
ΑΝΑΚΑΤΑΣΚΕΥΗ 3Δ ΜΟΝΤΕΛΩΝ ΣΧΕΔΙΑΣΗΣ ΜΕ ΥΠΟΛΟΓΙΣΤΗ ΒΑΣΙΣΜΕΝΗ ΣΕ
ΓΕΩΜΕΤΡΙΚΑ ΠΡΟΣΔΙΟΡΙΣΜΕΝΕΣ ΤΟΜΕΣ

Η

 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή

από τον

Αντώνιο Πρωτοψάλτη

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΔΙΔΑΚΤΟΡΙΚΟΥ ΔΙΠΛΩΜΑΤΟΣ

Νοέμβριος 2009

ii

Τριμελής Συμβουλευτική Επιτροπή

• Ιωάννης Φούντος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων (Επιβλέπων)

• Νικόλαος Σαπίδης, Καθηγητής, Τμήμα Μηχανικών Διαχείρισης Ενεργειακών

Πόρων του Πανεπιστημίου Δυτικής Μακεδονίας

• Βασίλειος Δημακόπουλος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων

Επταμελής Εξεταστική Επιτροπή

• Ιωάννης Φούντος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων (Επιβλέπων)

• Νικόλαος Σαπίδης, Καθηγητής, Τμήμα Μηχανικών Διαχείρισης Ενεργειακών

Πόρων του Πανεπιστημίου Δυτικής Μακεδονίας

• Βασίλειος Δημακόπουλος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων

• Θεοχάρης Θεοχάρης, Αναπληρωτής Καθηγητής, Τμήμα Πληροφορικής και

Τηλεπικοινωνιών του ΕΚΠ

• Νικόλαος Μπιλάλης, Καθηγητής, Τμήμα Μηχανικών Παραγωγής και

Διοίκησης του Πολυτεχνείου Κρήτης

• Γεώργιος Τσιατούχας, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων

• Ισαάκ Λαγαρής, Καθηγητής, Τμήμα Πληροφορικής του Πανεπιστημίου

Ιωαννίνων

iii

DEDICATION

To my three little angels Gianni, Mika and Eugenia

iv

 ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Professor Ioannis Fudos

for his valuable guidance and advice through my research, his endless patience with

me, and his courageous support when it was most needed.

I would like to thank my colleagues in the graphics group for their support and the

useful feedback through the entire period of my research.

I would like to especially thank my wife Dimitra, my three children, and my parents

for all the love, care, and support they have provided me unconditionally over the

years. I credit all my successes to them.

v

TABLE OF CONTENTS

 Pg
DEDICATION iii
ACKNOWLEDGMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ ix
ABSTRACT xi
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. reverse engineering IN computer aided design 4

2.1. Introduction 4
2.2. Related Work 5
2.3. Raw data 7
2.4. Boundary Representation (Brep) 8
2.5. Volume Modeling 10
2.6. Higher-level Representations for CAD 11
2.7. Feature-Based / Constraint-Based Models 12

CHAPTER 3. CROSS SECTION extraction and PROCESSING 14
3.1. Introduction 14
3.2. Related Work 15
3.3. Slice Extraction 15
3.4. Preprocessing and Thinning 16
3.5. Ordering 20

CHAPTER 4. Curve approximation 23
4.1. Introduction 23
4.2. Related Work 24
4.3. Point Set Partitioning 25

4.3.1. Normal Vector Computation 25
4.3.2. Concavity Change Detection 26

4.4. Middle Control Point Computation 32
4.4.1. Intersecting the End-point Tangent Lines 32
4.4.2. Approximating the Curve’s Maximum Height 33

4.5. Low Degree Bezier Curve Approximation 36
CHAPTER 5. CONSTRAINTS FOR EDITABILITY 40

5.1. Introduction 40
5.2. Related Work 41
5.3. Defining Cross Section Features by imposing Geometric constraints 42

5.3.1. Intra-Cross Section Constraints 43
5.3.2. Inter-Cross Section Constraints 44

5.4. Geometric Constraint Solving 44

vi

CHAPTER 6. Reconstructing Solid Parts 46
6.1. Introduction 46
6.2. Related Work 47
6.3. Point Resampling 48
6.4. Similar Adjacent Cross-Sectional Features 50
6.5. Non-similar Adjacent Cross-sectional Features 57

6.5.1. Curve-based Morphing and Interpolation 57
6.5.2. Polygon-based Morphing and Interpolation 60

6.6. Editing the Reconstructed Model 62
CHAPTER 7. Implementation and experimental evaluation 66

7.1. Implementation Issues 66
7.2. Experimental Evaluation 67

CHAPTER 8. conclusions 80
REFERENCES 81
PUBLISHED WORK 89
SHORT VITA 90

vii

LIST OF FIGURES

 Pg
Figure 1.1 Phases of Reverse Engineering 1
Figure 1.2 Our Reverse Engineering Framework 3
Figure 3.1 Force Based Thinning Strategy 17
Figure 3.2 A virtual grid 18
Figure 3.3 Anti-aliasing weights 3x3 18
Figure 3.4 Anti-aliasing weights 5x5 and 7x7 19
Figure 3.5: The result of quantization and thinning 19
Figure 3.6 Example virtual grid 20
Figure 3.7 Eight neighboring directions 20
Figure 3.8 Conversion of Virtual Grid to Undirected Graph 21
Figure 4.1: Determination of average unit normal vector for a point. 25
Figure 4.2: Inflection point detection 26
Figure 4.3 Determining the relative rotation 27
Figure 4.4 Points connected with line segments 29
Figure 4.5 Tree structure 30
Figure 4.6 Tree with L2=0 31
Figure 4.7 Tree resulted by elimination of B2 31
Figure 4.8: Intersecting the end points normals of the average unit normal vectors 33
Figure 4.9: Tangent at t=0.5 is parallel to P0P2 35
Figure 4.10: Varying weight of a quadratic rational Bezier curve 36
Figure 4.11: Point distances from the curve 37
Figure 4.12: The vector Qi P(ti) perpendicular to the tangent P'(ti) 37
Figure 6.1: Decomposition of Reconstruction process 47
Figure 6.2: Sample points (in red) 49
Figure 6.3 Sweeping of a planar profile 51
Figure 6.4 Derivation of minimal Control Polygon 53
Figure 6.5 Ray casting algorithm: 5 crossings, probe point inside 53
Figure 6.6 Orthogonal Extrusion 54
Figure 6.7 Oblique Extrusion 54
Figure 6.8 Orthogonal Rotated Sweeping 55
Figure 6.9 Oblique Rotated Sweeping 55
Figure 6.10 Orthogonal Linear Scaled Skinning 56
Figure 6.11 Oblique Linear Scaled Skinning 56
Figure 6.12 Non-Similar profiles 57
Figure 6.13 Control triangle Linear morphing 58
Figure 6.14 Curve Concatenation 59
Figure 6.15 XOR operation on sections A and B 61
Figure 6.16 Thinning and Ribbon Construction 61
Figure 6.17 Inner and outer boundaries intersecting. XOR region in pink 61
Figure 6.20: (left): Revision slice, (right) Some slice in the editing area 63

viii

Figure 6.21: (a) Revision slice, (b) Editing area in 3D, (c) Points A, L, B belong to the
same circular arc 64

Figure 7.1: Slicing the screwdriver point cloud 67
Figure 7.2 Cross Section Thinning 68
Figure 7.3 Concavity change detection 68
Figure 7.4 Control Point derivation: (a): slice on steel shaft,(b) slice on handle 69
Figure 7.5 Best method for Control point selection through distance minimization 70
Figure 7.6: Middle weight adjustment minimizes point distances from the curve 70
Figure 7.7 Fitting Rational Bezier Curves. 71
Figure 7.8 Time for fitting point sets 71
Figure 7.9: Average Error per point 72
Figure 7.10: Above average fitting error 72
Figure 7.11 Intra-cross section Constraints. 73
Figure 7.12 Inter-cross section Constraints: Slice 1 in red, slice 2 in green. 74
Figure 7.13 (a) Control polygon (b) Intra Constraints 75
Figure 7.14 Inter Constraints 75
Figure 7.15 Resampling result. 76
Figure 7.16 Auto slice generation by XOR. Slice 1 (red), slice 2 (green), slice S1

XOR S2 (purple) 76
Figure 7.17 Auto slice generation by curve morphing 77
Figure 7.18 Reconstruction of part using intermediate slice generation 77
Figure 7.19 (a) Reconstruction result (b,c) Reconstruction result after Editing. 78
Figure 7.20 Original and Modified Slice Constraints 78
Figure 7.21 Original and Modified object part 79
Figure 7.22 Original Object 79
Figure 7.23 Modified object 79

ix

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Αντώνιος Πρωτοψάλτης του Ιωάννη και της Χρυσούλας. PhD, Τμήμα
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Νοέμβριος, 2009.
Ανακατασκευή 3Δ μοντέλων σχεδίασης με υπολογιστή βασισμένη σε γεωμετρικά
προσδιορισμένες τομές.
Επιβλέποντας: Ιωάννης Φούντος.

Η ανάστροφη μηχανική (reverse engineering) είναι μια διαδικασία μέσω της οποίας

ανακατασκευάζουμε μια εύκολα τροποποιήσιμη αναπαράσταση ενός αντικείμενου

του οποίου την επιφάνεια έχουμε πάρει με τη μορφή νέφους σημείων. Στην εργασία

αυτή μελετάμε την χρήση τομών (cross sections) που στην ανάστροφη μηχανική είναι

μια ειδική περίπτωση χαρακτηριστικών (features). Τα μοντέλα αναπαράστασης

στερεών τα οποία βασίζοντα σε χαρακτηριστικά και περιορισμούς είναι από τη φύση

τους κατάλληλα για την χρήση σε συστήματα σχεδίασης με υπολογιστή και παρέχουν

τη δυνατότητα εύκολης τροποποίησης και μπορούν να μοντελοποιήσουν την πρόθεση

του χρήστη-σχεδιαστή (design intent).

Το νέφος σημείων αρχικά τεμαχίζεται σε έναν αριθμό από δισδιάστατες τομές οι

οποίες περιέχουν ένα σύνολο από σημεία στο επίπεδο. Κατόπιν, επεξεργαζόμαστε το

κάθε τέτοιο 2Δ σύνολο λεπταίνοντας το πάχος των συσσωρεύσεων του νέφους

σημείων ώστε να περιγράφει μια 2Δ καμπύλη. Αυτό επιτυγχάνεται χρησιμοποιώντας

πεδία δυνάμεων προσαρμοσμένα για να έχουν βέλτιστη απόδοση σε νέφη σημείων

που περιγράφουν περιβλήματα. Η κάθε τέτοια ακολουθία διατεταγμένων σημείων

κατόπιν χωρίζεται αυτόματα σε έναν αριθμό από τμήματα ώστε το κάθε ένα να

μπορεί να περιγραφεί ικανοποιητικά από μια ρητή καμπύλη Bezier 2ου βαθμού. Με

τον τρόπο αυτό, εξαλείφεται ο θόρυβος και η τομή αυτή του περιβλήματος μπορεί να

προσφέρει πολλές πληροφορίες στα μετέπειτα στάδια της ανάθεσης γεωμετρικών

περιορισμών και της 3Δ ανακατασκευής.

x

Κατόπιν εισάγονται αυτόματα αλλά και διαδραστικά γεωμετρικοί περιορισμοί τόσο

εντός της ίδιας τομής όσο και μεταξύ διαφορετικών τομών. Λύνοντας το προκύπτον

σύστημα γεωμετρικών προσδιορισμών μπορούμε να διαμορφώσουμε τόσο την

μορφολογία της κάθε τομής όσο και να αλλάξουμε την σχετική τοποθέτηση των

τομών μεταξύ τους.

Οι προκύπτουσες τροποποιημένες τομές ανακατασκευάζονται με μια νέα μέθοδο

ανακατασκευής τομών που μπορεί να λειτουργεί ακόμη και αν δύο γειτονικές τομές

διαφέρουν πάρα πολύ. Αυτό επιτυγχάνεται χρησιμοποιώντας έναν σκελετό ορίων που

ανταποκρίνεται στις δύο τομές, ο οποίος οδηγεί την αυτόματη κατασκευή ενδιάμεσων

τομών.

Τέλος προσφέρουμε ποσοτικά και ποιοτικά αποτελέσματα σχετικά με την απόδοση

και την ευχρηστία της μεθόδου που παρουσιάσαμε.

xi

ABSTRACT

Protopsaltis, Antonios, A.P. PhD, Computer Science Department, University of
Ioannina, Greece. January, 2010.
Reconstructing 3D CAD Models based on geometrically constrained cross sections
Thesis Supervisor: Fudos, Ioannis.

We introduce a novel approach to reconstructing 3D objects from cross sections of

point clouds acquired by laser scanning. Cross sections are almost planar clusters of

3D points. We first thin each cluster to obtain an ordered one dimensional set of

points. We then partition the point set to subsets that can be approximated adequately

by piecewise quadratic or cubic rational Bezier curves using an optimal fitting

method. For each curve we select a number of representative points that lie on the

fitting curves which are then used for reconstructing the object surface. Inter-cross

section and intra-cross section constraints are imposed to support parameterization

and editing of the derived model. Shape and topological differences between adjacent

object contours pose several issues for the 3D reconstruction process. By using the

contour skeleton information we produce intermediate cross sections representing

places where ramifications occur to achieve robust covering (meshing) of adjacent

slices. Finally we describe a proof of concept implementation of our method and

several examples that demonstrate its effectiveness and efficiency.

1

CHAPTER 1. INTRODUCTION

The creation of an appropriate computer representation of existing objects from vast

sets of scanned data points has been an important necessity in many areas of

engineering, medical sciences and arts. The process of capturing the geometry of

existing physical objects and then using the data obtained as a basis for creating a new

design is called Reverse Engineering of solids. Due to recent advances in laser

scanning, the process of deriving accurate and topologically consistent models that are

ready to use in CAD/CAM systems has become a realistic expectation in the

geometric modeling community.

While conventional engineering transforms engineering concepts and models into real

parts, in reverse engineering actual parts are transformed into computer models

suitable for reproducing or redesigning these parts. In conventional computer-aided

design the computer representation of objects is performed by means of operations

typically defined interactively using advanced geometric and graphics primitives. The

resulting representation is then used for further design, and finally for numerically

controlled manufacturing, layered manufacturing or other manufacturing techniques.

In reverse engineering, engineering concepts are derived from actual parts when no

drawings or documentation are available. The required degree of accuracy may only

be obtained if the geometric modeling technique employed precisely represents the

shapes being analyzed.

The process of reverse engineering is usually decomposed into the following steps:

data acquisition, point cloud segmentation, surface fitting, and model creation (figure

1.1).

Figure 1.1 Phases of Reverse Engineering

Data Acquisition
Pre-Process

Point Cloud
Segmentation

Surface
Fitting

Model
Creation

2

Data acquisition is accomplished by means of 3D laser scanners or other less accurate

techniques such as 3D reconstruction from 2D snapshots using correspondence and

epipolar geometry. The data acquired is in the form of an unorganized 3D point cloud

where each point corresponds to a point on the surface of the object. The measured

data is pre-processed before further operations are performed. In many cases where

the object is large or very complicated one point cloud is not enough to describe the

entire object. In such cases we obtain multiple point clouds each one covering a

different part of the object. These point clouds are either merged in one master point

cloud or are considered as segments from the beginning.

The object may be anything from a combination of smaller objects to an open surface.

Segmentation partitions the point cloud into disjoint subsets each represented by a

boundary representation that consists of surfaces. Each derived subset may be

classified for its surface types (planar, spherical, conical, etc) [7] or approximated in

the fitting step with free-form surfaces.

The fitting surface step fits an appropriate surface to the point set. This is an open

research field in CAGD (see e.g. [8]).

Finally, stitching together these surfaces (with appropriate continuity) creates a

Boundary Representation that could be used in subsequent phases of CAD/CAM.

Traditionally, the result of this process is a Brep model [42] of the real object that is

adequate to describe positional information and therefore it is suitable for

reproduction but cannot capture any of the higher-level structure of the object or the

designer’s intent. Therefore, it is not suitable for redesign. Modification of a part is

often a tedious task that requires experienced users and state of the art software and

hardware. For instance, a Brep representation might be able to approximate the shape

of a cylindrical hole, but the fact that the hole is actually cylindrical is not captured.

As a result, it is difficult for a designer to perform a simple modification such as

altering the diameter of the hole. Also, the initial model suffers from inaccuracies

caused by sensing errors inherited from the data acquisition phase, approximation and

numerical errors arising from successive transformations or other geometric

manipulations, or possible wear of the actual part. All these errors introduce

distortion and may act accumulatively. Redesign may be accomplished through

geometric regularities and constraints that have been derived from the original cloud

point.

3

We present a novel computer aided reengineering paradigm based on careful slicing

of the 3D point cloud and advanced post processing of the resulting cross sections.

Post processing aims to eliminate noise and partition the point set to point sequences

that correspond to low degree curve segments. The curve segments are then

approximated using quadratic rational Bezier curves. We then subdivide the curve

segments in equal length chord segments and use the corresponding points to perform

3D mesh reconstruction. The final model should be editable which is succeeded by

the incorporation of geometric constraints and feature recognition.

Figure 1.2 illustrates the overall process:

Figure 1.2 Our Reverse Engineering Framework

The rest of this thesis is structured as follows: Chapter 2 provides a review of reverse

engineering approaches in computer aided design. In Chapter 3 we present our

approach to extracting and processing cross sections from a 3D point cloud. A fast

and efficient curve approximation method for fitting rational quadratic Bezier curves

to 2D points is presented in Chapter 4. Chapter 5 focuses on incorporating local and

global constraints to our model. In Chapter 6 we present our object reconstruction

method, based on constrained cross sectional contours, and the model editing

methodology. Implementation issues and experimental evaluation of our object

reconstruction framework are presented in Chapter 7. Chapter 8 provides conclusions.

4

CHAPTER 2. REVERSE ENGINEERING IN

COMPUTER AIDED DESIGN

2.1 Introduction

2.2 Related Work

2.3 Raw data

2.4 Boundary representation (Brep)

2.5 Volume modeling

2.6 Higher level representations for CAD

2.1. Introduction

Reverse Engineering is a complex process that is central to industry, arts, archaeology

and architecture. The creation of CAD models appropriate for computer-aided

manufacturing is an expensive and demanding task. In this thesis we focus on re-

engineering solid objects for which we have acquired the point cloud of their

boundary surface. Subsequently, we wish to obtain a 3D CAD model which is

editable and manufacturable. Most related previous approaches have dealt with this

problem considering only mechanical parts and employing feature-based knowledge

to detect and represent holes, chamfers, extrusions or protrusions. It is important to

provide means for editing 3D objects that respect all types of object morphology and

topology.

There is a variety of geometric representations that can be used at different levels of

CAD applications. The suitable representation scheme for each application depends

on the scope of the application and its peculiarities. Some modeling types are simple

and aim at providing only an external representation of the object, whereas others aim

5

at encapsulating and providing additional knowledge and data, such as design intent,

functionality, and editability.

In this chapter we study common modeling schemes used in CAD applications. An

object can be represented in the simple form of raw data, such as a point cloud

corresponding to points on the surface of the object. A widespread scheme in solid

modeling is the Boundary Representation (B-rep) model where the facets and edges

that describe the boundary of a solid are modeled using a connectivity graph and a

collection of surface and edge patches. This type of model is not always suitable for

redesign because of the lack of expected regularities and constraints. This

information is not present because each facet is determined independently. On the

other hand, Constructive Solid Geometry (CSG) and volume models handle objects as

3D solids. There are also higher-level representation schemes that capture not only the

shape of the object but also provide information pertaining to design intent and

functionality, which can be used later on for re-parameterization and modification.

We briefly describe each scheme and evaluate its suitability for various CAD

applications.

2.2. Related Work

Various authors have considered creating reverse engineered 3D models. Sensor

based reverse engineering makes possible the creation of CAD models appropriate for

computer-aided manufacturing directly from existing physical prototypes or similar

objects for which usable CAD models don’t exist. Some researchers have dealt with

the tedious task of making their model editable. This is often accomplished by

incorporating local and global geometric constraints in the CAD model. In plain solid

reconstruction, a geometric model is captured directly from the geometry of the point

cloud acquired by 3D laser scanning. This method is commonly used in modeling

sculptures in arts. These techniques are quite accurate but do not support large scale

modifications, additions or other high level operations to the extracted model.

Ko et al. [38] discuss a method that uses a set of points to model a human face. The

discussion focuses on the reorganization of the points, facet modeling and tool path

generation. Ma and He [50] present an approach to shape a single B-spline surface by

6

a cloud of points. The discussion concentrates on the parameterization of these

unorganized points.

Varady et al [81] compute a “feature skeleton” on the mesh that determines the

primary regions of the object. The final surface structure comprises the optimally

located boundaries of the connecting features and setback type vertex blends, which

are faithfully aligned with the actual geometry of the object. This CAD-like surface

structure is sufficient for high-quality surface approximations. Stamati [71] is using an

advanced surface analysis technique to extract the morphology of the reconstructed

point cloud. This technique is very powerful and accurate but is not suited for rapid

reverse engineering since it requires an extensive analysis process.

A feature-based reverse engineering method was also used by Au et. al [2] for reverse

engineering a mannequin for garment design. Generic models of mannequin torsos are

fit to 3D point clouds of human torsos for garment modelling applications. The basic

concept in this method is to create a generic mannequin model of a human torso,

which is appropriately aligned with the 3D point cloud of the desired human torso

model, and the generic model is fit to the point cloud by matching up characteristic

points of the models e.g. peaks. This method creates parameterized models by

exploiting the features of the object and by using them to constrain the fitting process.

It is an automated approach to reverse engineering human torsos that creates

parameterized models with good accuracy.

Researchers such as [77],[78] have focused on creating high accuracy models of

manufactured mechanical parts. The REFAB project uses a feature-based and

constraint-based method to reverse engineer mechanical parts. REFAB is a human

interactive system where after the 3D point cloud is presented to the user, the user

selects a feature from a predefined list of features, and specifies the approximate

location of the feature in the point cloud. The system then fits the specified feature to

the actual point cloud data using a least square means method iteratively. The authors

give emphasis on the fitting of pockets, where the user draws a profile of the pocket

on the point cloud and the system then fits the profile to the data and the profile is

then extruded to create the pocket. This feature-fitting process is made more accurate

by using constraints that are detected by the system, verified by the user and then

exploited to achieve a better fitting of the features according to the data. The system

supports constraints such as parallelism, concentricity, perpendicularity and

7

symmetry. The constraints defined and used in REFAB seek to reduce the degrees of

freedom associated with the object as much as possible, so as to achieve high

precision models in less time.

Chen and Hoffman [14], define semantics for the creation of generated features. This

work is based on a neutral, high-level design representation, called Erep (editable

representation), which allows design modifications based on a general design

paradigm. This framework considers generated features based on a planar profile and

then revolved, swept and extruded in 3D shape.

Dobson et al [23] discuss the fitting of a non-uniform rational B-spline curve to a set

of co-planar points. The fitting process uses characteristic points and is demonstrated

by fitting a facial 2D profile.

Langbein et al [40] [41] analyze the type of symmetries and shape regularities that

may be observed in a Brep model and efficiently apply them in a reverse engineering

process to create accurate and aesthetically robust models. The process of model

improvement, called beautification, modifies surface parameters to produce a model

that is more suitable for redesign.

Sato et al [63] propose a laser projection system and an image processor which are

used for determining a fixed set of horizontal cross sections of the recognized object

which is placed on a turntable in a stable vertical orientation. For each horizontal

cross section they compute the Fourier shape descriptors of the boundary. Constraints

between two cross sections may be defined such as horizontal strain, section shape,

torsion, and displacement.

Werghi et al [85], suggest a general incremental framework whereby constraints may

be added and integrated in the model reconstruction process.

Hoppe et al. [33] propose a method for surface fitting based on polygonal meshes.

They produce a surface that approximates the original object surface based

considering data points in close.

2.3. Raw data

The most basic and simple way to represent a 3D object is as raw data. By raw data

we mean an unstructured collection of geometric primitives such as a point cloud or a

range image. Such data are usually produced directly from a 3D object scanning or

8

3D reconstruction setting. The density of the data sets produced by these methods

depends on the sampling rate used to acquire information from the object’s surface.

Also, very often the point clouds obtained contain noisy data due to physical

characteristics of the object or limitations and regulations of the acquisition method

used. However, this problem has been dealt with and processing methods have been

suggested that overcome this problem. The characteristic of this representation model

is that it describes the object as discrete data, i.e. points, without providing any

information about the connectivity, the topological relation among geometric

primitives or the design intent. This type of representation is mainly used in point-

based modeling, i.e. [19][39] and reverse engineering applications [33].

2.4. Boundary Representation (Brep)

The appearance of an object depends largely on the exterior of the object. Boundary

representations (Brep) [42] models are commonly used in computer graphics and

CAD applications. This type of model consists of a collection of connected surface

elements: facets, edges and vertices. A facet is a bounded portion of a surface, an

edge is a bounded piece of a curve and a vertex lies at a point. Other elements are the

shell (a set of connected facets), the loop (a circuit of edges bounding a facet).

Surfaces can capture objects of complex and freeform design. Thanks to

advancements in computer graphics hardware we are able to handle efficiently the

CPU-intensive processing required by Brep. These factors have resulted in the

increased usage of this representation in a wide spectrum of applications. A Brep

model is often realized as a mesh of triangular or quadrilateral (and in general

polygonal) planar or higher degree surface facets.

Planar polygonal meshes (called polyhedral representations) are mostly suited for

rendering and virtual reality and not for CAD applications since they do not provide

sufficient detail. Often, other representation schemes are converted to polygonal

representations for the purpose of rendering. Polyhedral representations such as

triangulations are also used in reverse engineering applications, usually as

intermediate representations during the re-engineering process. A drawback of

representing a 3D object with a polygonal mesh is that it cannot capture design

semantics, such as design intent, inter part relations and overall behavior. Also model

9

editing is only feasible in a local corrective sense. Smooth object surfaces cannot

efficiently and accurately be represented by a polygonal mesh, even when a large

number of polygons are used, since the polyhedral representation by definition cannot

accommodate for G1 continuity. For example, to render areas of high curvature quite

accurately we need to increase the number of polygons and decrease significantly the

facet size.

Overall, polyhedral representation is not suitable for describing objects with specific

design characteristics and functionality, such as mechanical and industrial parts. Also

it is not appropriate for describing complex and detailed objects since the large

number of polygons needed to sufficiently approximate the initial object makes the

method unaffordable both time-wise and space-wise.

Applications such as aesthetic and industrial engineering, reverse engineering and

jewellery design use commonly non-planar surfaces to capture the boundaries of

complex objects [7]. A Brep model may be constructed using NURBS (Non-Uniform

Rational B-Splines) or other parametric surface patches. This type of representation is

useful in applications where free-form surfaces are part of the repertoire of primitive

geometric entities. Brep can capture almost any type of object, such as mechanical

parts and objects of aesthetic design. Surfaces can be described using appropriate

parametric representations. Brep models make editing of local features feasible by

interactively placing control points, therefore modifying the shape or curvature of the

object’s feature. However, Brep models on their own do not capture higher design

characteristics of the object such as functionality and part relationships. The

information provided through this type of model is limited and does not provide tools

for modifying parts of the model that affect the whole design. Therefore, Brep models

are used in combination with other techniques (e.g. features, constraints) to obtain

higher-level descriptions that correspond to more flexible and useful models that are

suitable for CAD applications. For instance, in [40], the authors present a

beautification process based on constraints which is performed on B-rep models

constructed from reverse engineering range data. B-rep models acquired by re-

engineering can present various inaccuracies and errors, therefore the authors suggest

the beautification of the models by describing topological regularities in terms of

geometric constraints.

10

2.5. Volume Modeling

While surface raw data and Brep modeling schemes provide data concerning the

boundary of a model, constructive solid geometry (CSG) [42] and volumetric models

represent the objects as a volume. This type of representation can be used for objects

that B-rep cannot sufficiently describe. For example, a Brep model cannot represent

unambiguously a sphere containing a hollow, whereas a volume model can easily

capture such solids.

Constructive solid geometry (CSG) models are created by performing Boolean

operations on solid primitives e.g. spheres, cones, cylinders and cubes. We perceive

that CSG models represent objects that can be created from solid primitives. CSG

may model higher degree free-form objects using a small number of special free-form

primitives. In general, the CSG representation scheme is well suited for mechanical

part design and for all applications where the design history can be expressed as a tree

of Boolean operations on geometric primitives. Also editing and local shape

modification is performed by intervening in the appropriate operation (internal tree

node). Converting CSG models to render-able ones is extremely difficult and

therefore CSG is commonly used in conjunction to Brep. In this case a Brep model is

always maintained and every modification is transformed to an incremental Brep

editing operation. Constraints may also be used in conjunction to CSG for performing

multiple internal node modifications at a single step.

Volume pixels (voxels) are used in a volumetric approach to 3D object representation.

A voxel is a geometric primitive and represents the smallest discrete volume used in

this representation scheme. Voxel-based representations are commonly used for

visualizing unstructured 3D volume date such as data from scientific computing,

medical imaging etc. Although used in early CAD/CAM settings, volumetric

representations have been proven to be very inefficient for computer aided editing,

rendering and manufacturing. This representation scheme may be used as redundant

auxiliary information in CAD applications [35] such as solid modeling, reverse

engineering and feature-based and constraint-based modeling for the purposes of

physical modeling and simulation.

11

2.6. Higher-level Representations for CAD

A current promising trend in computer-aided design is to use higher-level structures

for model representation. These structures are based on one of the former

representation types in combination with additional structural, topological or other

information. A feature-based representation scheme describes the object as a

combination of features, which are surfaces or solid parts with specific characteristics.

A constraint-based representation scheme uses geometric constraints enforced on the

model and its features to obtain a more accurate representation that captures designer

requirements. The skeleton of a model can also be considered as a higher-level CAD

representation that can be used for specific operations such as feature detection and

extraction.

More specifically, the feature-based model is a representation scheme that is growing

more and more popular. The model is described by defining collections of feature

elements and relationships among them. The features are collections of points,

surfaces or other features. For example a commonly used feature type is a cross-

section of a solid. Constraints are applied to the features to create more accurate and

robust models, but also for enforcing global criteria such as tolerance and

beautification. This type of model representation has been established initially for

manufacturing mechanical parts, where a library of features is created and then

relationships among feature elements are enforced. The feature-based scheme is well

suited to industrial design in general since it provides for advanced editability. This is

due to the knowledge encapsulated by the model concerning tolerances, constraints,

relationships and connectivity. For this reason, feature-based methods are often

characterized as knowledge-based. Their main objective is to exploit any knowledge

and information pertaining to design intent, functionality and construction process.

Besides, this representation scheme supports collaborative CAD, reverse engineering

and VLSI applications. This type of model also provides the user-designer with the

capability of editing, redesigning and reconstructing the original design, depending on

her preferences and needs by tailoring the model features [32].

A powerful higher-level structure for representing objects is the constraint-based

scheme, which is often used in combination with features [8]. This representation

scheme is particularly preferred in CAD applications where the objects being

modeled, modified and manufactured are of geometric or freeform design and must

12

conform to constraints determined locally on specific components or globally on the

whole model [1]. Constraints defined on a model or its individual components can

refer to almost any characteristic, i.e. geometric attributes, such as size and shape,

topological characteristics, such as placement and connectivity, functionality and

behavior. Constraint-based models are widely used in architecture, mechanical

engineering, electronic design, aesthetic and industrial design, for design, modeling or

re-engineering. The types of constraints defined depend on the nature of the CAD

application. For example, in VLSI CAD a geometric constraint scheme may be used

in conjunction to feature-based or other graph-based connectivity modeling.

Constraints are imposed on each design feature used in the VLSI circuit referring to

the feature’s intra-connectivity and its local characteristics (i.e. area, size, geometry).

Constraints may also be imposed to express inter-feature connectivity requirements.

Finally, constraints are also enforced globally on the circuit, and are targeted to

optimize the overall placement and routing of the features on the chip.

An object can also be represented by its skeleton. By skeleton we mean the closure of

all points that have more than one closest point on the shape boundary (for example

the medial axis transform). This representation provides the topology and shapes that

exist in the object and also reflects the symmetries of an object. Depending on the

type of application the skeleton is used for, it may be a 2D or 3D representation. For

instance, in 3D the medial axis transform produces a medial surface. The exact

computation of the 3D skeleton is a computationally intensive problem that returns a

skeleton as complex as the object itself. Therefore we usually seek for an

approximation. A skeleton representation scheme is used in various CAD applications

for object recognition and retrieval [18], animation [9] and other solid modeling

operations ([66], [72]). It is widely used in feature-based modeling, where it can be

employed to describe the shape of features, in feature detection and extraction

applications and shape deformation, for instance refer to [47] and [86].

2.7. Feature-Based / Constraint-Based Models

A product model can be built by using (design) features; this is known as design by

features or feature based modeling. One can start either with a more or less complete

geometric model and define form features on it, or one starts from scratch by

13

combining form features from a standard library. Design with pre-defined form

features can reduce the number of input commands substantially. This is especially

advantageous in re-design. The parametric representation of features provides a

powerful way to change features with respect to their dimensions.

Features can serve as functional elements to designers. They may be defined

interactively. Most often, this is carried out by identifying the faces belonging to a

certain feature on the product model that is under consideration. Generic features may

be used over and over again in CAD. This type of model representation is very

convenient for mechanical engineering and manufacturing, where there is a need for

connectivity and continuity between the different elements of the model. Most

machined parts are made using a relatively small number of manufacturing

operations. Reverse engineering of such parts can be done using a form of parametric

fitting where the primitives correspond to these features. Also, feature-based models

are ideal for industrial design and manufacturing because the model can be easily

modified. This is due to the knowledge provided by the model concerning the

tolerances, the constraints, the relationships and connectivity between the features.

Feature-based and constraint-based methods are often characterized also as

knowledge-based. Their main objective is to exploit any knowledge and information

that is connected to the design intent, functionality and construction process of the

object being reverse engineered. Consequently, it is useful to exploit the design intent

and feature relationships that exist in models created for industrial use because they

justify some of the attributes of the object that might look like they make no sense.

These elements are exploited through the usage of geometric constraints.

The main focus in all of the above works is to exploit any knowledge that is

available about the initial object and the parameters, features and constraints that it

contains. By using this information we can more efficiently create and manipulate

part characteristics so as modify and create more advanced models.

14

CHAPTER 3. CROSS SECTION EXTRACTION

AND PROCESSING

3.1 Introduction

3.2 Related Work

3.3 Slice Extraction

3.4 Preprocessing and Thinning

3.5 Ordering

3.1. Introduction

The reconstruction of an object from a set of cross-sections has intrigued computer

science researchers for the last decades. The need for such reconstructions is a result

of the advances in medical imaging technology. Technologies such as magnetic

resonance imaging (MRI), computed tomography (CT), ultrasound imaging or other

systematic scanning devices, allow measurements of internal properties of objects to

be obtained in a nondestructive fashion such that contours representing the boundaries

of the objects may be extracted on slices, and then interpolated in order to reconstruct

and visualize the analyzed objects. These measurements are usually obtained one

slice at a time, where each slice is a 2D array of scalar values corresponding to

measurements distributed over a plane passing through the object. The set of planes

generating the slices are usually parallel to each other and equispaced along some axis

through the object. 3D reconstructions of organs are widely considered to be an

important diagnostic aid in the medical world.

15

3.2. Related Work

In recent years, some novel cloud data modeling approaches take into account a direct

manufacturing of cloud data without involving surface reconstruction for more

efficient rapid product development.

[67] et al directly slice a point set utilizing implicit quadric surfel, so as to obtain

contour curves for Rapid Prototyping (RP).

Most of RP technologies utilize layered manufacturing, which is to make very thin

layers and accumulate them [88]. One such approach is to directly slice the point

cloud along the part building direction and generate a layer-based model for the use of

rapid prototyping technique. Liu [49] developed an automated segmentation method

for generating layer-based models from cloud data. The developed algorithm is

efficient in terms of computation. However, the main drawback is the difficulty to

control the shape error of the final generated model, in comparison with the original

cloud data. [89] et al present an adaptive point cloud data slicing method creating a

layer-based RP model ready to be fed to RP machines for fabrication. Much emphasis

is given on how to control the layer thickness so that a user-specified shape error is

met.

Dedieu et al [21] presented an algorithm for ordering unorganized points assuming all

points are on the reconstructed curve. Taubin et al [74] reconstructed a planar curve

from unorganized data points using an implicit simplicial curve defined by a planar

triangular mesh and the values at the vertices of the mesh.

Levin [44] used a method called Moving least squares to thin a point cloud. This

method computes a simple regression curve/surface Ci for each data point Pi which

locally fits a certain neighborhood of Pi using a weighted regression scheme.

In this work, we present an intuitive method of point cloud segmentation by using the

shape error to control the layer thickness so that each layer will yield the same shape

error.

3.3. Slice Extraction

Our reconstruction process starts by slicing the point cloud data into a number of

cross sections along a user-specified slicing direction. A single slicing direction may

not be sufficient for complex objects. For such cases the original point cloud is

16

decomposed into meaningful components using advanced segmentation techniques.

Shape decomposition has been studied for decades and there is a large amount of

previous work [31][62]. Approximate convex decomposition [46] method

decomposes a given component by ‘cutting’ its most concave features based on the

convex hull of the input model and a user defined concavity tolerance τ.

Slice thickness is controlled by a user defined thickness threshold value that specifies

the maximum allowable width of a projected point set. The thickness threshold value

is adapted iteratively until it falls under the user specified levels. Since slice thickness

is in general greater than zero, virtually no point is exactly located on a given slicing

plane. For this reason, the cloud points in each slice are projected onto a plane

perpendicular to the slicing direction cutting the slice in half. Slice selection may be

controlled by a user defined parameter called slicing distance. Slicing distance

specifies the fixed distance between two adjacent slices. There may be cases where

the slicing distance is too large for a certain object. As a consequence, the exact

geometry of the object is not recorded accurately. The slicing distance parameter

should be set according to the object particular features.

In many cases we obtain adjacent slices that are very similar. This might happen

when the sliced object feature is symmetric such as a cylinder or parallelepiped part.

Many of these slices may be eliminated from the entire process of reconstruction. If

three adjacent slices are of similar shape, then the in between slice is eliminated.

Similarity of slices may be detected using principal component analysis and skeleton

extraction so as to achieve rotational and translational invariance.

3.4. Preprocessing and Thinning

Depending on the data acquisition and the slicing process a cross-section may contain

points that form a shape with thick border. Thinning is the process that identifies the

specific points from the data set that are essential to form the actual 2D shape of the

cross-section. We call the outcome of this thinning process a thin data set.

The Medial Axis, is a well defined process for extracting a skeleton, but does not

always produce a skeleton for the purposes of thinning due to the complexity of the

result. Most thinning algorithms work iteratively. The edge pixels are examined

against a set of criteria to decide whether they are essential skeleton pixels or not. A

17

common disadvantage of many thinning algorithms is the deformation that is induced

on the shape of the skeleton at regions where corners or boundary crossings are

formed. Single pixel irregularities may yield unintuitive changes in an otherwise

simple skeleton. Furthermore, the extraction of the skeleton does not often preserve

the connectivity of the shape. Necking, tailing and spurious projection (line fuzz) are

some common flows of many thinning methods [57].

The Force Based thinning algorithm [58] is based on the idea that the boundary

should be used to locate the skeletal pixels by exerting a force towards the inner

pixels. In that way, the skeleton of the shape lies at pixels where the forces imposed

have opposite directions (Figure 3.1).

Figure 3.1 Force Based Thinning Strategy

Thinning algorithms need as input a 2D array of points. To convert our unordered set

of points to a 2D array we will use an anti-aliasing algorithm. Supersampling [84] (or

post-filtering) is the most common form of anti-aliasing. It involves calculating a

virtual image at a spatial resolution higher than the pixel resolution and averaging

down the high resolution image to a lower pixel resolution. Main advantage of this

method is the trivial implementation.

We will define a virtual grid (Figure 3.2) of size Gx x Gy. Gx and Gy are the x and y

grid resolutions which depend on the data set density. Each grid cell G(i,j)

corresponds to a certain area in the cross section specified by the top left and the

bottom right positions as follows:

max min max min max min max min
min min min min(,) ((1) , (1))

x y x y

x x y y x x y yx i y j x i y j
G G G G
− − − −

+ ⋅ + ⋅ + + ⋅ + + ⋅

18

xmin, xmax, ymin, and ymax are the minimum and maximum coordinates in the original

point set. Subsequently, for each point P(px, py) we increase the intensity of the

corresponding grid cell given by

max min max min

(,)y yx x p Gp GG
x x y y

⋅⎢ ⎥ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

Each grid cell will play the role of a pixel that is either on or off. We define a grid cell

to be “on” if its total intensity is greater than the mean intensity of all cells in the grid.

Figure 3.2 shows an example grid and the pixels that are “on” and “off”.

Figure 3.2 A virtual grid

Depending on grid resolution, the above process may produce a grid with a number of

non connected pixels. To minimize the chance of occurrence of non connected pixels

the anti-aliasing will be performed with the use of weights. The intensity of a cell

AWi,j will depend on the weighted sum of its own and its neighbor’s intensity W

(Figure 3.3). Note that the sum of all weights is 1. The following equation computes

the anti-aliased intensity of a cell taking into account its eight neighbors:

11

,
1 1

4
, Φ = 2

1

ji
m, r

m, ri j
m, rm i r j

m i r j
WAW m i r j
F

m i r j

++

= − = −

≠ ∧ ≠⎧
⎪= = ⊕ =⎨
⎪ = ∧ =⎩

∑ ∑

Figure 3.3 Anti-aliasing weights 3x3

19

In many cases the anti-aliasing with eight neighbors (3x3 matrix) is not enough to

ensure the absence of gaps. For these cases we may perform anti-aliasing using a

second level of neighbors also (5x5 matrix) or even a third level of neighbors (7x7

matrix). Figure 3.4 summarizes the coefficients of these two cases.

Figure 3.4 Anti-aliasing weights 5x5 and 7x7

Each “on” grid cell containing points from the original data set is mapped to the

centroid of these points. In the case that the cell does not contain any points

(characterized on by anti-aliasing) it may be mapped to the centroid of the points of

the 8 neighbor cells. The result is then provided as input to the thinning process.

Figure 3.5 below depicts an example of a thick cross-section and the result of anti-

aliasing and thinning.

Figure 3.5: The result of quantization and thinning

20

3.5. Ordering

Thinning a 2D point cloud yields a virtual grid of “on” and “off” cells where each

“on” cell represents a point. Figure 3.6a, shows an example virtual grid where all

“on” cells are colored pink and all “off” cells are colored white. The entire grid

represents a thin point cloud that is still unordered. At this point we will investigate a

2D Point Cloud Ordering technique that produces an ordered 1D point array which

may suit the curve fitting process.

Figure 3.6 Example virtual grid

The virtual grid will first be converted to an undirected graph (Figure 3.8) where each

node represents an “on” cell and is located at the centroid of the points contained in it.

Every node is connected with all of its neighbor nodes in the eight virtual grid

directions (Figure 3.7). Since the graph is cyclic we may select any node as graph

root, but for simplicity reasons we will select the node that is the closest to the upper

left corner of the virtual grid.

Figure 3.7 Eight neighboring directions

21

Figure 3.8 Conversion of Virtual Grid to Undirected Graph

To order the 2D point cloud to a 1D point sequence we must traverse the undirected

graph using a depth first search DFS [17] algorithm unfolding the entire graph in an

ordered sequence of nodes. Depth-first search (DFS) is an algorithm for traversing or

searching a tree, or a graph. Intuitively, one starts at the root and explores as far as

possible along each branch before backtracking. Formally, DFS is a uniform search

that progresses by expanding the first child node of the search tree that appears and

thus going deeper and deeper until a goal node is found, or until it hits a node that has

no children. Then the search backtracks, returning to the most recent node it hadn't

finished exploring. In DFS, each node has three possible colors representing its state:

• White: node is unvisited;

• Gray: node is in process;

• Black: DFS has finished processing the node.

A node with more than two descendant edges is called cross path node and is gray

color until all of its descendants are processed. Initially all vertices are white

(unvisited). DFS starts from the root node and runs as follows:

1. Mark node U as gray (visited).

2. For each edge (U, V), where U is white, run DFS for U recursively.

22

3. Mark node U as black and backtrack to the parent.

For each performed backtrack to a cross path node, a new sequence of ordered points

is created. The final result of DFS process will be a set of independent sequences of

ordered points. The union of these sequences of points equals to the initial set of

unordered points.

Differentiating from the common DFS algorithm, we will adopt a not fixed traversing

order for the descendants of a node, attempting to discover smooth paths through the

undirected graph assisting the curve fitting process. As seen in Figure 3.8 most nodes

are associated with two edges (ancestor and descendant nodes). Since new sequences

of nodes start at cross path nodes when backtracking, it is only important to select the

first descendant of a cross path node.

To discover smooth paths through the graph the direction selection of the first

descendant of a cross path node will depend on the node’s parent direction. These

two directions should form the greatest obtuse or acute angle possible (or the smallest

reflex angle). Therefore, when the parent of a cross path node is S direction, the

direction selection should be in the following order: N, NW, NE, W, E, SW, SE. In a

similar manner, the direction selection of the first descendant of a cross path node

could depend not only on the parent node but also on the mean direction of its closest

ancestors.

23

CHAPTER 4. CURVE APPROXIMATION

4.1 Introduction

4.2 Related Work

4.3 Point Set Partitioning

4.3.1 Normal Vector Computation

4.3.2 Concavity Change Detection

4.4 Middle Control Point Computation

4.4.1 Intersecting the End-point Tangent Lines

4.4.2 Approximating the Curve’s Maximum Height

4.5 Low Degree Bezier Curve Approximation

4.1. Introduction

Approximating a point set by a curve or a set of curve segments is a key problem in

reverse engineering of geometric models, pattern recognition, image processing,

CAD/CAM, and computer vision over the last three decades. In this work, we focus

on an efficient way to approximate a 2D point set, obtained by filleting a 3D point

cloud, by a minimum number of quadratic rational Bezier curves. The complexity of

the problem is enhanced from the absence of any prior knowledge about the structure

of the point set.

The Bezier representation is one that is utilized most frequently in computer graphics

and geometric modelling. Quadratic Bezier curves are often used by CAGD

developers since they do not require complex computations as other higher degree

curves do. However, in practice it is often desirable to approximate conic sections

which cannot be represented in Bezier form. Conic sections such as parabolas

hyperbolas and ellipses may be adequately represented by Rational Bezier curves.

24

In this work we propose a method which is suitable for the process of reverse

engineering a 3D point cloud by producing a feature-based CAD model. In this

context we wish to have a piecewise representation of the curves defining the cross

section and satisfying as much as possible the following two criteria:

These criteria result in representations that can be used in feature-based CAD systems

for extruding, protruding, and sweeping 2D profiles in 3D solids with satisfactory

accuracy, robustness and efficiency (see e.g. [28]).

As we saw in the previous chapter, our method performs a sophisticated thinning of

the point set that extracts the significant skeleton. A further examination of this

thinned point set will detect subsets of consecutive points that may be fitted by a

single quadratic curve. An important property of all quadratic curves is that they

exhibit a restricted concavity. This examination will involve the normal vector

computation of each line segment formed by two neighboring points. For every

subset of points, the first and last points will serve as the end points of the quadratic

rational Bezier curves. Finally, by performing an optimization of each curve weight,

we will compute the best-fitting quadratic rational Bezier curve for each subset of

points.

4.2. Related Work

There is an abundance of research in the literature regarding the general problem of

curve reconstruction. Many approaches that have been studied extensively deal with

fitting the point data by B-Spline curves [55]. Such methods often require the

designer to provide a small number of knots and parameters corresponding to the data

points which act as handles to shape the curve. A method [24] based on spring energy

minimization approximates an unorganized set of points with a curve which needs a

good initial guess of the solution. In SDM [83] a B-spline curve starts from some

properly specified initial shape and converges towards the target shape through

iterative quadratic minimization of the fitting error. Other approaches [11] use a least

square approximation to fit a line segment or a parametric curve of higher degree to

the point set. These methods aim at minimizing the sum of squared distances between

the set of points and the curve to be fitted. This implies solving a system of linear

equations which may require complex and excessive computations while high order

25

polynomials can be highly oscillatory. Several other methods fit point data by

rational Bezier and rational B-Spline curves [79] [51] but the problem of setting the

weights for good approximation is still a great challenge. Fudos et al [28] describe an

interesting representation of conic sections by rational Bezier curves and NURBS.

Another iterative algorithm [13] minimizes the sum of squared Euclidean norms with

respect to three types of unknowns: the control points, the node values, and the

weights. The method uses the projection of the data points on the approximant to

improve the node values, and a gradient based technique to update the control point

positions and the weight values.

4.3. Point Set Partitioning

First, the ordered point set should be partitioned in subsets of consecutive points that

can be fitted by a single rational quadratic Bezier curve. To achieve this, for each

point Pi we connect all neighbouring points with line segments and compute the

average normal vector .

4.3.1. Normal Vector Computation

For a specific point Pi, the average normal vector URi is given by:

1

1

i i i
i

i i i

R U +UUR = =
R U +U

+

+

JG JG JGJJJG
JG JG JG

The above equation averages the normal vectors of the two adjacent line segments Pi-

1Pi and PiPi+1 (Figure 4.1).

Figure 4.1: Determination of average unit normal vector for a point.

Therefore, for two successive points Pi(xi, yi) and Pi+1(xi+1,yi+1) the line segment PiPi+1

that connects the two points is given by

26

1 1 , 1 ,()i i i i i iP P x x y y+ + +− −
The vector normal to PiPi+1 is given by

1 1 1(,)i i i i iN y y x x+ + +− −
JJJJG

 ,
and the unit normal vector to PiPi+1 is

1 1
1

1 1

(,)i i i i
i

i i

y y x xU
N N

+ +
+

+ +

− −JJJG
, 2 2

1 1 1() ()i i i i iN y y x x+ + += − + −

Every point Pi in the point set P is associated with two unit normal vectors Ui and Ui+1

derived from the two adjacent line segments Pi-1Pi , PiPi+1. The following formula

may calculate the average unit normal vector for point Pi (Figure 4.1):

1

1

i i i
i

i i i

R U UUR
R U U

+

+

+
= =

+

JJJG JJG JJJGJJJG
JJG JJJG

The first and last points (P0 and Pn) in the point set P are special cases since they do

not have two neighbors and therefore, an average unit normal vector may not be

computed. For these cases we will use the one neighbor unit normal vector.

In many cases where the data set contains a lot of noise, the average unit normal

vector may be computed by averaging a larger number of neighbor line segments.

We call this number smoothing neighbors.

4.3.2. Concavity Change Detection

Our aim at this point is to partition the cross section point set into subsets of points

that may be fitted by a single quadratic rational curve. Following, we will show how

the angle between neighboring normal vectors may drive the partitioning of the point

set. Based on the fact that a single quadratic rational curve may approximate

correctly a subset of points for which the induced curve exhibits a restricted

concavity, indentifying the cross section points where the induced curve changes its

concavity (curvature sign) would solve our problem (Figure 4.2).

Figure 4.2: Inflection point detection

27

In differential calculus, point of inflection is defined to be a point on a curve at which

the curvature (second derivative) changes sign. This actually means that at an

inflection point the curve’s concavity changes from convex to concave or vice versa.

The curve’s normal vector at that point changes rotation direction, which means that

the relative rotation of neighboring normal vectors changes sign.

Consequently, to identify the points of the cross section where the induced curve’s

curvature changes sign we need to compute the relative rotation Φi of its average unit

normal vectors URi with respect to its neighbor’s URi+1.

Figure 4.3 Determining the relative rotation

In other words, the algorithm we present is based on the fact that the normal vectors

on a concave curve segment turn clockwise, while on a convex curve segment the

normal vectors turn counterclockwise (Figure 4.3). On a line segment, the normal

vectors have constant direction. The relative rotation Φi of vector URi with respect to

URi-1 is giben by the z-coordinate of the cross product of the two vectors.

1
1 1 1

1

() (det) ()i i
i i i z z i i i i z

i i

URx URx
UR UR URx URy URx URy

URy URy
−

− − −
−

⎛ ⎞
Φ = × = = ⋅ − ⋅⎜ ⎟

⎝ ⎠

JJJJJG JJJJJG

Then, in case

• 0iΦ > , counterclockwise rotation of URi with respect to URi-1

• 0iΦ < , clockwise rotation of URi with respect to URi-1

• 0iΦ � , URi, URi-1 are almost collinear.

According to the above, each Pi is marked as belonging to a concave or convex or

linear curve segment. It is now trivial to detect points where there is concavity

change of the induced curve. Each point of inflection may serve as end point for the

28

current processing subset of points Bj and as a start point for the next subset of point

Bj+1.

For the sake of better curve approximation results, for any point Pi in a certain subset

Bj of points, the relative rotation of the average unit normal vector URi with respect to

the first point’s average unit normal vector UR1 should form no more than π/2 angle:
1

1 cos () / 2i j iP B UR UR π−∀ ∈ ≤i

Our algorithm makes use of a special tree structure where each node represents a

point Pi along with all related information about the average unit normal vector on the

point and the type of concavity that the induced curve would have. The tree node

may also have at most three children that correspond to the three directions of relative

rotation that the next point’s average unit normal vector could have with respect to the

current node.

• CW for Clockwise

• CCW for Counterclockwise

• CL for Collinear

Following is the most important part of the algorithm in pseudocode. Csp is the

curve’s start point, and Lin is the last inserted node.

Curvature Partitioning
Input: Set of points P
Output: Concavity depending partitioned subsets of points

Set P1 as inflection point
Set Csp=P1, and Lin=P1
Insert P1 at Root
For all points Pi in P
 If slope_difference(UR(Csp), UR(Pi)) > π/2

Mark Pi as inflection point
Set Csp= Pi

 End If
Insert Pi at Lin wrt (UR(Lin) x UR(Pi))

End For
End

29

The relative rotation of the point for insertion drives the partitioning of the point set

into subsets. Each subset of points is characterized by a concavity type. A new point

for insertion is always appended at the end of the last subset of points provided it

preserves the concavity type of the last subset. In the case that the last subset of

points is very small (1-2 nodes) and the point for insertion has a different concavity

type, the new point is appended at the end of the second to last subset. A new subset

of points is started in the case where the relative rotation of a certain point with

respect to the first point of the processing subset is greater than π/2. Consequently,

the tree may grow in three directions (CW, CCW, and CL) partitioning the point set

into subsets of points that may be approximated by a restricted concavity curve. Any

node that is common to two subsets is characterized as inflection point.

Figure 4.4 shows an example point set along with the relative rotations of each

average unit normal vector with respect to the first point.

Figure 4.4 Points connected with line segments

Insert
Input: point, Node, Cross product result (point_dir)
Output: Inserted point in the partition tree

If point_dir=Node.dir

Put point at Node.dir
Else if point_dir<>Node.dir
 If point_dir=Parent(Node).dir

Put point at Parent(Node).dir
Else

Put point at Node.point_dir
 End If
End If
End

30

Figure 4.5 shows the tree structure created by the algorithm for the point sequence in

Figure 4.4. Red arrows show direction CW, blue arrows show direction CCW, while

green arrows show direction CL. Inflection points are the light blue squares, and

erroneous points are in pink squares.

In many cases we obtain points with average unit normal vectors that differ

significantly from the neighborhood normals. These cases maybe due to point cloud

acquiring process or possible wear of the original object. Our algorithm filters out

these occasional erroneous points (illustrated in pink in Figure 4.5).

After discarding the erroneous nodes, we end up with a zigzag structure where each

branch Bi of it represents a subset of points that may be approximated by a quadratic

rational Bezier curve.

Let us denote as Li the length of branch Bi that is the number of nodes that are

between its two inflection points. For instance, in Figure 4.5 we have L1=4, L2=3. In

some cases, the length of branch may be zero which means that there are no points

between two inflection points (Li =0). Figure 4.6 shows an example (L2=0) of such

case where the algorithm was not able to detect that the node with angle 20 is

erroneous because its neighborhood tends to rotate slower than it did. A post

processing step of the algorithm detects all such cases and eliminates them by

characterizing the particular node as erroneous (green color in Figure 4.7), removing

the empty branches, and merging where possible branches that split by the erroneous

nodes.

0 20 25 30 34

17 32

30

27 29

20

30

10

24

Figure 4.5 Tree structure

31

In many cases the point set may be very noisy oscillating the average unit normal

vectors very frequently and locally. As a result, an abundance of small length point

subsets are created. Using a data smoothing algorithm such as the Moving Average

could solve the problem but it would increase the time complexity of the entire

method. To this effect, we use an alternative that achieves better results by smoothing

the normal vectors rather than the actual point set. As described in the previous

section, this smoothing is achieved by averaging the normals of a larger number of

neighbour line segments. We will call this number smoothing tolerance.

The concavity change detection algorithm divides the ordered set of points into

partitions. All points in a certain partition preserve the following relation:

1 1

1 1

 , i<k

 down
k

i k
k

UR URi UR UR partition concave upwards
P P

UR URi UR UR partition concave wards
<⎧ ⎫

< = ⎨ ⎬>⎩ ⎭

i i
i i

The above relation is a total order since it preserves:

• Antisymmetry: () ()i k k i i kP P P P P P< ∧ < ⇒ =

• Transitivity: () ()i k k m i mP P P P P P< ∧ < ⇒ <

• Totality: () ()i k k iP P P P< ∨ <

Also note that if Si is the ith partition detected

1i (1), S
ni iS S +∀ =

5 10 13 20

19 20 2117

0

5 10 13

20

19 20 21170

Figure 4.6 Tree with L2=0

Figure 4.7 Tree resulted by elimination of B2

32

where Si1 is the first point in the ith partition and Sin is the last point. In other words

the last point of a certain partition coincides with the first point of the next partition.

Analysing the running time of the partitioning algorithm, we see that for each point Pi

in the point set we perform:

• a computation for the average unit normal vector URi of the line segments

Pi-1Pi and PiPi+1 which takes constant time,

• a computation for the relative rotation of URi with respect to URi-1 which takes

constant time,

• an insertion of Pi to the tree structure which takes constant time since the last

inserted node is always kept track and there is no need to traverse the entire

structure.

Consequently, the task of partitioning a cross section is achieved using the above

presented algorithm in linear O(n) time for a point set with n points.

4.4. Middle Control Point Computation

The partitioning process gives us a number of subsets of ordered points that may be

approximated by a single rational quadratic Bezier curve. Therefore, the start and end

points of each approximating curve are already known. Also, note that the end point

of each partition coincides with the start point of the next partition. We will now

present two methods for determining the middle control point of the fitting curve.

4.4.1. Intersecting the End-point Tangent Lines

The first method makes use of the fact that the middle control point is the intersection

of the tangent lines to the Bezier curve on the two end points. These tangent lines may

be approximated by the lines that are perpendicular to the average unit normal vectors

on the end points, which pass through the end points P0 and P2 (Figure 4.8).

33

 Figure 4.8: Intersecting the end points normals of the average unit normal vectors

Since we already know points P0 and P2 and their respective normal vectors u(ux, uy)

and v(vx,vy) we may compute the tangent vectors u’(-ux, uy) and v’(-vx,vy) which

assist us in defining L1 and L2:

1 0

2 2

'
'

L P u s
L P v r

= +

= +

Since control point P1 is the intersection of lines L1 and L2, its coordinates may be

computed by solving the following system of linear equations:

0 2

0 2

' '
' '

x x x x

y y y y

P u s P v r
P u s P v r

+ = +⎧ ⎫
⇒⎨ ⎬+ = +⎩ ⎭

 Therefore, the middle control point is as follows:

4.4.2. Approximating the Curve’s Maximum Height

Definition: We define as height of a quadratic Bezier curve the normal distance of a –

point on the curve from the line segment connecting its end points. The second

method involves (Figure 4.9) the fact that for every quadratic Bezier curve the

maximum height occurs at t=0.5. Also, using De Casteljau algorithm [25] we may

34

derive that at t=0.5 the tangent to the curve is parallel to the line passing through its

end points.

Proof:

If R(t) is a quadratic Bezier curve with [0,1]t ∈ then

2 2
0 1 2() (1) 2 (1)R t P t P t t P t= ⋅ − + ⋅ ⋅ ⋅ − + ⋅

We will compute the value of t for which the tangent to the curve R’(t) is parallel to

the base of the control triangle P0P2.

0 0 1 1 2
() 2 2 2 4 2dR t P t P P P t P t

dt
= ⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅

Since, the slope of the tangent is equal to the slope of P0P2 then solving the following

equation for t we get

2 0

0 0 1 1 2 2 0

()

2 2 2 4 2
1/ 2

dR t P P
dt
P t P P P t P t P P

t

= − ⇒

⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ = − ⇒

=

Therefore, for every quadratic Bezier curve the tangent at t=0.5 is parallel to its

control triangle base.

Rotating the curve so that the control triangle base is parallel to the x-axis, makes the

tangent to the curve at t=0.5 equal to zero

(0.5) 0dR
dt

=

This means that R(0.5) is a local extreme (either local maximum or local minimum)

for the rotated curve R. In other words, the quadratic Bezier curve R is at the maxium

height from the x-axis and the control triangle base at t=0.5. The same happens if the

curve is not rotated.

Approximating the point on the curve with maximum height R(0.5) with the point

from the data set that has maximum distance from the line segment P0 P2 may give us

the location of the middle control point P1 :

0 2
1

()2 (0.5)
2

P PP R +
= ⋅ −

35

Figure 4.9: Tangent at t=0.5 is parallel to P0P2

Following, we will determine the normal distance of a point Q1 from a line segment

P0P2. The equation of a line defined through two points P0 (x0,y0) and P2 (x2,y2) is

0 2 0()P P u P P= + ⋅ −

The normal distance of point Q1 (x3,y3) from the line P may be determined by

computing the point Q2 of intersection of the normal vector to the line P that passes

through Q1 and the line P. This may be succeded by employing the dot product of the

normal line segment and line

1 2 0() () 0Q P P P− − =i

Substituting the equation of the line gives

1 0 2 0 2 0[()] [] 0Q P u P P P P− − ⋅ − − =i

Solving this equation for u we get

3 0 2 0 3 0 2 0
2

2 0

() () () ()x x x x y y y yu
P P

− ⋅ − + − ⋅ −
=

−

Consequently, we may obtain the point of intersection by substituting u into the

equation of the line P

36

0 2 0

0 2 0

()
()

x x u x x
y y u y y

= + ⋅ −

= + ⋅ −

Therefore the distance between the point Q1 and the line P is the distance between Q1

and Q2

4.5. Low Degree Bezier Curve Approximation

The Bezier representation is one that is utilized most frequently in computer graphics

and geometric modelling. Quadratic Bezier curves are often used by CAGD scientists

since they do not require complex computations as other higher degree curves do.

However, in practice it is often desirable to approximate conic sections which cannot

be represented in Bezier form. Conic sections such as parabolas hyperbolas and

ellipses may be adequately represented by Rational Bezier curves. Non rational

Bezier curves are a special case of rational Bezier curves. For these reasons, we will

focus on constructing Rational Quadratic Bezier curves. In curve theory, a rational

quadratic Bezier curve is defined by
2

2

0
2

2

0

()
() , 0 1

()

k k k
k

k k
k

w p B t
P t t

w B t

=

=

= ≤ ≤
∑

∑

A 2nd degree Bezier curve requires 3 control points pk: a start point p0, an end point p2,

and a 3rd control point p1 which is obtained by the methods we described in the

previous section.

Figure 4.10: Varying weight of a quadratic rational Bezier curve

37

The Bk terms in the above formula represent the 2nd degree Bernstein polynomials,

while the terms wk are the associated with each control point weights. Setting all

weights equal to one to the above formula represents an ordinary non rational Bezier

curve. Increasing the weight of a control point causes the curve to move towards the

associated control point (Figure 4.10).

Figure 4.11: Point distances from the curve

The curve fitting process fits equations of approximating curves to the raw field data.

Nevertheless, for a given set of data, the fitting curves of a given type are generally

not unique. Thus, a curve with a minimal deviation from all data points is desired

(Figure 4.11). For cases where a rational Bezier curve is approximated the best-fitting

curve can be obtained by varying the control point weights (Figure 4.11). To obtain

the best fitting rational Bezier curve we will perform constrained minimization of an

objective function subject to a set of constraints.

Figure 4.12: The vector Qi P(ti) perpendicular to the tangent P'(ti)

38

A rational Bezier curve P(t) that best approximates the given set of 2D points Q on a

specific cross section is the one that minimizes the sum of the distances of the points

from the curve:
2

1
1

() () min
n

i i
i

f w Q P t
=

= − =∑

Also note that each vector ()i iQ P t
JJJJJJJG

 is normal to the tangent of the curve at ti (Figure

4.12). This means that their inner product is zero. To minimize the sum of square

distances, the above equation will serve as the objective function while the equation

below will provide n constraints.

1, 0... , g () '() (()) 0i i i i iQ i n w P t Q P t∀ = = − =i

Without loss of generality we can set w0=w2=1. The objective function is non linear

and twice differentiable. Interior point methods based on a logarithmic barrier

function have been widely used for nonlinear programming [65],[80]. To allow

convergence from poor starting points, barrier and augmented Lagrangian merit

functions may be used [30]. For this reason we will use a NLP solver. A major

approach for NLP is the Interior Point method which uses a logarithmic barrier

function.

1 1 1
1

(,) () [[()]]
n

i
i

w f w Log g wμ μ
=

Φ = − −∑

μ is a positive number, known as the penalty number. This method is based on the

fact that as we move closer to a constraint boundary, gi tends to 0 causing a large term

to be added to the objective function. Thus, the method keeps the solution away from

the constraint boundaries. This method was implemented with IpOpt software [76].

Optimizing the objective function subject to these constraints may give the middle

weight value of the rational Bezier curve that best fits the given set of points.

Depending on the size of the data set that needs to be fitted, the optimization task

could be a long and cumbersome effort. For this reason, we will perform an extra step

of evaluating a starting value for the middle weight by making use the barycentric

coordinates of each point with respect to the control triangle.

39

1
1

0 22
w τ

τ τ
=

Using the above equation [25] we may compute the value of the middle weight of the

curve that passes through a certain point of the data set. τ0, τ1, τ22 are the barycentric

coordinates of Qi with respect to the triangle formed by the three control points P0, P1,

P2 of each rational Bezier. Barycentric coordinates using the following equations.

1 2 0 2 0 1
0 1 2

0 1 2 0 1 2 0 1 2

(, ,) (, ,) (, ,), ,
(, ,) (, ,) (, ,)

1(, ,)
2

1 1 1

i i i

x x x

y y y

area L P P area P L P area P P L
area P P P area P P P area P P P

a b c
and area a b c a b c

τ τ τ= = =

 =

Consequently, for each point Qi in the data set, we may compute a value w1i for the

middle weight of the curve. The value of the middle weight that will be selected is

the one that minimizes the sum of square distances of the points in the data set from

the curve. This value may be used as a starting value in the optimization process that

was described above.

40

CHAPTER 5. CONSTRAINTS FOR EDITABILITY

5.1 Introduction

5.2 Related Work

5.3 Defining Cross Section Features by imposing Geometric Constraints

5.3.1 Intra-Cross Section Constraints

5.3.2 Inter-Cross Section Constraints

5.4 Geometric Constraint Solving

5.1. Introduction

A new generation of CAD systems has become available in which geometric

constraints can be defined to determine properties of mechanical parts. The new

design concept, often called constraint-based design or design by features offers users

the capability of easily defining and modifying a design, but introduces the problem

of solving complicated, not always well defined, constraint problems. In this chapter,

we present the development of a user-friendly interactive system for imposing and

solving geometric configurations inside cross-section (intra cross-section constraints)

and among two or more cross-section (inter-cross-section) constraints. The system

uses a powerful graph-constructive constraint solving method presented in [27],

capable of efficiently analyzing certain classes of well-determined, over-determined

and under-determined configurations. Minimal systems of geometric constraints that

are not solvable by the core constructive method are detected and may either be

handled by a numerical method and treated afterwards as rigid bodies, or edited by the

user. A main issue pertinent to geometric constraint solving is the solution selection

problem. To this end, we have provided an interactive tool for navigating the

constraint solver, to the intended solution. Consistent over-determined sub-

41

configurations can be detected, interactively relaxed and solved appropriately. Under-

determined subsystems are detected, isolated and subsequently presented to the user

annotated with all possible constraint addition choices for interactive editing.

5.2. Related Work

The importance of being able to clearly describe a piece of geometry in a clear and

unambiguous way has been realized since ancient times. For the very simple 2D

shapes, Euclidean geometry showed us precisely what information was needed to

completely define them. However, the difficulties of describing more complex

geometries remained for many years until the use of computers became common.

With the use of CAD/CAM, it was soon realized that the increased ease of entering

more and more complex geometries further necessitated the invention of novel

formalisms capable of capturing these geometries in a simple but rigorous manner. A

number of authors have conducted research in the field of geometric constraints and

regularities for reverse engineered models.

In previous work, feature based design has been approached as an extension of the

CSG paradigm [69]. In a CSG construction, a solid is built from standard primitives

by regularized Boolean operations. The solid then, is represented by a tree structure

in which the leaves are solid primitives and the interior nodes are Boolean operations

and rigid-body transformations. Although limited, this approach provides well-

defined design semantics.

One of the central research directions in computer vision is 3D object recognition. In

3D object recognition the term of surface characterization refers to the computational

process of partitioning surfaces into regions with equivalent characteristics. There are

many surface characterization algorithms that make use of differential geometry. The

local shape of a surface is central to object recognition. It may be determined by

using Gaussian and mean curvatures which combine the first and second fundamental

forms of the surface [48] to obtain scalar surface features which are invariant to

rotation, translation and re-parameterization. Surface shapes may be characterized by

the sign of the mean curvature and Gaussian curvature. These curvatures may be

computed directly from the point set acquired from the data acquisition process.

42

In [63], a laser projection system and an image processor [64] are used for

determining a fixed set of horizontal cross sections of the recognized object which is

placed on a turntable in a stable vertical orientation. For each horizontal cross section

boundary based Fourier shape representations are computed. Constraints between

two cross sections may be defined such as horizontal strain, section shape, torsion,

and displacement.

In a more recent work [15], semantics for the creation of generated features are

defined. This work is based on a neutral, high-level design representation, called

Erep (editable representation), which allows design modifications based on a general

design paradigm. This framework considers generated features based on a planar

profile and then revolved, swept and extruded in 3D shape.

Often the surface fitting step is enhanced by imposing a set of constraints and then a

simultaneous (as opposed to sequential) fitting is attempted using the constraints as a

set of side conditions that must be satisfied by the surface parameters [8].

Another approach [78] is to drive the segmentation and surface fitting phases using

pre-defined features like slots and pockets whose abstract location and type has been

determined by the user.

[53], [40] describe the importance of a post-processing step, often called

beautification, which adjusts the model to reflect more closely the intended object.

This step involves the analysis of the model to find geometric regularities, the

selection of an appropriate consistent set of regularities which renders the original

design intent, and finally, the reconstruction of an improved model using geometric

constraints without further reference to the point data which avoids the computational

expense of constrained fitting.

5.3. Defining Cross Section Features by imposing Geometric constraints

The objective of the entire method is to obtain an editable CAD model that would

assist us in redesigning the original object. Editability in CAD is commonly achieved

by using geometric constraints. When using the term constraint in CAD we usually

refer to geometric dimensions and relations (lengths, angles, tangency, parallelism,

perpendicularity, etc.) used to define accurately a particular solid geometry. Even

43

though it is not necessary, object symmetry may provide additional auxiliary

information in constraining an object.

Since the result of curve fitting is a set of rational quadratic Bezier curves, the user

may define constraints that involve the control triangle – polygon and the curve

weights. Taking into account that a certain curve may be approximated by more than

one set of control points – weights, defining constraints on curve weights is not

always a trivial task. We will provide an alternative way to constrain a rational

quadratic curve the curve’s maximum height.

The middle weight of a rational quadratic curve specifies its maximum height which,

as proved earlier, occurs at t=0.5. Therefore, the curve’s maximum height may be

derived by the normal distance of point R(0.5) from the line segment P0P2

In this section we will categorize the geometric constraints and how they are adopted

by our method to capture design intent and provide for redesign.

5.3.1. Intra-Cross Section Constraints

The first category of constraints is associated with the geometric and topological

relationships among entities in a single cross sections which we will call intra – cross

section constraints:

• Point – line segment coincidence: special points (curve end points, curve

control points, center of circle, etc) or line segments may coincide or be part of

the same infinite line.

• Tangency: an arc is tangent to a specific curve

• Distance from a curve or point: an arc is located at some distance from a

specific curve or point

• Angle with a curve: an arc (its tangent) forms an angle with another curve or

with a line segment at a specific point on the curve.

• Parallel – Perpendicular line segments or tangents: a line segment is

parallel or perpendicular with another line segment or tangent line.

44

5.3.2. Inter-Cross Section Constraints

The second category of constraints is associated with the geometric and topological

relationships among the contours of different cross sections which we will call inter –

cross section constraints:

• Point co-linearity: a point from cross section CA is on the same infinite line

with a point from cross section CB

• Points on same curve: a point from cross section CA is on the curve with a

point from cross section CB

• Co planar line segments: a line segment from cross section CA is on the same

infinite plane with a point from cross section CB

• Equality or relation of distances: a specific distance in cross section CA is

equal or related with another distance from cross section CB

• Equality or relation of angles: an angle in cross section CA is equal or related

with an angle in cross section CB

• Curve translation: A curve in cross section CA is translated by a specific

distance and direction in cross section CB. This constraint may fit cases of

slanted or tori objects.

• Curve scaling: A curve in cross section CA is scaled by a certain scaling factor

in cross section CB. This constraint may fit cases of tapered objects.

5.4. Geometric Constraint Solving

We build a system of geometric constraints that captures user intent and at the same

time guarantees solid model robustness and accuracy. Symmetry derived geometric

constraints are considered to be strict with no tolerance allowed. User constraints fall

under two categories: (i) strict, for which no tolerance is allowed and (ii) flexible, for

which we wish to acquire the best approximation but we cannot guarantee their strict

enforcement. For the purposes of usability we allow only for constraints that can be

expressed as equation (e.g. distances, angles, relations of distances and angles, co-

planarity, coincidence, tangency). Inequalities can also be handled but they tend to

confuse the user with the multiplicity of solutions that they imply. Each flexible

constraint has an associated weight which expresses its importance and is derived by

two factors: explicitly by a user preference and implicitly by the rank in the user

45

constraint enforcement. Finally the weighted sum of flexible constraint deviations

properly normalized is used as the objective function to minimize and the strict

constraints are used as the set of constraints for this non-linear optimization problem.

To solve this system we employ a local non-linear optimization algorithm from IpOpt

[76]. The disadvantage of this method is that it may be trapped in local minima,

which makes it depending heavily on the initial configuration. The user is thus

advised to make incremental editing. Using global optimization methods or other

constraint solving techniques is an interesting research problem [27].

46

CHAPTER 6. RECONSTRUCTING SOLID PARTS

6.1 Introduction

6.2 Related Work

6.3 Point Resampling

6.4 Similar Adjacent Cross-sectional Features

6.5 Non-similar Adjacent Cross-sectional Features

6.5.1 Curve-based Morphing and Interpolation

6.5.2 Polygon-based Morphing and Interpolation

6.6 Editing the Reconstructed Model

6.1. Introduction

A novel approach to surface reconstruction from parallel slice contours will be

presented in this chapter. The method preserves the topology of the surface without

altering the original contours. Main goal of surface reconstruction from contours is to

find a best surface consistent with the observed contours. In general, there is an

infinite number of surfaces consistent with any set of contours. A surface

reconstruction algorithm must choose the best match to the real object. This is

accomplished by taking into account the imposed constraints. The quality of the

resulting surface depends on the constraints’ ability to model the desired solution. In

this chapter we will see a specialized point sampling strategy that would assist us in

the reconstruction process.

The boundary of the material of interest to be reconstructed is defined by the set of

parallel cross sections. Each cross-section contains a set of curves forming a closed

contour. As distance separates the sections, information about the region of the object

47

between two cross sections is not recorded. Often, this lost information describes

places where ramifications occur in the surface of interest.

Figure 6.1: Decomposition of Reconstruction process

This causes shape differences or different number of contours between adjacent

sections. A way to approach this problem is creating intermediate sections

representing the place where the ramifications occur. The rest of the chapter proposes

a method (Figure 6.1) that reconstructs solid parts from similar adjacent cross sections

using feature construction techniques, and non-similar adjacent cross sections using

either a curve based or a polygon based morphing technique.

6.2. Related Work

The problem of reconstructing the surface of a solid object from a series of parallel

planar cross sections has been treated by the specialized literature in the past. Since

48

the very early work of Keppel [36] on tiling between parallel polygonal contours,

numerous algorithms were introduced for parallel inter-slice interpolation. The

problem is considered to be quite difficult because the topology of the contours may

change between slices. Some progress was made with the introduction of the

Delaunay-based technique of Boissonnat [10], and the method of Bajaj et al. [6]. Both

approaches attempt to handle the most general case, in which the geometries and

topologies of the contours in every slice are totally unrestricted. Bajaj [6] detects the

parts of contours with very different shape and applied a method using edge voronoi

diagram to tile them. Another type of skeleton using an approximation of edge

voronoi diagram was proposed by Oliva [54]. Subsequently, Barequet and Sharir [5]

suggested an interpolation method based on geometric hashing. In this method similar

sub-contours are identified first and stitched together, while the remaining contour

portions are triangulated so as to minimize the surface area of the reconstructed solid.

Later, Barequet et al. [4] suggested another interpolation algorithm that uses the

medial axis of the overlay of the two slices. This method generates a smooth and

intuitive reconstruction since it inherently captures the differences between the slices.

Meyers [52] also uses medial axis to obtain information about the relationships of the

vicinity among the regions where ramifications occur. Sloan et al [68] suggest the

creation of artificial intermediate sections between adjacent different sections. Levin

[45] builds a set of intermediate contours between contours of adjacent sections by

calculating the distance field for each point in every section.

6.3. Point Resampling

The construction of the object’s surface requires the generation of parts of the surface

that lies in between two slices using triangulation. Triangulation may not be based on

the thinned point set of each slice because its density would result in creating many

small area triangles. Another shortcoming is that since there is a known small

distance error between the slice points and the fitted curves, the triangulated model is

likely to be rough, containing bumps. To resolve these issues, we must resample the

point set to obtain a reduced set of points.

Point sampling is an important intermediate step for a variety of computer graphics

applications. Specialized sampling strategies have been developed to satisfy the

49

requirements of each problem. In this section, we present a sampling technique for

2D models. Our sampling domain is the set of points on a single cross section. Aim

of the technique is to generate evenly spaced samples by subdividing the sampling

domain into non overlapping parts.

Given a data set of points Q={Qi} for which we have already determined the best

fitted set of rational quadratic Bezier curves P={Pk}, we suggest replacing the points

Q with a reduced set of new points R={Rj: Rj=P(tj)} that satisfy the curve equations.

In a previous chapter we fitted a rational Bezier curve on the points of each cross

section. A Rational Bezier curve is usually defined over the interval [0, 1] but it may

also be defined over any interval [0, c]. The part of the curve that corresponds to [0,

c] may also be defined by a Bezier polygon. To subdivide the curve [61] to k equal

length arcs we would first divide the interval [0, 1] into k subintervals of length 1/k.

The end points of each arc Ri are P(ti-1) and P(ti) where ti= i/k and i=0..k. The length

of each chord ||P(ti) P(ti+1)|| converges to the length of the arc Ri between ti and ti+1

when k is a rather large value:

1
0

() ()
k

i i
i

P t P t +
=

Λ = −∑

Considering that the size of the sample set S of points is μ:

1, 0...(1), /i i is S i s sμ μ+∀ ∈ = − = Λ

Figure 6.2: Sample points (in red)

The last relation ensures that all points in the sample set S are evenly spaced by a

distance of Λ/μ. All other points that do not satisfy the above relation are discarded

and will not be used in the surface reconstruction process (Figure 6.2).

50

6.4. Similar Adjacent Cross-Sectional Features

The main design paradigm of CAD systems nowadays is feature-based design.

Feature – based systems contain a vocabulary of design elements as long as object

operations that are used to create the intended design. By performing operations such

as extrusions, protrusions and cuts on the design elements (cylinders, cones,

parallelepipeds, pyramids etc) we may generate the desirable design. Our feature

based CAD model provides modeling primitives that may be enforced low-level

constraints, reducing the number of variables necessary to represent an object.

Constraint based techniques apply high-level constraints over these features enforcing

the hypothesized design intent.

In this section we will investigate ways for converting 3D point cloud to a set of

features describing exactly the original object’s geometry and satisfying all imposed

constraints. Based on the fact that our method generates a set of planar consecutive

curves for each cross section, we will be considering features that are based on a

planar profile swept into a 3D shape by an extrusion operation. Consequently, our

final CAD model will consist of a set of connected features. This makes our final

CAD model easily modifiable since we only need to deal with modifying the

geometry of the features.

As shown in Figure 6.3, sweeping a planar profile creates a tubular surface that its

bottom base is the planar profile and its top base is the same planar profile translated.

Let two planar profiles P1 and P2 consisting of a set of quadratic rational Bezier

curves. P1 is said to be similar to P2 if and only if all curves in P1 are congruent to all

curves in P2 up to the same affine transformation. In other words, profile congruence

requires curve congruence. Bezier curve congruence property implies control triangle

congruence and middle weight equality. Therefore, two planar profiles are invariant

if and only if all respective control triangles are congruent and all respective weights

equal.

51

Figure 6.3 Sweeping of a planar profile

As it is defined in Euclidean geometry, triangles are congruent when all

corresponding sides and interior angles are equal. These triangles will have the same

shape and size. However, they can be in a different location, rotated or flipped over.

Consequently, two triangles R and R’ are congruent even if R is a mirror of R’. In

contrast, in our method we are interested in triangles that may not be mirror images of

each other because they generate different curves that cannot be interpolated.

Definition 1: We define as topologically congruent in 2D two polygons that are the

same up to rotation and translation.

Therefore, two profiles P1 and P2 are said to be congruent if and only if all control

triangles are topologically congruent.

The extrusion direction vector may be either perpendicular or it may form any angle

with the profile plane. As long as the starting and ending cross sections are invariant,

computing the center of mass of both cross sections may derive the extrusion

direction vector. This is true even for cases where the second polygon is scaled or

rotated.

Detecting similarity between two or more polygons is performed based on two key

ideas:

• normalizing a shape about its diameter and

• the notion of the ε-envelope.

52

Normalizing about the diameter. In order to detect whether two or more polygons

are similar some kind of “normalization” is applied so that the matching is translation-

, rotation-, and scaling-independent. In previous work researchers would normalize

each shape about each of its edges: they translate, rotate, and scale the shape so that

the edge is positioned at ((0, 0), (1, 0)). Although this approach gives good results in

many cases, it would fail to detect similarity between slightly distorted shapes.

In our method, instead of normalizing about the edges, we normalize about the

diameter of the shape, i.e., by translating, rotating, and scaling so that the pair of

shape vertices that are farthest apart are positioned at (0, 0) and (1, 0). This ensures

better results, because the diameter is less susceptible to local distortion which is very

common in shapes extracted using thinning and other point-based techniques.

The ε-envelope [29]. Polygon matching works by considering a “fattened” version of

the one polygon which is computed by taking lines parallel to the query shape edges

at some distance on either side; we call this fattened shape the ε-envelope. The good

matches are expected to fall inside or at least have most of their vertices inside the ε-

envelope even for small ε. Therefore, if we start by using a small initial value of ε and

keep increasing it, we expect to collect the good matches after a few iterations of this

procedure.

The ε-envelope can be seen as a collection of trapezoids of height 2ε, one for each

edge of the query shape. (For simplicity, we assume that ε is such that no two

trapezoids are overlapping; the method can be extended to handle overlapping

trapezoids.)

The center of mass of a planar profile may be approximated by the center of mass of

its convex hull polygon. A better approximation could be the minimal control

polygon’s center of mass. To determine the minimal control polygon of a planar

profile all quadratic Bezier middle control points are used as polygon vertices. The

minimal control polygon must include all Bezier curves. While a Bezier curve is

always inside its control triangle, the minimal control polygon may not always

include a curve. The first polygon in Figure 6.4 depicts this case.

53

Figure 6.4 Derivation of minimal Control Polygon

In the case where a curve is excluded from the minimal control polygon we edit the

list of polygon vertices by replacing the specific middle control point with the

respective Bezier curve’s end points. The second and third polygons in Figure 6.4

illustrate this procedure.

If one point of the curve is inside the polygon then the entire curve is inside also.

Therefore, we only need to determine if a single point on the curve is inside the

polygon. A ray casting algorithm may be used to determine whether a specific point

is included in the control polygon. The algorithm is based on a simple observation

that if a point moves along a ray from infinity to the probe point and if it crosses the

boundary of a polygon, possibly several times, then it alternately goes from the

outside to inside, then from the inside to the outside, etc. As a result, after every two

"border crossings" the moving point goes outside. Therefore, the number of

intersections is an even number if the point is outside the polygon, and it is odd if it is

inside (Figure 6.5).

Figure 6.5 Ray casting algorithm: 5 crossings, probe point inside

Both the convex hull and the minimal control polygon of a profile are n-polygons.

Computing the center of mass of an n-polygon {A1, A2, …, An} is rather straightforward

using the following equation:

54

1
2

1 n

i
i

CM A A
n =

= ⋅ ∑
JJJJG

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. The orthogonal extrusion of R is defined to be a solid obtained by

sweeping profile R in a direction perpendicular to C up to the parallel cross section C’

resulting to one or more tubular surfaces (Figure 6.6).

Figure 6.6 Orthogonal Extrusion

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. Also, let V be a vector on the line that connects the centers of mass of

the profiles R and R’. The oblique extrusion of R is defined to be a solid obtained by

sweeping profile R in a direction specified by vector V up to the parallel cross section

R’ resulting to one or more oblique tubular surfaces (Figure 6.7).

Figure 6.7 Oblique Extrusion

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. Also let profile R’ be determined by a θ angle rotation of profile R with

the center of rotation being the center of rotation. Let’s also denote as d the distance

55

between the centers of mass of R and R’. The orthogonal rotated sweeping of R is

defined to be a solid obtained by sweeping profile R in a direction perpendicular to C

and the same time rotating the profile R with a rate of rotation θ/d up to the parallel

cross section R’ resulting to one or more rotated tubular surfaces (Figure 6.8).

Figure 6.8 Orthogonal Rotated Sweeping

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. Also let profile R’ be determined by a θ angle rotation of profile R with

the center of mass being some point P. This rotation is equivalent to a θ angle

rotation of profile R with the center of mass being center of rotation, followed by a

translation in the same plane. Therefore, we may denote as V the vector on the line

that connects the centers of mass of the profiles R and R’. Let’s also denote as d the

distance between the centers of mass of R and R’. The oblique rotated sweeping of R

is defined to be a solid obtained by sweeping profile R in a direction specified by

vector V and the same time rotating the profile R with a rate of rotation θ/d up to the

parallel cross section R’ resulting to one or more oblique rotated tubular surfaces

(Figure 6.9).

Figure 6.9 Oblique Rotated Sweeping

56

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. Also, let μ be the linear scaling factor of the two profiles and d the

distance between the centers of mass of R and R’. The orthogonal linear scaled

skinning of R is defined to be a solid obtained by skinning profile R in a direction

perpendicular to C and the same time scaling the profile with a scale rate μ/d , up to

the parallel cross section C’ resulting to one or more frustrum surfaces (Figure 6.10).

Figure 6.10 Orthogonal Linear Scaled Skinning

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’

respectively. Also, let μ be the linear scaling factor of the two profiles, d the distance

between the centers of mass of R and R’, and V the vector on the line that connects the

centers of mass of the profiles R and R’. The oblique linear scaled skinning of R is

defined to be a solid obtained by skinning profile R in a direction specified by vector

V and the same time scaling the profile with a scale rate μ/d, up to the parallel cross

section C’ resulting to one or more frustrum surfaces (Figure 6.11).

Figure 6.11 Oblique Linear Scaled Skinning

57

6.5. Non-similar Adjacent Cross-sectional Features

So far, we investigated ways for reconstruction by extrusion of solid parts that are

between similar adjacent cross sections. In this section we will investigate ways to

reconstruct solid parts that are between non-similar adjacent cross sections.

6.5.1. Curve-based Morphing and Interpolation

When we dealt with similar adjacent cross sections the same sweeping strategy was

applied to the entire profile. For cases with non-similar adjacent profiles, we cannot

apply the same sweeping strategy to the entire profile. Curve-based morphing is an

advanced type of sweep where each curve is being applied a different sweeping

strategy.

Two adjacent cross sections C1 and C2 are non-similar when there is at least one curve

in C1 that is non-similar (not congruent) to its respective curve in C2. Figure 6.12

depicts a case with two non-similar adjacent profiles.

Figure 6.12 Non-Similar profiles

Curve-based morphing breaks down the profile sweeping problem to a number of

curve sweeping problems. Since a rational quadratic Bezier curve is fully specified

by its control triangle and its middle weight, we only need to sweep the source control

triangle to the destination control triangle and gradually change the value of the

middle weight from the source to the destination value (see the following equations).

Figure 6.13 illustrates this type of sweep. Morphing curve P to Q is equivalent in

morphing between their control triangles. The middle weight undergoes a gradual

transition from value WP to WQ. Let R be a triangle in some ith state of morphing P to

Q. Each control point Ri should be on the line segment PiQi such that

58

Figure 6.13 Control triangle Linear morphing

The surface constructed by this technique is equivalent to a Ruled Surface. Given two

curves C1(u) and C2(v), the surface generated by connecting line segments between

corresponding points, one on each given curve is called ruled surface. More

precisely, if t is a value in the domain [0,1] of both curves, a segment between C1(t)

and C2(t) is constructed. This segment is usually referred as a ruling at t. As t moves

from 0 to 1, the ruling at t sweeps out a surface and this is the ruled surface defined by

curves C1(u) and C2(v).

Morphing of two dimensional shapes can be divided into two sub problems that have

to be solved. These problems deal with vertex correspondence and vertex path.

Common morphing literature is usually concerned with the vertex path problem.

However both problems are equally important. A cross sectional profile consists of a

set of rational quadratic Bezier curves or a set of control triangles. The vertex

correspondence problem deals with the creation of a bijective mapping between the

control triangles contained in the source S, and target T cross sections in a way that

for each control triangle in S there is exactly one control triangle in T that is mapped

to and vice versa. Most morphing algorithms thus enforce manually the

correspondence of a few selected points or simply suppose that the problem is solved.

This mapping between the two sets of control triangles may be solved by least square

distance minimization. It is well known that the correspondence of several vertices

0 0 0

1 1 1 1

2 2 2 2

() ()
() ()
() ()
() ()

o

R P Q p

R t P t Q P
R t P t Q P
R t P t Q P
W t W t W W

= + −
= + −
= + −
= + −

59

can significantly increase the quality of the morphing. Since the control point sets are

ordered, vertex correspondence must maintain this order. Therefore, if Si is mapped

with Tj then Si+m should be mapped with Tj+m. 2D morphing techniques pay special

attention to the goal that all intermediate shapes are free of self-intersections because

apart from some fancy special cases, a morphing sequence that contains self-

intersections is considered to be unnatural transition from source to target.

Obviously, such a mapping is not always possible. For cases where two non-similar

adjacent profiles consist of a different number of curves, some curves on one profile

may not be mapped to any curves on the other profile. Figure 6.14 shows two

adjacent non-similar profiles with different number of curves. In the case that two

cross sections S, T do not have the same number of curves an extra processing on the

set of curves is required. This extra processing involves curve splitting or curve

concatenation resulting in two cross sections with the same number of curves.

Figure 6.14 Curve Concatenation

To succeed curve concatenation of two rational quadratic Bezier curves R1(t) and R2(t)

with control points Q0, Q1, Q2 and Q2, Q3, Q4 respectively, we must have G2

continuity. That means that the tangent to R1(t) line segment Q1Q2 must be collinear

with the tangent to R2(t) line segment Q2Q3. The middle curve weight of each curve

must also be equal. The resulted Bezier curve will also be a rational quadratic Bezier

curve with control points Q0, Q5, Q4. Q5 is determined by the intersection of the lines

60

defined by the line segments Q0Q1 and Q3Q4 (see figure Figure 6.14). The middle

curve weight of the new curve is equal to the original curves R1(t) and R2(t) weight.

G2 continuity may not be possible always. For these cases, we choose to split the

curve by breaking it at a given point u0 and create two new Bezier curves that join on

u0. An algorithm for this task was presented by de Casteljau [20], and it uses a

geometric construction technique.

The vertex path problem deals with the selection of a path that a control point will

travel from the source cross section to its mapped control point in the target cross

section. Ruled surfaces use line segments to connect the mapped curve points.

6.5.2. Polygon-based Morphing and Interpolation

The task of surface reconstruction deals with the creation of a ribbon between two

adjacent cross sections. This may be accomplished by performing triangulation

between the sampled sets of vertices that belong to a pair of adjacent cross sections.

In most real cases the material of interest lies in the region that separates the adjacent

contours.

A rather simple solution that forces a connection of each vertex of a section with

some vertices of the adjacent sections was proposed by the literature in the past.

However, as the distance between two cross sections may vary, the chance of missing

important information of the places where ramifications occur is rather high. As a

result, the reconstructed object does not have the correct shape. To overcome this

problem, we propose a method that automatically creates intermediate sections.

The projection of the region, which separates the adjacent cross sections, on an

intermediate parallel plane is the region that is not common to both contours. We will

denote a cross section as a binary image where the two values represent the

background and the object. This intermediate plane projection may be expressed as

an exclusive OR (XOR) operation on the binary images of the two contours [16]. In

the case where the contours of the adjacent sections intercept, it is required to include

the pixels of the contour boundary where the interception occurs.

61

Figure 6.15 XOR operation on sections A and B

The result of the XOR operation is also a binary image whose boundary is formed by

the contours of the contiguous sections. Figure 6.16 shows that the outer border of

the binary image is formed by the second contour while the inner border is formed by

the first contour. Figure 6.17 shows two slices that their boundaries intersect. The

XOR operation result is shown in pink while the result of the region thinning is shown

by the curves in the pink regions.

Figure 6.16 Thinning and Ribbon Construction

Figure 6.17 Inner and outer boundaries intersecting. XOR region in pink

62

In many cases we may see portions of the binary image to have both inner and outer

borders formed by the same contour. This is an indication that in the particular

portion of the material of interest there is a ramification. For these cases the skeleton

of that portion of the binary image may be used to represent the place where the

ramification occurs at an intermediate height of the analyzed sections.

Applying a thinning algorithm on the binary image we may obtain its skeleton (Figure

6.15, Figure 6.16, Figure 6.17). Using the shortest diagonal algorithm [25] we are

able to create two ribbons (one with each slice).

6.6. Editing the Reconstructed Model

Reverse engineering is a systematic approach for capturing and analyzing the design

of existing objects. One may use it either to study the design, or as an initial step to

redesign the object. Ideally, a reversed engineered object should exhibit the same

geometric properties that are present in the original design. Most of developed

methods in literature create a very detailed and exact description of the physical

object’s shape suitable for creating an exact copy without providing means for

editing. Primary aim of this work is to create a novel reverse engineering CAD model

that would represent both the shape of the original object and the design intent.

The phase of constraint definition captures the design intent of the physical object by

fitting local and global geometric regularities and symmetries. On completion of the

reconstruction process, the user is given the chance to make modifications on the

reconstructed CAD model by modifying the imposed constraints.

An object could contain parts that may or may not be dependent of each other. This

property is specified by the inter-cross section constraints that have already been

imposed. For instance, the screwdriver object has two parts: the handle and the steel

shaft. Even though these two parts must be aligned on the same axis, there are no

other defined inter-cross-section constraints that relate any of the handle’s local

properties to any of the steel shaft’s. Therefore, an increase of the handle’s cavity

depth would not affect the shape of the steel shaft.

Definition: The editing area is defined to be the area of the reconstructed model

where all cross sections would be re-evaluated based on the defined constraints. The

editing area is always specified by two cross sections that bound it.

63

Depending on the defined inter-cross section constraints, the editing area may be

extracted automatically.

Definition: A cross section, which lies inside the editing area, used for the

modification of the editing area is called revision slice.

Any user modification (curve control point locations, weight values, maximum

heights) may be performed on the revision slice. Modification could be performed

also on the inter-cross section constraints. These changes will be propagated to all

slices in the editing area defining the new shape of the model according to the

imposed intra and inter -cross section constraints. For instance, when two different

curves on the revision slice are constrained to have equal maximum height, modifying

the maximum height of one curve implies the same modification for the second curve.

All such implications, performed during the re-evaluation of the editing area based on

revision slice, will affect the geometry of the object part that is inbound the editing

area.

The re-evaluation process of all slices in the editing area depends on the intra and

inter-cross section constraints that have been defined. After re-evaluation, all

constraints must hold unconditionally. There are cases though where Let K1 be the

point on a curve in the revision slice where maximum height occurs and L1 be the

point at maximum height of the modified curve. Also, let K2 be the point on the

respective curve of another slice B where maximum height occurs (Figure 6.18). Our

aim is to compute the modified curve of slice B according to the modification in

revision slice. To determine the new curve we only need to compute the point of

maximum height L2 using a linear interpolation that involves all three points K1, K2,

and L1:

1 1 2
2 2

1

()L K KL K
K

−
= +

Figure 6.18: (left): Revision slice, (right) Some slice in the editing area

64

Another approach for the editing area re-evaluating based on the revision slice

modifications would involve some geometrical computations: Figure 6.19a shows part

of the revision slice. The maximum height of the curve is at point K and the modified

point is L on the line segment MP1.

Figure 6.19: (a) Revision slice, (b) Editing area in 3D, (c) Points A, L, B belong to the
same circular arc

Figure 6.19b, shows the editing area and revised slice in 3D illustrating how the

increase of the curve’s maximum height affects the depth of the cavity. Using points

A, B, L a circular arc is defined for which we may compute the circle equation (center,

radius). The perpendicular bisectors (Figure 6.19c) of AL and LB intersect at point C

which is the center of the circle while |CA|=|CB|=|CL| is its radius. Then,

1

2

(,)
2 2

(,)
2 2

A L A L

L B L B

x x y yM

x x y yM

+ +
=

+ +
=

The lines connecting A and L, L and B are given by

() () () (),
() () () ()

A L A A L A

L B L L B L

y y x x x x y y
y y x x x x y y

− ⋅ − = − ⋅ −
− ⋅ − = − ⋅ −

Therefore,

65

: ,

: ,

L A A L L A L A

L A L A L A

B L L B B L B L

B L B L B L

y y y x y x y yY X slope
x x x x x x
y y y x y x y yY X slope
x x x x x x

− − −
= +

− − −
− − −

= +
− − −

A line perpendicular to another line has negative reciprocal slope. Consequently, the

lines perpendicular to line segments AL and LB have slopes:

1 2,A L L B

L A B L

x x x xm m
y y y y

− −
= =

− −

Determining the perpendicular line equations we have:

(),
2 2

(),
2 2

A L A L A L

L A

L B L B L B

B L

y y x x x xY X
y y

y y x x x xY X
y y

+ + +
= + −

−
+ + +

= + −
−

The center C of the circular arc AB is given by the intersection of the above two lines.

Solving the set of linear equations we may determine the coordinates of point C.

Then, for each cross section in the editing area, the point that the rational Bezier curve

must pass through is the intersection of the slice plane and the circular arc AB (L1, L2,

L3, …, Ln).

To determine the weight of each rational Bezier curve that passes through the point Li

we may use the following formula [16]

1
1

0 22
w τ

τ τ
=

where τ0, τ1, τ2 are the barycentric coordinates of Li with respect to the triangle formed

by the three control points of each rational Bezier P0, P1, P2 which are determined as

follows:

1 2 0 2 0 1
0 1 2

0 1 2 0 1 2 0 1 2

(, ,) (, ,) (, ,), ,
(, ,) (, ,) (, ,)

1(, ,)
2

1 1 1

i i i

x x x

y y y

area L P P area P L P area P P L
area P P P area P P P area P P P

a b c
and area a b c a b c

τ τ τ= = =

 =

66

CHAPTER 7. IMPLEMENTATION AND

EXPERIMENTAL EVALUATION

7.1 Implementation Issues

7.2 Experimental evaluation

7.1. Implementation Issues

We have implemented and tested a prototype of the proposed method using the

• MS Visual C++ programming language,

• the OpenGL graphics libraries,

• the IpOpt optimization software [76].

• the ACIS solid modeling libraries by Spatial Corporation [75].

The entire system was built using the object oriented design framework. We have

used extensive testing with several cloud point sets. For the internal representation of

the contours (sequences of GS rational Bezier patches) we have used NURBS.

Besides the improvements that we have to make to some of the algorithms used in the

system for faster execution and better memory management our future aim is to

enhance this prototype system to a full function feature based CAD software that

would provide visual tools for constraint definition and solving, automatic selection of

point cloud slicing direction, splitting and concatenation of slice curves, feature

detection during reconstruction, and user editing of the final model by modifying slice

entities (curves, control points, weights, max heights, constraints) or even entire

features. Major tasks necessary to be tackled in the future is the minimization of user

interaction and the enhancement of the already user friendly GUI.

67

7.2. Experimental Evaluation

We evaluated our methodology framework by testing the implemented prototype with

many test point clouds obtained by a 3D laser scanner. In general, our proposed

method can reverse engineer and redesign any mechanical or free form object. As we

mentioned earlier, the three methods [77], [2], [81], that try to tackle similar

problems, have important differences in the aspects of approaching the problem. As a

consequence, there are no well-accepted criteria to compare the quality of these CAD

models quantitatively, and therefore we do not intend to claim that our results are

necessarily better.

Our method may be insufficient for a complex object where different parts of the

object may be optimally sliced in different slicing directions. For such cases the

object may be decomposed into parts using advanced segmentation techniques.

We intentionally selected point clouds that cannot be trivially reverse engineered

constrained and redesigned. Following, we will run through a detailed example to

demonstrate the method’s effectiveness. We have used a 3D point cloud of a

screwdriver object containing 27500 points which was then sliced to equidistant

parallel cross sections (Figure 7.1).

Figure 7.1: Slicing the screwdriver point cloud

Figure 7.2 shows part from a cross section of the screwdriver’s handle containing 437

points. Thinning and quantization of this cross section results in a point set with 323

points that form a 1-point-thick curve boundary.

68

Figure 7.2 Cross Section Thinning

While partitioning the thin slice point set, the algorithm filters out all noisy points

(Figure 7.3). The final result of the concavity detection process is a number of

ordered subsets of consecutive points that each one may be approximated by a single

quadratic rational Bezier curve. The first and last point in each ordered subset will

serve as start and end point respectively for the induced curves.

Figure 7.3 Concavity change detection

For the example cross section of Figure 7.2, the method processed 323 points and

detected 13 ordered subsets of points. Figure 7.4 shows these subsets in black color

and the respective inflection points in blue color. The original point set forms a six

peak star shape which is symmetrical. One may notice that the detected inflection

points are positioned symmetrically. Ideally, we would expect to have 12 ordered

subsets of points divided by 12 symmetrically placed inflection points (i-th subset end

69

point coincides with (i+1)-th start point). Instead, the method detected 13 subsets of

points. Figure 7.4(right), shows that there is one point subset that may be

approximated by a line segment. This happens many times on real world data sets

because the initial model may suffer from inaccuracies caused by sensing errors

propagated from the data acquisition phase, or due to approximation and numerical

errors arising from the successive algorithmic steps, or even flaws on the surface of

the original object.

Figure 7.4 shows the computation of the middle control point of all quadratic rational

Bezier curves that we are going to construct. The left figure shows a slice from the

bottom part of the steel shaft while the right figure shows a slice from the

screwdriver’s handle.

Figure 7.4 Control Point derivation: (a): slice on steel shaft,(b) slice on handle

Depending on the point topology either method may be used to determine the middle

control point. The method selection criterion should be the minimum squared

distance of the point set from the fitted curve. Figure 7.5 shows a data set with seven

points and the curves that are fitted on them by both methods. The minimum squared

distance for the first method (green color) is 0.004091 and 0.007578 for the second

method (red color). It is clear that for the particular data set the first method produces

a better fitted curve.

70

Figure 7.5 Best method for Control point selection through distance minimization

Following, for each partition of points, the computation of the middle control point

weight is performed by minimizing the sum of squared distances of all points from the

fitted curve (Figure 7.5, Figure 7.6) using the IpOpt libraries. Figure 7.7 shows the

set of curves built by the algorithm.

Figure 7.6: Middle weight adjustment minimizes point distances from the curve

71

Figure 7.7 Fitting Rational Bezier Curves.

The following diagrams evaluate the effectiveness of the fitting method. We compare

6 different point sets from different slices. Each point set has a different number of

points to be fitted (curve1 24, curve2 31, curve3 43, curve4 17, curve5 10, curve6 26).

The first diagram (Figure 7.8) shows the relation between the number of points that

are to be fitted and the time that the fitting method needed to complete the task. Thus

we observe that the time needed is linear on the number of points that are fitted.

These experiments were conducted on an average computer system.

Figure 7.8 Time for fitting point sets

72

Figure 7.9: Average Error per point

The diagram in Figure 7.9 evaluates the effectiveness of the fitting method. It shows

the average error of a curve point from the fitted curve. We notice that curve3 error is

a lot above the average error. There are two factors that are responsible for this issue:

• The start point normal vector forms an angle greater than π/2 with the end

point normal vector.

• The smoothing tolerance of the partition process was not used to split the set

of points into two partitions.

Figure 7.10: Above average fitting error

73

Despite the above average error, the normalized error values are fairly low even

though the original point cloud was very noisy.

Geometric constraints enforcing strong relations between geometric primitives may

be defined with the use of Boolean and geometric operations creating a dimension

driven solid model. Intra-cross section constraints maintain symmetries and

regularities among geometric primitives within a single cross section. A set of system

detected intra cross section constraints defined on the two symmetrical cross sections

of Figure 7.11 is summarized below:

Screwdriver steel shaft:

• Equality of opposite angles: θ1=θ2, θ3=θ4,

• Equality of opposite sides: d1=d3, d2=d4.

• Congruency of opposite control triangles

Figure 7.11 Intra-cross section Constraints.

Screwdriver handle (six peak star shape):

• Equality of opposite middle control point angles: θ1=θ4, θ2=θ5, θ3=θ6

• Equality of distances between opposite peaks (diameters): d1=d2=d3,

• Congruency of opposite control triangles

• Equality of all cavity curve heights

• Equality of all lump curve heights

Inter-cross section constraints maintain symmetries and regularities among geometric

primitives between different cross sections. Figure 7.12 a,b show two adjacent cross

sections (red and green) where there is a noticeable change in the shape of their

contour. Nevertheless, the respective cross section centroids (centers of mass) are

aligned on the same axis perpendicular to the slice plane. The respective control

74

points are also aligned on the same perpendicular to the slice plane axis. Therefore,

the shape difference between the two cross section contours is due to the different

values of curve weights (maximum height). Note that for all respective lump curves

in the star shape the maximum height points are aligned on the same perpendicular to

the slice plane axis (Figure 7.12c).

Figure 7.12 Inter-cross section Constraints: Slice 1 in red, slice 2 in green.

We will now constrain the handle of the screwdriver by user defined constraints. We

will consider the editing area to be the part of the screwdriver’s handle between cross

section A and B (Figure 7.14). Intra Cross Section Constraints will be defined on a

user selected cross section M where maximum cavity depth occurs.

Figure 7.13a shows the control polygon that results from the curve fitting process.

We define a normal hexagon which is centered on the center of mass of the cross

section. Each side of the hexagon is the base of an isosceles triangle (Figure 7.13b).

All peaks (S1, S2,.., S6) are equidistant from the center of mass H=14. All hexagon

sides are equal d=7 while all cavity peaks (E1, E2, …,E6) are equidistant from the

center of mass d=7. The values H and d are completely independent of each other. In

other words, the value of H controls the diameter of the handle while the value of d

controls the radius of the normal hexagon, the height of the isosceles triangles and

therefore, the depth of the handle cavities.

75

Figure 7.13 (a) Control polygon (b) Intra Constraints

Figure 7.14 Inter Constraints

For inter cross section constraints we define that all slices between cross sections A

and B must have their centers of mass on the same z-axis. The diameter of the handle

changes linearly. Therefore, all corresponding slice peaks belong to the same line.

Consequently the value H may be easily evaluated by the line equation. Furthermore,

we determined a quadratic Bezier curve that best fits all corresponding cavity peaks

76

among different slices. Therefore, the value d (radius of normal hexagon) may be

easily evaluated using the Bezier curve (Figure 7.14).

The resampling step computes the length of each rational Bezier segment in the slice.

The approximate length of the entire contour is Λ=95.76. Setting μ=60, we obtain the

distance Λ/μ οf each point from its neighbors to be around 1.596. Figure 7.15 shows

the set of representative points that were selected.

Figure 7.15 Resampling result.

Figure 7.16 shows the intermediate slice generation using the XOR operation. Figure

7.17 shows the result of the intermediate slice generation by curve morphing. The

reconstructed part of the object between the two adjacent cross sections is shown in

Figure 7.18.

Figure 7.16 Auto slice generation by XOR. Slice 1 (red), slice 2 (green),
slice S1 XOR S2 (purple)

77

Figure 7.17 Auto slice generation by curve morphing

Figure 7.18 Reconstruction of part using intermediate slice generation

Figure 7.19a shows the fully reconstructed object (exact copy). Figure 7.19b shows

the modified reconstructed object with the cylindrical part of the steel shaft longer. To

accomplish this modification we increased the distance between the cross sections on

the steel shaft by a factor of 1.4. Figure 7.19c shows the modified reconstructed

object with the lower part of its handle wider. The modification actually made was an

increase of the diameter of the lower handle by a factor of 1.3.

78

Figure 7.19 (a) Reconstruction result (b,c) Reconstruction result after Editing.

Figure 7.20 illustrates a constraint modification in the cavities of the screwdriver

handle. The designer decreased the value of d by 25% in the revision slice. This

decrease propagated to all slices in the editing area automatically by the reevaluation

of the Bezier curve that constrains the value of d in the editing area. As a result, the

depth of all cavities in the screwdriver handle were increased accordingly. Notice that

the other constraint value H remained constant (line equation did not change) and

therefore, the diameter of the handle does not change. The difference in the cavity

depths is clearly seen in Figure 7.21. The original and the modified object may be

seen in Figure 7.22 and Figure 7.23.

Figure 7.20 Original and Modified Slice Constraints

79

Figure 7.21 Original and Modified object part

Figure 7.22 Original Object

Figure 7.23 Modified object

80

CHAPTER 8. CONCLUSIONS

We have presented an effective and efficient method to build a 3D CAD model from a

given point cloud representing the surface of an object.

Our approach to re-engineering uses point cloud slices along a principal axis. These

slices are then processed to obtain a thinned, ordered set of planar points.

Subsequently, this set is used to obtain a fully functional cross section represented by

a number of constrained rational Bezier curves.

We have introduced inter-cross-section and intra-cross-section geometric constraints

for supporting editability.

3D contour-based reconstruction has been extensively studied, and we have employed

and tested several slice morphing and slice insertion techniques for covering between

non similar adjacent cross sections. Model editability is also supported at this level by

defining parameters for the 3D reconstruction of user defined slice groups.

We have performed a preliminary evaluation of the usability of our method with very

good results even for users with no former CAD software experience. Our method

provides the tools for robust and accurate editing of the produced CAD model prior to

remanufacturing.

Automated detection of an optimal slicing direction is an addition that can save users

a lot of effort. Finally, the effectiveness of the reconstruction process could be

improved for complicated objects by first decomposing the object by employing

sophisticated decomposition methods such as the one presented in [47].

81

REFERENCES

[1] Anderl R., Mendgen R.: Modelling with constraints: theoretical foundation
and application, Artificial Intelligence in Computer-Aided Design, 1996,
28(3), 155-168.

[2] Au C.K., Yuen M.M.F.: Feature-Based Reverse Engineering of Mannequin for
Garment Design, Computer-Aided Design, 1999, 31, 751-759.

[3] Barequet G., Goodrich M.T, Levi-Steiner A., Steiner D.: Contour Interpolation

by straight skeletons, Graphical Models, 66 (2004), 245-260.

[4] Barequet G., Shapiro D., Tal A.: Multilevel sensitive reconstruction of
polyhedral surfaces from parallel slices, The Visual Computer, 16(2) (2000)
116–133.

[5] Barequet G., Sharir M.: Piecewise-linear interpolation between polygonal
slices, Computer Vision and Image Understanding, 63 (1996), 251-272.

[6] Bajaj C.L., Coyle E.J., Lin K.N.: Arbitrary topology shape reconstruction from
planar cross sections, Graphical Models and Image Processing, 58 (1996) 524–
543.

[7] Benko P., Martin R.R., Varady T.: Algorithms for reverse engineering
boundary representation models, Computer-Aided Design 2001, 33(11), 839-
851.

[8] Benko P., Kos G., Varady T., Andor L., Martin R.R.: Constrained fitting in
reverse engineering, Computer-Aided Design 2002, 19(3), 173-205.

[9] Bloomenthal J.: Medial-based Vertex Deformation, Proc. of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 2002, San
Antonio, TX, USA.

[10] Boissonnat J.D.: Shape reconstruction from planar cross sections, Computer
Vision, Graphics and Image Processing, 44 (1988).

82

[11] Borgefors G., Sanniti di Baja G.: Analyzing nonconvex 2D and 3D patterns,
Computer Vision and Image Understanding, v.63 n.1, p.145-157, Jan. 1996.

[12] Borges C.F., Pastva T.: Total least squares fitting of Bézier and B-spline
curves to ordered data, Computer Aided Geometric Design, 19 (2002), 275–
289.

[13] Chambelland J.C., Daniel M., Brun J.M.: A robust iterative method devoted
to pole curve fitting, In CAD/GRAPHICS 2005 conference (Hong-Kong,
Chine, December 7-10, 2005), Proc. ISBN 0-7695-2473-7, pages 22–27.
IEEE Computer Society, 2005.

[14] Chen X., Hoffmann C. M.: On Editability of Feature – Based Design.
Computer Aided Design, 27(12):905-914, 1995.

[15] Chen X. Hoffmann C. M.: Towards Feature Attachment, Computer Aided
Design, 27(9):695-702, 1995.

[16] Christiansen H., Sederberg T.: Conversion of complex contour line definitions
into polygonal element mosaics, Computer Graphics, 13 (1978) 187–192.

[17] Cormen T., Leiserson C., Rivest R.: Introduction to Algorithms, McGraw-Hill,
1990. pp. 477-85.

[18] Cornea N.D., Demirci M.F., Silver D., Shokoufandeh A., Dickinson S.J.,
Kantor P.B.: 3D Object Retrieval using Many-to-many Matching of Curve
Skeletons, IEEE International Conference on Shape Modeling and
Applications (SMI) 2005, Boston USA, 368-373.

[19] Cripps R.J.: Algorithms to support point-based cadcam, International Journal
of Machine Tools and Manufacture 2003, 43(4), 425-432.

[20] de Casteljau F.: Outillage Methodes Calcul, Anre Citroen Automobiles SA,
Paris 1959.

[21] Dedieu J.P., Favardin Ch.: Algorithms for ordering unorganized points along
parametrized curves, Numerical Algorithms 6 (1994) 169–200.

[22] De St. Germain H.J., Stark S.R., Thompson W.B., Henderson T.C.: Constraint
Optimization and Feature-Based Model Construction for Reverse Engineering,
in Proc. of the ARPA Image Understanding Workshop 1996.

83

[23] Dobson G.T., Waggenspack Jr. W.N., Lamousin H.J.: Feature based models
for anatomical data fitting, Computer Aided Design 1995; 27(2):139–46.

[24] Fang L., Gossard D.C.: Fitting 3D curves to unorganized data points using
deformable curves, Visual Computing (Proc. of CG International ’92),
Springer, Berlin, 535–543.

[25] Farin G.: Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide, Boston: Academic Press, 1997.

[26] Floater M.S.: Derivatives of rational Bezier curves, Computer Aided
Geometric Design 9, 161-174, 1992.

[27] Fudos I., Hoffmann C. M.: A Graph-constructive Method to Solving systems
of Geometric Constraints, ACM Transactions of Graphics, Vol. 16(2), pp.
179-216.

[28] Fudos I., Hoffmann C. M.: Constraint-Based Parametric Conics for CAD,
Computer Aided Design, Vol. 28, No. 2, pp. 91-100 [01 Jan 1996].

[29] Fudos I., Palios L.: An Efficient Shaped-based Approach to Image Retrieval,
Discrete and Applied Mathematics, 2000.

[30] Gould N.I.M., Orban D., Sartenaer A., Toint P.L.: Superlinear convergence of
primal-dual interior point algorithms for nonlinear programming, SIAM
Journal on Optimization, 11, 2001, 974–1002.

[31] Hoffman D., Richards W.: Parts of recognition. Cognition, 18:65-96,1984.

[32] Hoffmann C.M., Joan-Arinyo R.: Erep An editable high-level representation
for geometric design, Geometric Modeling for Product Realization, Wilson P.,
Wozny M., Pratt M., eds., North Holland, 1993, 129-164.

[33] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W.: Surface
Reconstruction from Unorganized Points, Proc. of SIGGRAPH 92, pp.71-78,
1992.

[34] Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design,
Peters A.K., Ltd, 1993, ISBN 1-56881-007-5

[35] Jense G.J., Voxel-based methods for CAD, Computer Aided Design 1989,
21(10), 528-533.

84

[36] Keppel E., Approximating complex surfaces by triangulation of contour lines,
IBM Journal of research and developement, 19 (1975), 2-11.

[37] Klein R., Schilling A., Straßen, W.: Reconstruction and simplification of
surface from contours, Graphical Models, 62(6) (2000) 429–443.

[38] Ko H., Kim M.S., Park H.G., Kim S.W.: Face sculpturing robot with
recognition capability, Computer Aided Design 1994;26(11):814–21.

[39] Kobbelt L., Botsch M.: A survey of point-based techniques in computer
graphic, Computers and Graphics 2004, 28(6), 801-814.

[40] Langbein F.C., Marshall A.D., Martin R.R.: Choosing Consistent Constraints
for Beautification of Reverse Engineered Geometric Models, Computer-Aided
Design, 2004. 36: 261-278.

[41] Langbein F.C., Mills B.I., Marshall A.D., Martin R.R.: Finding Approximate
Shape Regularities in Reverse Engineered Solid Models Bounded by Simple
Surfaces. in Proc. of the 6th Symp. Solid Modeling & Applications, ACM.
2001.

[42] Lee K.: Principles of CAD /CAM / CAE Systems. Addison Wesley, 1999,
ISBN 0-13-178454.

[43] Levin D.: The approximation power of moving least-squares, Mathematics of
Computation, 1998, 67(224):1517–1531.

[44] Levin D.: Mesh-independent surface interpolation, Geometric Modeling for
Scientific Visualization, Edited by Brunnett, Hamann and Mueller, Springer-
Verlag, 2003, 37-49.

[45] Levin D.: Multidimensional reconstruction by set-valued approximation, IMA
J. Numerical Analysis, (6) (1986) 173–184.

[46] Lien J.M., Amato N.M.: Approximate Convex Decomposition of Polygons, in
Proc. 20th Annual ACM Symp. Computat. Geom (SoCG), pages 17-26, June
2004.

[47] Lien J.M., Keyser J., Amato N.M.: Simultaneous Shape Decomposition and
Skeletonization, In Proc. ACM Solid and Physical Modeling Symp. (SPM),
pp. 219-228, Cardiff, Wales, UK, Jun 2006.

[48] Lipschutz M.M.: Differential Geometry, Mc Graw Hill, New York 1969.

85

[49] Liu S., Ma W.: Seed-growing segmentation of 3D surfaces from CT-contour
data, Computer-Aided Design, 31 (1999) 517–536.

[50] Ma W, He P.: B-spline surface local updating with unorganised points,
Computer Aided Design 1998;30(11):853–62.

[51] Ma W., Kruth J.P.: NURBS curve and surface fitting for reverse engineering,
Int J Adv Manufact Technol 1998;14:918–27.

[52] Meyers D.: Reconstruction of Surfaces from Planar Contours, PhD thesis,
University of Washington, July 1994.

[53] Mills B. I., Langbein F. C., Marshall A. D., Martin R. R.: Estimate
Frequencies of Geometric Regularities for Use in Reverse Engineering of
Simple Mechanical Components, Technical Report GVG 2001 – 1.

[54] Oliva J.M., Perrin M., Coquillart S.: 3D reconstruction of complex polyhedral
shapes from contours using a simplified generalized Voronoi diagram, Comp.
Graphics Forum, 15(3) (1996) C397–C408.

[55] Park H.: Choosing nodes and knots in closed B-spline curve interpolation to a
point data, Computer-Aided Design 2001;33(13):967–74.

[56] Parker J.R.: Algorithms for Image Processing and Computer Vision, Wiley,
1996, ISBN-10 0471140562.

[57] Parker J.R., Jennings C.: Defining the Digital Skeleton, in Proc. of SPIE
Vision Geometry, vol. 1832 (Boston, Mass., 15-16 Nov. 1992).

[58] Parker J.R., Jennings C., Molaro D.: A Force Based Thinning Strategy with
Sub-Pixel Precision, in Proc. of Vision Interface 94 (Banff, AB, 18-20 May
1994).

[59] Pina J., Alquezar R.: Reconstruction of Surfaces from Cross Sections Using
Skeleton Information, CIARP 2003, LNCS 2905, pp. 188−195, 2003.

[60] Pina J., Alquézar R.: A new method to solve the branching problem in surfaces
of three dimensional models reconstructed from parallel cross sections,
Revista Cubana de Investigación Operacional, Universidad de La Habana,
Cuba.

86

[61] Randrianarivony M.: Arc Length of Rational Bezier Curves and Use for CAD
Reparametrization, World Academy of Science Engineering Technology 34,
Oct 2008, ISSN 2070-3740.

[62] Rom H., Medioni G.: Part decomposition and description of 3d shapes, in
Proc. International Conference of Pattern Recognition, pages 629-632, June
1994.

[63] Sato Y., Honda I.: Pseudodistance measures for recognition of curved objects,
IEEE Trans. Pattern Anal. Machine Intell. PAMI-5, 4 (July), 362-373.

[64] Sato Y., Kitagawa H., Fujita H.: Shape measurement of curved objects using
multiple slit ray projections, IEEE Trans Pattern Anal. Machine Intell. PAMI-
4,6 (Nov), 641-646.

[65] Shanno D.F., Vanderbei R.J.: Interior-point methods for non convex nonlinear
programming: orderings and higher-order methods, Mathematical
Programming B, 87, 2000, 303–316.

[66] Sheehy D., Armstrong C., Robinson D.: Shape description by medial axis
construction, IEEE Transactions on Visualization and Computer Graphics
1996, 2(1), 62-72.

[67] Shin H., Park S., Park E., Choi B.: Direct Slicing of a Point Set Model for
Rapid Prototyping, Computer-Aided Design and Applications, Vol 1, 2004.

[68] Sloan K., Hrechanyk L.: Surface Reconstruction from Sparse Data, Proc IEEE
conf on Pattern Recognition and Image Processing, 1981.

[69] Solano L., Brunet P.: A system for constructive constraint – based modeling.
in Falcidieno B. and Kunii T., editors, Modelling in Computer Graphics, pages
61-84, Springer Verlag, 1993.

[70] Stamati V., Fudos I. : Constraint-based and Feature-based CAD Systems and

Applications - Computer-Aided Design and other Computing Research
Developments , De Smet C. M. and Peeters J. A. eds., Nova Publishers, N.Y.,
ISBN: 978-1-60456-860-8 [12 Dec 2008] [Book Chapter].

[71] Stamati V.: Reconstructing feature-based CAD models based on point cloud
morphology, Dept. of Computer Science, University of Ioannina [Oct 2008]
[PhD Thesis].

87

[72] Storti D.W., Turkiyyah G.M., Ganter M.A., Lim C.T., Stal D.M.: Skeleton-
based modeling operations on solids, Solid Modeling '97 1997, Atlanta GA
USA.

[73] Surazhsky, T., Surazhsky, V., Barequet, G., Tal, A.: Blending polygonal
shapes with different topologies, Computers & Graphics, 25 (2001) 29–39.

[74] Taubin G., Ronfard R.: Implicit simplicial models for adaptive curve
reconstruction, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18 (1996) 321–325.

[75] The 3D ACIS Modeler. ACIS Corporation, HTTP://WWW.SPATIAL.COM.

[76] The Ipopt - Interior Point Optimizer Project, HTTPS://PROJECTS.COIN-
OR.ORG/IPOPT

[77] Thompson W.B., De St. Germain H. J., Henderson T.C., Owen J.C.:
Constructing High-Precision Geometric Models from Sensed Position Data, in
Proceedings 1996 ARPA Image Understanding Workshop. 1996.

[78] Thompson W.B., Owen J.C., De St. Germain H.J., Stark S.R., Henderson T.C.:
Feature-Based Reverse Engineering of Mechanical Parts, IEEE Transactions
on Robotics and Automation, 1999. 15(1): 57-66.

[79] Tiller W.: Rational B-splines for curve and surface representation, IEEE
Comput Graph Appln 1983;3(6):61–9.

[80] Vanderbei R.J., Shanno D.F.: An interior-point algorithm for non convex
nonlinear programming, Computational Optimization and Applications, 13,
1999, 231–252.

[81] Varady T.; Facello, M.; Terek, Z.: Automatic Extraction of Surface Structures
in Digital Shape Reconstruction, Computer Aided Design, 39, 2007, 379-388.

[82] Varady T., Martin R. R., Cox J.: Reverse Engineering of Geometric Models—
An Introduction, Computer Aided Design 29 (4), 255-268, 1997.

[83] Wang W., Pottmann H., Liu Y.: Fitting B-spline curves to point clouds by
curvature-based squared distance minimization, ACM Trans. Graph. 25, 2
(Apr. 2006), 214-238.

[84] Watt A.: 3D Computer Graphics, Addison Wesley, Third Edition, 2000, ISBN
0-201-39855-9.

88

[85] Werghi N., Fisher R., Robertson C., Ashbrook A.: Object Reconstruction by
Incorporating Geometric Constraints in Reverse Engineering, Computer –
Aided Design, 31(6): 363-399,1999.

[86] Yoshizawa S., Belyaev A.G., Seidel H.P.: Free-form skeleton-driven mesh
deformation, Proc. of the eighth ACM Symposium on Solid Modeling and
applications 2003, Seattle, Washington U.S.A., 247-253

[87] Fu Y., Zhou B.: Direct sampling on surfaces for high quality remeshing.
Computer Aided Geometric Design , Volume 26 Issue 6, 711-723, August
2009.

[88] Yan X., Gu P.: A review of rapid prototyping technologies and systems,
Computer-Aided Des. 28 (4) (1996) 307–318.

[89] Zhang Y.F., Wong Y.S., Loh H.T., Wu Y.F.: An adaptive slicing approach to
modelling cloud data for rapid prototyping, Journal of Materials Processing
Technology 140 (2003), 105–109.

89

PUBLISHED WORK

[1] Protopsaltis A., Fudos I.: A Feature-Based Approach to Re-engineering CAD
Models from Cross Sections, Computer Aided Design and Applications. To
appear. June 2010.

[2] Protopsaltou A., Fudos I.: Creating Editable 3D CAD Models from Point
cloud slices, GraVisMa 2009

[3] Fudos I., Stamati V., Protopsaltou A.:, An Approach to Geometric Constraint
Solving for CAD Representations, Technical Report TR 2004-17, Computer
Science Dept., University of Ioannina, 2004

90

SHORT VITA

Antonis Protopsaltis was born on November 30, 1971 in Veria, Greece. He received

his B. Sc. in Computer Science (Software Systems option) from the dept. of Computer

Science in Concordia University, Montreal Quebec, Canada in 1994 and his M. Sc in

Computer Science (Software Engineering) from the same University in 1996. He was

twice on the Dean's Honour's list in 1991 and 1992, and earned twice the Hewlett

Packard Calculator Award in 1991 and 1992 for his high achievements. In 1992 he

was also awarded with a scholarship from the Hellenic Scholarships Foundation in

Montreal for his outstanding performance.

He worked for a research grant in Concordia University in collaboration with

Northern Telecom formally specifying in Larch/C++ the Rogue Wave commercial

libraries “Tools.h++”, as System Manager in Aristotle University in Thessaloniki

Greece, as Software Engineer in Pulse Microsystems in Thessaloniki Greece

developing CAD software for sewing machines, and as Software Engineer in

Geoanalysis in Thessaloniki Greece developing Oracle web applications.

His research interests include Parametric and Feature-Based Design, Reverse

Engineering, Solid Modeling and Computer – Aided Design.

