatial resolution higher than the pixel resolution and averaging 

down the high resolution image to a lower pixel resolution.  Main advantage of this 

method is the trivial implementation. 

We will define a virtual grid (Figure 3.2) of size Gx x Gy.  Gx and Gy are the x and y 

grid resolutions which depend on the data set density.  Each grid cell G(i,j) 

corresponds to a certain area in the cross section specified by the top left and the 

bottom right positions as follows: 

max min max min max min max min
min min min min( , )    ( ( 1) , ( 1) )

x y x y

x x y y x x y yx i y j x i y j
G G G G
− − − −

+ ⋅ + ⋅ + + ⋅ + + ⋅  
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xmin, xmax, ymin, and ymax are the minimum and maximum coordinates in the original 

point set.  Subsequently, for each point P(px, py) we increase the intensity of the 

corresponding grid cell given by  

max min max min

( , )y yx x p Gp GG
x x y y

⋅⎢ ⎥ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Each grid cell will play the role of a pixel that is either on or off.  We define a grid cell 

to be “on” if its total intensity is greater than the mean intensity of all cells in the grid.  

Figure 3.2 shows an example grid and the pixels that are “on” and “off”. 

 

Figure 3.2  A virtual grid 

Depending on grid resolution, the above process may produce a grid with a number of 

non connected pixels.  To minimize the chance of occurrence of non connected pixels 

the anti-aliasing will be performed with the use of weights.  The intensity of a cell 

AWi,j will depend on the weighted sum of its own and its neighbor’s intensity W 

(Figure 3.3).  Note that the sum of all weights is 1.  The following equation computes 

the anti-aliased intensity of a cell taking into account its eight neighbors: 
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Figure 3.3  Anti-aliasing weights 3x3 
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In many cases the anti-aliasing with eight neighbors (3x3 matrix) is not enough to 

ensure the absence of gaps.  For these cases we may perform anti-aliasing using a 

second level of neighbors also (5x5 matrix) or even a third level of neighbors (7x7 

matrix).  Figure 3.4 summarizes the coefficients of these two cases. 

   

Figure 3.4 Anti-aliasing weights 5x5 and 7x7 

Each “on” grid cell containing points from the original data set is mapped to the 

centroid of these points.  In the case that the cell does not contain any points 

(characterized on by anti-aliasing) it may be mapped to the centroid of the points of 

the 8 neighbor cells.  The result is then provided as input to the thinning process.  

Figure 3.5 below depicts an example of a thick cross-section and the result of anti-

aliasing and thinning. 

 

Figure 3.5: The result of quantization and thinning 
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3.5. Ordering  

Thinning a 2D point cloud yields a virtual grid of “on” and “off” cells where each 

“on” cell represents a point.  Figure 3.6a, shows an example virtual grid where all 

“on” cells are colored pink and all “off” cells are colored white. The entire grid 

represents a thin point cloud that is still unordered.  At this point we will investigate a 

2D Point Cloud Ordering technique that produces an ordered 1D point array which 

may suit the curve fitting process.   

 

Figure 3.6  Example virtual grid 

The virtual grid will first be converted to an undirected graph (Figure 3.8) where each 

node represents an “on” cell and is located at the centroid of the points contained in it.  

Every node is connected with all of its neighbor nodes in the eight virtual grid 

directions (Figure 3.7).  Since the graph is cyclic we may select any node as graph 

root, but for simplicity reasons we will select the node that is the closest to the upper 

left corner of the virtual grid. 

 

Figure 3.7 Eight neighboring directions 
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Figure 3.8  Conversion of Virtual Grid to Undirected Graph 

To order the 2D point cloud to a 1D point sequence we must traverse the undirected 

graph using a depth first search DFS [17] algorithm unfolding the entire graph in an 

ordered sequence of nodes.  Depth-first search (DFS) is an algorithm for traversing or 

searching a tree, or a graph. Intuitively, one starts at the root and explores as far as 

possible along each branch before backtracking.  Formally, DFS is a uniform search 

that progresses by expanding the first child node of the search tree that appears and 

thus going deeper and deeper until a goal node is found, or until it hits a node that has 

no children. Then the search backtracks, returning to the most recent node it hadn't 

finished exploring.  In DFS, each node has three possible colors representing its state: 

• White: node is unvisited; 

• Gray: node is in process; 

• Black: DFS has finished processing the node. 

A node with more than two descendant edges is called cross path node and is gray 

color until all of its descendants are processed.  Initially all vertices are white 

(unvisited). DFS starts from the root node and runs as follows: 

1. Mark node U as gray (visited). 

2. For each edge (U, V), where U is white, run DFS for U recursively. 
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3. Mark node U as black and backtrack to the parent. 

For each performed backtrack to a cross path node, a new sequence of ordered points 

is created.  The final result of DFS process will be a set of independent sequences of 

ordered points.  The union of these sequences of points equals to the initial set of 

unordered points.  

Differentiating from the common DFS algorithm, we will adopt a not fixed traversing 

order for the descendants of a node, attempting to discover smooth paths through the 

undirected graph assisting the curve fitting process.  As seen in Figure 3.8 most nodes 

are associated with two edges (ancestor and descendant nodes).  Since new sequences 

of nodes start at cross path nodes when backtracking, it is only important to select the 

first descendant of a cross path node. 

To discover smooth paths through the graph the direction selection of the first 

descendant of a cross path node will depend on the node’s parent direction.  These 

two directions should form the greatest obtuse or acute angle possible (or the smallest 

reflex angle).  Therefore, when the parent of a cross path node is S direction, the 

direction selection should be in the following order: N, NW, NE, W, E, SW, SE.  In a 

similar manner, the direction selection of the first descendant of a cross path node 

could depend not only on the parent node but also on the mean direction of its closest 

ancestors.   
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CHAPTER 4. CURVE APPROXIMATION 

4.1 Introduction 

4.2 Related Work 

4.3 Point Set Partitioning 

4.3.1 Normal Vector Computation 

4.3.2 Concavity Change Detection 

4.4 Middle Control Point Computation 

4.4.1 Intersecting the End-point Tangent Lines 

4.4.2 Approximating the Curve’s Maximum Height 

4.5 Low Degree Bezier Curve Approximation 

 

4.1. Introduction 

Approximating a point set by a curve or a set of curve segments is a key problem in 

reverse engineering of geometric models, pattern recognition, image processing, 

CAD/CAM, and computer vision over the last three decades.  In this work, we focus 

on an efficient way to approximate a 2D point set, obtained by filleting a 3D point 

cloud, by a minimum number of quadratic rational Bezier curves.  The complexity of 

the problem is enhanced from the absence of any prior knowledge about the structure 

of the point set. 

The Bezier representation is one that is utilized most frequently in computer graphics 

and geometric modelling. Quadratic Bezier curves are often used by CAGD 

developers since they do not require complex computations as other higher degree 

curves do.  However, in practice it is often desirable to approximate conic sections 

which cannot be represented in Bezier form.  Conic sections such as parabolas 

hyperbolas and ellipses may be adequately represented by Rational Bezier curves. 
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In this work we propose a method which is suitable for the process of reverse 

engineering a 3D point cloud by producing a feature-based CAD model. In this 

context we wish to have a piecewise representation of the curves defining the cross 

section and satisfying as much as possible the following two criteria: 

These criteria result in representations that can be used in feature-based CAD systems 

for extruding, protruding, and sweeping 2D profiles in 3D solids with satisfactory 

accuracy, robustness and efficiency (see e.g. [28]). 

As we saw in the previous chapter, our method performs a sophisticated thinning of 

the point set that extracts the significant skeleton.  A further examination of this 

thinned point set will detect subsets of consecutive points that may be fitted by a 

single quadratic curve.  An important property of all quadratic curves is that they 

exhibit a restricted concavity.  This examination will involve the normal vector 

computation of each line segment formed by two neighboring points.  For every 

subset of points, the first and last points will serve as the end points of the quadratic 

rational Bezier curves.  Finally, by performing an optimization of each curve weight, 

we will compute the best-fitting quadratic rational Bezier curve for each subset of 

points. 

4.2. Related Work 

There is an abundance of research in the literature regarding the general problem of 

curve reconstruction.  Many approaches that have been studied extensively deal with 

fitting the point data by B-Spline curves [55].  Such methods often require the 

designer to provide a small number of knots and parameters corresponding to the data 

points which act as handles to shape the curve.  A method [24] based on spring energy 

minimization approximates an unorganized set of points with a curve which needs a 

good initial guess of the solution.  In SDM [83] a B-spline curve starts from some 

properly specified initial shape and converges towards the target shape through 

iterative quadratic minimization of the fitting error.  Other approaches [11] use a least 

square approximation to fit a line segment or a parametric curve of higher degree to 

the point set.  These methods aim at minimizing the sum of squared distances between 

the set of points and the curve to be fitted.  This implies solving a system of linear 

equations which may require complex and excessive computations while high order 
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polynomials can be highly oscillatory.  Several other methods fit point data by 

rational Bezier and rational B-Spline curves [79] [51] but the problem of setting the 

weights for good approximation is still a great challenge.  Fudos et al [28] describe an 

interesting representation of conic sections by rational Bezier curves and NURBS.  

Another iterative algorithm [13] minimizes the sum of squared Euclidean norms with 

respect to three types of unknowns: the control points, the node values, and the 

weights. The method uses the projection of the data points on the approximant to 

improve the node values, and a gradient based technique to update the control point 

positions and the weight values. 

4.3. Point Set Partitioning 

First, the ordered point set should be partitioned in subsets of consecutive points that 

can be fitted by a single rational quadratic Bezier curve.  To achieve this, for each 

point Pi we connect all neighbouring points with line segments and compute the 

average normal vector . 

4.3.1. Normal Vector Computation 

For a specific point Pi, the average normal vector URi is given by: 

1

1

i i i
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The above equation averages the normal vectors of the two adjacent line segments Pi-

1Pi and PiPi+1 (Figure 4.1). 

 

Figure 4.1: Determination of average unit normal vector for a point. 

Therefore, for two successive points Pi(xi, yi) and Pi+1(xi+1,yi+1) the line segment PiPi+1 

that connects the two points is given by  
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1 1 , 1 ,( )i i i i i iP P x x y y+ + +− −  
The vector normal to PiPi+1 is given by  

1 1 1( , )i i i i iN y y x x+ + +− −
JJJJG

 , 
and the unit normal vector to PiPi+1 is  

1 1
1

1 1

( , )i i i i
i

i i

y y x xU
N N

+ +
+

+ +

− −JJJG
,      2 2

1 1 1( ) ( )i i i i iN y y x x+ + += − + −  

Every point Pi in the point set P is associated with two unit normal vectors Ui and Ui+1 

derived from the two adjacent line segments Pi-1Pi , PiPi+1.  The following formula 

may calculate the average unit normal vector for point Pi (Figure 4.1): 

1

1

i i i
i

i i i

R U UUR
R U U

+

+

+
= =

+

JJJG JJG JJJGJJJG
JJG JJJG  

The first and last points (P0 and Pn) in the point set P are special cases since they do 

not have two neighbors and therefore, an average unit normal vector may not be 

computed.  For these cases we will use the one neighbor unit normal vector. 

In many cases where the data set contains a lot of noise, the average unit normal 

vector may be computed by averaging a larger number of neighbor line segments.  

We call this number smoothing neighbors. 

4.3.2. Concavity Change Detection 

Our aim at this point is to partition the cross section point set into subsets of points 

that may be fitted by a single quadratic rational curve.  Following, we will show how 

the angle between neighboring normal vectors may drive the partitioning of the point 

set.  Based on the fact that a single quadratic rational curve may approximate 

correctly a subset of points for which the induced curve exhibits a restricted 

concavity, indentifying the cross section points where the induced curve changes its 

concavity (curvature sign) would solve our problem (Figure 4.2). 

 
Figure 4.2: Inflection point detection 



27 

 

 

In differential calculus, point of inflection is defined to be a point on a curve at which 

the curvature (second derivative) changes sign.  This actually means that at an 

inflection point the curve’s concavity changes from convex to concave or vice versa.  

The curve’s normal vector at that point changes rotation direction, which means that 

the relative rotation of neighboring normal vectors changes sign. 

Consequently, to identify the points of the cross section where the induced curve’s 

curvature changes sign we need to compute the relative rotation Φi of its average unit 

normal vectors URi with respect to its neighbor’s URi+1. 

 

Figure 4.3 Determining the relative rotation 

In other words, the algorithm we present is based on the fact that the normal vectors 

on a concave curve segment turn clockwise, while on a convex curve segment the 

normal vectors turn counterclockwise (Figure 4.3).  On a line segment, the normal 

vectors have constant direction.  The relative rotation Φi of vector URi with respect to 

URi-1 is giben by the z-coordinate of the cross product of the two vectors. 

1
1 1 1

1

( ) (det ) ( )i i
i i i z z i i i i z

i i

URx URx
UR UR URx URy URx URy

URy URy
−

− − −
−

⎛ ⎞
Φ = × = = ⋅ − ⋅⎜ ⎟

⎝ ⎠

JJJJJG JJJJJG
 

Then, in case 

• 0iΦ > , counterclockwise rotation of URi with respect to URi-1 

• 0iΦ < , clockwise rotation of URi with respect to URi-1 

• 0iΦ � , URi, URi-1 are almost collinear. 

According to the above, each Pi is marked as belonging to a concave or convex or 

linear curve segment.  It is now trivial to detect points where there is concavity 

change of the induced curve.  Each point of inflection may serve as end point for the 
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current processing subset of points Bj and as a start point for the next subset of point 

Bj+1.   

For the sake of better curve approximation results, for any point Pi in a certain subset 

Bj of points, the relative rotation of the average unit normal vector URi with respect to 

the first point’s average unit normal vector UR1 should form no more than π/2 angle: 
1

1    cos ( ) / 2i j iP B UR UR π−∀ ∈ ≤i  

Our algorithm makes use of a special tree structure where each node represents a 

point Pi along with all related information about the average unit normal vector on the 

point and the type of concavity that the induced curve would have.  The tree node 

may also have at most three children that correspond to the three directions of relative 

rotation that the next point’s average unit normal vector could have with respect to the 

current node. 

• CW for Clockwise   

• CCW for Counterclockwise 

• CL for Collinear 

Following is the most important part of the algorithm in pseudocode.  Csp is the 

curve’s start point, and Lin is the last inserted node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Curvature Partitioning 
Input: Set of points P 
Output: Concavity depending partitioned subsets of points  
 
Set P1 as inflection point 
Set Csp=P1, and Lin=P1 
Insert P1 at Root  
For all points Pi in P 
 If slope_difference(UR(Csp), UR(Pi)) > π/2 

Mark Pi as inflection point 
Set Csp= Pi 

 End If 
Insert Pi at Lin wrt (UR(Lin) x UR(Pi)) 

End For 
End 
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The relative rotation of the point for insertion drives the partitioning of the point set 

into subsets.  Each subset of points is characterized by a concavity type.  A new point 

for insertion is always appended at the end of the last subset of points provided it 

preserves the concavity type of the last subset.  In the case that the last subset of 

points is very small (1-2 nodes) and the point for insertion has a different concavity 

type, the new point is appended at the end of the second to last subset.  A new subset 

of points is started in the case where the relative rotation of a certain point with 

respect to the first point of the processing subset is greater than π/2.  Consequently, 

the tree may grow in three directions (CW, CCW, and CL) partitioning the point set 

into subsets of points that may be approximated by a restricted concavity curve.  Any 

node that is common to two subsets is characterized as inflection point. 

Figure 4.4 shows an example point set along with the relative rotations of each 

average unit normal vector with respect to the first point. 

 

Figure 4.4 Points connected with line segments 

Insert  
Input: point, Node, Cross product result (point_dir) 
Output: Inserted point in the partition tree 
 
If point_dir=Node.dir  

Put point at Node.dir 
Else if point_dir<>Node.dir  
 If point_dir=Parent(Node).dir  

Put point at Parent(Node).dir 
Else 

Put point at Node.point_dir 
 End If 
End If 
End 
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Figure 4.5 shows the tree structure created by the algorithm for the point sequence in 

Figure 4.4.  Red arrows show direction CW, blue arrows show direction CCW, while 

green arrows show direction CL.  Inflection points are the light blue squares, and 

erroneous points are in pink squares.  

 

 

 

 

 

 

 

 

 

 

 

 

In many cases we obtain points with average unit normal vectors that differ 

significantly from the neighborhood normals.  These cases maybe due to point cloud 

acquiring process or possible wear of the original object.  Our algorithm filters out 

these occasional erroneous points (illustrated in pink in Figure 4.5). 

After discarding the erroneous nodes, we end up with a zigzag structure where each 

branch Bi of it represents a subset of points that may be approximated by a quadratic 

rational Bezier curve. 

Let us denote as Li the length of branch Bi that is the number of nodes that are 

between its two inflection points.  For instance, in Figure 4.5 we have L1=4, L2=3.  In 

some cases, the length of branch may be zero which means that there are no points 

between two inflection points (Li =0). Figure 4.6 shows an example (L2=0) of such 

case where the algorithm was not able to detect that the node with angle 20 is 

erroneous because its neighborhood tends to rotate slower than it did.  A post 

processing step of the algorithm detects all such cases and eliminates them by 

characterizing the particular node as erroneous (green color in Figure 4.7), removing 

the empty branches, and merging where possible branches that split by the erroneous 

nodes. 

0 20 25 30 34 

17 32 

30 

27 29 

20

30

10 

24 

Figure 4.5  Tree structure 
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In many cases the point set may be very noisy oscillating the average unit normal 

vectors very frequently and locally.  As a result, an abundance of small length point 

subsets are created.  Using a data smoothing algorithm such as the Moving Average 

could solve the problem but it would increase the time complexity of the entire 

method. To this effect, we use an alternative that achieves better results by smoothing 

the normal vectors rather than the actual point set.  As described in the previous 

section, this smoothing is achieved by averaging the normals of a larger number of 

neighbour line segments.  We will call this number smoothing tolerance. 

The concavity change detection algorithm divides the ordered set of points into 

partitions.  All points in a certain partition preserve the following relation: 

1 1

1 1

  
 ,  i<k

  down
k

i k
k

UR URi UR UR partition concave upwards
P P

UR URi UR UR partition concave wards
<⎧ ⎫

< = ⎨ ⎬>⎩ ⎭

i i
i i

 

The above relation is a total order since it preserves:  

• Antisymmetry: ( ) ( )i k k i i kP P P P P P< ∧ < ⇒ =   

• Transitivity: ( ) ( )i k k m i mP P P P P P< ∧ < ⇒ <  

• Totality: ( ) ( )i k k iP P P P< ∨ <  

Also note that if Si is the ith partition detected 

1i ( 1),  S
ni iS S +∀ =  

5 10 13 20

19 20 2117

0

5 10 13

20

19 20 21170

Figure 4.6 Tree with L2=0 

Figure 4.7  Tree resulted by elimination of B2 
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where Si1 is the first point in the ith partition and Sin is the last point.  In other words 

the last point of a certain partition coincides with the first point of the next partition. 

Analysing the running time of the partitioning algorithm, we see that for each point Pi 

in the point set we perform: 

• a computation for the average unit normal vector URi of the line segments     

Pi-1Pi and PiPi+1 which takes constant time,  

• a computation for the relative rotation of URi  with respect to URi-1 which  takes 

constant time,  

• an insertion of Pi to the tree structure which takes constant time since the last 

inserted node is always kept track and there is no need to traverse the entire 

structure. 

Consequently, the task of partitioning a cross section is achieved using the above 

presented algorithm in linear O(n) time for a point set with n points. 

4.4. Middle Control Point Computation 

The partitioning process gives us a number of subsets of ordered points that may be 

approximated by a single rational quadratic Bezier curve.  Therefore, the start and end 

points of each approximating curve are already known.  Also, note that the end point 

of each partition coincides with the start point of the next partition.  We will now 

present two methods for determining the middle control point of the fitting curve. 

4.4.1. Intersecting the End-point Tangent Lines 

The first method makes use of the fact that the middle control point is the intersection 

of the tangent lines to the Bezier curve on the two end points. These tangent lines may 

be approximated by the lines that are perpendicular to the average unit normal vectors 

on the end points, which pass through the end points P0 and P2 ( Figure 4.8). 
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 Figure 4.8: Intersecting the end points normals of the average unit normal vectors  

Since we already know points P0 and P2 and their respective normal vectors u(ux, uy) 

and v(vx,vy)  we may compute the tangent vectors u’(-ux, uy) and v’(-vx,vy) which 

assist us in defining L1 and L2: 

1 0

2 2

'
'

L P u s
L P v r

= +

= +
 

Since control point P1 is the intersection of lines L1 and L2, its coordinates may be 

computed by solving the following system of linear equations: 

0 2

0 2

' '
' '

x x x x

y y y y

P u s P v r
P u s P v r

+ = +⎧ ⎫
⇒⎨ ⎬+ = +⎩ ⎭

  

  Therefore, the middle control point is as follows: 

 

4.4.2. Approximating the Curve’s Maximum Height 

Definition: We define as height of a quadratic Bezier curve the normal distance of a –

point on the curve from the line segment connecting its end points.  The second 

method involves (Figure 4.9) the fact that for every quadratic Bezier curve the 

maximum height occurs at t=0.5.  Also, using De Casteljau algorithm [25] we may 
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derive that at t=0.5 the tangent to the curve is parallel to the line passing through its 

end points.   

Proof: 

If R(t) is a quadratic Bezier curve with [0,1]t ∈  then 

2 2
0 1 2( ) (1 ) 2 (1 )R t P t P t t P t= ⋅ − + ⋅ ⋅ ⋅ − + ⋅  

We will compute the value of t  for which the tangent to the curve R’(t) is parallel to 

the base of the control triangle P0P2. 

0 0 1 1 2
( ) 2 2 2 4 2dR t P t P P P t P t

dt
= ⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅  

Since, the slope of the tangent is equal to the slope of P0P2  then solving the following 

equation for t we get  

2 0

0 0 1 1 2 2 0

( )

2 2 2 4 2
1/ 2

dR t P P
dt
P t P P P t P t P P

t

= − ⇒

⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ = − ⇒

=
 

Therefore, for every quadratic Bezier curve the tangent at t=0.5 is parallel to its 

control triangle base. 

Rotating the curve so that the control triangle base is parallel to the x-axis, makes the 

tangent to the curve at t=0.5 equal to zero 

(0.5) 0dR
dt

=  

This means that R(0.5) is a local extreme (either local maximum or local minimum) 

for the rotated curve R.  In other words, the quadratic Bezier curve R is at the maxium 

height from the x-axis and the control triangle base at t=0.5.  The same happens if the 

curve is not rotated. 

Approximating the point on the curve with maximum height R(0.5) with the point 

from the data set that has maximum distance from the line segment P0 P2 may give us 

the location of the middle control point P1 : 

0 2
1

( )2 (0.5)
2

P PP R +
= ⋅ −  
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Figure 4.9: Tangent at t=0.5 is parallel to P0P2 

Following, we will determine the normal distance of a point Q1 from a line segment 

P0P2.  The equation of a line defined through two points P0 (x0,y0) and P2 (x2,y2) is  

0 2 0( )P P u P P= + ⋅ −   

 
The normal distance of point Q1 (x3,y3) from the line P may be determined by 

computing the point Q2 of intersection of the normal vector to the line P that passes 

through Q1 and the line P.  This may be succeded by employing the dot product of the 

normal line segment and line  

1 2 0( ) ( ) 0Q P P P− − =i   

Substituting the equation of the line gives  

1 0 2 0 2 0[ ( )] [ ] 0Q P u P P P P− − ⋅ − − =i  

Solving this equation for u we get 

3 0 2 0 3 0 2 0
2

2 0

( ) ( ) ( ) ( )x x x x y y y yu
P P

− ⋅ − + − ⋅ −
=

−
 

Consequently, we may obtain the point of intersection by substituting u into the 

equation of the line P 
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0 2 0

0 2 0

( )
( )

x x u x x
y y u y y

= + ⋅ −

= + ⋅ −  

Therefore the distance between the point Q1 and the line P is the distance between Q1 

and Q2 

4.5. Low Degree Bezier Curve Approximation 

The Bezier representation is one that is utilized most frequently in computer graphics 

and geometric modelling. Quadratic Bezier curves are often used by CAGD scientists 

since they do not require complex computations as other higher degree curves do.  

However, in practice it is often desirable to approximate conic sections which cannot 

be represented in Bezier form.  Conic sections such as parabolas hyperbolas and 

ellipses may be adequately represented by Rational Bezier curves.  Non rational 

Bezier curves are a special case of rational Bezier curves.  For these reasons, we will 

focus on constructing Rational Quadratic Bezier curves.  In curve theory, a rational 

quadratic Bezier curve is defined by  
2

2

0
2

2

0

( )
( ) , 0 1

( )

k k k
k

k k
k

w p B t
P t t

w B t

=

=

= ≤ ≤
∑

∑
 

A 2nd degree Bezier curve requires 3 control points pk: a start point p0, an end point p2, 

and a 3rd control point p1 which is obtained by the methods we described in the 

previous section. 

 

Figure 4.10: Varying weight of a quadratic rational Bezier curve 
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The Bk terms in the above formula represent the 2nd degree Bernstein polynomials, 

while the terms wk are the associated with each control point weights.  Setting all 

weights equal to one to the above formula represents an ordinary non rational Bezier 

curve.  Increasing the weight of a control point causes the curve to move towards the 

associated control point (Figure 4.10). 

 

Figure 4.11: Point distances from the curve 

The curve fitting process fits equations of approximating curves to the raw field data. 

Nevertheless, for a given set of data, the fitting curves of a given type are generally 

not unique. Thus, a curve with a minimal deviation from all data points is desired 

(Figure 4.11). For cases where a rational Bezier curve is approximated the best-fitting 

curve can be obtained by varying the control point weights (Figure 4.11).  To obtain 

the best fitting rational Bezier curve we will perform constrained minimization of an 

objective function subject to a set of constraints.   

 

 

Figure 4.12: The vector Qi P(ti) perpendicular to the tangent P'(ti) 



38 

 

 

 

A rational Bezier curve P(t) that best approximates the given set of 2D points Q on a 

specific cross section is the one that minimizes the sum of the distances of the points 

from the curve: 
2

1
1

( ) ( ) min
n

i i
i

f w Q P t
=

= − =∑  

Also note that each vector ( )i iQ P t
JJJJJJJG

 is normal to the tangent of the curve at ti (Figure 

4.12).  This means that their inner product is zero.  To minimize the sum of square 

distances, the above equation will serve as the objective function while the equation 

below will provide n constraints. 

1, 0... ,    g ( ) '( ) ( ( )) 0i i i i iQ i n w P t Q P t∀ = = − =i  

Without loss of generality we can set w0=w2=1.  The objective function is non linear 

and twice differentiable.  Interior point methods based on a logarithmic barrier 

function have been widely used for nonlinear programming [65],[80]. To allow 

convergence from poor starting points, barrier and augmented Lagrangian merit 

functions may be used [30].  For this reason we will use a NLP solver.  A major 

approach for NLP is the Interior Point method which uses a logarithmic barrier 

function.   

1 1 1
1

( , ) ( ) [ [ ( )]]
n

i
i

w f w Log g wμ μ
=

Φ = − −∑  

μ is a positive number, known as the penalty number.  This method is based on the 

fact that as we move closer to a constraint boundary, gi tends to 0 causing a large term 

to be added to the objective function.  Thus, the method keeps the solution away from 

the constraint boundaries.  This method was implemented with IpOpt software [76]. 

Optimizing the objective function subject to these constraints may give the middle 

weight value of the rational Bezier curve that best fits the given set of points.  

Depending on the size of the data set that needs to be fitted, the optimization task 

could be a long and cumbersome effort.  For this reason, we will perform an extra step 

of evaluating a starting value for the middle weight by making use the barycentric 

coordinates of each point with respect to the control triangle. 
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1
1

0 22
w τ

τ τ
=  

Using the above equation [25] we may compute the value of the middle weight of the 

curve that passes through a certain point of the data set.  τ0, τ1, τ22 are the barycentric 

coordinates of Qi with respect to the triangle formed by the three control points P0, P1, 

P2 of each rational Bezier.  Barycentric coordinates using the following equations. 

1 2 0 2 0 1
0 1 2

0 1 2 0 1 2 0 1 2

( , , ) ( , , ) ( , , ), ,
( , , ) ( , , ) ( , , )

1( , , )
2

1 1 1

i i i

x x x

y y y

area L P P area P L P area P P L
area P P P area P P P area P P P

a b c
and area a b c a b c

τ τ τ=    =     =

    =
 

Consequently, for each point Qi in the data set, we may compute a value w1i for the 

middle weight of the curve.  The value of the middle weight that will be selected is 

the one that minimizes the sum of square distances of the points in the data set from 

the curve.  This value may be used as a starting value in the optimization process that 

was described above. 
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CHAPTER 5. CONSTRAINTS FOR EDITABILITY 

5.1 Introduction 

5.2 Related Work 

5.3 Defining Cross Section Features by imposing Geometric Constraints 

5.3.1 Intra-Cross Section Constraints 

5.3.2 Inter-Cross Section Constraints 

5.4 Geometric Constraint Solving 

 

5.1. Introduction 

A new generation of CAD systems has become available in which geometric 

constraints can be defined to determine properties of mechanical parts. The new 

design concept, often called constraint-based design or design by features offers users 

the capability of easily defining and modifying a design, but introduces the problem 

of solving complicated, not always well defined, constraint problems. In this chapter, 

we present the development of a user-friendly interactive system for imposing and 

solving geometric configurations inside cross-section (intra cross-section constraints) 

and among two or more cross-section (inter-cross-section) constraints. The system 

uses a powerful graph-constructive constraint solving method presented in [27], 

capable of efficiently analyzing certain classes of well-determined, over-determined 

and under-determined configurations. Minimal systems of geometric constraints that 

are not solvable by the core constructive method are detected and may either be 

handled by a numerical method and treated afterwards as rigid bodies, or edited by the 

user. A main issue pertinent to geometric constraint solving is the solution selection 

problem. To this end, we have provided an interactive tool for navigating the 

constraint solver, to the intended solution. Consistent over-determined sub-
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configurations can be detected, interactively relaxed and solved appropriately. Under-

determined subsystems are detected, isolated and subsequently presented to the user 

annotated with all possible constraint addition choices for interactive editing. 

5.2. Related Work 

The importance of being able to clearly describe a piece of geometry in a clear and 

unambiguous way has been realized since ancient times. For the very simple 2D 

shapes, Euclidean geometry showed us precisely what information was needed to 

completely define them. However, the difficulties of describing more complex 

geometries remained for many years until the use of computers became common. 

With the use of CAD/CAM, it was soon realized that the increased ease of entering 

more and more complex geometries further necessitated the invention of novel 

formalisms capable of capturing these geometries in a simple but rigorous manner.  A 

number of authors have conducted research in the field of geometric constraints and 

regularities for reverse engineered models. 

In previous work, feature based design has been approached as an extension of the 

CSG paradigm [69].  In a CSG construction, a solid is built from standard primitives 

by regularized Boolean operations.  The solid then, is represented by a tree structure 

in which the leaves are solid primitives and the interior nodes are Boolean operations 

and rigid-body transformations.  Although limited, this approach provides well-

defined design semantics. 

One of the central research directions in computer vision is 3D object recognition.  In 

3D object recognition the term of surface characterization refers to the computational 

process of partitioning surfaces into regions with equivalent characteristics.  There are 

many surface characterization algorithms that make use of differential geometry.  The 

local shape of a surface is central to object recognition.  It may be determined by 

using Gaussian and mean curvatures which combine the first and second fundamental 

forms of the surface [48] to obtain scalar surface features which are invariant to 

rotation, translation and re-parameterization.  Surface shapes may be characterized by 

the sign of the mean curvature and Gaussian curvature.  These curvatures may be 

computed directly from the point set acquired from the data acquisition process. 
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In [63], a laser projection system and an image processor [64] are used for 

determining a fixed set of horizontal cross sections of the recognized object which is 

placed on a turntable in a stable vertical orientation.  For each horizontal cross section 

boundary based Fourier shape representations are computed.  Constraints between 

two cross sections may be defined such as horizontal strain, section shape, torsion, 

and displacement.  

In a more recent work [15], semantics for the creation of generated features are 

defined.  This work is based on a neutral, high-level design representation, called 

Erep (editable representation), which allows design modifications based on a general 

design paradigm.  This framework considers generated features based on a planar 

profile and then revolved, swept and extruded in 3D shape.  

Often the surface fitting step is enhanced by imposing a set of constraints and then a 

simultaneous (as opposed to sequential) fitting is attempted using the constraints as a 

set of side conditions that must be satisfied by the surface parameters [8]. 

Another approach [78] is to drive the segmentation and surface fitting phases using 

pre-defined features like slots and pockets whose abstract location and type has been 

determined by the user. 

[53], [40] describe the importance of a post-processing step, often called 

beautification, which adjusts the model to reflect more closely the intended object.  

This step involves the analysis of the model to find geometric regularities, the 

selection of an appropriate consistent set of regularities which renders the original 

design intent, and finally, the reconstruction of an improved model using geometric 

constraints without further reference to the point data which avoids the computational 

expense of constrained fitting.  

5.3. Defining Cross Section Features by imposing Geometric constraints 

The objective of the entire method is to obtain an editable CAD model that would 

assist us in redesigning the original object.  Editability in CAD is commonly achieved 

by using geometric constraints.  When using the term constraint in CAD we usually 

refer to geometric dimensions and relations (lengths, angles, tangency, parallelism, 

perpendicularity, etc.) used to define accurately a particular solid geometry.  Even 
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though it is not necessary, object symmetry may provide additional auxiliary 

information in constraining an object.   

Since the result of curve fitting is a set of rational quadratic Bezier curves, the user 

may define constraints that involve the control triangle – polygon and the curve 

weights.  Taking into account that a certain curve may be approximated by more than 

one set of control points – weights, defining constraints on curve weights is not 

always a trivial task.  We will provide an alternative way to constrain a rational 

quadratic curve the curve’s maximum height. 

The middle weight of a rational quadratic curve specifies its maximum height which, 

as proved earlier, occurs at t=0.5.  Therefore, the curve’s maximum height may be 

derived by the normal distance of point R(0.5) from the line segment P0P2 

In this section we will categorize the geometric constraints and how they are adopted 

by our method to capture design intent and provide for redesign. 

5.3.1. Intra-Cross Section Constraints 

The first category of constraints is associated with the geometric and topological 

relationships among entities in a single cross sections which we will call intra – cross 

section constraints: 

• Point – line segment coincidence: special points (curve end points, curve 

control points, center of circle, etc) or line segments may coincide or be part of 

the same infinite line. 

• Tangency: an arc is tangent to a specific curve 

• Distance from a curve or point: an arc is located at some distance from a 

specific curve or point 

• Angle with a curve: an arc (its tangent) forms an angle with another curve or 

with a line segment at a specific point on the curve. 

• Parallel – Perpendicular line segments or tangents: a line segment is 

parallel or perpendicular with another line segment or tangent line. 
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5.3.2. Inter-Cross Section Constraints 

The second category of constraints is associated with the geometric and topological 

relationships among the contours of different cross sections which we will call inter – 

cross section constraints: 

• Point co-linearity: a point from cross section CA is on the same infinite line 

with a point from cross section CB 

• Points on same curve: a point from cross section CA is on the curve with a 

point from cross section CB 

• Co planar line segments: a line segment from cross section CA is on the same 

infinite plane with a point from cross section CB 

• Equality or relation of distances: a specific distance in cross section CA is 

equal or related with another distance from cross section CB  

• Equality or relation of angles: an angle in cross section CA is equal or related 

with an angle in cross section CB 

• Curve translation: A curve in cross section CA is translated by a specific 

distance and direction in cross section CB.  This constraint may fit cases of 

slanted or tori objects. 

• Curve scaling: A curve in cross section CA is scaled by a certain scaling factor 

in cross section CB.  This constraint may fit cases of tapered objects. 

5.4. Geometric Constraint Solving 

We build a system of geometric constraints that captures user intent and at the same 

time guarantees solid model robustness and accuracy. Symmetry derived geometric 

constraints are considered to be strict with no tolerance allowed. User constraints fall 

under two categories: (i) strict, for which no tolerance is allowed and (ii) flexible, for 

which we wish to acquire the best approximation but we cannot guarantee their strict 

enforcement. For the purposes of usability we allow only for constraints that can be 

expressed as equation (e.g. distances, angles, relations of distances and angles, co-

planarity, coincidence, tangency). Inequalities can also be handled but they tend to 

confuse the user with the multiplicity of solutions that they imply. Each flexible 

constraint has an associated weight which expresses its importance and is derived by 

two factors: explicitly by a user preference and implicitly by the rank in the user 
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constraint enforcement. Finally the weighted sum of flexible constraint deviations 

properly normalized is used as the objective function to minimize and the strict 

constraints are used as the set of constraints for this non-linear optimization problem. 

To solve this system we employ a local non-linear optimization algorithm from IpOpt 

[76].  The disadvantage of this method is that it may be trapped in local minima, 

which makes it depending heavily on the initial configuration. The user is thus 

advised to make incremental editing. Using global optimization methods or other 

constraint solving techniques is an interesting research problem [27]. 
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CHAPTER 6. RECONSTRUCTING SOLID PARTS 

6.1 Introduction 

6.2 Related Work 

6.3 Point Resampling 

6.4 Similar Adjacent Cross-sectional Features 

6.5 Non-similar Adjacent Cross-sectional Features 

6.5.1 Curve-based Morphing and Interpolation 

6.5.2 Polygon-based Morphing and Interpolation 

6.6 Editing the Reconstructed Model 

 

6.1. Introduction 

A novel approach to surface reconstruction from parallel slice contours will be 

presented in this chapter.  The method preserves the topology of the surface without 

altering the original contours.  Main goal of surface reconstruction from contours is to 

find a best surface consistent with the observed contours. In general, there is an 

infinite number of surfaces consistent with any set of contours. A surface 

reconstruction algorithm must choose the best match to the real object. This is 

accomplished by taking into account the imposed constraints. The quality of the 

resulting surface depends on the constraints’ ability to model the desired solution.  In 

this chapter we will see a specialized point sampling strategy that would assist us in 

the reconstruction process. 

The boundary of the material of interest to be reconstructed is defined by the set of 

parallel cross sections.  Each cross-section contains a set of curves forming a closed 

contour.  As distance separates the sections, information about the region of the object 
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between two cross sections is not recorded.  Often, this lost information describes 

places where ramifications occur in the surface of interest. 

 

Figure 6.1: Decomposition of Reconstruction process 

This causes shape differences or different number of contours between adjacent 

sections.  A way to approach this problem is creating intermediate sections 

representing the place where the ramifications occur.  The rest of the chapter proposes 

a method (Figure 6.1) that reconstructs solid parts from similar adjacent cross sections 

using feature construction techniques, and non-similar adjacent cross sections using 

either a curve based or a polygon based morphing technique. 

6.2. Related Work 

The problem of reconstructing the surface of a solid object from a series of parallel 

planar cross sections has been treated by the specialized literature in the past.  Since 
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the very early work of Keppel [36] on tiling between parallel polygonal contours, 

numerous algorithms were introduced for parallel inter-slice interpolation. The 

problem is considered to be quite difficult because the topology of the contours may 

change between slices. Some progress was made with the introduction of the 

Delaunay-based technique of Boissonnat [10], and the method of Bajaj et al. [6]. Both 

approaches attempt to handle the most general case, in which the geometries and 

topologies of the contours in every slice are totally unrestricted. Bajaj [6] detects the 

parts of contours with very different shape and applied a method using edge voronoi 

diagram to tile them. Another type of skeleton using an approximation of edge 

voronoi diagram was proposed by Oliva [54].  Subsequently, Barequet and Sharir [5] 

suggested an interpolation method based on geometric hashing. In this method similar 

sub-contours are identified first and stitched together, while the remaining contour 

portions are triangulated so as to minimize the surface area of the reconstructed solid. 

Later, Barequet et al. [4] suggested another interpolation algorithm that uses the 

medial axis of the overlay of the two slices. This method generates a smooth and 

intuitive reconstruction since it inherently captures the differences between the slices.  

Meyers [52] also uses medial axis to obtain information about the relationships of the 

vicinity among the regions where ramifications occur.  Sloan et al [68] suggest the 

creation of artificial intermediate sections between adjacent different sections.  Levin 

[45] builds a set of intermediate contours between contours of adjacent sections by 

calculating the distance field for each point in every section.   

6.3. Point Resampling 

The construction of the object’s surface requires the generation of parts of the surface 

that lies in between two slices using triangulation.  Triangulation may not be based on 

the thinned point set of each slice because its density would result in creating many 

small area triangles.  Another shortcoming is that since there is a known small 

distance error between the slice points and the fitted curves, the triangulated model is 

likely to be rough, containing bumps.  To resolve these issues, we must resample the 

point set to obtain a reduced set of points.  

Point sampling is an important intermediate step for a variety of computer graphics 

applications.  Specialized sampling strategies have been developed to satisfy the 
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requirements of each problem.  In this section, we present a sampling technique for 

2D models.  Our sampling domain is the set of points on a single cross section.  Aim 

of the technique is to generate evenly spaced samples by subdividing the sampling 

domain into non overlapping parts.   

Given a data set of points Q={Qi} for which we have already determined the best 

fitted set of rational quadratic Bezier curves P={Pk}, we suggest replacing the points 

Q with a reduced set of new points R={Rj: Rj=P(tj)} that satisfy the curve equations. 

In a previous chapter we fitted a rational Bezier curve on the points of each cross 

section.  A Rational Bezier curve is usually defined over the interval [0, 1] but it may 

also be defined over any interval [0, c].  The part of the curve that corresponds to [0, 

c] may also be defined by a Bezier polygon.  To subdivide the curve [61] to k equal 

length arcs we would first divide the interval [0, 1] into k subintervals of length 1/k.  

The end points of each arc Ri are P(ti-1) and P(ti) where ti= i/k and i=0..k. The length 

of each chord ||P(ti) P(ti+1)|| converges to the length of the arc Ri  between ti and ti+1 

when k is a rather large value: 
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Considering that the size of the sample set S of points is μ: 
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Figure 6.2: Sample points (in red) 

The last relation ensures that all points in the sample set S are evenly spaced by a 

distance of Λ/μ.  All other points that do not satisfy the above relation are discarded 

and will not be used in the surface reconstruction process (Figure 6.2). 
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6.4. Similar Adjacent Cross-Sectional Features 

The main design paradigm of CAD systems nowadays is feature-based design.  

Feature – based systems contain a vocabulary of design elements as long as object 

operations that are used to create the intended design.  By performing operations such 

as extrusions, protrusions and cuts on the design elements (cylinders, cones, 

parallelepipeds, pyramids etc) we may generate the desirable design.  Our feature 

based CAD model provides modeling primitives that may be enforced low-level 

constraints, reducing the number of variables necessary to represent an object. 

Constraint based techniques apply high-level constraints over these features enforcing 

the hypothesized design intent. 

In this section we will investigate ways for converting 3D point cloud to a set of 

features describing exactly the original object’s geometry and satisfying all imposed 

constraints.  Based on the fact that our method generates a set of planar consecutive 

curves for each cross section, we will be considering features that are based on a 

planar profile swept into a 3D shape by an extrusion operation.  Consequently, our 

final CAD model will consist of a set of connected features.  This makes our final 

CAD model easily modifiable since we only need to deal with modifying the 

geometry of the features. 

As shown in Figure 6.3, sweeping a planar profile creates a tubular surface that its 

bottom base is the planar profile and its top base is the same planar profile translated.  

Let two planar profiles P1 and P2 consisting of a set of quadratic rational Bezier 

curves.  P1 is said to be similar to P2 if and only if all curves in P1 are congruent to all 

curves in P2 up to the same affine transformation.  In other words, profile congruence 

requires curve congruence.  Bezier curve congruence property implies control triangle 

congruence and middle weight equality.  Therefore, two planar profiles are invariant 

if and only if all respective control triangles are congruent and all respective weights 

equal. 
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Figure 6.3 Sweeping of a planar profile 

As it is defined in Euclidean geometry, triangles are congruent when all 

corresponding sides and interior angles are equal. These triangles will have the same 

shape and size.  However, they can be in a different location, rotated or flipped over.  

Consequently, two triangles R and R’ are congruent even if R is a mirror of R’.  In 

contrast, in our method we are interested in triangles that may not be mirror images of 

each other because they generate different curves that cannot be interpolated. 

Definition 1: We define as topologically congruent in 2D two polygons that are the 

same up to rotation and translation. 

Therefore, two profiles P1 and P2 are said to be congruent if and only if all control 

triangles are topologically congruent. 

The extrusion direction vector may be either perpendicular or it may form any angle 

with the profile plane.  As long as the starting and ending cross sections are invariant, 

computing the center of mass of both cross sections may derive the extrusion 

direction vector.   This is true even for cases where the second polygon is scaled or 

rotated. 

Detecting similarity between two or more polygons is performed based on two key 

ideas: 

• normalizing a shape about its diameter and 

• the notion of the ε-envelope. 
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Normalizing about the diameter. In order to detect whether two or more polygons 

are similar some kind of “normalization” is applied so that the matching is translation-

, rotation-, and scaling-independent. In previous work researchers would normalize 

each shape about each of its edges: they translate, rotate, and scale the shape so that 

the edge is positioned at ((0, 0), (1, 0)). Although this approach gives good results in 

many cases, it would fail to detect similarity between slightly distorted shapes. 

In our method, instead of normalizing about the edges, we normalize about the 

diameter of the shape, i.e., by translating, rotating, and scaling so that the pair of 

shape vertices that are farthest apart are positioned at (0, 0) and (1, 0). This ensures 

better results, because the diameter is less susceptible to local distortion which is very 

common in shapes extracted using thinning and other point-based techniques. 

The ε-envelope [29]. Polygon matching works by considering a “fattened” version of 

the one polygon which is computed by taking lines parallel to the query shape edges 

at some distance on either side; we call this fattened shape the ε-envelope. The good 

matches are expected to fall inside or at least have most of their vertices inside the ε-

envelope even for small ε. Therefore, if we start by using a small initial value of ε and 

keep increasing it, we expect to collect the good matches after a few iterations of this 

procedure. 

The ε-envelope can be seen as a collection of trapezoids of height 2ε, one for each 

edge of the query shape. (For simplicity, we assume that ε is such that no two 

trapezoids are overlapping; the method can be extended to handle overlapping 

trapezoids.) 

The center of mass of a planar profile may be approximated by the center of mass of 

its convex hull polygon.  A better approximation could be the minimal control 

polygon’s center of mass.  To determine the minimal control polygon of a planar 

profile all quadratic Bezier middle control points are used as polygon vertices.  The 

minimal control polygon must include all Bezier curves.  While a Bezier curve is 

always inside its control triangle, the minimal control polygon may not always 

include a curve.  The first polygon in Figure 6.4 depicts this case. 
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Figure 6.4 Derivation of minimal Control Polygon 

In the case where a curve is excluded from the minimal control polygon we edit the 

list of polygon vertices by replacing the specific middle control point with the 

respective Bezier curve’s end points. The second and third polygons in Figure 6.4 

illustrate this procedure. 

If one point of the curve is inside the polygon then the entire curve is inside also.  

Therefore, we only need to determine if a single point on the curve is inside the 

polygon.  A ray casting algorithm may be used to determine whether a specific point 

is included in the control polygon.  The algorithm is based on a simple observation 

that if a point moves along a ray from infinity to the probe point and if it crosses the 

boundary of a polygon, possibly several times, then it alternately goes from the 

outside to inside, then from the inside to the outside, etc. As a result, after every two 

"border crossings" the moving point goes outside.  Therefore, the number of 

intersections is an even number if the point is outside the polygon, and it is odd if it is 

inside (Figure 6.5). 

 

Figure 6.5 Ray casting algorithm: 5 crossings, probe point inside 

Both the convex hull and the minimal control polygon of a profile are n-polygons.  

Computing the center of mass of an n-polygon {A1, A2, …, An} is rather straightforward 

using the following equation: 
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Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  The orthogonal extrusion of R is defined to be a solid obtained by 

sweeping profile R in a direction perpendicular to C up to the parallel cross section C’ 

resulting to one or more tubular surfaces (Figure 6.6). 

 

Figure 6.6  Orthogonal Extrusion 

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  Also, let V be a vector on the line that connects the centers of mass of 

the profiles R and R’.  The oblique extrusion of R is defined to be a solid obtained by 

sweeping profile R in a direction specified by vector V up to the parallel cross section 

R’ resulting to one or more oblique tubular surfaces (Figure 6.7). 

 

Figure 6.7  Oblique Extrusion 

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  Also let profile R’ be determined by a θ angle rotation of profile R with 

the center of rotation being the center of rotation.  Let’s also denote as d the distance 
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between the centers of mass of R and R’.  The orthogonal rotated sweeping of R is 

defined to be a solid obtained by sweeping profile R in a direction perpendicular to C 

and the same time rotating the profile R with a rate of rotation θ/d up to the parallel 

cross section R’ resulting to one or more rotated tubular surfaces (Figure 6.8). 

 

Figure 6.8  Orthogonal Rotated Sweeping 

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  Also let profile R’ be determined by a θ angle rotation of profile R with 

the center of mass being some point P.  This rotation is equivalent to a θ angle 

rotation of profile R with the center of mass being center of rotation, followed by a 

translation in the same plane.  Therefore, we may denote as V the vector on the line 

that connects the centers of mass of the profiles R and R’.  Let’s also denote as d the 

distance between the centers of mass of R and R’.  The oblique rotated sweeping of R 

is defined to be a solid obtained by sweeping profile R in a direction specified by 

vector V and the same time rotating the profile R with a rate of rotation θ/d up to the 

parallel cross section R’ resulting to one or more oblique rotated tubular surfaces 

(Figure 6.9). 

 

Figure 6.9  Oblique Rotated Sweeping 
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Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  Also, let μ be the linear scaling factor of the two profiles and d the 

distance between the centers of mass of R and R’.  The orthogonal linear scaled 

skinning of R is defined to be a solid obtained by skinning profile R in a direction 

perpendicular to C and the same time  scaling the profile with a scale rate μ/d , up to 

the parallel cross section C’ resulting to one or more frustrum surfaces (Figure 6.10). 

 

Figure 6.10  Orthogonal Linear Scaled Skinning 

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ 

respectively.  Also, let μ be the linear scaling factor of the two profiles, d the distance 

between the centers of mass of R and R’, and V the vector on the line that connects the 

centers of mass of the profiles R and R’.  The oblique linear scaled skinning of R is 

defined to be a solid obtained by skinning profile R in a direction specified by vector 

V and the same time  scaling the profile with a scale rate μ/d, up to the parallel cross 

section C’ resulting to one or more frustrum surfaces (Figure 6.11). 

 

Figure 6.11  Oblique Linear Scaled Skinning 
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6.5. Non-similar Adjacent Cross-sectional Features 

So far, we investigated ways for reconstruction by extrusion of solid parts that are 

between similar adjacent cross sections.  In this section we will investigate ways to 

reconstruct solid parts that are between non-similar adjacent cross sections. 

6.5.1. Curve-based Morphing and Interpolation 

When we dealt with similar adjacent cross sections the same sweeping strategy was 

applied to the entire profile.  For cases with non-similar adjacent profiles, we cannot 

apply the same sweeping strategy to the entire profile.  Curve-based morphing is an 

advanced type of sweep where each curve is being applied a different sweeping 

strategy. 

Two adjacent cross sections C1 and C2 are non-similar when there is at least one curve 

in C1 that is non-similar (not congruent) to its respective curve in C2.  Figure 6.12 

depicts a case with two non-similar adjacent profiles. 

 

Figure 6.12  Non-Similar profiles 

Curve-based morphing breaks down the profile sweeping problem to a number of 

curve sweeping problems.  Since a rational quadratic Bezier curve is fully specified 

by its control triangle and its middle weight, we only need to sweep the source control 

triangle to the destination control triangle and gradually change the value of the 

middle weight from the source to the destination value (see the following equations).  

Figure 6.13 illustrates this type of sweep.  Morphing curve P to Q is equivalent in 

morphing between their control triangles.  The middle weight undergoes a gradual 

transition from value WP to WQ.  Let R be a triangle in some ith state of morphing P to 

Q.  Each control point Ri should be on the line segment PiQi such that 
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Figure 6.13  Control triangle Linear morphing 

The surface constructed by this technique is equivalent to a Ruled Surface.  Given two 

curves C1(u) and C2(v), the surface generated by connecting line segments between 

corresponding points, one on each given curve is called ruled surface.  More 

precisely, if t is a value in the domain [0,1] of both curves, a segment between C1(t) 

and C2(t) is constructed. This segment is usually referred as a ruling at t. As t moves 

from 0 to 1, the ruling at t sweeps out a surface and this is the ruled surface defined by 

curves C1(u) and C2(v). 

Morphing of two dimensional shapes can be divided into two sub problems that have 

to be solved.  These problems deal with vertex correspondence and vertex path.  

Common morphing literature is usually concerned with the vertex path problem.  

However both problems are equally important.  A cross sectional profile consists of a 

set of rational quadratic Bezier curves or a set of control triangles.  The vertex 

correspondence problem deals with the creation of a bijective mapping between the 

control triangles contained in the source S, and target T cross sections in a way that 

for each control triangle in S there is exactly one control triangle in T that is mapped 

to and vice versa.  Most morphing algorithms thus enforce manually the 

correspondence of a few selected points or simply suppose that the problem is solved.  

This mapping between the two sets of control triangles may be solved by least square 

distance minimization.  It is well known that the correspondence of several vertices 
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can significantly increase the quality of the morphing.  Since the control point sets are 

ordered, vertex correspondence must maintain this order.  Therefore, if Si is mapped 

with Tj then Si+m should be mapped with Tj+m.  2D morphing techniques pay special 

attention to the goal that all intermediate shapes are free of self-intersections because 

apart from some fancy special cases, a morphing sequence that contains self-

intersections is considered to be unnatural transition from source to target. 

Obviously, such a mapping is not always possible.  For cases where two non-similar 

adjacent profiles consist of a different number of curves, some curves on one profile 

may not be mapped to any curves on the other profile.  Figure 6.14 shows two 

adjacent non-similar profiles with different number of curves.  In the case that two 

cross sections S, T do not have the same number of curves an extra processing on the 

set of curves is required.  This extra processing involves curve splitting or curve 

concatenation resulting in two cross sections with the same number of curves.   

 

Figure 6.14  Curve Concatenation 

To succeed curve concatenation of two rational quadratic Bezier curves R1(t) and R2(t) 

with control points Q0, Q1, Q2 and Q2, Q3, Q4  respectively, we must have G2 

continuity.  That means that the tangent to R1(t) line segment Q1Q2 must be collinear 

with the tangent to R2(t) line segment Q2Q3.  The middle curve weight of each curve 

must also be equal.  The resulted Bezier curve will also be a rational quadratic Bezier 

curve with control points Q0, Q5, Q4.  Q5 is determined by the intersection of the lines 
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defined by the line segments Q0Q1 and Q3Q4 (see figure Figure 6.14).  The middle 

curve weight of the new curve is equal to the original curves R1(t) and R2(t) weight. 

G2 continuity may not be possible always.  For these cases, we choose to split the 

curve by breaking it at a given point u0 and create two new Bezier curves that join on 

u0.  An algorithm for this task was presented by de Casteljau [20], and it uses a 

geometric construction technique. 

The vertex path problem deals with the selection of a path that a control point will 

travel from the source cross section to its mapped control point in the target cross 

section.  Ruled surfaces use line segments to connect the mapped curve points. 

6.5.2. Polygon-based Morphing and Interpolation 

The task of surface reconstruction deals with the creation of a ribbon between two 

adjacent cross sections.  This may be accomplished by performing triangulation 

between the sampled sets of vertices that belong to a pair of adjacent cross sections.  

In most real cases the material of interest lies in the region that separates the adjacent 

contours. 

A rather simple solution that forces a connection of each vertex of a section with 

some vertices of the adjacent sections was proposed by the literature in the past.  

However, as the distance between two cross sections may vary, the chance of missing 

important information of the places where ramifications occur is rather high.  As a 

result, the reconstructed object does not have the correct shape.  To overcome this 

problem, we propose a method that automatically creates intermediate sections. 

The projection of the region, which separates the adjacent cross sections, on an 

intermediate parallel plane is the region that is not common to both contours.  We will 

denote a cross section as a binary image where the two values represent the 

background and the object.  This intermediate plane projection may be expressed as 

an exclusive OR (XOR) operation on the binary images of the two contours [16].  In 

the case where the contours of the adjacent sections intercept, it is required to include 

the pixels of the contour boundary where the interception occurs. 
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Figure 6.15  XOR operation on sections A and B 

The result of the XOR operation is also a binary image whose boundary is formed by 

the contours of the contiguous sections.  Figure 6.16 shows that the outer border of 

the binary image is formed by the second contour while the inner border is formed by 

the first contour.  Figure 6.17 shows two slices that their boundaries intersect.  The 

XOR operation result is shown in pink while the result of the region thinning is shown 

by the curves in the pink regions. 

 

Figure 6.16  Thinning and Ribbon Construction 

 

Figure 6.17  Inner and outer boundaries intersecting.  XOR region in pink 
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In many cases we may see portions of the binary image to have both inner and outer 

borders formed by the same contour.  This is an indication that in the particular 

portion of the material of interest there is a ramification.  For these cases the skeleton 

of that portion of the binary image may be used to represent the place where the 

ramification occurs at an intermediate height of the analyzed sections. 

Applying a thinning algorithm on the binary image we may obtain its skeleton (Figure 

6.15, Figure 6.16, Figure 6.17).  Using the shortest diagonal algorithm [25] we are 

able to create two ribbons (one with each slice). 

6.6. Editing the Reconstructed Model  

Reverse engineering is a systematic approach for capturing and analyzing the design 

of existing objects.  One may use it either to study the design, or as an initial step to 

redesign the object.  Ideally, a reversed engineered object should exhibit the same 

geometric properties that are present in the original design.  Most of developed 

methods in literature create a very detailed and exact description of the physical 

object’s shape suitable for creating an exact copy without providing means for 

editing.  Primary aim of this work is to create a novel reverse engineering CAD model 

that would represent both the shape of the original object and the design intent. 

The phase of constraint definition captures the design intent of the physical object by 

fitting local and global geometric regularities and symmetries.  On completion of the 

reconstruction process, the user is given the chance to make modifications on the 

reconstructed CAD model by modifying the imposed constraints. 

An object could contain parts that may or may not be dependent of each other.  This 

property is specified by the inter-cross section constraints that have already been 

imposed.  For instance, the screwdriver object has two parts: the handle and the steel 

shaft.  Even though these two parts must be aligned on the same axis, there are no 

other defined inter-cross-section constraints that relate any of the handle’s local 

properties to any of the steel shaft’s.  Therefore, an increase of the handle’s cavity 

depth would not affect the shape of the steel shaft.   

Definition:  The editing area is defined to be the area of the reconstructed model 

where all cross sections would be re-evaluated based on the defined constraints.  The 

editing area is always specified by two cross sections that bound it.   
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Depending on the defined inter-cross section constraints, the editing area may be 

extracted automatically. 

Definition: A cross section, which lies inside the editing area, used for the 

modification of the editing area is called revision slice.   

Any user modification (curve control point locations, weight values, maximum 

heights) may be performed on the revision slice.  Modification could be performed 

also on the inter-cross section constraints.  These changes will be propagated to all 

slices in the editing area defining the new shape of the model according to the 

imposed intra and inter -cross section constraints.  For instance, when two different 

curves on the revision slice are constrained to have equal maximum height, modifying 

the maximum height of one curve implies the same modification for the second curve.  

All such implications, performed during the re-evaluation of the editing area based on 

revision slice, will affect the geometry of the object part that is inbound the editing 

area. 

The re-evaluation process of all slices in the editing area depends on the intra and 

inter-cross section constraints that have been defined.  After re-evaluation, all 

constraints must hold unconditionally.  There are cases though where Let K1 be the 

point on a curve in the revision slice where maximum height occurs and L1 be the 

point at maximum height of the modified curve.  Also, let K2 be the point on the 

respective curve of another slice B where maximum height occurs (Figure 6.18).  Our 

aim is to compute the modified curve of slice B according to the modification in 

revision slice.  To determine the new curve we only need to compute the point of 

maximum height L2 using a linear interpolation that involves all three points K1, K2, 

and L1: 
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Figure 6.18: (left): Revision slice, (right) Some slice in the editing area 
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Another approach for the editing area re-evaluating based on the revision slice 

modifications would involve some geometrical computations: Figure 6.19a shows part 

of the revision slice.  The maximum height of the curve is at point K and the modified 

point is L on the line segment MP1. 

 

Figure 6.19: (a) Revision slice, (b) Editing area in 3D, (c) Points A, L, B belong to the 
same circular arc 

Figure 6.19b, shows the editing area and revised slice in 3D illustrating how the 

increase of the curve’s maximum height affects the depth of the cavity.  Using points 

A, B, L a circular arc is defined for which we may compute the circle equation (center, 

radius).  The perpendicular bisectors (Figure 6.19c) of AL and LB intersect at point C 

which is the center of the circle while |CA|=|CB|=|CL| is its radius.  Then, 

1

2

( , )
2 2

( , )
2 2

A L A L

L B L B

x x y yM

x x y yM

+ +
=

+ +
=

 

The lines connecting A and L, L and B are given by  

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( )

A L A A L A

L B L L B L

y y x x x x y y
y y x x x x y y

− ⋅ − = − ⋅ −
− ⋅ − = − ⋅ −

 

Therefore, 
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A line perpendicular to another line has negative reciprocal slope.  Consequently, the 

lines perpendicular to line segments AL and LB have slopes: 

1 2,A L L B

L A B L

x x x xm m
y y y y

− −
=      =

− −
 

Determining the perpendicular line equations we have: 

( ),
2 2

( ),
2 2

A L A L A L

L A

L B L B L B

B L

y y x x x xY X
y y

y y x x x xY X
y y

+ + +
= + −

−
+ + +

= + −
−

 

The center C of the circular arc AB is given by the intersection of the above two lines.  

Solving the set of linear equations we may determine the coordinates of point C.  

Then, for each cross section in the editing area, the point that the rational Bezier curve 

must pass through is the intersection of the slice plane and the circular arc AB (L1, L2, 

L3, …, Ln ).   

To determine the weight of each rational Bezier curve that passes through the point Li 

we may use the following formula [16]  

1
1

0 22
w τ

τ τ
=  

where τ0, τ1, τ2 are the barycentric coordinates of Li with respect to the triangle formed 

by the three control points of each rational Bezier P0, P1, P2 which are determined as 

follows: 

1 2 0 2 0 1
0 1 2

0 1 2 0 1 2 0 1 2

( , , ) ( , , ) ( , , ), ,
( , , ) ( , , ) ( , , )

1( , , )
2

1 1 1
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τ τ τ=    =     =

    =
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CHAPTER 7. IMPLEMENTATION AND 

EXPERIMENTAL EVALUATION 

7.1 Implementation Issues 

7.2 Experimental evaluation 

 

7.1. Implementation Issues 

We have implemented and tested a prototype of the proposed method using the  

• MS Visual C++ programming language,  

• the OpenGL graphics libraries,  

• the IpOpt optimization software [76]. 

• the ACIS solid modeling libraries by Spatial Corporation [75].  

The entire system was built using the object oriented design framework.  We have 

used extensive testing with several cloud point sets.  For the internal representation of 

the contours (sequences of GS rational Bezier patches) we have used NURBS. 

Besides the improvements that we have to make to some of the algorithms used in the 

system for faster execution and better memory management our future aim is to 

enhance this prototype system to a full function feature based CAD software that 

would provide visual tools for constraint definition and solving, automatic selection of 

point cloud slicing direction, splitting and concatenation of slice curves, feature 

detection during reconstruction, and user editing of the final model by modifying slice 

entities (curves, control points, weights, max heights, constraints) or even entire 

features.  Major tasks necessary to be tackled in the future is the minimization of user 

interaction and the enhancement of the already user friendly GUI. 
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7.2. Experimental Evaluation 

We evaluated our methodology framework by testing the implemented prototype with 

many test point clouds obtained by a 3D laser scanner.  In general, our proposed 

method can reverse engineer and redesign any mechanical or free form object.  As we 

mentioned earlier, the three methods [77], [2], [81], that try to tackle similar 

problems, have important differences in the aspects of approaching the problem.  As a 

consequence, there are no well-accepted criteria to compare the quality of these CAD 

models quantitatively, and therefore we do not intend to claim that our results are 

necessarily better.   

Our method may be insufficient for a complex object where different parts of the 

object may be optimally sliced in different slicing directions.  For such cases the 

object may be decomposed into parts using advanced segmentation techniques. 

We intentionally selected point clouds that cannot be trivially reverse engineered 

constrained and redesigned.  Following, we will run through a detailed example to 

demonstrate the method’s effectiveness.  We have used a 3D point cloud of a 

screwdriver object containing 27500 points which was then sliced to equidistant 

parallel cross sections (Figure 7.1). 

 

Figure 7.1: Slicing the screwdriver point cloud 

Figure 7.2 shows part from a cross section of the screwdriver’s handle containing 437 

points.  Thinning and quantization of this cross section results in a point set with 323 

points that form a 1-point-thick curve boundary. 
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Figure 7.2  Cross Section Thinning 

While partitioning the thin slice point set, the algorithm filters out all noisy points 

(Figure 7.3).  The final result of the concavity detection process is a number of 

ordered subsets of consecutive points that each one may be approximated by a single 

quadratic rational Bezier curve.  The first and last point in each ordered subset will 

serve as start and end point respectively for the induced curves. 

 

Figure 7.3  Concavity change detection 

For the example cross section of Figure 7.2, the method processed 323 points and 

detected 13 ordered subsets of points.  Figure 7.4 shows these subsets in black color 

and the respective inflection points in blue color.  The original point set forms a six 

peak star shape which is symmetrical.  One may notice that the detected inflection 

points are positioned symmetrically.  Ideally, we would expect to have 12 ordered 

subsets of points divided by 12 symmetrically placed inflection points (i-th subset end 
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point coincides with (i+1)-th start point).  Instead, the method detected 13 subsets of 

points.  Figure 7.4(right), shows that there is one point subset that may be 

approximated by a line segment.  This happens many times on real world data sets 

because the initial model may suffer from inaccuracies caused by sensing errors 

propagated from the data acquisition phase, or due to approximation and numerical 

errors arising from the successive algorithmic steps, or even flaws on the surface of 

the original object.   

Figure 7.4  shows the computation of the middle control point of all quadratic rational 

Bezier curves that we are going to construct.  The left figure shows a slice from the 

bottom part of the steel shaft while the right figure shows a slice from the 

screwdriver’s handle. 

 

Figure 7.4  Control Point derivation: (a): slice on steel shaft,(b) slice on handle 

Depending on the point topology either method may be used to determine the middle 

control point.  The method selection criterion should be the minimum squared 

distance of the point set from the fitted curve.  Figure 7.5 shows a data set with seven 

points and the curves that are fitted on them by both methods.  The minimum squared 

distance for the first method (green color) is 0.004091 and 0.007578 for the second 

method (red color).  It is clear that for the particular data set the first method produces 

a better fitted curve. 
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Figure 7.5  Best method for Control point selection through distance minimization 

Following, for each partition of points, the computation of the middle control point 

weight is performed by minimizing the sum of squared distances of all points from the 

fitted curve (Figure 7.5, Figure 7.6) using the IpOpt libraries.  Figure 7.7 shows the 

set of curves built by the algorithm. 

 

Figure 7.6: Middle weight adjustment minimizes point distances from the curve 
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Figure 7.7  Fitting Rational Bezier Curves. 

The following diagrams evaluate the effectiveness of the fitting method.  We compare 

6 different point sets from different slices.  Each point set has a different number of 

points to be fitted (curve1 24, curve2 31, curve3 43, curve4 17, curve5 10, curve6 26).  

The first diagram (Figure 7.8) shows the relation between the number of points that 

are to be fitted and the time that the fitting method needed to complete the task.  Thus 

we observe that the time needed is linear on the number of points that are fitted.  

These experiments were conducted on an average computer system. 

 

Figure 7.8 Time for fitting point sets 



72 

 

 

 

Figure 7.9: Average Error per point 

The diagram in Figure 7.9 evaluates the effectiveness of the fitting method.  It shows 

the average error of a curve point from the fitted curve.  We notice that curve3 error is 

a lot above the average error.  There are two factors that are responsible for this issue: 

• The start point normal vector forms an angle greater than π/2 with the end 

point normal vector. 

• The smoothing tolerance of the partition process was not used to split the set 

of points into two partitions. 

 

Figure 7.10: Above average fitting error 
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Despite the above average error, the normalized error values are fairly low even 

though the original point cloud was very noisy. 

Geometric constraints enforcing strong relations between geometric primitives may 

be defined with the use of Boolean and geometric operations creating a dimension 

driven solid model.  Intra-cross section constraints maintain symmetries and 

regularities among geometric primitives within a single cross section.  A set of system 

detected intra cross section constraints defined on the two symmetrical cross sections 

of Figure 7.11 is summarized below: 

Screwdriver steel shaft:  

• Equality of opposite angles: θ1=θ2, θ3=θ4, 

• Equality of opposite sides: d1=d3, d2=d4. 

• Congruency of opposite control triangles 

 

Figure 7.11  Intra-cross section Constraints. 

Screwdriver handle (six peak star shape): 

• Equality of opposite middle control point angles: θ1=θ4, θ2=θ5, θ3=θ6 

• Equality of distances between opposite peaks (diameters): d1=d2=d3, 

• Congruency of opposite control triangles 

• Equality of all cavity curve heights 

• Equality of all lump curve heights 

Inter-cross section constraints maintain symmetries and regularities among geometric 

primitives between different cross sections.  Figure 7.12 a,b show two adjacent cross 

sections (red and green) where there is a noticeable change in the shape of their 

contour.  Nevertheless, the respective cross section centroids (centers of mass) are 

aligned on the same axis perpendicular to the slice plane.  The respective control 
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points are also aligned on the same perpendicular to the slice plane axis.  Therefore, 

the shape difference between the two cross section contours is due to the different 

values of curve weights (maximum height).  Note that for all respective lump curves 

in the star shape the maximum height points are aligned on the same perpendicular to 

the slice plane axis (Figure 7.12c). 

 

Figure 7.12  Inter-cross section Constraints: Slice 1 in red, slice 2 in green. 

We will now constrain the handle of the screwdriver by user defined constraints.  We 

will consider the editing area to be the part of the screwdriver’s handle between cross 

section A and B (Figure 7.14).  Intra Cross Section Constraints will be defined on a 

user selected cross section M where maximum cavity depth occurs. 

Figure 7.13a shows the control polygon that results from the curve fitting process.  

We define a normal hexagon which is centered on the center of mass of the cross 

section.  Each side of the hexagon is the base of an isosceles triangle (Figure 7.13b).  

All peaks (S1, S2,.., S6) are equidistant from the center of mass H=14.  All hexagon 

sides are equal d=7 while all cavity peaks (E1, E2, …,E6) are equidistant from the 

center of mass d=7.  The values H and d are completely independent of each other.  In 

other words, the value of H controls the diameter of the handle while the value of d 

controls the radius of the normal hexagon, the height of the isosceles triangles and 

therefore, the depth of the handle cavities. 
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Figure 7.13  (a) Control polygon (b) Intra Constraints 

 

Figure 7.14  Inter Constraints 

For inter cross section constraints we define that all slices between cross sections A 

and B must have their centers of mass on the same z-axis. The diameter of the handle 

changes linearly.  Therefore, all corresponding slice peaks belong to the same line.  

Consequently the value H may be easily evaluated by the line equation.  Furthermore, 

we determined a quadratic Bezier curve that best fits all corresponding cavity peaks 
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among different slices.  Therefore, the value d (radius of normal hexagon) may be 

easily evaluated using the Bezier curve (Figure 7.14). 

The resampling step computes the length of each rational Bezier segment in the slice.  

The approximate length of the entire contour is Λ=95.76.  Setting μ=60, we obtain the 

distance Λ/μ οf each point from its neighbors to be around 1.596.  Figure 7.15 shows 

the set of representative points that were selected. 

 

Figure 7.15  Resampling result. 

Figure 7.16 shows the intermediate slice generation using the XOR operation.  Figure 

7.17 shows the result of the intermediate slice generation by curve morphing.  The 

reconstructed part of the object between the two adjacent cross sections is shown in 

Figure 7.18. 

 

Figure 7.16  Auto slice generation by XOR.  Slice 1 (red), slice 2 (green),  
slice S1 XOR S2 (purple) 
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Figure 7.17 Auto slice generation by curve morphing 

 

Figure 7.18 Reconstruction of part using intermediate slice generation 

Figure 7.19a shows the fully reconstructed object (exact copy).  Figure 7.19b shows 

the modified reconstructed object with the cylindrical part of the steel shaft longer. To 

accomplish this modification we increased the distance between the cross sections on 

the steel shaft by a factor of 1.4.  Figure 7.19c shows the modified reconstructed 

object with the lower part of its handle wider.  The modification actually made was an 

increase of the diameter of the lower handle by a factor of 1.3. 
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Figure 7.19 (a) Reconstruction result (b,c) Reconstruction result after Editing. 

Figure 7.20 illustrates a constraint modification in the cavities of the screwdriver 

handle.  The designer decreased the value of d by 25% in the revision slice.  This 

decrease propagated to all slices in the editing area automatically by the reevaluation 

of the Bezier curve that constrains the value of d in the editing area.  As a result, the 

depth of all cavities in the screwdriver handle were increased accordingly.  Notice that 

the other constraint value H remained constant (line equation did not change) and 

therefore, the diameter of the handle does not change.  The difference in the cavity 

depths is clearly seen in Figure 7.21.  The original and the modified object may be 

seen in Figure 7.22 and Figure 7.23. 

 

Figure 7.20  Original and Modified Slice Constraints 
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Figure 7.21  Original and Modified object part 

 

Figure 7.22  Original Object 

 

Figure 7.23  Modified object 
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CHAPTER 8. CONCLUSIONS 

We have presented an effective and efficient method to build a 3D CAD model from a 

given point cloud representing the surface of an object.  

Our approach to re-engineering uses point cloud slices along a principal axis. These 

slices are then processed to obtain a thinned, ordered set of planar points. 

Subsequently, this set is used to obtain a fully functional cross section represented by 

a number of constrained rational Bezier curves.  

We have introduced inter-cross-section and intra-cross-section geometric constraints 

for supporting editability. 

3D contour-based reconstruction has been extensively studied, and we have employed 

and tested several slice morphing and slice insertion techniques for covering between 

non similar adjacent cross sections. Model editability is also supported at this level by 

defining parameters for the 3D reconstruction of user defined slice groups. 

We have performed a preliminary evaluation of the usability of our method with very 

good results even for users with no former CAD software experience. Our method 

provides the tools for robust and accurate editing of the produced CAD model prior to 

remanufacturing.  

Automated detection of an optimal slicing direction is an addition that can save users 

a lot of effort. Finally, the effectiveness of the reconstruction process could be 

improved for complicated objects by first decomposing the object by employing 

sophisticated decomposition methods such as the one presented in [47]. 
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