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ABSTRACT

George Rigas. PhD, Computer Science Department, University of loannina, Greece. De-
cember, 2009. Assessment of driver’s physiological state using physiological signals. The-
sis Supervisor: Christophoros Nikou.

Among the most important factors in accident provocation is the human factor.
Driver’s loss of attention, aggressiveness and inefficient decision making, often lead to
hazardous situations. A common reason of all the above is the physiological state of the
driver. The last few decades several studies have designated the role of physiological state
in driving performance and accident provocation. However the design of in-vehicle sys-
tems, able to assess physiological state with high credibility and in a rather unobtrusive
way is still an ambitious goal.

This thesis makes a contribution towards the goal of driver’s status recognition in a
real-car application. Based mainly on the monitoring of driver’s physiological signals and
using additional sources such as video from driver’s face as well as driving environment in-
formation, we focused on the detection of driver’s fatigue and stress levels. The data used
were collected during a long-lasting experimental protocol on a real driving environment
and under different weather, traffic and road conditions. During the real-world experi-
ments a set of physiological signals have been recorded, in particular: electrocardiograph
(ECG), respiration and electrodermal activity (EDA), from which a number of features
from both time and frequency space were extracted. The set of features were examined
in terms of their contribution to the detection of fatigue and stress and the most powerful
indicators for each state of interest were selected following a feature selection technique.
Four different classifiers were employed and the classification results were evaluated in
terms of sensitivity, specificity and accuracy. Our results indicate good performance for
both fatigue and stress classification problems. The evaluation of features’ contribution
to the detection of the two states revealed that all information sources contribute equally
to the two-class stress classification problem, while a three-class fatigue classification is
feasible by using physiological features only, as those are the features with the major

contribution.
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Although the majority of relevant works concentrate on the detection of high levels of
fatigue (drowsiness) with our methodology we can achieve also detection of early fatigue
stages (low fatigue). To quantify the impact of these early fatigue stages on driving
performance, we built a driving simulation environment, which allowed us to monitor
driving performance measures (i.e. reaction times) and correlate them with the states
under investigation. The outcomes of the simulation study verified the association of the
different fatigue levels and the physiological features used for their classification with the
degree of impairment in driver’s performance. This finding demonstrates the value and
potential of an in-vehicle system able to recognize progressive fatigue levels and predict
driver’s reaction time based on physiological signals monitoring.

Unlike fatigue which is a progressive state, driver stress is a more time-variant condi-
tion which is highly dependent on the driving context and it is temporarily influenced by
events occurring en-route. We call the driving environment-related events (such as over-
take, hard braking, junction, curve, etc) "driving events” and the temporal stress that
may impose to the driver, ”stress events”. The detection of stress events can contribute
to the driver’s state estimation in the sense that the frequent occurrence of stress events
could have more prolonged effects on driver’s state, i.e. increase the overall driver’s stress
level. In our thesis, we developed a methodology for online detection of stress events,
using the same set of physiological signals (ECG, Respiration, EDA) as well as driv-
ing behavior parameters (position, velocity, acceleration, deceleration) acquired from car
equipment (GPS and CAN bus). We achieved 95% accuracy in the detection of stress
events which is expected to increase with the introduction of visual information from the
road environment.

A very important requirement for a system for driver physiological state assessment,
is the adaptation of system’s parameters on the physiological features of new drivers.
We consider a system based on a Gaussian mixture model, and the basic assumption is
that the feature distribution of the new driver is a geometric transformation of the feature
distribution used for the training of the system. The method is based on the Expectation-
Maximization (EM) approach for the estimation of the geometric transformation applied
on the initial Gaussian Mixture model. We evaluated the proposed method using artificial
dataset. Since EM is a local optimization algorithm, the method does not guarantee the
correct solution identification. To confront this limitation we proposed a multiple start EM
algorithm which increased the method performance. Next we extended the model allowing
each mixture component to have an individual (local) transformation, and applied a
MAP-EM approach for estimating both the common (global) transformation as well as
the local ones. We evaluated the proposed method using both artificial and real driver’s
data, collected in a simulation environment. Apart from adaptation to new drivers, the
proposed method can be applied also to other problems, such as image registration and

13



tracking.

Based on the fact that driver’s state is a significant factor for road safety, we made a
step further and designed the building blocks of an advanced driver support systems that
exploits driver’s state estimation as well as vehicle communication abilities for increasing
safety in every day driving. As a first step we developed a simulation environment of
vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. Experiments
on the simulation environment confirmed that the exploitation of those types of commu-
nication can increase driving safety. Moreover, it helped to define minimum requirements
for communication characteristics (range, latencies and broadcasting frequency) in real-
istic scenarios of co-operative driving. The second step was the implementation of two
basic subsystems: a) the information handler and b) the decision maker. The information
handler applies information fusion of low confidence sensors (other vehicles) and employs
Bayesian Networks for the extraction of high-level information, useful for the driver. The
decision maker is based upon sampling of Dynamic Bayesian networks for driving risk
evaluation and decides upon the best warning strategy, taking into account both envi-
ronmental conditions and driver’s state. Concluding, this thesis studies the assessment of
driver’s psycho-physiological state exploiting mainly physiological signals as well as other
information sources towards the development of a real-application driver support system
that contributes to the increase of driving safety.
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EKTENHY [IEPIAHUVH “TA EAAHNIKA

I'edpyioc Pryoc tou Aviwmviou xou g Baouhuxric. PhD, Turua ITAnpogopixic, aveniothiuto
Iwavvivwy, Aexéufplog, 2009. Avayvodpion tne Quyoouvalohnuatixic xatdoTtaons Tou
odnyou ue yehon Proonudtev. EmBiénovtag: Xeiotdpopog Nixou.

And Toug To onuUAVTIXOUC THEdYOVTES OTNY TEOXANGCT ATUYNUATWY elvat o avipdrivog
mopdyovioag. Metald dAdwy, 1 uelwon g Tpocoyc Tou odnyoy, N embeTixdTnTa OTNY
odfiynon xou o havloouéves ano@doelg, cuyvd Umopoly va odnyrHoouv GTny TpoXANoT
atuyNUdTeY. "Eva xowvé altio 6Aey ey tapandve elvat 1 Yucocuvatcbnuatint xatdotoon
Tou odnyou. T teheutalec dexaetieg €youv yivel apxetéc uerétec Tou Tovilouy Tov pPdAo
e Puyocuvalahnuoatixic xatdotnone otny artédoor Tou odnyoU xaL oty Thav tpdxAnoy
atuynudTey. 201600 1 avdrtuln cuoTAuaTeY Tou fa Bploxovtal uéoa oto dynuo xal Ha
aviyvebouy TV xatdotacy) Tou odnyol pe ueydin allomotia xou ywele va enPoaplvouy 1
VoL EVOYAOUY TOV 081Y6, elvaL axduo oe TpdLUo oTddLaL.

Avtixetuevo épeuvac tng mapovoag SlotelBic elval 1 avayvdpeton tng Yuyoouvarshnuatixfc
xatdotaong Tou odnyol oe mpayuaTixés odnywés ouviixes. Baolotixaue xuplwe otny
Am xar eme€epyaotia BloonudTtwy Tou 0dnyou, dTwe enlong ot Tapaxolovinor Tou TpochToy
Tou odnyoy xoL ot UETABANTEC Tou TEPPBAALOVTOC O3 YNONG YLl THV AVAYVOELOT TWV
XATACTAGEWY x0VpaoTS Xal 0Tpec Tou 0dnyol. Ta dedouéva Tou yenoruonolhinxay cUAEyOnxay
OE €VO LAXPOYEOVIO GTABL0 BleCaywYhC TELRUUATWY OF TPAYUATIXES 0ONYLXES ouvlhxeg.
2Ny Sidpxelo aUTGY TV TEWRAUATWY GUAEEaUE Eva oUvolo and Blocriuata Tou 0d1yoU, xat
OUYXEXPLUEVO NAEXTROXAROLOYRAGNUN, AVUTVOT| X0l NhexTpodepuixt| dpaotnetdtnta. And
Ta Prochuata, to Blvieo xar g cuvhrixeg odfynong e&dyoue évay onuavtixd opliud and
YALUXTNELOTIXG XAt To 0ELOAOYHOUUE WS TPOSC TNY CUVELGPORE TOUC GTNY AVAYVOELOT TOC0
NS xoVpaone 600 xoL TOU OTEEC. e Uto dtadixaoia eRLAOYNC YoRaXTNELOTIXGY, UOVO
QUTE UE TNV UEYOAUTERT CUVELG(QORA YeNoLloToliinxay 6To enduevo B Tng Taglvounorg.
Téoaoepelc dlagopeTinol Tavountéc adlohoyRinxay k¢ mpog TNy axpifeila Taivéunone, Tny
evatolnola xau v e€edixeuon. Ta anoteréoyato Uog HTav TOAY IXAVOTOUNTLXE TOCO
YU TNV avayvepelong NG xoUpaong XaL TOU GTREC.  XTNY oLVEYEwr allohOYACOUE TNV
oLVELOYORA Tou xdfe arohnthpa oTNY avayvdELoT TNE XxoUpaorc xal Tou oTpec. Mio Tétola
UEAETN elval oNUAVTIXT OTOV GYESLACUS EVOC GUOTAUNTOS AVAYVOPLONS TNS XATACTACTS
TOU 08NY0Y, T600 YLo TNV Uelwor TNS TOAUTAOXOTNTAC 600 XaL Tou x6aTouc. To melpduata
TOU TpAYUATOTOoAUE EDELEaY OTL 0TIV avaY vOPLoT TN xovpaong to Bloohuata elvat autd
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TOU GUVELCPEROUY TEQLOGOTERO XL ELBLXOTER TO NAEXTEOXAESLOYPAPNUI PalvETAUL VO ElvoL
0 oNUAVTLXOTEROS analNTpag, evéd Lol To 6TpeC GhoL GyYeddV oL arolnThpeg €youy TapduoLa
GUVELGPOQA.

Evd ou nepiocdtepec oyetixéc epyaciec eoTidlouv 6Ty avayvodelor VPNAOY emtmédny
xoVpaone (unvnhia) ue Ty uebodoloyla wac enttuyydvetal eniong N avory vdpLon ToV TEOLUOV
otadlwy tne xovpaone (uétpta xolpaon). o va mocotixomotfioouue Ty enidpoon tov
YAUNAGY ETTEdWY x0Upaong 6NV 08Ny anddoor, avantiéaue éva teptBdiroy e€ouolwong,
T0 0n0l0 UaC EMETPEYE TNV xATAYRUYT UETPWY 0dNYXic anddoong (dnwe ypdvol avtidpaong)
XAl TNV ouoyETior Toug Pe Ta enimeda xolpaong. To amoteréouoato amd TNV UEAETH GTO
TepBdhhoy e€ouolwong enahfleucay TNV CUGYETLON TOV SLAPORETIXGOY ETLTESWY XOUPACTIC
XAl TV YALUXTNELOTIXGY and Ta Plochiuata ue Tov Bubud uelwone tng odnywrnc anddoorng.
Auté To elpnuo emBetxviel Ty alla xal TNV TEOOTTIXT EVOC GUGTAUATOS LXavoU Vo avay vwpllet
Ta TEoodeuTxd eninedo xolUpaong xul vo TpolAémeL Tov ypdvo aviidpuone tou odnyou,
Baowlbuevo otny xataypapt Paoxdy Broonudtwy. Avtifeta ue tny xolpaor, 1 orola
elvan ulo Tpoodeutiny) xatdotacy To 6Tpeg elvan mo euuetdBAnTo, xalde ennpedletal oe
ueydho Bdbuo and 1o mepBdiloy odhynong ol and yeyovota mou AauBdvouy yopa ot
autéd.  Ovoudloupe autd to yeyovéta xato v ddpxela e odiynone (npoonépaon,
anétoun mEdNon x.o.) Todnywd yeyovéta” xai To mopodixd GTEEC TOU auTd TEOXAAOUY
oTov 0d1y6 "yeyovota otpec”. H aviyveuon tov yeyovoTtwy otpeg ouufdier otny extiunon
TN¢ PuyocoUaTIXC xaTdoTaong Tou 0dNyoU, xaldg 1 UV EUEAVLGT TETOLWY YEYOVHTWY
unopel va TpoxaAécEL TAPATETUUEVO GTREC GTOV 0dNYd. e authy TNy StatelPr avartiloue
uta webodoloylo YLol TNV AvaY VOPLOT) YEYOVOT®OY OTEES OF TRAYUATIXG YEOVO, YPTOLLOTOLOVTIS
70 {310 6UVOLo BLoonudTtwy (MhexTpoxapdloypdenua, avamvor| ol NAEXTEodEpuLxY SpaoTneLdTnTa)
xaBdc xan napauétpous e odnyixfic ouureplpopds (Béon, Taydtnta, emBedduven x.a.) To
omola GUAAEEaE and Tov eZomhoud tou autoxtvhitou (GPS xow Can-Bus). Me v ypdon
Bayesian Suxtowv avayvopilouue ue axplewa 95% ta yeyovdta otpec.

Eva mpéBinua mou ouyvéd napouctdletal Ue mopduoLla cuoThuaTa, elvol 1 avdyxn yia
"TpocoproyR” Tou cuoTAUaToC o€ éva VEo 0d1Y6. Ilpog authy Ty xatelbuvor tapouoidlouyue

7 7

uta u€hodo yior TNV eXTUNOT TWV TAPUUETEOY Ulol UEXTAC XAVOVIXNAC xoTavounc 1) otola
ugplotatal €vay Yewuetpxd petaoynuatioud. H uébodoc Baoiletal otov ahydpbuo EM.
Kabde o ahydplbuog EM elvan évag alydpelbuog Tomxrc BeAtiotonolnong, n uébodog dev
eyyvdTal Ty eUpeoT) TNE TEAYUATLXAC Aonc. ot vor avTIUETOTLOOVUE AUTHY TOY TEPLOPLOUD,
mpotelvaue TNV yenon tou alyoplbuou EM ue molhamiéc exxivioeic. Auty 7 mpocéyyLon
audvel onuovtind Ty tilavétnta edpeong Tng meaYUATIXAC AVoTC. TNV GUVEYELXL EREXTELVOUUE
TO ApyX6 LOVTEAD, OTOU EYOUUE EVAY XOLVO UETACYNUATIONO OF OAEC TLC OUVLOTOOEC,
avafétovtag évay Tomxd UETUOYNUATIONS ot xdle ouvioTdoa. XTIC TUPAUETPOUS TWV
TOTUXOV UETUACYNULATIOUDY, BEmpOUUE Ulol X TWV TPOTEQKY XUTUVOUY XUl YPNOULOTOLOUUE
uta tpooéyyion MAP-EM yua tnv extiunon twv napauétewy tou ohxod ol TV TOTXOY
uetaoynuaTioudy. Aoxiudoaue v UEBodo TNV TEOGUPUOYY) EVOC UOVTEAOU aVaYVOELOTS
NS XATAOTAOTC TOU 0810V, T omolo €yel exnondevbel o Eva oUYXEXELUEVO GUVOLO OONYQY,
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oe véoug odnyolc. Ta mpdhta arotedéouato elval apxetd unooyodueva. Enlong mpénel
va Tovicouue 6TL 1 cuyxexpuuévn uébodog umopel xdhioTa va e@opUocTel o TapduoLa
TpoBAfuaTo ahAd xoL o dAAo OTwe 1) uTépbeoT) EXOVKY.

Baowlbuevol 610 yeyovég 6Tl 1 xatdoTaoT Tou odnyold elval onuaviixy otny odnyixh
acpdiela, Tpoywenooue éva Briua tapunépa ol UeheThooUe Ta Baoixd Uépn evog 7 EEunvou”
ouoThuaTog unoPorinone Tou 081yYoU o onolo utopel va exueTarieutel TG0 THY xUTACTACT
Tou 081y0U 660 %ol dixTua emixolveviag wetall autoxtvitoy. Tétow cuoTiuata 6ToyEbOoLY
oty alinon tne odnywic aopdieiag, apevog etexteivovtag To Tedlo avtiindng tou odnyol
XL OPETEPOU TUPEYOVTAC XATIAANAAL edomoinTixd unviuato otov odnyd yia mpooeyelc
xwvduvoug. To mpdhto Briua ftav o oyedlaoudc evog TEOYEAUUATOSC LAXPOOXOTUXHC ECOUOLWOTS
eVOC 0dN YKoV TEPLBAMAOVTOC UE ETXOLVWVLN UETAEY oyNuUdToY %afde xal oynudTwy ue
TNy unodour Tou Spbuov. lelpduata oe autd To TepBdihoy €dellay 4TL TETOL GUOTAUITA
unopoUyv TEdYUATL Vo auEAooLUY TNV OdNYLXTH OCQPIAELd, XATw ond OPLOUEVES TUWEC TWV
TopaUETPWY emxovoviac (xabuotépnon, euléiewa, ouyvotnTa exnounic). Xe autd To
cVoTnua undpyouy Vo Baoixd utouéer), Tou oto apyxd Telpduata fewpolviay dedouéva
ahhd ypllouv extevéotepne uerétne. To npdto elval o tpdnoc Ue tov onolo yepllduaoTe
Ty mAnpogopla. Mehethoaue ula uébodo ue yperon Bayesian Sixtiov yia yelploud Tng
Thnpogoplag and mnyég yaunirc aliomotiog xou e€aywyhc véag tAnpowoplag. To deltepo
XOUUATL TOU ouoTAUNTOS Tou eleTtdlouue elval o unyaviouds AMdne anogdoewy o onolog
elval umevluvog Y Tov TEOTO XoL TOV YEOVO TEOKONCNC UNYUUATOY Yl TNV £YXLeN
ewdomolnom tou yua mhavois xvddvoue. O unyaviouds andgaong Paciotnxe oe deryuatoredia
duvauxdy Bayesian dutioy yio Tny extlunon tne avauevouevne Twrc ulag ouvdptnong
%(OGTOUC XaL TNV EXTIUNOT TNE PEATIOTNG EVEPYELIS.

H ouyxexpiuévn duatpn cuvoldilovtag, uehetd Ty avayvdeiong g Yuyoouvarchnuotixis
XATACTACNC TOU 03NYOU UEAETOVTAC xupleg Broohuata aAAd xaL dAAES TNYES TANPOGOPLAY
xal Tpoywed oTnv aflonolnoy authc Tng TAnpogoplag ueTtald dAhwv v tny eniteuln
CLOTNUATWY oV EVTEAEL o GUVELGPEPOUY OTNY UELDOT TOY ATUYNUATWY oL 6TNY avEnoT
TN ao@dAELag GTNY 08NY MO,
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CHAPTER 1

INTRODUCTION

1.1 Definition of Fatigue
1.2 Definition of Stress

1.3 Contribution of this thesis

The human physiological state is well studied in many fields of science and industry,
such as medicine, human factors, aviation, and automotive. Generally in any critical task
involving a decision process by a human, the quality of the decision and hence the success-
ful execution of the task strongly depends on human’s physiological state. Such a task,
which daily perils the life of millions of people is driving. Driving in a real-world envi-
ronment is a difficult task, because decisions are made given only incomplete information
in real time. A great number of fatalities occurring in motor vehicles could be avoided
if behaviors such as driver inattention, stress, fatigue, and sleepiness were detected. The
inability to manage one’s condition during driving is identified as one of the major causes
of accidents [57]. The task to determine the driver state in a vehicle is an active topic
both for the scientific community and research institutes as well as software companies for
real world applications. The most common aspects of physiology that contribute greatly
to degradation of driving performance and consequently increase road risk are the mental
fatigue and stress. High stress influences adversely drivers’ reactions in critical situations,
thus it is one of the most important reasons for car accidents according to the American
Highway Traffic Safety Administration. Recent findings have shown that stress is not only
tightly intertwined neurologically with the mechanisms responsible for cognition, but also
plays a vital role in decision making, problem solving and adapting to unpredictable en-
vironments such as driving [95]. When drivers are overwhelmed by anger or stress, their
thinking, perceptions, and judgments are impaired, leading to misinterpretation of events.
In addition, drivers often lack the ability to calm themselves when they are angry or frus-
trated [67]. In the context of everyday driving, similar situations are not even tolerable
since they may not only compromise the performance of the drivers but also endanger

18



their lives. On the other hand, fatigue impairs human performance elements, which are
critical for safe driving [6]. More specifically, the most common fatigue effects identified
in in-vehicle studies include:

e Increased reaction time: Drowsy drivers appear to have slower reaction times, which
hinders effective braking to avoid a collision. At high speeds in particular, even small

impairments in reaction time can have a profound effect on crash risk.

e Hypo-vigilance: Performance of tasks requiring attention declines with fatigue, in-
cluding prolonged periods of non-responding or delayed responding.

e Information processing impairment: Processing and integration of information needs
more time, the accuracy of short-term memory is reduced, and the overall perfor-

mance of situation perception declines.

Having the most negative impact on road safety, driver fatigue and stress constitute
the two physiological states of interest for this study. However, since both terms may
be assigned with several interpretations, it is considered fundamental to provide hereby
definitions of fatigue and stress that describe best the conditions studied in this work. A
review of the impact of each state on driving performance is also given, in order to justify
the necessity of the detection of these two states, regarding the driver and the driving
task.

1.1 Definition of Fatigue

Fatigue is a general term which has been used to describe several expressions of this
psycho-physiological state. The most common are mental fatigue and muscle fatigue. In
this thesis we focus on mental fatigue. However, even for mental fatigue there are several
definitions. According to Brown [18], ”physiological fatigue is defined as a subjectively ex-
perienced disinclination to continue the task”. Another definition from NASA [126], states
than ”fatigue may refer to feeling tired, sleepy or exhausted”. Hancock’s [2] definition of
fatigue is ”an individual’s multi-dimensional physiological-cognitive state associated with
stimulus repetition which results in prolonged residence beyond a zone of performance
comfort”. A more comprehensive definition given by Hancock [2], that fulfills a number
of criteria necessary for a complete definition of fatigue is that ”fatigue refers to the state
of an organism’s muscles, viscera, or central nervous system, in which prior physical ac-
tivity and/or mental processing, in the absence of sufficient rest, results in insufficient
cellular capacity or system wide energy to maintain the original level and/or processing
by using normal resources”. In this thesis the studied fatigue is well described by all the
above definitions. From the definition of fatigue, as well as from personal experience, the
most probable symptoms of fatigue on a driver’s performance are rather expected.
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1.1.1 Fatigue and Driving performance

According to the previous definitions, mental fatigue is a cumulative and gradual process
that is highly related with loss of alertness. It is associated with reluctance for any effort,
with reduced efficiency and impaired mental performance [39]. Although the factors that
influence mental fatigue could vary from physical health and nutrition [156] to physical
activity and environmental factors [137] or even to recuperation periods [108], the symp-
toms of mental fatigue are quite common: unwillingness for any physical or mental effort,
feeling of weariness, and impaired activity. According to Grandjean [38], the functional
states of a person range from deep sleep, light sleep, drowsy, weary, hardly awake, relaxed,
resting, fresh, alert, very alert, stimulated and a state of alarm. In this context, mental
fatigue is a condition grading in one direction into sleep, and in the other direction into
a relaxed, resting state. Both directions, though, are considered likely to reduce atten-
tion and decline alertness. When individuals are allowed to rest, these resting conditions
are not considered unpleasant; but they can be distressing if one needs to deal with a
demanding task such as driving. When mental fatigue leads to drowsiness it becomes sig-
nificant contributing factor to road crashes. According to NCSDR/NHTSA Expert Panel
on Driver Fatigue and Sleepiness[138] there are 56,000 crashes each year (in the United
States) in which drowsiness or fatigue was cited by police as a causal factor. These crashes
lead to, on average, 40,000 nonfatal injuries and 1,550 fatalities per year. Data from the
U.S.-based 100-car naturalistic driving study indicated that drowsy driving (compared to
alert driving) resulted in a five-fold increase in risk of a crash or near-crash [73]. MacLean
et al. [92] concluded that ”while estimates of the number of crashes due to sleepiness
have varied widely, there is converging evidence that about 20% of crashes are related
to sleepiness”. Taken together, these statistics indicate that driver drowsiness imposes a
significant burden on society, and constitutes a serious public health issue. All the above
indicate that mental fatigue and especially drowsiness is a high risk physiological state in
the driving context. Apart from late fatigue stages such as drowsiness, even earlier fatigue
states, which are characterized by a reduced driver’s arousal are followed by a driving per-
formance impairment [25]. In neurological research the terms vigilance and arousal are
used interchangeably, both referring to a general state of wakefulness, characterized as
alertness [110]. An important factor related to fatigue and hypovigilance is the circadian
rhythm. It is the biological clock that normally has a 24 h period. Physiological parame-
ters such as motor activity, body temperature, blood pressure and work performance are
disturbed from disruptions to the circadian rhythm [127]. Apart from circadian rhythm,
a number of environmental factors affect vigilance, such as noise, vibration, ambient tem-
perature, frequency and variety of stimulations during driving. For instance, the higher
levels of noise during driving can lead to driver fatigue. This type of mental fatigue,
also known as ”cognitive fatigue”, results from the higher demand for driver’s attention
imposed by the presence of such stressors [25]. Driver performance is also deteriorated
with long hours of continuous driving, with monotonous driving environment and during
night /early morning hours driving [100].
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In a road environment, drivers’ fatigue can be severe before its effects in routine driv-
ing performance become noticeable. This is because, even lower fatigue levels can still
cause declines in physiological vigilance/arousal, slow sensorimotor functions (i.e. slower
perception and reaction times) and information processing impairments, which in turn di-
minish driver’s ability to respond to unexpected and emergency situations [94]. Therefore,
the impact of fatigue on driver performance cannot be measured using only direct indices
of driving task, like speed maintenance and steering control, but additional parameters,
associated with driving performance, are needed (such as perceptual, motor and cognitive
skills). [154]. This is also the main drawback of approaches measuring physical appear-
ance measures, such as eye blinking, head movement and yawning. Those are symptoms
of late fatigue stages and the driving performance has already a significant reduction. Tt
is therefore critical for a real-time operational driving environment to develop strategies
for early fatigue detection and provide countermeasures that optimize performance and
maintain an adequate margin of safety.

1.2 Definition of Stress

According to European ISO 10075 [1], mental stress is defined as: ”The total of all as-
sessable influences impinging upon a human being from external sources and affecting it
mentally.” Situational influences on mental stress include: task requirements (e.g. sus-
tained concentration, responsibility for others), physical conditions (e.g. lighting, noise),
social and organisational factors (e.g. control structure, communication structure, or-
ganisational environment), social factors, external to the organisation (e.g. economic
situation). Another definition by Lazarus and Folkman [3] states that: ”stress is a feel-
ing experienced when a person thinks that the demands exceed the personal and social
resources the individual is able to mobilize”.

1.2.1 Stress and driving performance

Moderate levels of stress appear to be fairly common in everyday driving. In a diary
study of company car drivers, around 50% of drivers reported adverse affective reactions
on any given day [40]. Although negative moods experienced during driving are often
relatively mild, strong emotional reactions to driving also occur in forms of driving phobias
and in so-called road rage. Stress appears to predispose drivers to a heightened risk of
motor vehicle accidents. Variables that discriminate between accident-involved and non
accident-involved drivers include specific sources of stress, such as interpersonal and job
problems, as well as overall assessments of recent exposure to stressful life events. Accident
likelihood is also connected to personality characteristics that are associated with stress
vulnerability, such as personal maladjustment, depression, anxiety, and aggression (see
[40]). Stress effects can sometimes be quite large in magnitude. Brenner and Selzer [16]

estimated that drivers who have experienced a recent stressful event are five times more
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likely to cause fatal accidents than are unstressed drivers. There are two limitations of
current research. First, stress is often used as a vague, umbrella term. However, a variety
of distinct emotional and cognitive components of stress reactions can be distinguished
that might have differing consequences for performance [150]. Second, existing works
provide little information on the behavioral mechanisms that might link stress to increased
accident risk[136]. Accident research suggests a variety of mechanisms for human error in
driving, such as impairment of attentional efficiency and change in strategy [96], but it is
unclear how these mechanisms are influenced by stress reactions. Hence, to understand
how stress influences safety, it is necessary to discriminate different aspects of driver stress
and then to link these different aspects of stress to behavioral measures.

1.3 Outline of this thesis

The literature reports many attempts to develop safety systems for reducing the number
of automobile accidents: these systems detect both the ”driving behavior” by monitoring
lane keeping, steering movements, acceleration, braking and gear changing, and also the
"driver status” by such means as tracking the driver’s head and the eye movements,
monitoring the heart and breathing rates, the brain activity, and recognizing the torso
and arm/leg motion. An in-depth literature review focused on specific aspects of driver
stress and fatigue estimation was conducted. Different methodologies based on biosignal
and machine vision driver monitoring along with their experimental protocols and their
achieved results were studied and analyzed. Both advantages and limitations of state-of-
the-art methods are defined. Before proceeding with the presentation of literature review
the basic physiological measures used in the majority of similar works are described in
section 2.2 along with their association to the human physiology. Moreover, in Chapter 2
the most insightful research studies are presented. Those constitute the baseline for our
research and they have contributed significantly to move beyond the state-of-the art in
the field of driver state recognition based mostly on physiological signals.

Discussions with neurologists and human factor experts helped in the definition of the
stress and fatigue classification problems. As previously mentioned stress influences driv-
ing performance through nervous reactions and has negative effects on drivers’ judgment.
From human factor point of view, a driver assistance system should be able to discrimi-
nate stress from normal driver state and alternate its warning strategy accordingly. Stress
detection is therefore tackled as a two-class classification problem. Driver fatigue, on the
other hand, although it is the subject of numerous studies in literature, the majority of
the existing works focus mainly on the detection of late stages of fatigue (drowsiness),
when driver experiences micro sleep episodes, which is most probable to lead to potential
accidents. However, as noticed before, according to experts in the human physiology, even
earlier stages of fatigue (low-fatigue) may have significant impact on driving performance

22



and the detection of those stages could be very useful for driver assistance systems. In our
work we tackle the fatigue detection as a three-class problem, i.e. discriminate: normal,
low-fatigue and high-fatigue states.

The collection of experimental data for different driver states (stress and fatigue)
requires a protocol which ensures that driver experiences these states. The major part of
our experiments was conducted in real-world considering the difficulty in controlling the
driver’s state since it highly depends on the prevailing driving environment. A series of
experiments were also conducted in a simulation environment, specially built for studying
the impact of human physiology on driving performance. In Chapter 3 we present the
dataset collection which was performed in both real driving conditions and a simulation
environment. Details about the equipment of the study, the experimental protocol and
software developed for data acquisition and annotation are also presented.

Making use of the data collected during real driving conditions we developed a method-
ology for the aforementioned stress and fatigue classification problems. The validation
and quantification of the impact of the different levels of fatigue on degradation of driv-
ing performance was achieved through a series of experiments conducted in a simulation
environment, which we built specifically for this purpose. In Chapter 4 we present the
methodology for fatigue and stress estimation based on physiological signals and video
monitoring of driver’s face.

An important aspect of driver physiology related to driving behavior, is stress reactions
to specific driving events. The term stress used here does not refer to the permanent
stress condition, which determines the long-term driver’s psycho-physiological state but
rather addresses the temporal increase of stress level of the driver that is directly related
with a specific stimulation, i.e. a driving event. However, the detection of those stress
events is rather significant since they contribute to the overall stress state of the driver,
and can provide an indication of the driver’s behavior and the quality of the decisions
taken during driving. Analyzing the intermediate en-route self-annotated data, interesting
findings could come out regarding the temporal stress experienced by driver during driving
and its connection to the occurrence of driving events on-route (e.g. overtaking, hard
braking, high speeding). We call these non-permanent stressful conditions stress events,
to discriminate them from the psychological state that one experiences for relatively longer
period of time. Although the causes of driver stress events and stress state may differ
(the former is due to events occurring on road while the second is perhaps the result of
deeper psychological factors), their impact on safety is quite similar since in both cases
the driver becomes more vulnerable to driving errors, which can lead to accidents. The
analysis of the collected data has shown high association of the stress events occurrence
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and the physiological signal responses. This finding is of high importance in the sense that
such stress events could be easily detected when observing the variation of the driver’s
physiological signals during en-route recordings. To this end we developed a methodology
for real time stress events detection, described in Chapter 5. The methodology is based on
the incorporation of features extracted from physiological signals and vehicle information
into a Bayesian network model.

The main difficulty in developing a reliable system for driver’s physiological state as-
sessment lies on the fact that each human has a different baseline on his/her physiological
signals and we need to have a reliable adaptation procedure of the system to the new
subject-driver. In Chapter 6 we describe a study on the adaptation of a classifier based
on mixture of Gaussians. The classifier is trained on an initial dataset and needs fitting to
a new dataset which is obtained through a geometric transformation of the initial dataset.
We derive an EM based algorithm and a schema with multiple starts in order to increase
the probability of convergence to the correct solution. We extended the initial transfor-
mation to a more generic, where each component has a local also transformation and we
tested both approaches on data collected in a driving simulation environment.

The cutting-edge technology of driver assistance systems is moving towards the coop-
erative driving that exploits wireless communications (vehicle -to- vehicle communication
and road infrastructure -to- vehicle communication) with the scope to extend driver’s
perception through the information coming from the external environment and to de-
velop more accurate pre-crash warning systems. The incorporation of driver psycho-
physiological state into the pre-crash warning mechanisms can evolve further this tech-
nology by increasing the safety margins with the provision of alerts tailored to the current
driver state. The rationale is that a driver under stress or fatigue should be notified of
a road hazard earlier and in a different way, comparing to a driver of normal status, be-
cause the former would need more time to process the information and make decisions.
Therefore, monitoring the driver and performing on-line evaluation of his/her state is a
necessity for a system targeting at preparing the driver in the best way for upcoming risks.
In Chapter 7 we present a study towards an advanced cooperative driving system, which
incorporates information of driver’s state and external information coming from other
vehicles and road infrastructure, with the scope to provide timely and useful notifications
and alerts to the driver. The first step towards this direction is the development of a
simulation environment of vehicle to vehicle communication. Based on this simulation
environment we performed a study on communication requirements in order to achieve
a safety gain. The second step was the implementation of two basic subsystems: a) the
information handler and b) the decision maker. The information handler applies infor-
mation fusion of low confidence sensors (other vehicles) and employs Bayesian Networks
for the extraction of high-level information (e.g. Traffic congestion due to road works).
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The decision maker is based on sampling of Dynamic Bayesian networks for driving risk
evaluation and decides upon the best warning strategy, taking into account both envi-
ronmental conditions and driver’s state. The decision mechanism is evaluated on a user

interactive simulation environment.
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CHAPTER 2

LITERATURE REVIEW

5.1 Introduction
2.2 Physiological Signals
2.3 Fatigue Detection

2.4 Stress Detection

2.1 Introduction

In this chapter we present an introduction to the physiological signals mainly used in
similar works, and their relation to the physiological state of interest (fatigue/stress).
Then we present the most important works in literature for fatigue and stress detection.

2.2 Physiological Signals

A variety of physiological signal have been used in the literature, for physiological state
assessment. However, the most informative and therefore gained the larger attention are:
i) electrocardiogram , ii) electrodermal activity, iii) respiration, iii) electromyogram and
iv) electroencephalography. From the aforementioned signals, in this study we employed
the first three and in the following section we provide a detailed description of their
physiology and their use in physiological mental state assessment.

2.2.1  Electrocardiography

The heart is innervated both by the Parasympathetic Nervous System (PNS) and the
Sympathetic Nervous System (SNS) and each heart contraction forces the blood through
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the circulatory system. The contraction is produced by electrical impulses that can be
measured in the form of the electrocardiogram (ECG). From the ECG signal (a) time
domain measures, (b) frequency measures and (c) amplitude measures can be derived. In
the time domain the R-waves[76, 103] of the ECG are detected, and the time between
these peaks, the Inter-Beat-Interval (IBI), is calculated. Heart Rate (HR) is directly
related to Heart Period (HP) or IBI , however, this relation is non-linear and IBI is more
normally distributed in samples compared with HR [59]. Therefore, IBI scores should be
used for detection and testing of differences between mean HR scores, the IBI scale is less
influenced by trends than the HR scale [49]. Average heart rate during task performance
compared to rest-baseline measurements is a fairly accurate measure of metabolic activity
[115]. Not only physical effort affects heart rate level [81], emotional factors, such as high
responsibility or the fear of failing for a test, also influence mean heart rate [63]. Other
factors affecting cardiac activity are speech and high G-forces [155]. The effect of sedative
drugs and time-on-task resulting in fatigue is a decrease in average HR [94], while low
amounts of alcohol are reported to increase HR [93]. A continuous feedback between the
central nervous system (CNS) and peripheral autonomic receptors causes irregularities in
heart rate. Heart rate variability is a marker of performance of this feedback system and
in healthy humans this is reflected in large deviations from the mean rate [115]. Compared
to time-domain analysis, frequency analysis of IBI has as a major advantage that HRV
is decomposed into components that are associated with biological control mechanisms
[76, 115]. Three frequency bands have been identified [104, 105]: A low frequency band
(0.02 - 0.06 Hz) believed to be related to the regulation of the body temperature, a mid
frequency band (0.07 - 0.14 Hz) related to the short-term blood-pressure regulation and
a high frequency band (0.15 - 0.50 Hz) believed to be influenced by respiratory-related
fluctuations (vagal, PNS influenced)[76]. A decrease in power in the mid frequency band
(also called the ”0.10 Hz component” after the main frequency component), and in the
high frequency band have been shown to be related to mental effort and task demands
[105, 63, 9]. Jorna [62] and Paas et al. [109], however, conclude that spectral measures
are primarily sensitive to task-rest differences, and not to moderate increases in difficulty
within a task. Measurement of heart rate is not very complex, the ECG signal needs little
amplifying (about 10 to 20 times less as ongoing EEG) and if measurement is limited to
R-wave detection and registration then electrode placement is not very critical. Heart
rate may provide an index of overall workload, spectral analysis of heart rate variability is
more useful as index of cognitive, mental workload [155]. A restriction in the use of heart
rate measures is that, due to the idiosyncratic nature of the measure, operators are usually
required to serve as their own control in stress assessment. Another major restriction to
the use of ECG measures is the effect speech has on blood pressure, and therefore on the
0.10 Hz component of heart rate variability [105, 135]. If verbalization is a predominant
aspect of operator performance the 0.10 Hz component may be less suitable for mental
load assessments. However, speech is not necessarily a disturbing factor, Porges and Byrne

[115] recommend no corrective action in cases in which the verbalization duration is short
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(less than 10 s) or in the case that speech is relatively infrequent (one to five times per

minute).

2.2.2 Respiration

Respiration is indispensable to supply the blood with oxygen and to expel carbon dioxide.
Measures of respiration could provide an index of energy expenditure. Recently, evidence
has been found supporting the hypothesis that cognitive effort coincides with a small
but significant increase in energy expenditure [9]. The most frequently used measure of
respiration is respiration rate [155]. Respiration rate increases under stressful attention
conditions[115] and as a result of increased memory load or increased temporal demands
[9]. Wientjes [152], [153] states that respiration rate without information about tidal
volume is meaningless and has led to inconclusive results. The multiplication of respiration
rate (i.e. timing) with tidal volume (i.e. intensity) gives the minute ventilation, the
quantity of air breathed per minute. Wientjes [153] found an increase in minute ventilation
(and an increase in respiration rate and a decrease in tidal volume) as a result of mental
effort or mild stress. Moreover, the measure is, just as many other physiological measures,
not uniquely sensitive to mental effort and is affected by, for instance, speech and physical
effort. It is also closely linked to emotions and personality characteristics. Wientjes [152]
as well as Backs and Seljos [9], however, consider the use of respiration measures to be
undervalued in psychophysiological research. In applied settings, respiration measures, in
particular respiration rate, have been used several times as measures of mental load. Use
of the measures has been confined to aviation, mainly to (simulated) highspeed jet-flight
[125, 155]. In these field studies it was also found that, in general, a decrease in respiration

rate coincided with increases in cognitive activity.

2.2.3 Electrodermal activity

Electrodermal activity (EDA) refers to the electrical changes in the skin. These changes
are the result of Autonomic Nervous System (ANS) activity. Two techniques arein use, ex-
osomatic and endosomatic measurement. With exosomatic measurement a small current
from an external source is led through the skin and is measured, while the less frequently
applied endosomatic measurement makes no use of an external source. EDA is expressed
in terms of skin conduction or resistance, which are (nonlinearly) inversely related. Elec-
trodermal activity can be further distinguished in tonic and phasic activity [48], while
Kramer [76] adds spontaneous or non-specific EDA to these two. Tonic EDA, the Elec-
trodermal Level (EDL) or Skin Conduction Level (SCL), is the average level of EDA or
baseline activity. Phasic EDA includes the Electrodermal Response (EDR), which is most
similar to the formerly common measure GSR (Galvanic Skin Resistance). EDR is the
result of an external stimulus. Response is fairly slow, a latency of 1.3 to 2.5 sec to the
occurrence of stimulation is to be expected [76]. EDR is expressed either as Skin Resis-
tance Response (SRR) or as Skin Conduction Response (SCR). Spontaneous EDA; EDA
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in response to unknown stimuli, has predominantly been used as an indicator of arousal
or emotion, and not as a measure of car driver’s stress. Kramer [76] in his review refers
to several studies that show sensitivity of SCR to information processing. He concludes
that spontaneous EDA appears to be sensitive to general levels of arousal while SCRs
seem to index the allocation of an undifferentiated form of processing resources. The
main problem with electrodermal activity measures are a global sensitivity, or as Heino et
al. [48] state "all behaviour (emotional as well as physical) that affects the sympathetic
nervous system can cause a change in EDA”. EDA is usually measured on the palm of
the hand or on the sole of the foot where Sympathetic Nervous System (SNS)-controlled
eccrine sweat glands are most numerous [26, 76]. Activity of these glands is sensitive to
respiration, temperature, humidity, age, sex, time of day, season, arousal and emotions.
The measure is therefore not very selective.

2.3 Fatigue detection

Many countermeasures to driver fatigue have been proposed, such as the use of bright
light, caffeine, or naps. However, these countermeasures rely on drivers’ self-monitoring
of their level of drowsiness, and such subjective measures may be unreliable [122]. An
alternative related approach has been to develop countermeasures based on objective
driver-performance data. A number of technological countermeasure systems have been
designed to detect driver drowsiness [68, 72, 157|. There are three main approaches for
fatigue detection, based on the information exploited:

1. Physiological signals (ECG, EEG)
2. Physical appearance (eye blinking, yawning etc.)
3. Driving behavior (lane deviation)

Apart from studies focusing on any of the three approaches, there are methods which
used a combination of the above information. In this thesis we have concentrated on the
use of physiological signals and driver’s physical appearance. In the following sections
we describe the most important works on fatigue detection based on physiological signals
and video monitoring of the driver.

2.3.1 Fatigue detection from physiological signals

R. Bittner et al.. [12] presented a first approach for detection of fatigue based on biosignals
acquired from driver (EEG, ECG, EOG) and video monitoring. They examined different
features that might be correlated with fatigue, as the spectrum of the EEG, the PERCLOS
and fractal properties of HRV. They concluded that the former ones are more correlated
with instant fatigue levels of the driver, while the latter is most suitable for the detection
of the permanent state of the driver.
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Zengyong Li [85] in his work, aimed to estimate mental fatigue of a driver using the
HRYV spectrum analysis. He used a simulator for data collection which produced situations
of high mental effort. In his experiments took part 8 healthy subjects and the duration
of each session was 90 minutes. The features from HRV indicated high correlation with
mental fatigue of the driver.

Qiang Ji et al. [117] proposed a probabilistic framework based on the Bayesian net-
works for modeling and real-time inferring human fatigue by integrating information from
various sensory data and certain relevant contextual information. In their approach they
used the existing literature for defining the variables of the model. Furthermore they
used a Dynamic Bayesian Network which encapsulates the time dependent development
of fatigue symptoms. The estimation is based on visual cues and behavioral variables.

In another approach [161], fatigue detection was based on heterogeneous information
sources such as subject specific information (fitness, sleep deprivation etc.), environmental
information (traffic, road condition etc.), physiological signals (ECG, EEG) and video
monitoring (head movement, blink rate and facial expressions). In order to combine
all the abovementioned information they used the Dempster-Shafer theory and rules for
determining whether the driver is fatigued or not.

Shen et al. [131] developed an EEG-based mental-fatigue monitoring system using a
probabilistic-based support vector-machines (SVM) method. Ten subjects underwent 25-
h sleep deprivation experiments with EEG monitoring. EEG data were segmented into 3-s
long epochs and manually classified into 5 mental-fatigue levels, based on subjects’ perfor-
mance on an auditory vigilance task (AVT). Using probabilistic-based multi-class SVM
and confidence estimates aggregation, an accuracy of 91.2% in discriminating mental-
fatigue in five levels. This work, in combination with similar studies demonstrated the
feasibility of an automatic EEG method for assessing and monitoring of mental fatigue.

Lal et al. [78] describe a EEG-based fatigue countermeasure algorithm and reported
its reliability. They employed changes in all major EEG bands during fatigue in order to
develop the algorithm for detecting different levels of fatigue. In this study ten subjects
participated and using the EEG-based detector, the percentage of time the subjects were
detected to be in a fatigue state was significantly different than the alert phase (P;.01).

Summarizing the results of the existing literature, physiological signals are very promis-
ing indicators of mental-fatigue, a result also indicated by Crawford[23]. Cardiac related
signals such as ECG, respiration and BVP are good indicators of the circadian rhythm
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and therefore of the current alertness of the driver. EEG is a very good indicator of
mental-fatigue and mental activity. Also a increase in EEG’s Theta activity was observed
during long monotonous tasks [52]. However, in real-world driving, it is rather difficult
to perform real-time monitoring of driver’s EEG activity, since this would require spe-
cial sensor equipment attached to the driver and would raise a number of safety related
issues concerning the obtrusive driving monitoring procedure. On the other hand ECG
and BVP could be acquired from the steering wheel [129] of the vehicle and respiration
could be acquired from sensors on the safety belt. In combination with video monitoring,
systems predicting fatigue and detecting drowsiness are feasible.

2.3.2 Fatigue detection from face and eye measures

We dedicate one section in fatigue detection, and more precisely drowsiness detection
from physical appearance measures, such as blinking, yawning, head movement etc. One
of the most important drowsiness indicators is the percentage of eye closure (PERCLOS).
This measures has a significant correlation with the psychomotor vigilance task (PVT)
which varies from 0.67 to 0.7 [41]. In order to extract PERCLOS, a method for accurate
estimation of eye opening is needed. Accurate estimation of eye opening can be estimated
though EOG measurements. However this is an obtrusive method and cannot be ap-
plied on a vehicle context. Therefore, the most common approach is based on the video
monitoring of driver’s face which is an unobtrusive and relatively low cost method. The
methods usually consist of two basic steps: i) the face detection and ii) the detection of
eyes. The face detection is used for tracking head movements which are used for detecting
driver’s awareness and loss of attentions and the second for blink detection and PERCOS
estimation. Several methods are proposed in the literature to detect the face from sin-
gle images or sequences. These include knowledge based methods which encode human
knowledge about the facial features associations such as facial geometry[162]; template
based methods such as deformable models[51];appearance based methods which utilize
information based on higher order features of the face [132]. Rowley et al. [128] employed
a neural network to classify a region either as a face or non face using as features the pixel
intensities as well as spatial relationships between pixels. Waring and Liu [148] employed
an appearance based method utilising information from spectral histograms and classified
into face or non-face regions using Support Vector Machines. One of the most commonly
employed face detector is the real time face detector proposed by Viola and Jones [145].
The face detector does not operate directly with image intensities but extracts a set of
features which are based on Haar functions. Fasel et al. [32] extended the work by Viola
and Jones to detect both the face and the eyes. A large number of studies extended
Fasel’s work [77, 147, 80] using other features instead of Haar or applying the method on
video sequences. Template based methods are simple to implement but are usually prone
to failure when large variations in pose or scale exist [162].
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Anderson and McOwan [7] employed the Ratio Template Algorithm to locate and
track the face and Optical Flow via the multichannel gradient model to create the feature
vector. Deformable models are template methods that provide the mechanisms to partly
tackle the problem of variations in pose or scale. Kass et al. [65] used the Active Contour
Models or snakes. Snakes are initialized at the proximity of the structure and are fitted
onto nearby edges. Active Shape Models proposed by Cootes et al. [22] work similarly
with snakes but enforce global shape constraints on the deformable model.

Asteriadis et al. [8] presented a work for eye and mouth detection based on a distance
vector fields [24] and distance transform [17]. The accuracy of the detection of the three
regions (two eyes and mouth) was 95.48% in images from XM2VTS database [98].

2.4 Stress Detection

Stress and fatigue are affecting the same regulation mechanism of the organism, therefore,
we need to search in similar places for stress evidence. As in the case of fatigue, literature
has focused mainly on physiological measures. Some approaches have used also physical
appearance measures but the relation of those measures with stress is ambiguous. This
can be explained since stress has many different aspects and leads to different behaviors.
However a measure identified as rather indicative of stress is the pupil diameter[163, 64].
Even though effects of mental load on pupillary response were found, the largest changes
in pupil diameter occur as a result of other factors, e.g., a change in ambient illumination
and the near reflex. These factors make the measure best suitable for laboratory situations
[75]. Another promising approach is based on biomarkers and two pioneering works in
this direction are presented.

2.4.1 Stress detection from physiological signals

Healey et al.. [43] used a driving task related data collection protocol. Each subject had
to perform a specific sequence of driving maneuvers-tasks (in total 15 including parking,
reversing and other). According to a questionnaire given to driver, for each task a difficulty
degree was assigned which also corresponded and the level of stress stimulation of each
task. From the physiological signals numerous features were extracted. Using feature
selection method and K-NN a 88.6% accuracy of four stress levels was achieved. The
selected features, mainly included heart rate and skin conductivity related features.

In another study, Healey et al.. [46] specified an experimental protocol for data col-
lection. Each driver followed a pre-specified route through fifteen different events, from
which four stress level categories were created according to the results of the subjects
self report questionnaires. In total, 545 one-minute segments were classified. A linear
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discriminant function was used to rank each feature individually based on recognition
performance and a sequential forward floating selection (SFFS) algorithm was used to
find an optimal set of features for recognizing driver stress. Moreover, in another work [5]
a slightly different protocol was followed: Data from 24 drives of at least 50-min duration
were collected for analysis. The data were analyzed in two ways. In the first case they
used features from 5-min intervals of data during resting, highway and city driving condi-
tions to distinguish three levels of driver stress within multiple drivers and driving days.
The average accuracy was 97%. In the second case they compared continuous features,
calculated at 1-s intervals throughout the entire drive with a metric of observable stressors
created by independent coders from videotapes. The results showed that for most drivers
studied, skin conductivity and heart rate metrics are most closely correlated to driver
stress level.

Rani et al.. [120] presented a real time method for stress detection based on heart
rate variability using Fourier and Wavelet analysis. They used fuzzy logic methods for
determining the activation level of parasympathetic and sympathetic nervous systems.
They collected limited data to test their method and they pointed out challenges in stress
detection, such as stress stimulation and the daily and subject variability.

Lee et al.. [83] developed a PDA application of stress detection. The physiological
signal acquisition unit had four electrodes, one for PPG (for monitoring heart rate), one
for EDA and one for SKT (for measuring variations in electrodermal activity). From those
signals a number of features was extracted. Those include the mean value of EDA and
SKT as well as the LF/HF ratio extracted from the heart rate variability. The method
for data collections was based on the presentation of images and analogous vocal tones
(a method based ”stroop color-naming task” [36]). The collected data from 80 healthy
subjects. The annotation of the data was performed manually be inspecting physiological
signals. Based on this annotation they trained three classifiers: i) Multilayer perceptron
(MLP), ii) Generalized regression neural network (GRNN) and iii) adaptive network based
fuzzy inference network (ANFIS). They split the dataset in half for training and testing.
The obtained accuracy was 96.67%. Next they developed a system for acquisition and
preprocessing of physiological signals, feature extraction and stress detection on a PDA.
The main drawback of this work is the annotation process. If the annotation is based on
an indicator, i.e. looking at the increases of the EDA and categorizing large increases as
stress, then this feature alone could easily provide a very large accuracy.

Zhai et al.. [164] developed a similar system for stress detection using blood volume
pressure, skin temperature variation, electrodermal activity and pupil diameter !. They

!The measure through the center of the adjustable opening in the iris of the eye, terminated at both
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used the same data collection protocol which included 6 healthy subjects. The experimen-
tal protocol was divided in three phases. In the first phase subjects were getting familiar
with the environment, in the second phase stress was elicited and in the third the subject
was relaxing. This procedure was repeated three times. The data in the second phase
were labeled as stress, whereas the data of the third phase was labeled as normal. In
total they collected 36 segments, 18 with stress and 18 normal. They used more features
than Rani et al.. [120]. However no method of feature selection or feature reduction was
considered. This could be necessary regarding the number of dimensions (10) and the
number of data (36). The classification using SVM with different kernels (linear, RBF
and sigmoid) using a leave one out method, gave an accuracy of 57.14% for the linear,
60% for RBF and 80% for the sigmoid kernel. Those differences are very large considering
only a change in the kernel of the classifier.

In another study Zhai et al.. [163] using more subjects (32 healthy subjects) and the
same methodology had better results (90.1% accuracy). Pupil diameter was proven as
the most dominant feature, whereas other physiological features did not have a significant
contribution to classification performance. However, the normalization and the handling
of the inter and intra subject variations was not clear and may have lead to the small
value of those measures.

Liao et al. [86] estimated stress levels from evidences of different modalities. The
evidences include physical appearance (facial expression, eye movements, and head move-
ments) extracted from video via visual sensors, physiological conditions collected from
an emotional mouse, behavioral data from user interaction activities with the computer,
and performance measures. They were based on a Dynamic Bayesian Network (DBN)
framework to model the user stress and these evidences. They described the computer
vision techniques used to extract the visual evidences, the DBN model for modeling stress
and the associated factors, and the active sensing strategy to collect the most informative
evidences for efficient stress inference. In their experiments they show that the inferred
user stress level by their system is consistent with that predicted by psychological theories.

Liao et al.. [87] presented a general unified decision-theoretic framework based on
Influence Diagrams for simultaneously modeling user affect recognition and assistance.
Affective state recognition is achieved through active probabilistic inference from the avail-
able multi-modality sensory data (physical appearance features, physiological measures,
user performance, and behavioral data). User assistance is automatically accomplished
through a decision-making process that balances the benefits of keeping the user in pro-
ductive affective states and the costs of performing user assistance. The validation of the

ends by its circumference.
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proposed framework was based on a simulation study. A significant correlation of the es-
timated stress levels from the DBN model and the ground truth was presented. However
the model was trained each time with data from each subject on the same experimental
session and thus the generalization ability of the proposed method is questionable. They
also presented some initial results for fatigue estimation. However, the incorporation of
performance variables for the specific task, which are very correlated with the state of
the subject, puts under question the extracted results for both fatigue and stress esti-
mation. However is was apparent that both physiological and appearance features (hand
movement, blinking rate e.t.c.) were highly correlated with stress.

Wilson and Russell [155], used artificial neural networks and physiological signals
to continuously monitor, in real time, the functional state of 7 participants while they
performed the Multi-Attribute Task Battery with two levels of task difficulty. Six channels
of brain electrical activity and eye, heart rate and respiration measures were evaluated
on line. The accuracy of the classifier was determined to test its utility as an on-line
measure of operator state. The mean classification accuracies were 85%, 82%, and 86%
for the baseline, low task difficulty, and high task difficulty conditions, respectively. The
high levels of accuracy suggest that these procedures can be used to provide accurate
estimates of operator functional state that can be used to provide adaptive aiding. The
relative contribution of each of the 43 psychophysiological features was also determined.

Kim et al.. [70] indicated that long term patterns of heart rate variability (HRV)
features were decreased in subjects with higher self reporting stress scores. For mobile
applications, short term analysis of HRV features may be ideal since conventional heart-
beat recordings (3 5 min) might be inadequately long. In this study, short term analysis
has been performed for heartbeat data obtained at five different time points from two
subject groups (15 under high and 18 under low mental stress). The reliability of short
term heartbeat data was demonstrated by detecting significant differences in long term
patterns of HRV features between two groups. Fifteen to thirty second heartbeat measure-
ments were long enough to produce reliable long term patterns of HRV features. Thus,
short and intermittent recordings of heartbeats could be used to detect long term HRV

patterns and offer a convenient method to monitor mental stress in mobile environments.

As we have noticed in mental fatigue detection, EEG was a very good indicator.
Considering that stress and intense workload, according to Grandjean (1979) scale, is
the opposite state of mental fatigue, EEG could be also expected to be a good indicator
of stress. The first two studies presented in this section, include both ECG and EEG
recordings. Hankins and Wilson [42] presented a study on mental workload during flight.
They used EEG, face monitoring and ECG which were collected during an during an actual

35



flight scenario designed to provide tasks that required different piloting skills imposing
different mental workload. They found that heart rate was sensitive to the demands of
flight but not diagnostic with regard to determining the cause of the workload. Heart rates
increased during take offs and landings and to an intermediate level during instrument
flight rules (IFR) segments. By showing sensitivity to only the visual demands of the
various segments of flight eye activity was more diagnostic. The theta band of the EEG
demonstrated increased power during those flight segments which required inflight mental
calculations.

Dussault et al. [29] evaluated the effects of mental workload without actual physical
risk. They studied the cortical and cardiovascular changes, using ECG and EEG respec-
tively, that occurred during simulated flight. 12 pilots (8 novices and 4 experts) attended
a simulated flight composed of 10 sequences that induced several different mental work-
load levels. Theta band activity was lower during the two simulated flight rest sequences
than during visual and instrument flight sequences. On the other hand, rest sequences
resulted in higher beta and gamma power than active segments. The mean heart rate
(HR) was not found significantly different during any simulated flight sequence, but HR
was lower for expert subjects than for novices. The subjective tests revealed no significant
anxiety and high values for vigilance levels before and during flight, explaining the small
variations of HR.

From the above two studies we can conclude that EEG measures are more sensitive two
workload and are better discriminants of workload levels. However, heart rate measures
could be used in order to differentiate the no or low workload states from the intense
workload states or stress. Taking into consideration that ECG could be more easily
acquired in a vehicle context we consider that further studying of ECG and Heart rate
measures is necessary in order to build a reliable stress detector. EEG on the other hand
could be used as an objective workload metric, since self-assessment especially on workload
and stress annotation has some disadvantages, such as that it provides an additional
workload on the subject and in cases of intense workload the probability of misjudgment
is higher. Another approach that could be used as an objective workload metric is based
on biomarkers. There are limited works presented on workload estimation and biomarkers
but the results obtained are very promising. Those are presented in the next section.

2.4.2 Stress detection from biomarkers

Yamaguchi and Sakakima [160] used salivary amylase as a biomarker, an oculomotor
angle, a subjective evaluation and examined the acute, psychological effect human stress
of driving using a motor-vehicle driving simulator. 20 healthy female subjects in their
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early twenties were enrolled in this study. The time-course change of their salivary amylase
activity (SAMY) was analyzed before and during the driving. The results indicated that
the psychological effect of driving-induced stress was quickly quantified using a biomarker
in saliva.

Nomura et al. [107] we used the cortisol as a biomarker of mental stress. 10 male
subjects were inscribed to conduct a simple, easy, and monotonous mental arithmetic
task for about an hour with intermissions, so as to emulate a mild mental workload. As a
result, salivary cortisol depicted an accumulative increase during mild mental workloads,
while no marked difference was obtained in the heart rate and its variability. It suggests
the slow and long-lasting properties in the stress-response of the cortisol unlike as in
autonomous nervous system indices, and therefore plausibly demonstrates the possible
candidacy of cortisol as a biomarker for a mild mental load.’

2.5 Contribution of this thesis

The majority of the reported works in literature, towards drivers’ physiological state
assessment, are performed in a simulation environment. In a controlled and isolated sim-
ulation environment is easier to monitor a subject under a specific physiological state.
However the physiological reaction of the subjects is expected to have significant differ-
ences from real driving conditions. When a subject is asked to participate in a scientific
experiment, it is expected to be rather alerted, even in late fatigue stages. Our main effort
was to minimize this effect, monitoring drivers in repeated experiments in real driving con-
ditions, where the driver was alone in the vehicle, in order to have his usual behavior, and
ignore the fact that his is monitored, through a special equipped vehicle. Those repeated
experiments in real unrestricted driving conditions , allows to monitor the driver under
different combination of physiological states, such as fatigue and stress. The possibility
of simultaneous presence of more than one physiological states, is another factor ignored
in the majority of related studies. The experiments in real driving conditions, gave us
the opportunity to monitor the physiological signals of the driver under specific stress-
ful driving events, and relate events with stress reaction, using a methodology presented
in Chapter 5. Furthermore, in this thesis, the driver’s physiological state recognition is
performed using information that is or can be available in a real vehicle. This excludes
from this study, physiological signals such as EEG, as well as information about driver’s
context, used in similar works. Another serious limitation of existing methodologies is
the necessity of a resting period, or a period where the driver is at a normal physiological
state. Physiological signals of this period, are considered as baseline, and are compared
to signals of the physiological state of interest. This approach cannot be applied on a
real driver physiological state recognition system. In order to overcome this limitation,
we present in Chapter 6 a methodology with promising results. The information about
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current driver status could be exploited by the advanced driver assistance systems in order
to adjust their warning strategies accordingly. In Chapter 7 we study a new generation
co-operative driver support system, able to monitor drivers’ physiological state, commu-
nicate with infrastructure or other vehicles and infer driving conditions. This study is
performed in terms of safety gain, information handling and advanced decision making

for optimal warning.
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CHAPTER 3

DATA COLLECTION

3.1 Introduction
3.2 Experiments in real driving conditions

3.3 Experiments in a simulation environment

3.1 Introduction

Collection of experimental data for different driver states (stress and fatigue) requires a
protocol which ensures that driver experiences these states. This process can take place
either in real driving or simulation environment. Each approach has both advantages
and disadvantages, which was discussed in the previous Chapter. In this thesis we have
performed both types of experiments:

1. Experiments in real driving conditions.
2. Experiments using a simulator.

In the following sections each of the experimental phases are described in detail.

3.2 Experiments in real driving conditions

This was the earliest and longest phase of the experiments, which lasted more than one
year. We first describe the equipment used for the experiments in real driving conditions,
we proceed with the description of the data collection protocol and the final dataset

description.
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Figure 3.1: a) The sensors installation for the real driving experiments. b) A snapshot
from the camera monitoring drver’s face. ¢) The SONY DCR -HC94E for road monitoring
and annotation.

3.2.1 Equipment

In this type of experiments, a custom vehicle was used for execution of experiments in

real driving conditions. The data collection was performed using off-the-shelf equipment,
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Figure 3.2: The equipment used for the data collection.

which was set up in the car formulating a data acquisition system for driver monitoring

during real-world driving. The basic equipment for data acquisition is depicted in Fig.

3.2, in real driving conditions. The equipment includes:

1.

6.

7.

Biopac MP-100 for physiological signal acquisition. The sensor placement is depicted
in Fig. 3.1(a).

. A camera monitoring driver’s face. We used a simple web-cam with frame size 320-

240 and 15fps. It is installed right behind the wheel and a snapshot taken with this
camera is given in Fig. 3.1(b).

A SONY DCR -HC94E camera monitoring road (Fig. 3.1(c)). This camera was
installed on co-drivers seat.

A GPS device with bluetooth connection.
An ELM327 adaptor for data acquisition from the vehicle’s CAN-bus.
A microphone for driver’s self-assessment recording.

A laptop for device synchronization and data storage.

For signal acquisition we selected the Biopac MP-100 system, since it is used in a number

of similar studies. A further description acquisition system and technical specifications

can be found in [10]. The following physiological signals were acquired:
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1. Electrocardiogram (ECG) through a g.ECG sensor which is placed on the subject’s
chest.

2. Electrodermal Activity (EDA) through two Ag/Ag.Cl electrodermal activity sensors
attached on the subject’s middle and index fingers of the right hand.

3. Respiration signal through the contraction of the thorax, measured by a belt fas-
tened to subject’s chest.

We should also notice that initially, we also acquired a EMG signal from driver’s arm,
however it proved a rather obtrusive measurement and raised safety issues, forcing us to

remove it.

3.2.2 Data collection protocol

The data were collected during real driving conditions in Greek national roads. Two types
of routes were selected to work on different stress and mainly fatigue levels:

e Joannina - Arta (75 kms). This is a high speed provincial road (considered highway)
with one lane per direction, not barrier separated, yielding potential stress.

e Joannina - Aridea (397 kms). This route is composed of 180 km of closed highway
(with minimum two lanes per direction, barrier separated) and 217 km of rural
road (one lane, not barrier separated with curves). This second route was selected
for combining both curved narrow road and monotonous non-congested motorway,
which was considered ideal for yielding both stress and fatigue conditions to the
driver.

The map in Fig. 5.28 indicates the routes driven during the conducted experiments.

In the beginning of every experimental procedure the ECG, EDA and respiration
sensors were attached to the driver and the two cameras were calibrated to monitor the
driver face and the road scenery respectively. From the laptop PC the acquisition software
was initiated and the recording of signals and videos (driver, road) started simultaneously.
After 60 min of driving the recording procedure was stopped and signals and videos were
stored for processing in batch mode. In the end of each session the driver made a shelf-
assessment of his state (in a three level scale for fatigue and in a two scale for stress) to
indicate the actual psycho-physiological condition.

In addition for stress annotation, intermediate on-route self-reports were given by the
driver in cases when he experienced short-term stress events due to situations/events
occurring on the road. These short-term stress events affected only temporarily his state
and they were reported vocally by the driver. The vocal report was used to avoid subject’s
distraction from the driving task and it was recorded by a speech recognition system. To
annotate this dataset (driving event and driver stress), both video recording and self
annotation of the driver was used.
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Figure 3.3: The equipment used for the data collection.

Driving took place in various hours of the day, so that recordings were collected along
different phases of the day cycle. The experiments had an average duration of 60 minutes.
The route no.1 (Ioannina - Aridea) was divided into subsequent one-hour-experiments
which were conducted in different roadway parts (motorway/ rural congested road) and
covered the whole distance of 397 kms. The self- annotation was again performed both
during driving and at the end of each 1-hour session. A significant number of experiments
were conducted at 6 am and 6 pm of the same day after few sleeping hours, with the
drowsiness of the subject reaching high level. Others were conducted with bad weather
conditions (heavy rain, fog) and intense traffic flow (high-speed vehicles, frequent braking,
overtaking) making the driver experience high levels of stress.

3.2.3 Dataset description

Eight subjects participated in the experiments performed in real driving conditions. The
majority of the data collected are from one subject. He performed more than 60 tours
during one-year-experiments. After some first testing sessions, he was rather familiar
with the equipment and allowed to be alone in the sessions. Thus the effect of monitoring
process on his physiological state was negligible. The subject participated in a large
number of sessions under different traffic and weather conditions.
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Table 3.1: Description of the dataset for real driving conditions.

Tour info Number of tours 37
Average Duration of Each Tour 50 min.

Condition States Number of Tours
Stress No 13
Yes 24
Fatigue Normal 9
Medium 15
High /Drowsiness 13
Environmental conditions No Rain 26
Rain 8
Heavy Rain 3
Normal Visibility 29
Medium Visibility (Late Evening) 6
Low Visibility (Fog/Night) 2

The dataset collected from the one year experiments is summarized in the Table 3.1,
where the total number of tours, average duration of each tour and number of road events
in all tours are indicated.

Figure 3.4(a) provides the average number of particular driving events per hour. We
observe that the most frequent event is the overtaking, which obviously has to do with
the driver’s behavior, the type of the road and the traffic conditions.

Figure 3.4(b) presents for each event, the percentage of instances annotated as a
stressful event. We observe that overtaking and hard braking are the events which are
mostly related with stressful situation in our dataset.

3.3 Experiments with a simulator

Although the initial setting of the algorithms was performed using the data gathered
from a single subject, a robust driver state recognition method should be able to apply
to subjects of different age, sex, lifestyle or experience. However, the biosignals and facial
features, used as inputs for driver status monitoring, vary significantly from subject to
subject, making the training of the system with multiple drivers mandatory. Considering
the difficulties in involving many subjects in the real-driving data collection procedure,
especially when fatigue is one state of interest, an additional phase of experiments was
introduced, monitoring subjects during driving in a simulated environment.

For this type of experiments a simulation environment was built to serve the execution
of experiments. Having as a baseline the simulator-based training used in similar research

works, our purpose was to built a rather simple simulator, that would allow us to monitor
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Figure 3.4: a) The number of specific event occurrences per hour b) The percentage of
each event instances that was annotated as stressful events.

the driver while performing the driving task under different psycho-physiological condi-
tions (varying from very stressful to normal and to high drowsiness states). Additionally,
the simulator could serve the monitoring of driving behavior parameters (steering, brak-
ing, lateral position) and the extraction of useful features, such as reaction time, reversal
rate, which could not be measured during real-world driving with the custom car.
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Figure 3.5: a) The number of instances of different fatigue levels and b) stress levels, for
every hour of day.

3.3.1 Equipment

In the laboratory driving experiments, the Logitech realistic force feedback wheel was
used allowing the controlling of:

e Force Feedback: supporting direct guidance of one’s way
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Sensor Placement and Logitech Steering Simulation Screen
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Figure 3.6: The simulation environment.

e Gas and Brake Pedals: getting instant response and feedback with carpet-grip foot
pedals

e Shifting: using paddle shifters or the manual knob for sequential precision
e Six Programmable Buttons

The force feedback wheel set is illustrated in the figure below.

A 3D driving simulation environment was developed (Fig. 3.6) using the Microsoft
XNA framework, which is based on the Directx3d. The world of this environment consists
of a roadway with a single lane, a vehicle moving in a constant speed on the road and
virtual obstacles. The software of the virtual driving world ran on a PC Pentium TII
workstation.

3.3.2 Signal Acquisition

The physiological signals monitored in the laboratory experiments are similar to the ones
measured during real-world experiments (ECG, EDA and respiration). The same off-
the-shelf equipment (Biopack MP-100) described in section3.2.1, is used in this type
of experiments. The equipment was now set up in the laboratory formulating a data
acquisition system for driver monitoring during simulated driving. The signal acquisition
software ran on a second workstation (PC Pentium III) together with the video acquisition
software.
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3.3.3 Video Acquisition

In laboratory testing a single camera was used to take video recordings from drivers’ faces.
The camera that equipped the custom car for the real driving experiments was also used
in the lab experiments. The camera was calibrated every time to focus on the subject’s
face and the video acquisition software run on the PC Pentium III that served also for
signal acquisition.

3.3.4 Software synchronization

To run the simulation experiments, the three separate software parts: i) the virtual driving
world (simulator), ii) the acquisition of physiological signals from the Biopack device and
iii) the acquisition of video recordings of driver’s face, should be synchronized. The basic
coordinator of the whole process was the signal acquisition which writes the data file
in a specific folder. The other two applications (video acquisition and simulator) run a
file watcher monitoring the same folder. The start of the signal acquisition triggers also
the start of the other two applications. The small delay introduced by the time the file
watchers need for triggering, is negligible, considering the synchronization requirements
of the applications.

3.3.5 Data collection protocol

In the beginning of every experimental procedure the subject completed a questionnaire
composed by an expert psycho-physiologist from well-established results regarding stress
scaling [40] and fatigue scaling [47]. Apart from profiling information (age, sex, experience,
frequency of exercise, etc), the subject was asked to answer questions about his/her
psychological status of the resent period. The questions were focalized on estimation
of subjects’ stress and fatigue levels and were used as an additional annotation measure
for experienced states to allow for further evaluation by experts in the field. The last part
of the questionnaire urged the subject to make a self-assessment of his/her current status
using the same scales for stress and fatigue used also in real experiments.

After completing the questionnaire, the subjects attached the biosensors (ECG, EDA
and respiration measurements) and the camera was calibrated for face monitoring. From
the PC-II the signal acquisition software was initiated and the recording of bio-signals
and face-video started simultaneously with the simulator running in the PC-I.

Every experiment was of 15 minutes duration. The subject was asked to focus on the
driving task, i.e. keep the vehicle within the road lane and avoid crashes with pedestrians
that appeared unexpectedly on the road, by pressing the brake pedal and stopping the ve-
hicle. From this primary task, measurements of and reaction times and lane keeping were
monitored. In addition to the primary driving task, a secondary-task request has been
used following the well-established PDT (Peripheral Detection Task) technique [55]. Dur-
ing driving sessions apart from pedestrians, other objects (animals) randomly appeared

48



Table 3.2: The description of the dataset in the simulation environment.

. . Stress Fatigue
Subject # Sex  Age # of Sessions o012 3lo12 3
1 Female 32 7 0 5 2 01 4 0
2 Male 25 19 2 9 2 613 4 1 11
3 Male 28 17 6 4 3 4|3 3 3 8
4 Female 28 14 29 2 113 2 2 7
5 Male 26 17 7 2 5 3|7 5 1 4
6 Male 25 10 2 2 5 1]1 0 6 3
7 Male 26 14 2 6 3 32 3 2 7
8 Male 29 12 T2 2 112 2 2 6
9 Male 28 11 2 2 4 3|1 1 9 0

outside the roadway (among trees). Once the objects perceived, the subject should re-
spond by pressing one of the control buttons of the steering wheel and the respective
reaction time was measured as well.

At the end of the experiment the signals and videos were stored in the subject’s data
folder. The same folder kept also the simulation measurement files (primary reaction
time, lane keeping, and secondary reaction time).

The same experiment was repeated 3 times along the day with the same subject: the
first session early in the morning when a reduced alertness and thus slow reaction times
were expected, the second at midday with the subjects typically fully alerted and the last
one late in the evening/night when fatigue is present.

3.3.6 Dataset description

Fifteen subjects participated in the experiments around the simulator and a total of
114 sessions were conducted. The Table 3.2 below summarizes the annotated dataset
gathered from 9 out of 15 subjects participating in the lab experiments. In Fig. 3.7(a)
the distribution of the subject’s age is provided, whereas in Fig. 3.7(b) the distribution
of the sleep hours before a session is also provided. The sleep hours are a very important
information, which is highly correlated with alertness and subject’s fatigue.
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CHAPTER 4

DRIVER STATE DETECTION

4.1 Introduction

4.2 Materials and Methods
4.3 Dataset

4.4 Results

4.5 Driving performance

4.6 Discussion

4.1 Introduction

Real-life car driving requires accurate and fast decisions by the driver, given only incom-
plete information in real time. A large number of fatalities occurring during car driving
could be avoided if behaviors such as driver inattention, stress, fatigue and drowsiness
were detected and appropriate countermeasures were produced. The determination of the
driver status in a vehicle is an active topic for the scientific community. However, the
detection of stress and fatigue level in drivers is a complex task, which requires expertise
in biosignal processing, computer vision, human factors, etc. The estimation of fatigue is
well-studied in the literature. The majority of relative works is based on in-lab experi-
ments, mainly focusing on face monitoring and blink detection to calculate eye activation
[142], while the vehicular experiments serve for indirect fatigue recognition through its
impact on driving issues (speed maintenance, steering control). These methods, however,
are suitable for the recognition of rather late stages of the fatigue (drowsiness) when the
effects on driver’s face are quite noticeable and performance change has already become
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critical. In the road environment, even earlier fatigue stages can affect driving perfor-
mance. This is because even lower fatigue levels still cause declines in physiological vigi-
lance/arousal, slow sensorimotor functions (i.e. slower perception and reaction times) and
information processing impairments, which in turn diminish driver’s ability to respond
to unexpected and emergency situations [94]. Therefore, the impact of fatigue on the
driver’s performance should not be estimated using only driving measures, but additional
parameters, associated with the driving performance, are needed (such as perceptual,
motor and cognitive skills) [154]. According to Crawford [23], physiological measures are
the most appropriate indicators of driver fatigue. This has been confirmed by numerous
studies, which followed similar approaches for driver fatigue estimation, making use of
biosignals obtained from the driver [5]-[8].

Bittner et al. [12] presented an approach for the detection of fatigue based on biosig-
nals acquired from the driver electroencephalogram (EEG), electrocardiogram (ECG),
electrooculogram (EOG) and video monitoring. They examined different features that
might be correlated with fatigue, such as the spectrum of the EEG, the percentage of
eye closure (PERCLOS) and the fractal properties of heart rate variability (HRV). They
concluded that the first two are more correlated with instant fatigue levels of the driver,
while the last is most suitable for the detection of the permanent state of the driver.
Li [85] addressed the estimation of driver’s mental fatigue using HRV spectrum analysis
using a simulator for data collection. The features obtained from HRV indicated high
correlation with the mental fatigue of the driver. Yang et al. [161] used heterogeneous
information sources to detect driver’s fatigue. The information sources included fitness,
sleep deprivation, environmental information (traffic, road condition, etc), physiological
signals (ECG, EEG) and video monitoring parameters (head movement, blink rate and
facial expressions). In order to combine all the above-mentioned information they used
the Dempster-Shafer theory and rules for determining whether the driver is in fatigue
state or not. Ji et al. [117] proposed a probabilistic framework for modelling and real-
time inferencing of human fatigue by integrating data from various sources and certain
relevant contextual information. They used a Dynamic Bayesian Network which encap-
sulates the time dependent development of fatigue symptoms. The estimation is based
on visual cues and behavioural variables. As research in the field progresses, a variety of
physiological signals has been used for fatigue detection. The most informative measures
in terms of fatigue recognition are those extracted from the EEG signal, which have been
used for the quantification of task specific performance changes [9]-[17]. However, the idea
of near future vehicles, capable of acquiring drivers’ EEG, is quite optimistic. Indicators
coming from measurements taken in a less obtrusive manner should be exploited in a real
life system.

Physiological measurements are also good indicators of the driver’s stress. Several
works in the literature focus on driver stress recognition based on biosignal processing.
ECG, electromyogram (EMG), respiration, skin conductivity, blood pressure and body
temperature are the most common signals collected from the driver in order to estimate
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the workload and the levels of stress he/she experiences. Healey et al. [43] presented a
real time method for data collection and analysis in real driving conditions to detect the
driver stress status. According to them, there is a strong correlation between driver status
and selected physiological signals (EMG, ECG, skin conductivity and respiration effort).
In another study, Healey et al. [46] specified an experimental protocol for data collection.
Four stress level categories were created according to the results of the subjects self report
questionnaires. A linear discriminant function was used to rank each feature individually
based on the recognition performance and a sequential forward floating selection (SFFS)
algorithm was used to find an optimal set of features to recognize driver stress. Healey
et al. [45], proposed a slightly different protocol, while the results showed that for most
drivers, the skin conductivity and the heart rate are most closely correlated to driver
stress level. Zhai et al. [163] developed a system for stress detection using blood volume
pressure, skin temperature variation, electrodermal activity and pupil diameter'. Rani et
al. [120] presented a real time method for driver’s stress detection based on the heart rate
variability using Fourier and Wavelet analysis. Liao et al. [86] presented a probabilistic
model for driver’s stress detection based on probabilistic inference using features extracted
from multiple sensors.

The well-established literature in stress and fatigue detection problems has revealed a
number of features, highly correlated to the one or the other state. However, according to
our knowledge, all studies focus only on one specific driver affective state (either fatigue
or stress), although in practice they both influence the physiology of the driver and hence
his physiological responses. Putting such systems in practice could make the estimation
of drivers state less effective compared to experimental settings, as in real driving simul-
taneous presence of both fatigue and stress could occur making discrimination of different
possible states more difficult.

Having this in mind, we developed a driver status recognition methodology for simul-
taneous stress and fatigue detection. Our methodology employs features coming from
(i) a set of driver’s biosignal recordings (ECG, electrodermal activity, respiration), ii)
video recordings from driver’s face, iii) environmental conditions (weather, visibility and
traffic). In our work we select the features with higher contribution to the classification
of the states under investigation. Furthermore, we evaluate the contribution of different
groups of features (biosignals, video and environmental features), in order to investigate
which group is more associated to a specific driver’s state (fatigue and stress). Using
the selected features, we examine the performance of four different classifiers (namely the
SVMs, the Decision Trees, the Naive Bayes and General Bayesian classifier) on the driver
state recognition accuracy. The proposed methodology allows for simultaneous estima-
tion of stress and fatigue levels using the minimum set of physiological signals in the less
obtrusive manner. Applying our methodology, changes in driver’s state are estimated at
an early stage before they critically affect driving performance.

!The measure through the center of the adjustable opening in the iris of the eye, terminated at both
ends by its circumference.
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Having developed a sound methodology for driver’s state estimation we also study
whether the estimated changes of driver’s state affect driving performance. To perform
this study, we have developed a driving simulation environment, which allows us to moni-
tor a set of driving performance measures (steering, braking, lane keeping, reaction time)
and examine their association with the subject’s physiological state. A series of laboratory
experiments are conducted around the driver simulator. As drivers are not easily stressed
when using a simulator, our study focuses only on the association of the estimated fatigue
and the deterioration of driving performance.

In the following sections we first describe the proposed methodology (Section 4.2).
The dataset obtained in real driving conditions is then presented (Section 4.3). In section
4.4 the obtained results are presented. In section 4.5 we shortly present our study of
fatigue impact on driving performance. A discussion on the methodology and the results
follows (Section 4.6).

4.2 Methodology

The methodology consists of three main steps (depicted in Fig. 4.1):

(I). Preprocessing and feature extraction which is decomposed in three streams: (I-
a) signal acquisition, preprocessing and feature extraction, (I-b) video acquisition
processing and feature extraction and (I-¢) environment information extraction.

(IT). Feature selection.

(IIT). Classification.

These steps are described in details in the following paragraphs.

4.2.1 Step I-a: Signal acquisition/pre-processing and feature ex-

traction

The physiological signals which are reported in the literature as the most significant in-
dicators of subjects’ fatigue and stress, are: blood pressure, EEG, EOG, ECG, heart rate
variability, skin conductivity and respiration [163, 141, 66]. However, in order to set up
a real time system for driver stress and fatigue monitoring in real driving conditions, the
sensors for the physiological signal acquisition should be minimally obtrusive. Taking
this into consideration, the recorded physiological signals in our work are limited to the
following signals: (i) Electrocardiogram (ECG) through a g.ECG sensor which is placed
on the subject’s chest, (i) Electrodermal Activity (EDA) through two Ag/Ag.Cl electro-
dermal activity sensors attached on the subject’s middle and index fingers of the right
hand and (iii) the respiration rate using a g.RESP Piezoelectric Respiration Sensor which
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Figure 4.1: The steps of the methodology for driver stress and fatigue classification.

is placed around the subject’s thorax. The Biopac MP-100 system is used for signal ac-
quisition. The ECG signal is acquired at sampling frequency 300Hz while the EDA and
the respiration signal at 50 Hz. The resolution is set to 12-bit for all signals.

ECG signal

The Biopac system, has an option of acquiring only the R-waves of ECG signals, which
are more robust to noise?. This option is used in the real driving conditions, since the
noise from the subject’s movement introduces high noise in the ECG signal. In order
to obtain useful indicators of the subject’s states under investigation (fatigue and stress)
we first perform some necessary preprocessing steps on the raw signals. The features
are extracted in time windows of 5 minutes, that is a reasonable compromise between
the need of sufficient sample size in order to have reliable statistic properties and the
need of small window to capture the changes in the psycho-physiology of the driver [26].
In order to extract the RRV signal from the ECG, an accurate estimation of R peaks is
needed. Initially, a lowpass ButterWorth Filter is applied to the ECG signal to remove the
baseline wonder. Then the R peaks are detected, using the procedure described in [119].
Furthermore, since the errors in the RR interval estimation and in RRV extraction can
have serious impact in the spectrum estimation and thus in the features calculated from
the spectrum, we also visually correct the initial R estimation of the algorithm through

2The output signal is a positive peak only when a R-wave is detected. This function is useful for
heart rate calculations when a well-defined peak is desired as it tends to remove any components of the
waveform that might be mistaken for peaks.
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a specifically built application. After ECG preprocessing and R peak detection, the R-R
intervals are estimated as the time differences between successive R peaks. Those R-R
intervals constitute the RR variability signal (RRV). The next step is the interpolation of
the RRV series in 4 Hz samples and downsampling to 1 Hz. This is an important step if
ordinary spectrum estimation methods are to be applied (FFT, AR)?. After interpolation
the low frequency (0.01 Hz) trend of the signal is removed using a ButterWorth filter.
The FFT transform H(f), of the signal (calculated at 1024 samples) is extracted and the
spectrum of the signal is obtained as P(f) = |H(f)H(f)*|. The following features are
calculated from the spectrum:

e The ratio of the very low frequency (VLF) [0.01-0.05 Hz| energy to the total signal
energy.

e The ratio of the low frequency (LF) [0.05-0.2 Hz| energy to the total signal energy
minus the VLFE energy.

e The ratio of the high frequency (HF) [0.2-0.4 Hz| energy to the total signal energy
minus the VLF energy.

e The ratio of the LF to the HF components.

We also calculate the Spectrum Entropy (SE) of the signal,

_ P
SE = Y p(f)logp(f). (4.2)
f

The SE can be considered as a measure of the deterministic behavior of the RRV. The
Detrended Fluctuation Analysis (DFA) [113, 14, 30] and Lyapunov exponent analysis
[116] are applied on our 5 min intervals of the RRV recordings.

EDA signal

The EDA signal is downsampled to 1 Hz. A smoothing filter is applied, since in many cases
noise is evident in the signal; then the low frequency 0.01 Hz of the signal is removed which
is considered as the skin conductance level (SCL). The first absolute difference (FAD) of
the remaining signal is calculated, giving a measure of the skin conductance response
(SCR):

FAD = |yi1 — uil- (4.3)

3FFT: Fast Fourier Transform, AR: AutoRegressive spectrum estimation methods.
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Respiration signal

The respiration signals have high signal to noise ratio and only in cases with subject’s
sudden movements, noise exists. The signal is downsampled to 10 Hz and the wonder
is removed. The power spectrum of the signal, using FFT transform, is extracted. A
smoothing of the power spectrum follows, and the maximum energy frequency between
0.1 Hz and 1.5 Hz is selected as the dominant respiration frequency (DRF). Furthermore,
we extract another feature which is the ratio of the heart rate to the respiration rate.
As respiration is a main modulator of the cardiac function, the hypothesis is that for
normal/relaxed conditions the ratio of heart to respiration rate is constant and changes
are observed only in abnormal conditions, such as stress and fatigue. Given the mean
RR intervals and the dominant respiration frequency the ratio of the heart rate to the
respiration rate is calculated as:

HeartRate _ 60/(MeanRR)
RespirationRate 60 - D.R.F.
1

B (MeanRR)(D.R.F.) (4.4)

4.2.2 Step I-b:Video acquisition/processing and feature extraction

The video of the face of the driver is processed following the approach described in [145,
32]. The first step is the detection of the face and the second is the detection of eyes. The
information of interest is: (i) the movement of the head, which could be an indicator for
both stress and fatigue and (ii) the mean level of eye opening as an indicator of fatigue.
We also calculate an estimation of PERCLOS, considering eye closure when the confidence
of eye presence is less than zero. As a measure of head movement, the standard deviation
of the face position in the video frame is used, and as a measure of eye opening we use the
confidence of eye detection (provided in [145]). If the eyes are wide open this confidence
is high, while for near close eyes it is quite low. As video is not available for all sessions
(e.g. due to low quality recordings) the sessions without video recordings, can be treated
as missing values. The K-NN algorithm is used for replacing the missing data in the
combined data for video and physiological features for all sessions. K is set to 3 and the
weighted Fuclidean distance is employed.

4.2.3 Step I-c: Environment information extraction

In our methodology we introduce driving environmental information. For this purpose,
a forward looking camera for road monitoring is employed. From road monitoring video,
useful information about driving environment conditions during each session is manually
extract. This information concerns weather, road visibility and traffic conditions. Bad
weather and low visibility are reported as important stress factors [20]. Another important
stress factor is traffic density [151, 50]. Using the video recordings of the road scenery,
we manually extract a metric of the traffic load of the road during the 5 min interval. All
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Table 4.1: The features used in this study and the code name assigned to each feature.

Source Feature Code
Physiological Mean RR F1
Signals Std of detrended RR F2
Proportion of RRV energy on very low frequency band (VLF) F3

Proportion of RRV energy on low frequency band (LF) F4

Proportion of RRV energy on high frequency band (HF) F5

LF/HF F6

Mean EDA level F7

First absolute differences F8

Mean Respiration Rate F9

RRV Detrended Fluctuation Analysis (DFA) F10

Respiration Spectrum Entropy F11

RRV Lyapunov Mean exponent F12

RRV Lyapunov Max exponent F13

HR (bpm)/Resp. Rate (bpm) F14
Face Video Mean Eye Activation Vi
Std of Eye Activation V2

Std of Head Position V3

PERCLOS V4
Environment Weather conditions S1
Visibility S2
Traffic conditions S3

environmental variables are categorized in three states (good/bad/very bad weather, very
low/low/good visibility and low/medium/high traffic density).

4.2.4 Step II: Feature selection

The majority of the features extracted in Step I are the most common features used in
similar studies. However, a classifier using all those features would lack robustness. For
this reason we employ feature selection. Such an approach is a prerequisite in cases where
the ratio of data to features is low. Furthermore, introducing redundant features or fea-
tures highly correlated can deteriorate the classification performance. Therefore, to build
a robust classifier for stress and fatigue detection, we have to evaluate the contribution of
each feature as an indicator of these states. We used four measures for ranking features
with respect to their discrimination power for the problems under investigation: i) Relief
[134], ii) Information Gain, iii) Information Gain Ratio and iv) the difference in the area
under curve (AUC) of a classifier based on the specific feature and a random classifier
(DAUC). We follow with a more detailed description of the four measures.
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Input: m training vectors on n attribute and class label for each vector.
Output: w = {wy, -+, wy}
Set all weights to zero w := 0
for all data point x do
Find nearest hit sample NH and nearest miss sample NM.
for j=1---ndo
w; = w; + dist(zV, NMY) — dist(zD), NHW)

Algorithm 1: Relief

Relief

The Relief algorithm [134] iteratively estimates the feature weights according to their
ability to discriminate between neighboring data points. In each iteration, for a random
sample x, two nearest neighbors of x are found. The first one belongs to the same class
with x, which is referred as the nearest hit (NH), whereas the second one to a different
class, which is referred as the nearest miss (NM ). The goal of the Relief algorithm, outlined
in Algorithm 1, is to rank features according to their minimum nearest hit average distance

and maximum nearest miss average distance.

Information Gain and Information Gain Ratio

We should first introduce the entropy of a discrete random variable X with K discrete
states, denoted as H(X):

H(X)=- ZP(X — 2;)log P(X = 1), (4.5)

where P(X = xz;) the probability of the i-th state. The conditional entropy of a variable
Y, conditioned on variable X is defined as

H(Y|X) = ZP z;)log P(Y|X = ), (4.6)
where P(Y'|X) is the conditional distribution of Y given X. Now given a variable C' the
information gain (/G) of the variable X with respect to C' is defined as

G(C|X)=H(C)—-H(C|X). (4.7)

This is a measure of how informative is a variable X about the distribution of the variable
C, which is the problem’s class in our case. The information gain ratio (/GR) is a variant
of the information ratio, defined as:

IGR(C|X) = H(C) — H(C|X)/H(X). (4.8)

In order to apply the above measures in our data, we discretize our data in ten bins with
equal width.
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Difference of area under curve (DAUC)

The DAUC is the difference of are under curve of a classifier based on a specific feature
and a random classifier. The output of the classifier based on a specific feature C'(z), for
a binary problem with two possible outcomes €', and Cy, is defined as:

ChiE S i
Cl(z) = 4.9
(z) { Co>1t (4.9)

where ¢ is a threshold. The ROC of this classifier is extracted, modifying the value of
t. The area under curve of an optimal classifier is 1. Extracting the area under curve
of a random classifier which is 0.5, the DAUC of the optimal classifier is 0.5. Thus,
features with DAUC near 0.5 are considered to be optimal. In order to select the optimal
feature set for more than one classification problems, the average DAUC of each feature
is calculated. Then features are sorted according to their average DAUC, obtaining a
feature ranking (see Section 4.4).

Based on the abovementioned measures, we obtain a weight w;; of each feature ¢, and j
corresponds to the measure used for the feature ranking. We then normalize the weights:

(I
/ )
w.. = J

Yy wey

and the final weight of each feature W; is the average of the normalized weights:

Wi=> w. (4.11)
J

(4.10)

Finally we rank the features according to their weight W;. The final number of the
features incorporated in the classification process, was determined after a test and trial
experimental procedure, in order to obtain the best accuracy in both fatigue and stress
classification.

4.2.5 Step III: Classification

The third step of our methodology is classification. The performance of four different
classifiers is examined. In this section we briefly describe the classifiers used for fatigue
and stress classification.

Support vector machines (SVM): Each instance in the training set contains one ” target
value” (class labels) and several ”attributes”. The goal of the SVM is to produce a model
which predicts the target value of data instances in the testing set in which only the
attributes are given. Let a training set of instance-label pairs be (z;,y;), where z; € R is
the training vector, belonging to one of the classes generating the data, N is the number
of the extracted features in the training set and y; indicates the class of x;. The support
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vector machine requires the solution of the following optimization problem:

N
.1 g
VIEZIJ,I%(EW W—I—c;@), (4.12)
subject to:
yi(who(z;) +b) > 1-¢, (4.13)
& > 0, (4.14)

where b is the bias term, w is a vector perpendicular to the hyperplane separating the
classes, ¢ is the factor of classification error and ¢ > 0 is the penalty parameter of the
error term. The training vectors x; are mapped into a higher dimensional space F' by the
function ¢ : R® — F. SVM finds a separating hyperplane with the maximal geometric
margin and minimal empirical risk R.,,, in the higher dimensional space. R, is defined
as:

N
1
Remp = ﬁ Zz_l: ‘yl - f(xha)’; (415)

where f is the decision function defined as:
N
fl@) = yia;K (z;,z) +b, (4.16)
i=1

where K (z;,2;) = ()" ¢(z;) is the kernel function, a; are weighting factors and b is the
bias term. In our case the kernel is a radial basis function (RBF) which is defined as:

K(z;,z;) = exp(—7||z; — xj||2), v >0, (4.17)

where v = # is the standard deviation. The RBF kernel, which is used in our exper-
iments, non-linearly maps samples into a higher dimensional space, thus, it can handle
the case when the relation between class labels and attributes is nonlinear. In our case
v =1 and ¢ = 10. In the case of more than two classes classification, the one-against-all
strategy is followed.

Decision Trees: To construct the decision tree we use the C4.5 inductive algorithm
[118]. The construction of the tree is based on a greedy approach. At each step there will
be some number of candidate regions in input space that can be split, corresponding to
the addition of a pair of leaf nodes to the existing tree, which initially is empty. In our
problem, the features are continuous valued. Therefore, they can be incorporated into
the decision tree by partitioning them into a set of discrete intervals. For each continuous

feature x, a new Boolean feature is created:

1, <t
X, = ’ - 4.18
! { 0, otherwise. ( )

The selection of the threshold ¢ is conducted through a process of generation of a set of
candidate thresholds which produce a high information gain (see section 4.2.4). Those

61



candidate thresholds are evaluated and the one that produces the maximum information
gain is finally chosen. The algorithm of [118] has the advantage of solving the over-fitting
problem by using a post pruning method.

Naive Bayes Classifier: The Naive Bayes classifier is based on the Bayes Theorem and
the assumption of independence among variables. Despite the fact that the independence
assumption is considered as poor in general, this classifier works well even in complex
situations. Let again a set of instance-label pairs (x;,y;) where z; € R and y; € Y the
class producing ;. The probability model for a classifier is abstractly a conditional model:

p(ylX) = p(ylz1, ... an). (4.19)
Applying the Bayes” Theorem:

PP, anly)
p(z1, .y TN)

p(ylz1, oy tn) = (4.20)
The denominator of the fraction is effectively constant. Thus, in practice we are only
interested in the numerator of that fraction, which is equivalent to the joint probability
model:

p(y7fE17----7IN)- (421)
Using the conditional independence assumptions we can write the joint probability as:

p(y, w1, o) = p(y) [ [ plwily)- (4.22)

i=1
Then, under the aforementioned independence assumptions, the conditional distribution
can be expressed as:

plyfo1, o) = o(o) [[ el (4.23)

where Z is a scaling factor. This is a more manageable form, requiring (C' — 1) + NRC
parameters where R is the number of parameters for the p(z;) model and C'is the number
of classes.

General Bayesian Classifier: This classifier is based on the same philosophy as the
Naive Bayes, without the hypothesis of feature independence. For example, in cases
of continuous features following a Gaussian distribution, in the Naive bayes case the
covariance matrix is diagonal while in the General Bayes classifier the covariance is a full
positive definite matrix.

4.3 Dataset

The dataset collection was performend driving conditions, which helps to recognize and
understand the true physiology of the driving task, and measure the subject’s reactions
to common driving conditions, such as bad weather and traffic congestion. The subject
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collection and
storage

Biopac MP100 amplifier and
acquisition System

Figure 4.2: The acquisition system for real driving conditions.

under investigation is a 28 years old, healthy male, with two years of driving experience.
Next, the experimental settings and protocols for the data collection is described.

The equipment that was used in order to acquire the needed information included: (i)
a Biopac MP-100 for signal acquisition of the driver (ECG, EDA and Respiration). This
equipment was installed on the back seat of the vehicle and the sensors were attached to
the driver as depicted in Fig. 4.2. (ii) A camera monitoring the road is used only for
annotation reasons, (iii) a camera monitoring driver’s face. Before the begining of the
annotated sessions, the subject conducted a number of long lasting sessions in order to
familiarize with the equipment. The duration of the data collection in real conditions
was approximately 18 months and a sufficient number of driving events under different
conditions was encountered. The total number of tours (37 experiments), average duration
of each tour and encountered conditions in all tours are shown in Table 5.1. Sessions are
covering the whole day duration (07.00 - 24.00) so as to capture different fatigue levels
(Fig. 4.3). The driver annotation was performed at the end of each session, by self
annotating his state. A three scale of fatigue levels (normal, low fatigue, high fatigue) and
a two scale for stress levels (normal, stress) are used, following a human factors expert’s
suggestion.

4.4 Results

The first step of our methodology is the preprocessing and feature extraction described
in sections 4.2.1 and 4.2.2. The features extracted, are summarized in Table 4.1. The
next step in our methodology is feature selection. In section 4.2.4 the DAUC measure, is
described for a two class classification problem. For stress classification the application of
the described method is straightforward since two classes exist. For fatigue classification,
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Table 4.2: Description of the dataset for real driving conditions.

Tour info Number of tours 37
Average Duration of Each Tour 50 min.

Condition States Number of Tours
Stress No 13
Yes 24
Fatigue Normal 9
Medium 15
High /Drowsiness 13
Environmental conditions No Rain 26
Rain 8
Heavy Rain 3
Normal Visibility 29
Medium Visibility (Late Evening) 6
Low Visibility (Fog/Night) 2

which is a three class classification problem, the problem is decomposed in four two-
class subproblems (normal vs low fatigue, normal vs high fatigue and low fatigue vs high
fatigue). The DAUC of each feature for all abovementioned classification problems is
given in Fig. 4.4(a). Sorting the features according to their average DAUC we obtain a
ranking of the features, depicted in Fig. 4.4(a).

The average ranking of the four measure described in Section 4.2.4, is depicted in Fig.
4.4(b). The physiological features with higher average ranking are mean RR (F1), std
of RR (F2), LF/HF ratio (F6), mean EDA level (F7), First absolute differences of EDA
(F8), mean respiration rate (F9) and HR (bpm)/Resp. Rate (bpm) (F14). From the
video features, std of eye activation (V2) and PERCLOS (V4) are better indicators for
fatigue, whereas std of head positions (V3) is a better indicator of stress. Finally from the
environmental conditions, the weather conditions (S1) seem to be the most important. In
Table 4.3 we present the correlation among physiological and video features. Correlation
analysis shows that the indicators F1-F2, F1-F6, F1-F9 and F7-F8 are rather correlated.
Finally, all these features were kept, as removal of any of them did not increase the
performance of the selected classifiers; instead it tended to decrease the accuracy.

The third step of our methodology is classification. The classifiers tested are described
in section 4.2.5. To provide unbiased results we followed two procedures. The steps of
the first one are:

e 50 balanced datasets from the original one were extracted. Let K the number of
samples for the class containing the fewer samples. K random samples are selected
from all other classes and are combined in one dataset having which includes K x C'
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Figure 4.3: The distribution of the sessions during the day.

samples, where C' is the number of classes.

e For each of the 50 datasets we perform stratified 10-cross validation using the clas-
sifiers described in section 4.2.5 and we obtain the confusion matrix.

e The mean of each entry of the confusion matrix is calculated.

In the second procedure, we perform a leave one session out method, each time keeping
one session for testing and the rest for training. The use of two different classification
procedures, will allow to investigate possible bias in the presented results.

The measures used to evaluate the performance of the different classifiers are the
following;:

e Confusion Matrix: A C' x C' matrix, where C' is the number of classes. The element
¢;; corresponds to the instances of the class ¢ which are classified as class j. The
diagonal elements ¢;; are the correct classified instances.

e Sensitivity per class: The fraction of correctly classified instances of a class to the
total number of instances belonging to that class.

e Specificity per class: The fraction of the correctly classified instances for a class to
the total number of instances classified as the specific class.

e Overall accuracy: The fraction of the total number of correctly classified instances
to the total number of instances
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Figure 4.4: (a) The DAUC of physiological and video features for normal vs high fatigue,
normal vs low fatigue, low fatigue vs high fatigue and normal vs stress, as well as the
average DAUC for all problems. (b) The average feature ranking with the four ranking
measures for the problems of fatigue and stress classification.
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In Tables 4.4 and 4.5, we present the results for fatigue and stress classification using
three sets of features: (i) only physiological features, (ii) physiological and video features
and (iii) physiological, video and environmental features. In these tables the sensitivity
and specificity per class, as well as the total accuracy for all classifiers and feature sets are
given. For the two-class stress problem the information provided is sufficient to evaluate
the performance of the classification. However for the three-class fatigue problem a better
insight is given through the confusion matrix of the classification. From Tables 4.4 and 4.5
we observe that SVM had the best performance in all feature sets for classification of both
states, whereas Naive Bayes classifier had the worst (up to 12% lower accuracy compared
to SVM in some cases). In Table 4.4 we observe that the highest accuracy for fatigue
classification was obtained using the full feature set (88% with SVM). When limited
feature sets are employed the difference is rather small (85% with physiological features
and 87% with physiological and video features, both obtained using SVM). In Table 4.8
detailed classification results (containing also the confusion matrix) are given using the
full set of features. It can be noticed that the main source of misclassification is in the low
fatigue class. From Table 4.5 we observe that for stress classification the incorporation of
additional features, in contrast to fatigue detection, significantly increased the obtained
accuracy. The 78% accuracy obtained by physiological features climbs to 86% using
physiological, video and environment features.

In Tables 4.6 and 4.7 we present the results obtained using the second classification
procedure, where one session was kept for test and the rest for training. In these results
we use the full set of selected features (physiological, video and environmental features).
We observe that there is no significant difference in the obtained accuracies compared
to Tables 4.5 and 4.4 where the first classification procedure was used. This is a strong
indication that the results presented here, are not biased from the classification procedure
followed.

In our analysis we also study the contribution of each sensor to the classification
results. As already described the features used in our experiments come from physiological
signals, video monitoring of driver’s face and environmental information. As features are
extracted from signals obtained from different sensors, features can be grouped into five
groups each of them related to a specific sensor of the experimental setting. Such an
analysis can give a significant insight for the importance of each sensor when building a
system for driver state monitoring. Physiological features are grouped in features coming
from RRV, features coming from EDA and features coming from respiration. The other
two groups are the features from video and environmental features, respectively. We then
evaluate the contribution of each group of features in the classification performance, with
the following two procedures: (i) we perform the classification with the whole feature set,
removing each time a group of features belonging to a specific sensor and we measure the
decrement in accuracy. (ii) We perform classification using only features coming from a
specific sensor. In Figs. 6.9(a) and 6.9(b) we present the results with the two procedures.
The conclusions from both procedures are identical. For fatigue classification, the most

68



18 4

16

14

12

10
M Fatigue

Stress

% of Accuracy decrement

ECG EDA RESP Video Environment
(a)
90 -
83,5
80,53
80 1 76,57
3,93 74,59 75,25
69,97
70 -
62,05,
59,08,

60 1 56,11
R 50
g
§ M Fatigue
< 40 Stress

30 4

20

10

0 -

ECG EDA Resp. Video Environment

Figure 4.5: (a) The percentage of accuracy reduction after removing groups of features
from the original feature set and (b) the accuracy obtained using only features from the
specific sensor. RRV denotes features that are extracted from the RRV signal, EDA fea-
tures that are extracted from the EDA signal, RESP features that are extracted from
respiration, VIDEO features from video processing and Environment for features indicat-
ing environmental conditions.
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Table 4.4: Results for the fatigue classification problem using three feature sets. For each
classifier, the sensitivity (Sens.) and the specificity (Spec.) per class are given as well as
the total accuracy (Acc.).

Normal Low Fatigue | High Fatigue

Sens. Spec. | Sens. Spec. | Sens. Spec. | Acc.
Physiological SVM 0.87 082 | 071 0.81 | 0.96 0.90 | 0.85
features Decision Trees 0.76  0.76 0.73 0.72 094 095 | 0.81
Naive Bayes 0.81 074 | 049 0.67 | 092 0.79 | 0.74
Bayes Classifier | 0.88 0.74 | 0.50 0.74 | 0.94 0.83 | 0.77
Sens. Spec. | Sens. Spec. | Sens. Spec. | Acc.

Physiological SVM 08 08 | 0.76 082 | 099 092 | 0.87
+Video Decision Trees | 074 0.74 | 0.70 0.70 | 0.94 095 | 0.79
features Naive Bayes 070 083 | 063 064 | 092 0.78 | 0.75

Bayes Classifier | 0.79 079 | 064 0.70 | 0.92 0.85 | 0.78
Sens. Spec. | Sens. Spec. | Sens. Spec. | Acc.

Physiological SVM 089 087 | 0.79 0.84 | 096 0.92 | 0.88
+Video Decision Trees 074 074 | 071 070 | 0.94 0.95 | 0.80
+Environmental Naive Bayes 0.70 086 | 065 0.64 | 092 0.79 | 0.76
features Bayes Classifier | 0.76 083 | 0.73 0.71 | 0.93 0.88 | 0.81

significant sensor is the ECG, whereas in stress classification no sensor appears to be
dominant. Thus, a reliable fatigue detection system, could be solely based on an ECG
sensor. On the other hand, for a stress detection system, the fusion of more information
sources seems inevitable.

4.5 Physiological state and driving performance

Our proposed methodology showed good performance even in the detection of early stages
of fatigue (low fatigue state). In order to investigate whether these early fatigue stages are
worth recognizing, we performed a study to examine the impact of driver’s fatigue levels on
driving performance. The goal of our study was to verify that the detected fatigue levels
are associated with the deterioration of driving performance. A simulation environment
was developed to measure driving performance in terms of subject’s sensorimotor functions
(i.e. perception and reaction times). The simulation driving world was based on the
Microsoft XNA framework as it is shown in Fig. 4.6. The vehicle is controlled by the
Logitech’s Momo racing wheel. The subject was asked to focus on the driving task, i.e.
keep the vehicle within the road lane and avoid crashes with pedestrians which appeared
unexpectedly on the road, by pressing the brake pedal and stopping the vehicle. From
this primary task, measurements of steering control and reaction times are monitored.
In addition to the primary driving task, a secondary-task request is used following the
well-established PDT (Peripheral Detection Task) technique [55]. During the experiments
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Table 4.5: Results for the stress classification problem using three feature sets. For each
classifier, the sensitivity (Sens.) and the specificity (Spec.) per class are given as well as
the total accuracy (Acc.).

Normal Stress

Sens. Spec. | Sens. Spec. | Acc.
Physiological SVM 079 078 | 0.78 0.79 | 0.78
features Decision Trees 0.78 0.7 | 0.75 0.77 | 0.76
Naive Bayes 0.79 063 | 0.54 0.72 | 0.66
Bayes Classifier | 0.85 0.63 | 049  0.77 | 0.67
Sens. Spec. | Sens. Spec. | Acc.

Physiological SVM 0.80 0.90 0.91 0.82 | 0.86
+Video Decision Trees 0.80 0.81 0.81 0.80 | 0.81
features Naive Bayes 082 0.71 0.66 0.79 | 0.74

Bayes Classifier | 0.85 0.71 | 0.65 0.82 | 0.75
Sens. Spec. | Sens. Spec. | Acc.

Physiological SVM 0.88 085 | 0.84 0.88 | 0.86
+Video Decision Trees 0.82 081 | 0.80 0.81 | 0.81
+Environmental Naive Bayes 08 076 | 0.74 0.83 | 0.79
features Bayes Classifier | 0.86 0.76 | 0.73 0.83 | 0.79

apart from pedestrians, other objects (animals) randomly appeared outside the roadway.
Once the objects perceived, the subject respond by pressing one of the control buttons of
the steering wheel, and the respective reaction time is measured.

The physiological signals monitored in the laboratory experiments are similar to the
ones measured during real-world experiments (ECG, EDA and respiration). The same
off-the-shelf equipment (Biopac MP-100) is used in this type of experiments. In the
laboratory testing, a single camera is used to take video recordings from the driver’s
face. The same annotation method based on self-reporting is followed. Furthermore, the
subject was asked to report the time he got awake and the hours of sleep. The total
number of sessions gathered is 24 and each session duration is 12 minutes. From those
sessions, in 12 the subject was in normal state, 7 in low fatigue and 6 in high fatigue.
Each session is split in two 5 minute intervals (first and last minute are excluded).

4.5.1 Fatigue and driving performance measures

Some useful measures for driving performance are extracted, based on the task involved
in the experimental protocol. The first category of measures involves the reaction time
of the driver both on primary and secondary tasks. The reaction time is a good measure
of subject’s alertness. In order to evaluate the reaction time, the time passed from the
moment that the object appeared on the screen until the subject presses the brake pedal
(for the primary task) or the button (for the secondary task) is measured. The association
of the fatigue levels with driving performance, is evaluated using the following measures:
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Table 4.6: Results for the stress classification problem using three feature sets. For each
classifier, the sensitivity (Sens.) and the specificity (Spec.) per class are given as well as
the total accuracy (Acc.).

Normal Stress

Sens. Spec. | Sens. Spec. | Acc.

SVM 0.78 090 | 096 0.90 | 0.90
Decision Trees | 0.84 087 | 094 0.92 | 0.90
Naive Bayes 0.77 078 | 0.89 0.89 | 0.85
Bayes 0.80 0.79 | 0.89 0.90 | 0.86

Table 4.7: Results for the stress classification problem using three feature sets. For each

classifier, the sensitivity (Sens.) and the specificity (Spec.) per class are given as well as
the total accuracy (Acc.).

Normal Low Fatigue | High Fatigue
Sens. Spec. | Sens. Spec. | Sens. Spec. | Acc.
SVM 0.73 092 | 0.87 0.70 | 092 095 | 0.86

Decision Trees | 0.72 090 | 089 0.72 | 0.93 0.96 | 0.86
Naive Bayes 0.62 078 | 0.72 058 | 0.89 091 | 0.77
Bayes 059 075 | 0.72 058 | 0.89 0.92 | 0.77

mean and standard deviation of reaction time on primary task, mean and standard de-
viation of reaction time in secondary task and standard deviation of the vehicle position
from the center of the lane.

In Table 4.9, the mean+tstandard deviation of the driving performance measures, for
normal, low and high fatigue states are given, as those are self reported by the subject.
The P value using the hypothesis that driving performance is not better in the normal
state is also given. When the subject is in low fatigue state, a significant decrease in
driving performance is observed, expressed in average reaction times for both primary
and secondary tasks. In the high fatigue state all performance measures are significantly
worse, as expected. Our analysis verifies that changes in driver’s state that are detected
by our methodology do correspond to driving performance changes.

4.5.2 Prediction of driving performance

During the experiments we also gathered the physiological signals described before, and
we extracted the same feature set, summarized in Table 4.1. In Table 4.10 we present
the correlation of the physiological features with the driving performance measures. We
also present the correlation of the physiological measures with the hours of sleep and
hours of awake, as well as the correlation between driving performance measures. We
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Table 4.8: Confusion Matrix, Sensitivity (Sens.) and specificity (Spec.) for each class for
the classification of normal (N), low fatigue (LF) and high fatigue (HF) classes for the
four classifiers and use of physiological, video and environment features.

SVM Decision Tree
N LF HF N LF HF.
N 89.12 | 12.82 | 0.08 N 74.14 | 25.12 | 1.60
LF 10.88 | 78.90 | 3.86 LF 25.76 | 70.54 | 4.56
HF 0.00 | 828 |96.06 | HF 0.74 | 0.71 | 93.84

Acc. | 0.88 Acc. | 0.80

Class | Sens. | Spec. Class | Sens. | Spec.

N 0.89 | 0.87 N 0.74 | 0.74

LF 0.79 | 0.84 F 0.71 | 0.70

HF 0.96 | 0.92 L.F 0.94 | 0.95
Naive Bayes Bayes
N LF HF N L.F HF

N 69.54 | 11.40 | 0.00 N 75.84 | 15.06 | 0.00
LF 28.84 | 65.12 | 8.04 LF 23.24 | 72.86 | 7.20
HF 1.62 | 2348 | 91.96 || HF 0.92 | 12.08 | 92.80

Acc. | 0.76 Acc. | 0.81

Class | Sens. | Spec. Class | Sens. | Spec.
N 0.70 | 0.86 N 0.76 | 0.83
LF 0.65 | 0.64 LF. | 073 |0.71
HF 0.92 | 0.79 HF. | 094 | 0.81

Table 4.9: The mean + std of driving performance measures for normal, low and high
fatigue states. The fourth and sixth columns are the P values using the hypothesis that
performance measures are significantly better (i.e. lower mean and std of reaction times)
in normal state (N.), compared to low (L.F) and high (H.F.) fatigue states, respectively.

Reaction Time N. (N=22) | L.F. (N=14) P-value | HF. (N=12) P-value
Primary Task mean RT 0.90£0.15 1.03+0.18 0.0353 1.19+0.24 0.0002
Secondary Task mean RT | 0.52+0.05 0.72+0.23 0.0005 0.79+0.10 0.0000
Primary Task std RT 0.12+0.07 0.15+0.11 0.3047 0.32+0.17 0.0000
Secondary Task std RT 0.124+0.06 0.24+0.16 0.0019 0.25+0.07 0.0000
Std of Position 0.62+0.11 0.70+0.14 0.0575 0.78+0.10 0.0003

observe significant correlations between physiological features and driving performance
measures. This outcome indicates the potential of predicting driver’s reaction time based
on physiological features. To test this hypothesis we used two common regression models:
i) stepwise linear fit and ii) neural networks. For each model two predictors are tested:
the first based on the time of experiment, hours of sleep and hours of awake and the
second on physiological features. In lack of sufficient amount of data, the probability of
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Figure 4.6: The developed simulation environment.

overfitting is high. In order to overcome this problem, the following procedure is adopted:
1. Consider a dataset D.

2. For each session 7 of the dataset, let D; the two samples of the specific session. D;
is considered as the testing dataset and the rest D’ = D\ 7 as the training dataset.

3. From the training dataset D’ produce a larger dataset D” (2000 samples) sampling
according to the mean and covariance of the original training set.

4. Train the prediction model using D”.
5. Estimate the value of D; samples based on the trained model.

For the neural networks, after experiments we concluded to a 5-5-1 architecture (with
the physiological feature set the five features F1, F2, F4, F6 and F14 since EDA features
did not had significant correlation with reaction time), while for the neural network using
alertness features, a 3-3-1 architecture is used. In Fig. 5.7 the output of all predictors is
given as well as the actual reaction time of the subject for each session. For each session
the actual and estimated reaction times are the average of the two 5-minute samples of
the session. In Table 4.11 the correlation between actual time and predictions is given,
as well as the mean squared error (MSE) of the prediction for each method. All four
predictors (based on physiological or alertness features) are statistical better than the
mean-value predictor. The neural network with the physiological featurws as input has

the smaller mean squared error.
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Table 4.10: The correlation of physiological features with the driving performance mea-
sures and subject’s hours of sleep and hours been awake for the dataset collected in the
simulation environment.

P1 P2 P3 P4 P5 T1 T2
F1 | 070 071 048 062 053 -047 0.75
F2 | 0.72 054 066 050 038 -0.38 0.38
F3 |-0.12 -020 -0.27 -0.29 0.14 0.17 -0.38
F4 | -0.64 -049 -0.39 -0.50 -0.38 0.35 -0.64
F5 | 036 050 021 046 050 -0.22 0.54
F6 | -042 -0.43 -0.19 -041 -040 0.25 -0.53
Fr | -0.04 008 001 000 0.13 -0.10 0.09
F8 | 0.19 0.20 0.09 0.07 0.07 -0.06 0.36
F9 | 0.03 007 018 010 -0.28 0.20 0.20
F10 | -0.39 -0.39 -0.15 -0.31 -0.41 034 -040
F11 | -0.05 -0.05 0.10 -0.05 0.06 -0.16 -0.18
Fi12 | 020 020 0.12 019 0.17 0.15 0.26
F13 | -0.13 -0.17 -0.01 -0.24 0.02 0.21 -0.24
F14 | -0.63 -0.68 -0.54 -0.62 -0.28 0.30 -0.81

P1 -0.61  0.73
P2 -0.60 0.76
P3 -0.52  0.60
P4 -0.65 0.71
P5 -0.60  0.46

4.6 Discussion

In this work we presented a methodology for simultaneous fatigue and stress detection
in realistic driving conditions. Our methodology follows three steps for the identification
of driver’s state: (i) preprocessing and feature extraction, (ii) feature selection and (iii)
classification. The information used in our methodology comes from physiological signals,
video monitoring of the driver’s face and environmental conditions. A large number of fea-
tures was initially extracted. Features are evaluated with respect to their discrimination
power of fatigue and stress states. The best indicators of fatigue and stress are selected.
Four classifiers are used in order to evaluate the accuracy of the proposed methodology
using three different feature sets: (i) physiological features, (ii) physiological and video
features, (iii) physiological, video and environmental features. Furthermore, the contri-
bution of each sensor on both stress and fatigue classification is evaluated. Finally, we
demonstrated, using a simulation environment, that detection of even earlier stages of fa-
tigue, is of high importance, since a significant deterioration in performance is observed.
Finally, a detailed study indicated that the achieved through our methodology detection
of even earlier stages of fatigue, is of high importance, since a significant deterioration in
performance is observed.

Performing real-time monitoring of driver’s physiological activity is still quite difficult,
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Table 4.11: The correlation between reaction time predictors. T-S and T-NN are for
predictors based on time features (hours been awake, hours of sleep and time of the
experiment) using stepwise linear fit and Neural networks respectively. P-S and P-NN
are for predictors based on physiological features (RRV, respiration, EDA) using stepwise
linear fit and Neural networks respectively. RT is the actual reaction time, MSE is the
mean square error of the predictors. Mean RT is a predictor with constant output value,
the mean reaction time of the driver, which is used as a basis predictor. In the last column
the last column the P-value of the MSE of other predictors against the basis predictor is

given.
Fit T-NN P-S P-NN RT MSE P
T-S 1.00 0.55 0.58 0.69 || 1.56E-02 4.77E-02
T-NN - 0.52 0.56 0.68 || 1.60E-02 5.33E-02
P-S - - 0.92 0.70 || 1.52E-02 3.10E-02
P-NN - - - 0.77 || 1.21E-02 3.84E-02
Mean RT 2.88E-02

since this requires special sensor equipment attached to the driver, which in a real-car
application would raise a number of safety related issues concerning the obtrusive driver
monitoring procedure. Some research projects [129] addressed the implementation of the
unobtrusive driver monitoring paradigm, by collecting biosignals from sensors embedded
on the steering wheel or adjusted on the driver’s seat. Although many approaches on af-
fective state recognition (either stress or fatigue) have presented promising results in the
field of biomedical and/or other special applications, still they are not considered suitable
for an automotive application. In our work, from the large group of biosignals used in
similar studies, we have chosen to exploit only a limited set of them (ECG, EDA, respi-
ration) having in mind that the unobtrusive monitoring of the selected biosignals could
be feasible in professional or even commercial vehicles of the near future. Apart from
biosignals our approach incorporates information from driver’s face video as well as the
driving environment, we achieved comparable results. However, direct comparison with
other methods is not feasible mainly for two reasons. First because other methods focus
on the estimation of a single psycho-physiological state and secondly because most rele-
vant studies were performed on a simulation environment. In our approach we followed a
quite different experimental protocol allowing us to address i) the simultaneous estimation
of driver’s stress and fatigue levels and ii) the driver monitoring on real-life conditions.
Furthermore, we demonstrated, using a simulation environment, that detection of even
earlier stages of fatigue, is of high importance, since a significant deterioration in per-
formance is observed. Performing real-time monitoring of driver’s physiological activity
is still quite difficult, since this requires special sensor equipment attached to the driver,
which in a real-car application would raise a number of safety related issues concerning
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Figure 4.7: The actual reaction time for each session, and the estimated reaction time us-
ing different predictors based on different feature set (physiological features and alertness
features) and estimation method (stepwise linear fit and neural networks).

the obtrusive driver monitoring procedure. Some research projects [129] addressed the
implementation of the unobtrusive driver monitoring paradigm, by collecting biosignals
from sensors embedded on the steering wheel or adjusted on the driver’s seat. Although
many approaches on affective state recognition (either stress or fatigue) have presented
promising results in the field of biomedical and/or other special applications, still they are
not considered suitable for an automotive application. In our work, from the large group
of biosignals used in similar studies, we have chosen to exploit only a limited set of them
(ECG, EDA, respiration) having in mind that the unobtrusive monitoring of the selected
biosignals could be feasible in professional or even commercial vehicles of the near future.

Concerning the performance of the employed classifiers, SVM is the one presenting
the best results in all classification problems, followed by Decision trees and Bayesian
classifier. Naive Bayes had the worst accuracy. The reason for this, as depicted in Table
4.3, is that the assumption of feature independence does not hold, thus making the Naive
Bayes classifier weak for all classification problems examined.

Classification using physiological features shows very good performance (the highest
accuracy, 85%, is obtained using the SVM classifier). The incorporation of additional
features merely improves the initial results. In contrast, removing RRV related features,
a 15.5% decrease in accuracy is observed (Fig. 6.9). Using the SVM classifier and phys-
iological and video features a 99% accuracy in high fatigue classification is achieved.
Considering, that this state is more related to driving performance and accident provoca-
tion than the others, we consider that the success in its accurate detection is crucial. We
also notice that the main source of misclassification is between the low fatigue class and
the other two classes (normal and high fatigue). This is expected since the discrimination
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of fatigue in discrete levels is quite abstract, given that fatigue is commonly considered
as a continuous variable. The discrimination of fatigue in classes might cause errors due
to annotation errors from the subject who could misjudge his state. This problem is
enhanced considering the long duration of the experiments and thus the probability of
variation of the fatigue criteria as those are defined by the subject. Stress classification
was expected to be more difficult, since no features, proved to sufficiently discriminate
stress levels. Using only physiological signals, a 78% accuracy is obtained with the SVM
classifier. The incorporation of additional information, increases significantly the accu-
racy of all classifiers. Furthermore, we observe in Fig. 6.9 that no group of variables
has a very good discrimination power, thus concluding that a reliable system for stress
detection must be based on the fusion of several information sources. Direct comparison
of the obtained results using our methodology with existing ones in the literature, is not
feasible mainly for two reasons. First because other methods focus merely on the estima-
tion of a single psycho-physiological state and secondly because most relevant studies were
performed on a simulation environment. In our approach we followed a quite different
experimental protocol allowing us to address i) the simultaneous estimation of driver’s
stress and fatigue levels and ii) the driver monitoring on real-life conditions.

An important step in our methodology is feature selection, since a large number of
features can be extracted from the information sources used. In Fig. 4.4(a) we observe
that the mean RR (F1) and the std of RR (F'2) are very good discriminators for fatigue
levels, while more complex RRV features (DFA and Lyapunov exponents) lack discrimi-
nation power. However, those features are used more in medical applications, extracted
from long recordings, and are related to problematic heart function [99, 140]. For within
individual variations, simple RRV characteristics have proved to be rather informative
[46]. Respiration rate which is highly correlated with heart rate, as well as EDA features
are also good indicators of fatigue. From video features, std of eye activation (V2) and
PERCLOS (V4) are the best fatigue indicators, especially in discriminating high fatigue.
The relation of PERCLOS with late stages of fatigue is well established in the litera-
ture. Regarding stress, mean RR (F1), LF/HF ratio (F6) and the ratio of heart rate to
respiration rate (F14) are the best indicators among the physiological features, but still
their discrimination power is not so high. A possible explanation for this, may be the low
impact of stress on the physiological signals compared to that of circadian rhythm. From
video features, the standard deviation of head movement (V3) was the best stress indi-
cator. Still, since the head movement is a behavioural parameter, the correlation of this
feature with stress is expected to vary significantly between individuals. Environmental
conditions were expected to be rather correlated with stress levels. From the examined
driving environment variables, only weather conditions did have a contribution to stress
classification.

An important aspect of this work was the association of driving performance with early
fatigue stages. In a series of simulation experiments we demonstrated that driving perfor-
mance decreased statistically under low fatigues states. We cannot claim with certainty
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that this decrease could potentially increase the probability of an accident. However, this
performance decrease is important information that modern driving assistance systems
should take into account, and adapt their decision functions and behavior accordingly.
A further step in this direction is the prediction of driver’s reaction times, based on fea-
tures extracted from physiological signals. Model based on neural networks could predict
driver’s reaction time based on physiological signals. A very appealing feature of neural
networks is the ability for online learning. For example in a special equipped vehicle,
capable of monitoring both physiological signals and reaction times in specific conditions,
could learn the mapping from physiological signals to reaction time, for each individual
driver, and use this mapping for predicting driver’s performance.

It should be noted that in this work a single subject is monitored during ordinary
work days, without any restrictions related to sleep hours or external stimuli. The driver
experiences a number of different conditions, both from the physiological aspect as well as
from the environmental point of view. We therefore consider that this study truly depicts
the actual physiological status of the particular subject during driving. Extension of our
study to several subjects as well as development of automated methods for the adaptation
to each driver’s physiology are in our future work plans.
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CHAPTER 5

REAL TIME DRIVER'S STRESS EVENT
DETECTION

5.1 Introduction

5.2 Materials and Methods

5.3 Dataset

5.4 Results

5.5 Discussion

5.1 Introduction

According to the American Highway Traffic Safety Administration, high stress influences
adversely drivers’ reaction in critical conditions, thus, it is one of the most important
reasons for car accidents along with fatigue, intoxication and aggressive driving [139].
Stress, according to [1], is "the total assessable influence impinging upon a human being
from external sources and affecting it mentally”. Recent findings have shown that stress is
not only tightly intertwined neurologically with the mechanisms responsible for cognition,
but also plays a vital role in decision making, problem solving and adaptation to unpre-
dictable environments, such as driving [88]. Driving in real traffic conditions is a complex
task, since fast decisions need to be taken given limited information. The driving task
poses differing demands on the driver. Following a road requires primarily lateral control,
following a preceding car additionally requires longitudinal control actions, whereas more
complex maneuvers, such as overtaking, require higher cognitive and control effort as well
as driving skills. Specific events occurring during the driving task can incorporate some
kind of safety risk for the driver. For example in the task of following a preceding car, the
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sudden reduction of the speed of the preceding car, urges the follower for a hard brak-
ing; an overtaking may become life-threatening if a vehicle from the opposite direction
appears. Defining them as driving events, such events usually increase the stress levels of
the driver. The level of increase depends on the individual’s perception of life-threatening
situations and its duration may be temporary or even long-term, affecting the driver’s
physiological state and behavior thereafter.

Therefore, we can define stress events as the physiological reactions of the driver to
the driving events. It has been noticed that when subjects experience stress events, they
have specific reactions, mapped to their physiological signals, like an increase in heart
rate and skin conductivity. Thus, the detection of stress events is possible, through the
monitoring of driver’s physiological reactions to driving events. This allows for measuring
the driving events’ impact on drivers’ psychophysiological state and driving behavior.
These measurements can be used by adaptive systems in various ways to help drivers cope
with their stress. Automatic management of non-critical in-vehicle information systems
such as radio, cell phones and on-board navigation aids according to the level of stress
are practical application of the abovementioned adaptive systems [19]. For example,
when a stress state is detected, the system could undertake specific actions to minimize
additional causes of workload increase, such as blocking incoming calls from the mobile
phone, or postponing non critical navigation information. Furthermore, the knowledge of
the possible causes of driver’s stress may be useful information for the next generation
of navigation systems. For example, if a hard braking caused an increase of stress level,
this information could be exploited by a collision warning system to adjust its strategy
accordingly. Thus, not only detection of stress events, but also their association with
specific driving events is rather important.

A limited number of approaches has been presented during the last years for driver
stress monitoring: Healey and Picard [46] specified an experimental protocol for data
collection which was initially described in [44]. Each driver followed a pre-specified route
containing 15 different events, from which four stress level categories were created ac-
cording to the results of the subjects self report questionnaires. In total, 545 one-minute
segments were classified. A linear discriminant function was used to rank each feature
individually based on recognition performance and a sequential forward floating selection
(SFFS) algorithm was used to find an optimal set of features for recognizing driver stress.
Skin conductance variation and mean heart rate was among the selected features. In an-
other study, Healey and Picard [45] presented a method for data collection and analysis
in real driving conditions for the detection of driver stress state. Data from 24 drives of
at least 50-min duration were collected for analysis. The data were analyzed in two ways.
In the first case they used features from 5-min intervals of data during rest, highway and
city driving conditions in order to distinguish three levels of driver stress for multiple
drivers and during several days. In the second case they compared continuous features,
calculated at 1-second intervals throughout the entire drive with a metric of observable
stressors created by independent coders from videotapes. The results showed that skin
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conductivity and heart rate metrics are most closely correlated to driver stress level. Next
we shortly describe approaches reported in literature, aiming on stress detection, but not
related to the driving task. In the following approaches the experiments were performed in
a laboratory setting, where it is relatively easy to detect stress, since the sources and the
number of stimulations are restricted and the increase of sympathetic activity is related to
a specific stimulation. However, in non-restricted environments, such as the driving one,
the frequency and the sources of stimulations vary significantly, making more difficult the
monitoring and consequently stress event detection.

Zhai et al. [163] developed a system for stress detection using blood volume pressure,
skin temperature variation, electrodermal activity and pupil diameter!. Data were col-
lected from 32 healthy subjects demonstrating significant correlation between stress and
the above mentioned physiological signals; the classification of stress was performed using
a Support Vector Machine (SVM). Rani et al. [120] presented a real time method for
stress detection based on heart rate variability using Fourier and Wavelet analysis. Liao
et al. [86] presented a probabilistic model for stress detection based on influence dia-
grams. Stress detection was based on probabilistic inference from features extracted from
multiple sensors. These feature include physiological measures, physical appearance and
performance measures. The main outcome of this work is that the Bayesian framework
is suitable for information fusion and provision of a reliable stress metric.

All the above findings indicate that physiological signals can be exploited in order
to provide a metric of driver stress in the car of the near future and to perform real
time driver stress monitoring. Stress monitoring could serve the management of the non
critical in-vehicle information systems and could also provide a continuous measure of
the way that road and traffic conditions affect drivers. However, a number of limitations
deteriorate the applicability of the reported approaches in real life driving conditions. The
first one lies on the processing of the physiological signals. In all previously described
works the methods used for signal processing can hardly be used in real time systems
since they do not cope with the real time estimation of the signal baseline. The most
common approach used in literature is normalization, using an initial phase where the
driver is supposed to be relaxed [45], in order to estimate the baseline of the signals. In
our work the physiological features are extracted in real-time, and the estimation of the
baseline of each feature is also estimated in real-time. This estimation involves the online
adaptation of the parameters of the stress detection model, thus commonly used classifiers
such as SVM or decision trees cannot be applied. Instead, BNs are employed here since
there are robust methods for online BN parameter adaptation. Another shortcoming of
the works reported in literature, is that they have been evaluated either on simulation
environments, or in restricted real-world environments. In this work instead, the dataset is
collected in real unconstrained driving conditions. This increases the driver’s stimulations
and makes characterization much harder. Another important contribution of this work is

!The measure through the center of the adjustable opening in the iris of the eye, terminated at both
ends by its circumference.
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Figure 5.1: The three basic steps of our methodology.

the incorporation of the cause-effect relationship. The effect is the driver’s stress event
and the cause in our case is the driving event. We propose a mechanism for building
a driving history of the driver for specific tours based on information from GPS? and
the vehicle’s CAN-bus® and then extract features which can be used in order to detect
overtake and hard braking events, which consequently may cause a stress event. This
information is incorporated into the model to improve the detection of stress events and
to provide reasoning for the cause of such events. The reasoning ability is an additional
reason for choosing BN for detecting stress events. In the following sections, we first
describe the proposed methodology; next, the description of the data collection follows;
then, we present the results of the proposed methodology and the discussion.

5.2 Materials and Methods

The proposed methodology consists of three basic steps (Fig. 5.1):

e Biosignal acquisition, preprocessing and feature extraction.

2Global Positioning System (GPS).
3Controller-area network (CAN) is a vehicle bus standard designed to allow microcontrollers and
devices to communicate with each other within a vehicle without a host computer.
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e Driving environment assessment.

e Incorporation of information in a BN and stress detection.

The method proposed initially performs a real time processing of the physiological signals.
In our approach we exploit ECG, EDA and respiration. Features from those signals are
extracted using 10 second windows. A variation of the Kalman smoother is applied to
estimate the trend of the heart rate variability (HRV) signal which is extracted from the
ECG. From the EDA a normalized measure of the differences of the skin conductivity
is extracted and from respiration the entropy of the spectrum is calculated. Moreover,
information for current driving environment is extracted, using GPS and the vehicle’s
CAN-bus data, as well as the driving behavior history. All this information is then
incorporated into a BN for stress detection. Different BN models are employed.

5.2.1 Biosignal acquisition, preprocessing and feature extraction

For data acquisition we use the Biopac MP-100 system. The ECG signal is acquired
at 300Hz sampling frequency, whereas the EDA and the Respiration signal are acquired
using 50 Hz sampling rate. The resolution is set to 12-bit for all signals.

ECG

The most common measure related with stress events and increased mental load is the
increase in the heart rate. The heart rate over a period of time is extracted from the HRV.
We first extract from the ECG the R-R variability signal (RRV) from which the HRV is
calculated as HRV = 60/RRV. In order to extract the RRV signal from the ECG, the
R peaks are detected, using the procedure described in [119]. The R-R intervals are esti-
mated as the time differences between successive R peaks. Those R-R intervals constitute
the RRV signal. The RRV signal (as well as HRV signal) has two main components: i)
a baseline component of low frequency which has some sudden variations due to stress
events and ii) a periodic component including parasympathetic and the sympathetic ac-
tivities. The latter can be modeled by an autoregressive process (AR) of order P [143].
Thus the R-R interval at time ¢ denoted as rr; is given as:

P

rr; = a¥rry_p + b + e, (5.1)

k=1
where b and a are the baseline of the signal and the AR coefficients, respectively, whereas
€ is the Gaussian distributed noise. The baseline b is the variable which is affected by the
stress events and used for stress detection, whereas the AR coefficients which correspond
to periodic RRV variation are not exploited in our methodology. The 7 index denotes that
those variables are time varying:

bi = bi,l—i—eb, (52)

=
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where ¢, and ¢, are Gaussian distributed noise. The state space form of the above is:

X, = X;.1-+ R, (54)
yi = Hixi+Q, (5.5)
where x; = [ay, as, ...,ap, b;|, y; = rr;, R is the process noise, ) is the observation noise

and the matrix H; = diag[rr;_1,77;_2,...,77;_p, 1]. In order to estimate x; we can use the
ordinary Kalman filter equations [149] for each new sample y;. These equations are:

T = Ti_1, (5.6)
Vi = ‘7i—1+R7 (5.7)
S = HV;H! +Q, (5.8)
K = VHIS™, (5.9)
T = x+ K(y; — Hix;), (5.10)
Vi = (I-KH)Y (5.11)

where K is the Kalman Gain matrix, and ; and V; are the Kalman filter estimations of
hidden state and error covariance matrix, respectively, at time step 7. In order to have
a better estimation of the hidden states of the model, the Kalman smoother could be
applied. The Kalman smoother makes use of the collected statistics from all the time
series and updates the estimation of the Kalman filter for the hidden states, using a
backward recursion. Thus, it can be considered as an offline estimation method. The
Kalman smoother update equations are:

& = I+ V(& — Tip), (5.12)
Vi = Vi=Vi(Vigr — Vi) VT, (5.13)
Veo= ViV, (5.14)

where z; and V, are the Kalman smoother estimations of hidden state and error covariance
matrix at time step ¢, respectively. In our method we use windows of specific length for
the calculation of the features from the physiological signals. Since, we are interested in
having a good estimation of the hidden states included in the specific window, given the
information at that time, we apply the Kalman smoother for each new window only on
the past observations contained in the window. We call this procedure Window Kalman
smoother and it can be considered as a partially applied Kalman smoother. With this
procedure the estimation is expected to be better than Kalman filtering and worse than
a Kalman smoother which uses all data. In our experiments we use an AR(6) process.
The initial estimation of the AR coefficients and observation noise R, as well as the initial
estimation of the baseline can be extracted using an initial segment of the signal. We
used the first five minutes of the signal for all the initializations. The remaining step is to
define the process noise ). We consider a diagonal () and after experiments the elements
corresponding to AR coefficients are set to 1078, whereas the element corresponding to
baseline is set to 1076,
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From the Kalman filter the parameter of interest is the baseline parameter b. This
parameter varies with time, and this variation as already described is caused by two
factors: a very slow variation, and a more rapid variation due to stress events. The
average baseline value b; is calculated over a specific window. This new feature, denoted
as By, where k is the window indicator, inherits the varying behavior of b; and is also
dominated by two components, the very slow varying and the stress related. Since the
first component is very slow varying we assume that By follows a Gaussian distribution
N (g, 00), whereas in cases of external stimulations a rapid increase is expected:

B, — N(pg,01), No stress (5.15)
N(ug + 6,03), Stress,

where ¢ is the average increase of the heart rate in stress events. The p; is also time-
varying. The estimation of i is performed in the BN context (described in Section 5.2.3),
decomposed from the Kalman filter and the estimation of b;.

Electrodermal activity

The EDA signal is originally downsampled at 1 Hz. A smoothing filter is then applied,
since in many cases noise is evident in the signal. The signal of EDA is composed by
two main components. A slow varying one, i.e. the skin conductance level (SCL) and
one related with sudden increase in mental load, the skin conductance response (SCR).
A common measure of these rapid increases is the first absolute difference (FAD):

N-1
1
where s; in this case is the EDA at time 7. A drawback of this feature is that is highly de-
pendent on the SCL. A common practice is to use a normalization method after observing
all the data, such a min-max normalization:
S; — mkinsk

s; = (5.17)

maxsy — minsg
k k

or the standardization method:

s =2 Hs (5.18)

4 2
O

where p,, 05 are the mean and standard deviation of the time series, respectively. The
above methods can only be applied in offline processing. One other approach in order
to eliminate the impact of the SCL on the SCR is to divide the FAD measure with the
current SCL level. The advantage of this approach is that it can be easily applied on real
time estimation. The transformation applied with this method to the FAD measure is
1/SCL; which is a non-linear function of SCL; and SCL; = (1/N) 3.V s;. This function
reduces the FAD when SCL; is large (1/SCL; < 1) and magnifies it when SCL; is small
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(1/SCL; > 1). We consider the use of a logistic function of SCL; which has a similar
behavior. This logistic function is given as:

1
9(SCL) = 1+ exp(—a- (SCL; —3))’ (5.19)

and the transformed FAD (nFAD) is given as nFAD = FAD - g(SCL,).
The parameters « and [ are optimized in order to obtain the higher correlation with
a stress metric derived from the annotation (described in Section 5.3).

Respiration

The respiration is initially downsampled at 10 Hz and the mean of the signal is removed.
Then a fast fourier transform is applied and the power spectrum of the signal is calculated.
The extracted feature is the entropy of the resulting spectrum (RE),

_ P
RE = 3 p(f)logp(f), (5.21)
f

where P(f) is the spectrum energy at frequency f. In a normal behavior the respiration of
the subject should follow an almost periodic pattern, thus we expect to have a dominant
peak in the spectrum and low spectrum entropy. Instead, in stress events the respiration
usually freezes for a small period and then we have an increased respiration frequency,
leading to a more complex spectrum with higher entropy.

Similar to the HRV case, for the RE we use a model as that of Eq. (5.15):

RE, — N(p,01), No stress (5.22)
N(ug + 9, 09) Stress,

where pi, is slow time varying and ¢ is the average increase of respiration entropy in stress
events.

It should be noted that there is a delay between the occurrence of a stress event and
the result on the physiological signals. This delay is different for each physiological signal.
Thus, since we extract features in a constant window it is very likely to have information
loss due to this time offset. From the three signals in our study we found that EDA has
2-5 seconds delay, whereas the delay of HRV and respiration is negligible, compared to the
window length. In our approach we align EDA with HRV, using cross-correlation analysis.
From cross-correlation analysis we detect the offset having the largest correlation and then
delay EDA by that offset. It should be noted that this approach does not affect the online
application of the method; during a burn-in phase or even online, we can calculate the
cross-correlation and the offset of the two signals.
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5.2.2 Driving environment assessment

Apart from the processing of physiological signals, in our methodology we also incorporate
an approach for modeling driving expected behavior and detecting common events based
on GPS information (latitude, longitude, speed and heading) and vehicle information from
CAN-bus (engine’s rounds per minute-RPM, throttle).

The approach proposed here is based on building a driver’s profile for each tour. This
profile contains information about the typical behavior of the driver for each part of the
tour, in terms of average speed, acceleration, throttle, etc. More specifically, for each tour
a number of control points is assigned and for each control point a number of statistics
are calculated. In order to calculate these statistics, the basic assumption is that we have
a significant number of samples around each control point. This assumption is rather
reasonable, since the majority of driver’s repeat specific tours each day with only small
variations. Thus, any GPS system could gather necessary information about the most
often routes.

The reasoning for building a profile of each session is that under similar conditions the
driver has an expected behavior, in terms of speed, braking before turns, etc. Variations
on the expected behavior could be strongly related to specific driving events. For example,
a braking which was more intense than normal could be considered by the driver as a
hard braking, or speeds lower than expected followed by unexpected acceleration could
infer a possible overtake. Of course, those events could be more reliably detected with
more sophisticated hardware such as camera or radars, but the goal of this method is to
build an event detector which works without special equipment and to demonstrate the
added value of such a system in driver’s stress estimation.

Next, we describe in detail the driving event detection. From the database of the GPS
positions we need to derive a small subset of positions which describe the tour. We use
the fuzzy K-means algorithm [56]. The number of initial centers, denoted as Cj, is 200
for a tour of about 60 kilometers which originally had about 3000 samples for each tour.
Then using the membership function for each sample we estimate a number of statistics
per point. The approach is similar for any measure of interest m. The average of the
measure m for each control point ¢ denoted as M; is calculated as

Do wimy

M, ==
> Wij

where w;; is the weighted distance of control point 4 from the sample j.

(5.23)

The measures for each control point ¢ calculated with the aforementioned way include:
e Average Speed (AMS;).
e Average Deceleration (AD;).

e Average Magnitude in Heading Changes (AM HC;). The differences of the heading
direction are calculated. Since, we are not interested in the direction of the change
we take the square of those differences (magnitude).
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e Average Throttle (AT;). The average throttle is expressed in percentage, acquired
from the CAN-bus.

e Average RPM (ARPM;). The average RPM of the engine acquired also from the
CAN-bus.

e Average Overtaking (AO;). For each sample in the dataset we have a variable
denoting the frequency of overtaking events at a specific point. This estimation is
used as prior estimation of overtaking events. This is quite useful since in rural
roads there are specific parts of the road where overtaking is considered safe. The
points where an overtake occurs are extracted from the annotation of the dataset.

Using the above information and the current readings from the GPS and CAN-bus we
extract a number of features. The first set of features is the weighted average of the
measures AMS;, AD;, AT;, AMHC;, and ARPM;, where the weights refer to the distance
of the current position from each control point 7. These can also be considered as the
expected values of speed, deceleration, heading change, throttle and RPM, respectively.
The second set of extracted features includes the average of the current readings (i.e.
speed, deceleration, heading change, throttle and RPM) in a specific window, as well as
the average difference of these readings with their expected values. Finally, we also use as
feature the presence of a preceding vehicle. This info is manually extracted from the video
annotation. Using the features described above we first examine how good indicators
these features are for overtaking and braking detection. We consider a classifier using
only one feature at a time and we calculate the area under curve (AUC) of that classifier.
The N features having the largest AUC are considered as the best candidate set. N
is experimentally chosen so as to get the best classification results. The features with
the highest ranking for discriminating overtake events are the presence of a preceding
vehicle (C4), the frequency of overtakes on the specific location (C3), the current throttle
(C3), the current RPM (Cy) and the difference between current and average RPM (Cs).
For hard braking detection the best feature set consists of the current deceleration (Cs)
and the difference of current deceleration and the average deceleration on the specific
location (C7). In order to detect driving events (overtaking and hard braking) we use
the Naive Bayes classifier, which can be easily merged with the BN for stress detection
(described in the next section), which also yields satisfactory results for the problem under
consideration.

5.2.3 Bayesian Networks for stress detection

BNs are widely used for knowledge representation and reasoning under uncertainty in
intelligent systems [112]. The structure of a BN is a directed acyclic graph. Its nodes
correspond to random variables of interest while the directed arcs represent direct causal or
influential relation between nodes. The uncertainty of the interdependence of the variables
is represented locally by the conditional probability table P(X;|Pay,) associated with each

89



node X, given its parents Pay,. The graphical structure of a BN allows the representation
of interdependency between variables, which together with an independence assumption,
lead to the joint probability distribution of X = {X, Xy,---, Xp}, one of the most
important features of BNs. The joint probability distribution can be factored out as a
product of the conditional distributions in the network:

Pr(X) = ZPT(XAP(L()Q)), (5.24)

where D is the number of variables.

Many well known models (Kalman Filters, AR models, Naive Bayes classifier) can
be represented as graphical models and BNs. BNs have also been used for classification
problems. If we assume that the class is represented as random variable in the model
(Class), then in order to get a classification output we need to estimate the probability:

P(Class| X = F), (5.25)

where X is the variable set that is used in the model and E are the values of the variables
for the specific instance. In the general case this probability is estimated using inference
algorithms for BNs [79].

In our study we examine three models for driver’s stress detection. The first model
(BN1) includes only physiological features. This model is depicted in Fig. 5.2. The
variables of our model are the Driver’s stress class variable and the feature variables
extracted from the physiological signals. Driver’s stress is a discrete variable following
a multinomial distribution with two states (normal and stress). Feature variables are
continuous variables following a conditional Gaussian distribution, since they have always
a discrete parent (the Driver’s stress variable) and potentially other Gaussian variables
(other feature variables).

In the second model (BN2) we extend the first model (BN1) which uses only physio-
logical information by adding a new variable corresponding to the driving events, named
Driving Fvent. This is due to the fact that stress events that we are studying are directly
related to specific driving events. The information of the occurrence of a driving event,
should improve the performance of stress event detection. The Driving Event variable
has three states: (i) overtaking, (ii) hard braking, (iii) other, where other includes both
no-event or events of other types with very low frequency. Then a direct arc from Driving
Event to Driver’s stress is added. The BN2 model is shown in Fig. 5.3. The value of
the Driving Fuvent is extracted from the video annotation of the sessions. Thus, we may
consider this variable as the output of an advanced driving detector with a 100% accuracy
and it is expected to have the best results.

As such a driving detector is not available in practice, in the third model we are using
the driving event detection described in Section 5.2.2. There are two possible approaches.
The simplest one is to initially detect the events and then provide the outcome as input to
the abovementioned model (in the Driving Event variable). This implies a one directional

90



Driver's
Stress

Figure 5.2: The BN1 model for Stress detection using only physiological features. B
corresponds to the heart rate, nF"AD corresponds to the normalized first differences of
the EDA signal and RFE to respiration entropy.

relation between stress and events. We followed a more complex approach, to merge the
event and stress detection models in one, which allows for a bidirectional relation between
stress and event detection. For example when there is no evidence of stress in physiological
signals, then the probability of overtaking is lower. The merge of the driving event and
stress event detection implies the merge of the BN2 model with the two Naive Bayes
classifiers for detecting overtaking and hard braking. Since both Naive Bayes classifier
and BNs are based on Bayesian theory and graphical models, this merging is feasible.
The outline of the merging procedure and the resulting model, namely BN3, are depicted
in Fig. 5.4.

In our experiments we first train the BN models in an offline (batch) mode using the
training set and then we evaluate them online on the test set. The offline learning of
the parameters of the model is based on the maximum likelihood (ML) estimation. The
learning of the BN parameters is described in [106]. The parameter adaptation in online
mode is necessary, since as already described, both the conditional distributions of feature
B and RE extracted from HRV and respiration are time varying (the p; parameter in
Egs. (5.15) and (5.22)). The conditional Gaussians which are used as the distribution of
continuous variables with discrete parents, after the propagation of evidence collapse to
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Figure 5.3: The BN2 model for Stress detection using physiological features and driving
event information. B corresponds to the heart rate, nf’AD corresponds to the normalized
first differences of the EDA signal and RFE to respiration entropy.

mixture of Gaussians. Thus, we could use the same parameter adaptation techniques as
those used in the mixture of Gaussian models. A K-component mixture Gaussian model

is described as:
K

P(z) =Y mN(x; e, o), (5.26)

k=1
where p, 0, and 7, are the mean, the standard deviation and the prior probability of the
k component, respectively. The probability that an evidence x comes from the component

k is given as:
7y, - N(x; iy, o)

o me Ny, 05)

The standard online update equations for a mixture Gaussian model are of the form:

(5.27)

pr(z)

e = (U=X-pp(@))py "+ A () - @, (5.28)
(0p)* = (A =X-pe(@)og )+ A pul) - (2 — )%, (5.29)

where A is the learning rate, T the current and 7' — 1 the previous estimation of a param-
eter. We followed the approach of [82] where the learning rate is not constant but it is
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Figure 5.4: The merging procedure of the two Naive Bayes models for overtake and hard
braking detection with BN2 model for stress detection, resulting in the BN3 model. B
corresponds to the heart rate, nF'AD corresponds to the normalized first differences of
the EDA signal, RE to respiration entropy and C'1 — C'7 to the seven features selected
for overtake and hard braking detection.

given by the following equations:

e = ¢+ pr(x), (5.30)

v, = pp(z)- (% + A). (5.31)

In Egs. (5.28) and (5.29), A - px(=x) is replaced with the v of Eq. (5.31).
Applying the above update rules in the update of the p; which is described in the
Appendix, we obtain the following online update equation:

pr(@g)ar/of + palay) (g — 5)/05}

p1(xr) /0% + pa(y) /03 (5.32)

e = (L= v~ + v

since 01, 09 and § are considered fixed.
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Table 5.1: Description of the dataset.
description per subject. In the last two columns the frequency of an event per hour of

In the first four columns we give the dataset

driving is given (statistics for Subject 1).

Subject Subject 2 Subject 3 Subject 4 Event Frequency
Number of tours 25 1 1 1 Overtake 13.7
Average Duration 55 min. 52 min. 55 min. 54 min. | Hard Braking 24
No Stress Events 5926 392 232 361 Cross road 2.4
Low Stress Events 301 11 12 1 Unexpected 1.6
Medium Stress Events 159 3 7 10
High Stress Events 20 1 0 0

5.3 Dataset

The experiments were performed in real driving conditions, at a specific route and the
duration of each session was approximately 50 minutes. The equipment that was used
in order to acquire the needed information included: i) a Biopac MP-100 for signal ac-
quisition of the driver (ECG, EDA and Respiration). This equipment was installed on
the back seat of the vehicle and the sensors were attached to the driver. ii) A camera
monitoring the road that was used only for annotation reasons, iii) The vehicle’s CAN-bus
which provided car data (Speed, RPM and Throttle).

Four subjects participated in the experiments: three male and one female. The ma-
jority of the data is coming from Subject 1 who is considered as the train and validation
subject, while the rest of the subjects are used as test data. The above strategy is based
on the fact that the physiology of a stress event is similar to all humans and only the pos-
sible causes and the magnitude of changes on physiological signals are expected to change
from subject to subject. The dataset description per subject is given in Table 5.1. For
Subject 1, a number of useful statistics can be extracted, related to the number of events
per session (Table 5.1) and the probability of each stress level given a driving event (Fig.
5.5). We observe that for Subject 1 our dataset includes a large number of events with
different stress levels. We should here notice that events annotated as high stress events
are usually life threatening and such events are very rarely monitored in the literature,
due to safety reasons. We should also notice that due to unpredictable malfunctions, for
very few sessions the GPS and/or CAN-bus information is not available. The annotation
of the events and the stress caused is performed by a microphone and a voice recognition
software based on Microsoft speech API. The vocabulary of the program was restricted
to the most often events, and other events were categorized as "unknown”. The stress
level was discriminated into four categories: i) no stress, ii) low stress, iii) medium stress
and iv) high stress. The driver was instructed to first say the type of the event and next,
with a small pause, the stress level caused, for example ”turn low”, ”overtake medium”,
"brake high”. Non-annotated instances were also classified as no stress level. From the
self-annotation of stress level, we extract a continuous stress metric. The annotated stress
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Figure 5.5: The probability of occurrence of a stress event (Normal, Low/Medium/High
Stress) after a driving event (overtaking, hard braking, cross-road and uncategorized),

according to driver’s annotation.

events are assigned at specific time segments, producing a signal s(¢) where

, if no stress reported at time ¢

, if low stress reported at time ¢

N = O

s(t) = (5.33)

, if medium stress reported at time ¢

3, if high stress reported at time ¢.

However, the produced signal does not take into account the impact of the stress event on
neighboring time segments. To extend the effect of stress event to adjacent segments, we
take the convolution of the s(t) signal with a hamming window of length 3. The convolved
signal is considered as the stress metric.

In the experiments for stress event detection we aggregate the four stress levels into
two classes, the no-stress class and the stress class. More specifically, the stress class
contains both medium and high stress events which constitute stressful events. Moreover,
as indicated in Table 5.1 the number of high stress events is quite low and therefore,
the high stress cannot constitute a separate class. Thus, it is merged with the medium
stress class, which has a significant number of events. Low stress events are considered
as unlabeled data, since in cases when drivers were not confident about their stress level,
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Table 5.2: The mean and standard deviation of the correlation on all RRV signals of the
Kalman filter, the Kalman smoother and the proposed Window Kalman smoother, with
the Butterworth filter considered as ground truth in estimating the RRV baseline. For
the Window Kalman smoother, the smoothing window is 10 seconds.

Correlation (mean/std)
Kalman filter 0.82/0.078
Kalman smoother 0.94/0.066
Window Kalman smoother 0.86/0.070

Table 5.3: The correlation of the proposed and different EDA normalization methods with
the stress metric derived from the annotated dataset.

Method Correlation with stress metric
No normalization 0.134
Standardization 0.245

Min-max 0.216

1/5CL, 0.227

Proposed 0.263

tended to use the low stress class, so as to provide a mild estimation. This was also
confirmed by the inspection of the impact of those events on the physiological signals of
the subjects.

5.4 Results

We first present results on the methods used for physiological signal preprocessing and
feature extraction. In this section we also test the adaptation procedure described in
Section 5.2.3. Next we present the results obtained regarding the driving environment
assessment and finally the stress event detection is evaluated using the three examined
BN models.

5.4.1 Physiological signal preprocessing and feature extraction

Initially, we estimate the HRV trend extracted from the ECG using the Window Kalman
smoother for real-time trend estimation. The window used for the Window Kalman
smoother is 10 seconds. In Table 5.2 we compare the Window Kalman smoother with
i) the Kalman Filter and ii) the Kalman smoother, in terms of their correlation with a
Butterworth filter with cutoff frequency at 0.05Hz (the RRV sampling frequency is 1 Hz)
which is considered to provide the ground truth for HRV trend. The Kalman smoother
has the highest correlation with the Butterworth filter, but as described in Section 5.2.1
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Figure 5.6: The adaptation of the model in the signal Y. Mean is the mean of the first
mixture Gaussian component and Delta the offset of the second component.

it cannot be applied for real time estimation. Therefore, we employ the Window Kalman
smoother which is a windowed version of Kalman smoother (applicable in real time) and
as we can see in Table 5.2 has a slightly worse performance than the Kalman smoother
but superior to the Kalman filter.

Next, we evaluate the proposed normalization method of the EDA. We perform a
leave one out method, each time holding one session for test and the other for training
of the logistic function’s parameters o« and 3. In Table 5.3 we present the correlation of
the normalized feature nF'AD with the stress metric; for comparison purposes we also
provide the respective correlation of the other methods described in Section 5.2.1. Table
5.3 confirms the suitability of our approach based on the logistic function, since it has
higher correlation with the stress metric compared to the other methods.

In Section 5.2.3 we described the method for online learning of the distribution pa-
rameters of the B and RF variables extracted from the HRV and the respiration signal,
respectively. For testing we employ a time series model with similar behavior as that of
a typical HRV signal. The employed model is the following:

k= {1,2,,1000}, (5.34)

| (1000 - k)/20 + N(0,2),p, < 0.8
] (1000 — k)/20 + N(10,2), pr > 0.8
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Figure 5.7: The average speed, the average throttle and the overtake probability at each
point of the tour.

where py is a random number in [0,1]. We test the adaptation of the model described
in Eq. (5.15) using the online update of yy described in Eq. (5.32) and § described in
Appendix. The standard deviations o; and o5 are considered known and initially p; = 100
and 6 = 20. The learning rate A in Eq. (5.31) is set to 0.1. In Fig. 5.6 we present the
adaptation process of the mean p; and 6. We observe that the adaptation is achieved
relatively fast and the variations from the actual value are small.

5.4.2 Driving Environment assessment

In this stage we use the information of driving history and the current readings from
GPS and CAN-bus to detect critical events, i.e. overtaking and hard braking. In Fig.
5.7 we provide some of the measures extracted from driving history, described in Section
5.2.2. The measures presented are the average speed, the average throttle and the av-
erage overtake of each control point of the tour. We observe that points with increased
probability of overtaking have also high average throttle and speed. The driver usually
attempts overtaking only when high speed can be achieved (open road ahead) while safety
conditions are met.

Next we present the results of the overtake detection. The total number of overtake
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Table 5.4: Confusion Matrix, Sensitivity and Specificity for each class and total accuracy
for the classification of hard braking (H.B) and overtaking (Ovt) events using the Naive
Bayes Classifier.

Hard Braking Overtaking
Confusion Matrix (mean/std) Confusion Matrix (mean/std)
Non H. B. H. B. Non Ovt Ovt
Classified as Non H. B.  34.61/2.73 13.58 Classified as Non Ovt 121.94/18.21 24.06
Classified as H. B. 5.39 26.42/5.77 | Classified as Ovt 28.07 125.95/1.25
Sensitivity 0.87 0.66 Sensitivity 0.81 0.84
Specificity 0.72 0.83 Specificity 0.84 0.82
Overall Accuracy ‘ 0.76 Overall Accuracy ‘ 0.83

events in the dataset is 150 which corresponds to the 5% of the dataset leading to a
significant class imbalance. To this end we take all the overtake samples and select
randomly equal number of none overtake samples. Then we join the two sample sets in
a new balanced dataset and we perform ten-fold cross validation using the Naive Bayes
classifier. In order to obtain more reliable results we perform the above procedure 200
times. In Table 5.4 we provide the confusion matrix and compute sensitivity, specificity
and the total accuracy for the average of the 200 ten-fold cross validations. The obtained
accuracy is 83% and which is rather high, especially considering that no sophisticated
hardware was used for monitoring the driving environment.

A similar procedure is also followed for hard braking detection. The annotated hard
braking events constitute the 0.7% of the total dataset. Thus, we performed the procedure
described for overtake detection 500 times instead of 200. The results are also given in
Table 5.4. The obtained accuracy is 76% which is statistically higher than a random
guess.

5.4.3 Bayesian Network models and stress detection

The last step of our methodology incorporates all previously reported information into the
BN models. The evaluation is performed in online mode using a leave one out method.
For Subject 1, we keep one session for testing at a time and we train the BN parameters
offline, using the remaining sessions. For the other subjects (test subjects), the model is
trained using all the sessions of Subject 1.

The first model, BN1, includes only physiological features. The results of this model
for all four subjects are given in Table 5.5. The accuracy of stress event detection is 88%
for Subject 1 and for the validation subjects 92%, 89% and 84% respectively. Hence, no
statistical difference between the accuracy on the train subjects and validation subjects
is observed. This is a strong indication of good generalization performance, considering
also that the validation was performed on data of subjects not used in the training. We
observe though, that for stress detection we have low specificity for all subjects. The
reason of this, is that the impact of stress events on the physiological signals is similar to
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Table 5.5: Confusion Matrix, Sensitivity and Specificity for each class and total accuracy
for the classification of Stress events for the four subjects in our study using the BN1

model.
Subject 1 Subject 2
Confusion Matrix Confusion Matrix
Non S S Non S S
Classified as Non S. 5232 45 | Classified as Non S. 362 0
Classified as S. 694 134 Classified as S. 30 4
Sensitivity 0.88 0.75 Sensitivity 0.92 1.00
Specificity 0.99 0.16 Specificity 1.00 0.12
Overall Accuracy 0.88 Overall Accuracy 0.92
Subject 3 Subject 4
Confusion Matrix Confusion Matrix
Non S S Non S S
Classified as Non S. 205 0 Classified as Non S. 307 1
Classified as S. 27 7 Classified as S. 59 9
Sensitivity 0.88 1.00 Sensitivity 0.84 0.90
Specificity 1.00 0.21 Specificity 1.00 0.13
Overall Accuracy ‘ 0.89 Overall Accuracy ‘ 0.84

that of increased workload, i.e. increase in heart rate and EDA. The difference lies in the
magnitude of this increase, which in stress events is expected higher. However, the larger
increase, considering also the effect of noise in RRV estimation and the possible errors in
self annotation does not seem sufficient to discriminate the two states. A feasible solution
is the incorporation of additional information such as the possible causes of a stress event,
in order to reduce the false positives, which is performed in the next models.

In the second BN model (BN2) we have incorporated the driving event information.
In this case the information of the driving event is extracted manually from the video
of the road scenery. This equals to capturing driving events with an optimal detector.
In order to test stress detection accuracy, also with non-optimal detectors, we artificially
introduce errors in the driving event detection. The information inserted in the Driving
FEvent variable is given according to the following rule

1 if there is an obstacle and p < T'1
or there is no obstacle and p > T2
0 if there is an obstacle and p > T'1
or there is no obstacle and p < T2

P(DrivingFEvent) = , (5.35)

where p is a random number and 7'1 and 72 are the specificity and sensitivity of the event
detection system, respectively. We consider three such systems with 71 = {0.9,0.8,0.7}
and 72 = {0.99,0.9,0.8}. Then we compare the sensitivity and specificity of stress
event detection using i) only the driving event detection, assuming that every time an
event occurs we also have a stress event and ii) driving event detection and physiological
features (BN2). The results of both models are presented in Fig. 5.8. The sensitivity of
the stress event detection is always higher for the model using both driving events and
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Figure 5.8: The sensitivity and specificity are presented for the BN2 model and stress
detection based only on driving events, where we assume that there are three possible
systems providing the driving events. T'1 is the sensitivity and T2 the specificity of these
systems.

physiological features compared to the model using only driving events. Furthermore, it
is not influenced by the deterioration of the driving event detection accuracy. On the
other hand, the specificity of both models is affected by the accuracy of the driving event
detection but the effect on the specificity for the BN2 model becomes negligible.

In the third model (BN3) the driving event detection is based on features extracted
from the driving environment. Having collected a significant number of sessions from
Subject 1, we were able to build a driving history model for this subject and incorporate
it to the enhanced model (BN3). The evaluation of the enhanced model is therefore
performed only on the specific subject. Using Bayesian inference, we extracted both the
probability of driver’s stress event and the occurrence of a driving event. In Table 5.6 we
present the detection accuracy of driving and stress events. Comparing the results of BN3
and BN1 models in Tables 5.6 and 5.4, respectively, we observe a significant increase in
stress event detection accuracy (95% compared to 88%). The main reason of this increase
in accuracy is the significant reduction of the false detected stress events using the driving
event information.
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Table 5.6: Confusion Matrix, Sensitivity and Specificity for each class and total accuracy
for the classification of Stress Events (Stress), Overtaking (Ovt) and Hard Braking (H.B.)
events using the BN3 model.

Driving Event

Confusion Matrix
None. Ovt H.B.
Classified as None 2564 75 24

Classified as Ovt 69 78 0
Classified as H.B 62 0 13
Sensitivity 095 0.51 0.35
Specificity 096 0.53 0.17
Overall Accuracy 0.92

Stress

Confusion Matrix

Non S S
Classified as Non S. 2578 36
Classified as S 111 36
Sensitivity 0.96 0.50
Specificity 099 0.24
Overall Accuracy ‘ 0.95

In Section 5.2.3 we claimed that the incorporation of driving event and driver’s stress
event detection in the same model could yield to a better detection performance of both
driving and stress events. As presented earlier the obtained results confirm this for the
stress event detection problem. As far as the driving events are concerned, Table 5.7
presents the driving event detection results for a three class problem (overtake, hard
braking and none) using the Naive Bayes Classifier (as a benchmark) and the same training
and testing procedure. Comparing Tables 5.7 and 5.6 we observe that BN3 significantly
reduces the false positives of the driving event detection and increases the accuracy (92%
compared to 65%). This can be explained since the probability of a driving event is lower
in the absence of a physiological reaction.

5.5 Discussion

A methodology for driver stress estimation based on physiological signals (ECG, EDA
and respiration) and driving behavior was presented. The RRV signal was modeled as a
time varying AR model and using a variation of Kalman smoother we estimate the trend
of the signal in real time. The information used is the trend of the signal since for stress
detection we are interested in the baseline of the signal and not in the periodic variations.
From the EDA the first absolute difference were used as a measure of skin conductance
response. In order to improve this feature as stress indicator we employed a normalization
method than can be applied in real time and reduce significantly the effect of the skin
conductance level on the magnitude of the differences. Window analysis was then applied,
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Table 5.7: Confusion Matrix, Sensitivity and Specificity for each class and total accuracy
for the classification of Driving Events as a three class problem using a Naive Bayes
classifier.

Driving Event

Confusion Matrix (mean/std)
None Ovt H.B.
Classified as None 1719 22 9
Classified as Ovt 441 120 2
Classified as H.B 535 11 26

Sensitivity 0.64 0.78 0.70
Specificity 098 0.21 0.05
Overall Accuracy ‘ 0.65

for feature extraction. Additionally we employed a method for building a driving history
and exploited this information to improve the driver’s stress event detection.

In order to fuse all the above information we employed the Bayesian framework. We
examined three BN models, one with only physiological features, one incorporating driv-
ing events which are extracted based on annotation of video monitoring and a last one
where the driving events are detected using information from the GPS and the CAN-bus
of the vehicle. All models are tested in a dataset gathered in real driving conditions.
We used one subject for training and testing, which performed a large number of experi-
ments and four other for validation purposes. The accuracy of the BN model using only
physiological features, was in average for all subjects approximately 88%. The results ob-
tained on the validation subjects, reveal the good generalization behavior of the proposed
method. This first model has a significant number of false positives since in particular
segments an increased heart rate and/or skin conductance is observed without drivers
actually experiencing an increased stress. These segments may be considered as moments
of increased workload. In our work focusing on the detection of stress events, this may be
considered as a drawback. However, for a system aiming at detecting increased workload,
the solely usage of physiological signals could be sufficient.

The other two models include also driving event information. From Table 5.1 and
Fig. 5.5 we observe that the event with the higher frequency is overtaking, as the driving
context is a rural road. Furthermore, we observe that overtaking along with hard braking
have the higher probability of medium and high stress events. This is expected since
overtaking is the most frequent, and risk involved event and hard braking, on the other
hand, is usually caused by driver’s inattention or sudden events occurring on road, and
thus it is always related to high crash risk. This is also the reason, focusing on the
detection of these two events in our work.

With the second model (BN2) we examined how driving event detection could im-
prove the stress events detection accuracy, reducing false positives. This was verified in
the third model (BN3) where we used the driving environment information from GPS
measurements and CAN-bus data in order to detect driving events. Introducing the driv-
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ing event detection into the same model employed for the stress event detection, both the
accuracy of driving and stress event detection are improved. This model is highly corre-
lated with the driver’s perception of stress and a 92% accuracy in stress event detection
is achieved.

Most of the related works reported in the literature make use of data collected in
simulation environments. However, subjects’ responses to driving events occurring in
a safe environment (simulation) are quite different from those in real conditions. For
this reason, we have constructed a dataset with real drivers’ reactions (stress events) to
actual driving events. Since we are referring to real-world experiments, there is always
the difficulty in controlling the driver’s state because it highly depends on the prevailing
driving environment. Moreover, driver’s self annotation during real time presents practical
difficulties (i.e. discrimination between low and medium stress level). These shortcomings
of the annotation procedure are inherited in the increased number of false positives and
for some cases of medium or low stress events there was no evidence of increase in heart
rate and/or skin conductivity. In many cases drivers seem to over or under estimate their
stress level. Thus, we suggest that for similar studies, apart from driver’s self annotation,
more reliable stress metrics should be used, based for example on electroencephalogram
(EEG) or biomarkers [160]. In other cases, since driving events are accompanied by
intense driver’s movements, significant movement noise is introduced in the ECG. This
noise affects the RR estimation and the value of the features extracted. On the other
hand, in cases of very low SCL level the increase in EDA activity was not evident, apart
from very intense events. Thus, for monitoring drivers physiological signals on real driving
conditions, the choice of the sensors and sensor placement is crucial.

A major advantage of the proposed approach is that it can be applied in real time
and does not need an initial relaxation phase for estimating signals baseline. Moreover,
using the online adaptation of the model parameters, we obtain a good generalization
performance. Furthermore, we discriminate the increase workload from stress events,
based mainly on detecting both the cause, which is usually a driving event and the effect
which is a stress event accompanied by an impact on physiological signals. Therefore,
the proposed method can be effectively used to detect driver’s stress events which can be
further exploited by advanced driving support systems.

Appendix

We consider a mixture model of the population X

o { N(zy; py,01), if x; comes from the C; component (5.36)

N(zi, 1 + 6, 09), if z; comes from the Cy component

The mixing probability of each component is defined as m; and m,. The ML estimation
of the parameters of the model is based on the EM method. The EM estimation of the
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ML parameters of the model, is based on the maximization of the following function:

L =Y [wale; +logoy® + (z; — m)?/07)

+ wizea + log 0;2 + (z; — 1 — 5)2/05]] , (5.37)

where ¢; and ¢y are constants and

wi = 2 MV (@i 11, 01) , (5.38)
Yo imN (@i; pa, 01) + N (245 i + 6, 09)]

Wiz = 2, oV (@i s + 9, 02) . (5.39)
Yo TN (@45 pr, 01) + TN (245 1 + 6, 09)]

The calculation of w;; and w;s is the E-step of the EM algorithm. In the M-step we find
p1 and ¢ which maximize Eq. (5.37). Regarding only the terms involving u, Eq. (5.37)
can be written as:

+Zwiz(% — i — 0)*/o3, (5.40)
where C' summarizes all other terms. Taking the derivative with respect to p;, we obtain:
IL
J Zwﬂ%/% + szlﬂl/01

1
- Z Win ;05 + Z Wiatia /05
+ Z wixd /o2 (5.41)

Setting to zero and solving with respect to u; we obtain:

Sy wazifof + 3 wipwi/03) — 3, wipd/od
= (Zz Wi J0% 1 Zz wia]oD) . (5.42)

We follow the same procedure for §. Taking the derivative of Eq. (5.37) with respect to

6 we obtain:

9L
95 = —;wizxi/OSﬂL;wizm/ag

Setting also to zero and solving with respect to ¢ we obtain:

Yy WiaTi[0F = 3, wﬂﬂl/%
d= 5, wifod) (5.44)
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CHAPTER 6

ADAPTATION OF A DRIVER STATE DETECTION
SYSTEM ON NEW DRIVERS

6.1 Introduction

6.2 Background on the Geometric Transformation of a Gaussian Mixture model
6.3 EM approach

6.4 EM with multiple starts

6.5 Global and Local Transformation

6.6 Results

6.7 Application to new driver adaptation

6.8 Discussion

6.8 Appendix

6.1 Introduction

Mixture models are well studied in the literature and applications exist in several do-
mains, such as density estimation [11], clustering [5, 37], classification [97], image reg-
istration [34, 61], regression [4, 15], etc. The most widely used mixture model is the
Gaussian mixture model (GMM). There are two main problems in the application of
mixture models. The first is the estimation of model parameters. Parameter estimation
is based on the mazimum likelihood (ML) or mazimum a posteriori (MAP) estimation
of the parameters using the expectation-maximization algorithm (EM) [27, 33, 123] or
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the variational extensions of the EM (VEM) [54, 133]. The second is the choice of the
number of components, of the mixture model. There are some cases where the number of
components is known a priori, (e.g. classification problems), however in the majority of
cases this number is unknown (e.g. image clustering and segmentation). There have been
several heuristic methods for an unsupervised estimation of the number of components
[90, 146, 21, 13, 111].

In this work we address a different problem. We assume that the number of compo-
nents as well as the model parameters are already estimated in an initial training dataset.
Then this initial model is applied on a new dataset which is a transformation of the orig-
inal one and there is a one-to-one mapping between the components of the initial dataset
and the components of the new one. This problem is encountered in many domains, such
as model adaptation [28], image registration [34] and tracking [158]. One may consider
to simply retrain the model using the new dataset, but without any restrictions or con-
straints, this could lead to a violation of the one-to-one mapping. A commonly used
approach is the application of constraints on the new parameters, such as the assumption
that the new population is a geometric transformation of the original one. In Fig. 6.1
we present an example of this transformation. This assumption imposes that the new
GMM parameters are also geometric transformations of the original ones. Usually, (as it
is shown in Fig. 6.1) the geometric transformation consists of a rotation and a scaling
matrix (matrix A in Fig. 6.1 is the product of a rotation and a scaling matrix), and
a translation vector b. Digalakis et. al [28, 130] treated this problem under the addi-
tional constraint that the transformation matrix A as well as the covariance matrices are
diagonal. Use of a diagonal transformation matrix implies only scaling only across the
dimensions of the population. Moss and Hancock [102] addressed also this constrained
transformation problem. However, they were limited to the image registration problem,
thus in 2D dimensional mixture models, and they treated the M-step for all transformation
parameters, as an optimization problem.

In this work we treat the general D-dimensional problem, with non-diagonal rotation
and covariance matrices, and the transformation parameters are identified employing the
EM algorithm. The EM algorithm consists of two basic steps: i) the expectation step
and ii) the maximization step, which are derived for the problem under investigation. An
optimization method is applied only for the rotation angles in the maximization step. We
also consider the special case of spherical covariance matrices. As already described, the
method is based on the EM algorithm introduced by Dempster et. al [27]. EM gained
great attention the last two decades mainly due to its simplicity, the natural handling
of the probabilistic constraints and the certain convergence to a local minimum. Redner
and Walker [121] criticized the EM as a first-degree rather "slow” algorithm, compared to
Newton and quasi-Newton methods. However, the performance of the EM algorithm has
proven to depend on the overlap of the mixture of Gaussian, and in the cases of minimum
overlap the convergence rate becomes super-linear [159]. In this work, we apply the
findings of [159] in the problem under consideration and we also propose an initialization
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- Original Population 1st Component - Original Population 2nd Component - Original Population 3rd Component

= New Population 1st Component New Population 2nd Component - New Population 3rd Component

Figure 6.1: Example of a geometric transformation of a population.

method for a multiple start EM algorithm, which increases the probability of the correct
solution identification.

The assumption of a unique transformation applied on all mixture components, may
hold for a large number of problems. However, it could be of great interest to allow each
component to have an individual transformation. For better understanding, the unique
transformation could be applied to the estimation of a camera motion capturing a still
scenery. However if some objects are also moving, then in order to estimate both motions
we need to consider transformations to individual components.

In what follows, in Section 6.2 the problem is defined and in Section 6.3 we derive
the expectation and maximization steps of the EM algorithm for both full and spheri-
cal covariance cases. In Section 6.3.4 we study the likelihood function, considering the
overlapping of the initial GMM components and we propose a global minimum criterion.
In the experiments performed in Section 6.6 the algorithm’s behavior and the correct
solution identification as a function of the mixture overlapping are examined. In Section
6.5 we examine the case of both global and local transformation, using a MAP EM ap-
proach. Finally, the results and the proposed methodology are discussed in Section 6.8.A
summary of the notations used hereby is given in Table 6.1.

6.2 Background on the Geometric Transformation of a Gaussian

Mixture model

Suppose an initial sample X° of a D-dimensional space SR , whose distribution is ap-
proximated as a GMM with L components. Any probability density can be accurately
approximated with a mixture of Gaussians having a proper number of components [84].
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The density of sample X is expressed as:

P(XO> = H ZpiN(X’#’i:zi)? (61)

x€X0 ¢
where p;, p, and ¥; are the prior, the mean and covariance matrix of the i-th mixture
component, respectively. Furthermore it holds that ZZL p; = 1. The problem examined
which is examined here is the geometric transformation of a GMM. We consider a new
sample X with n samples, which is produced according to:

X0 AP x (6.2)

where A(-) is the rotation and scaling function and b is the translation. The distribution
of the new sample X, under the transformation A(-) + b is:
P(X) =[] D miN(x|Ap, + b, ATSA). (6.3)
xeX 1

The matrix A is the product of a number of elementary transformation matrices:

A= S[ﬁ Ri). (6.4)

S is a diagonal scaling matrix, and the coefficients s;; scales the mixture components
across dimension ¢ and R; is an elementary rotation matrix with angle denoted as ¢;.

In this work we consider a slightly different transformation, where scaling is only
applied on the covariance matrices and not in the mean of the Gaussian distributions.
Thus, we do not shrink or enlarge the whole distribution space but rather the range of
each component. The GMM described the new population is thus written as:

P(X) =[] D pN(x|Ap, + b, ATSE;S4), (6.5)
x€X i

and
A= [H Ry (6.6)

However for all the derivations following, the extension to the case of (6.3) is trivial. The
parameters describing the original GMM model are:

M = {{pla Hys vec[El]}, {pQJ Has VGC[ZQ]}, a

{pr, o, vec[SL]}}. (6.7)
and the transformation parameters are:
0 = {{¢17 ;¢P};{Sl7"' ;SD}; (68)

{b1,--- bp}}. (6.9)

There is no closed solution for the maximum likelihood estimation of the transformation
parameters ®. The main tool for solving similar problems is the expectation-maximization
(EM) algorithm [27]. The application of the EM in the specific problem, is described in
the next section.
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Table 6.1: Symbols used in this work and their meaning.

Symbols | Meaning

x,y,b Vectors

AR Matrices

X Variable set

P(X) Probability distribution

7(X) Prior probability distribution

£ Log-likelihood

e(M=) | Overlapping of a GMM model
n Population samples

D Problem’s dimension

L Number of GMM components
N Gaussian Distribution

u Mean of Gaussian

Dy Covariance of Gaussian

vec|-] Vectorize matrix

tr(-) Trace of matrix

E[] Expectation operator

6.3 EM approach

The EM algorithm as denoted by his name consists of two step: i) the expectation step

and ii) the maximization step. The goal of the EM algorithm is to maximize at each step

k the expected log-likelihood of the complete data with respect to model’s parameters:

OF = arg mng[logp(X, Qe,M)|X, 01,

(6.10)

where ®*~1 is the previous estimation of parameters, M is the initial model considered

and () denotes the collection of the corresponding unobserved mixture indices.

The expected log-likelihood, can be written as:

g(ekle 1 M)

Ellogp(X,Q[©,M)|X, 0 1]
53 plerlr, @ (o, @41

DD plwilr, O p(w) (6.11)
> Y vk, 01 [~ o]

%(‘” =) (2) 7 (o~ ué)} (6.12)
DD p(wilr, O p(wi @47, (6.13)

zeX 1
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where ;' = Ap; + b and X = ATSY,SA. The term (6.13) does not depend on the
transformation parameters ® and thus not need to be included in further derivations.
The first term (6.12), denoted as J, following [28] can be written as:

I = Y mX)|2l0g4]
+ yrSiyn sy
+ tr[AS‘lzi‘lS‘lATii[X]]], (6.14)

where y = (ATE;[X] — p; — A™b) and m;(X) is:

m(X) =Y hi(x), (6.15)

xeX
where
hi(x) = plwlz, O
S v P(x| ), 5)

(6.16)

E;[X] and 3;[X] are the sufficient statistics which are defined in Section 6.3.1 and calcu-
lated in the E-step of the EM algorithm.

In this section we present the derivation of the E and M steps of the EM based
algorithm for the estimation of the parameter vector ®. Using an initial guess for ©,
@°, the algorithm repeats the E and M steps until the convergence criteria are met. A
more sophisticated method for parameter initialization is described in Section 6.4. The
termination criterion used is:

|0F — 0% 1| < ¢, (6.17)

where ®* is the parameter vector at step k. Next the derivation of E-step and M-step is
described in more detail. We consider two cases for the M-step: i) a general case where
the covariance matrices are full positive definite matrices and ii) the spherical covariance
case.

6.3.1 E-step

In the E-step we estimate the expected sufficient statistics of the data, given the current
estimation of the parameter vector @1 [28]:

B POl b (S48 615
Dic1 2opey P(xi[Apy + b, (SA)TELSA)
Sor XXy P(xi|Ap; +b, (SA)TE;5A)
>ic 2o P(xilApy + b, (SA)TELSA)
NiX] = E[XXT] - B[ X]|E;[X]". (6.20)

(6.19)
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6.3.2 M-step under the general case

The update equations for all the transformation parameters (translation vector, scale vec-
tor and rotation angles) are employed in the M-step. We do not update the mixture model
membership probabilities p;, assuming that the new sample comes from the transformed
components with the same proportion.

Translation vector

Taking the derivative of Eq. () with respect to the translation vector b and setting the
derivative to zero we obtain the following update equation:

b=C"'D, (6.21)

where C' and D are defined as:
C = > mX)zlsAr|, (6.22)
D = Zﬁi(X)E;IS_lAT(Ei[X] — Ap;) (6.23)

Scale vector

Taking the derivative of Eq. () with respect to the scale s; and setting the derivative to

zero, we obtain:
as; +bs; + ¢ =0, (6.24)
where a, b and ¢ are defined as:
a = 1,
mi(X) 1 T qlj 25 A4S
b= YIS {mijyij 4 tr(ATSYR,S JAZZ»[X])} ,

1Iv) X j AN
P Z # {wz;zc” + tT(ATSQJZiSQJAZi[X])} '

In the above equations x;; and y,; are defined as:

w; = LS9 [AT(Ez[X] —b) - Mz} ’ (6.25)
Yi; = LiS% [AT(Ez[X] —b) - Mz} ) (6.26)

where L; is derived from the Cholesky decomposition of the covariance matrix X7 *:

¥t =L]L,. (6.27)
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S and S? are diagonal matrices, defined as:

0,ifi=75=k
S = s, ifi=j#k , (6.28)
0, otherwise
1, ifi=5=%k
S = ’ . 6.29
K { 0, otherwise (6.29)

It can be shown that |c¢| >> |b] and ¢ < 0 and thus b* — 4¢ > 0, whereas:

o bEVbB2—dc

s 5 (6.30)

has one positive and one negative solution. We always select the positive one.

Rotation angles

The derivation of the angle update formula is more complicated. For simplicity J is split
as the sum of two terms:

I= mX)RF + 37, (6.31)

where J¢ and 32’ are defined as:

3¢ = F'S 171 IF, (6.32)

)

3P = tr(ASTINTISTIANL (X)), (6.33)
where F in Eq. (6.32) is defined as:
F=(A"'E[X]—pu,—A'b)T. (6.34)

We consider the matrix A to be a product of elementary transformations (see Eq. (6.4)):

A= RlRQ"‘Rj "'RD—1; (635)
and R; is:
J
1 0 0 0
: f f 0
R](DXD) =510 cos(¢;)  sin(¢;) 01, (6.36)
0 o —sin(gy) cos(dy) o O
0 --- 0 0 e 1

where ¢; the rotation angle. The results following, can be extended to more generic
forms of R;, as we will see in the experiments for the estimation of a 3D geometric
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transformation, where the number of angles exceed the problems dimensionality (P >

n — 1). However, at the moment we follow this definition for simplicity. Either case, R;

can be decomposed as:

Rj = (IJ COS(¢j) + Jj Sin(qu) + Kj),

(6.37)

where I}, J; and K; are matrices defined in Appendix 6.8. The partial derivative of J

with respect to ¢, is given as (see Appendix 6.8):

3
87% - ZWZ wl] yzyyzg)

_|_

tr(A;EZ. LASY (X))
— (AT AN X)) sin(2¢;)
Q[wg;yij + tr(AjSi_lAﬁfli [X])] cos(2¢,)
20 (zij + w;)] sin(¢;)
— 2[y;;(zi; + wy)] cos(¢;)] -
The vectors @;j, y;;, zij and w; are defined as:
zy; = LTASE[X] - b),
yi; = Li A3(Ei[X]-b),
Zij = L?Af(Ez [X] - b)7
w; = Lip,

+ -

where L; is the Cholesky decomposition of the covariance matrix 3. The matrices As,

A%, and A are defined as:
A = Rg,1~~~ij~~R2TR1TS’1,
Ad = Rg,1~~JjT~~R2TR1TS’1,
A = Rp_,---K]---RIRTS™".

Setting Eq. (6.38) to zero we obtain an equation of the following form:

a cos(2¢) + bsin(2¢) + ccos(¢) + dsin(¢) = 0,

where
a = ZWZ ww y?}yzj)
+ ““(A§ ATSX])
- (AT ARX))
b = QZ”i(X)[‘”z@ym +tr(ASS;T A X)),
¢ = 22% sz—l—wl)]sm(gbj)

d = -2 Z (X yw Zij + w;)] cos(¢;).
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In order to solve Eq. (6.46) for ¢, we use a non-linear optimization method (Levenberg-
Marquardt).

6.3.3 M-step under the spherical covariance case

We consider the special case where spherical covariances ¥; = 021 and spherical scaling
S = sl are employed. We derive the update equations for scale vector and rotation angles
(the derivation of the translation vector is the same).

Scale vector

The parameter s* is given as:

| SimiX) [t (X)) (Do?) + 272 /o]
§* = 5 , (6.47)

where z = [AT(3;[X] — b) — ;).

Rotation Angles

From the definition of the matrices J; and I; (see Appendix 6.8) we obtain the following

identities:
tr(AS MiX]) = tr(A3S;TASY(X]), (6.48)
(A S 1A X)) = o, (6.49)
Timy = YLy, (6.50)
xly,; = 0. (6.51)
Incorporating Eqs. (6.48)-(6.51) into Eq. (6.38) we obtain:
G = 2lah(ey+ w)sin(oy)
2[yy; (zij + wi)] cos(o;)]. (6.52)

Setting to zero and solving with respect to ¢;, we obtain a solution ¢} which is given as:
Y5 (zij + w;)
wg(zij + w;)
where x5, y,;, 25 and w;; are defined in Equations (6.87), (6.88), (6.89) and (6.90),
respectively.

o7 = —atan( ), (6.53)
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6.3.4 Local maxima

Since EM can be considered as a local optimization method, the existence of many local
maxima could have a serious effect on the method performance. In the case of a unique
maximum the algorithm is guaranteed to convergence to this maximum. Thus, it is of
great interest to study the shape of the likelihood function, given the parameters of the
problem.

One of the factors influencing the number of local maxima of the log-likelihood func-
tion, is the sparsity of the mixture components. This is verified theoretically in [89, 91].
The more dense the distribution, the larger the number of local maxima in the search of
the optimal transformation parameters which fit the data.

We follow the measure of the Gaussian overlap introduced in [89]. We define 7;;(x)
as:

’)/Z'j(X) = (613 — hZ(X))hJ(X) for Z7j = {17 ey L}, (654)
where ¢;; is the Kronecker function and h;(x) is defined in Eq. (6.16). The overlap

measure of two mixture components is defined as:
e (M) = / iy (2) [P (x|M®) iz for i, j = {1,.., L}, (6.55)
Rd

where M is the GMM model considered and e;;(M*) < 1since |v;;(z)| < 1. The maximum
overlapping e(IM*), is defined as:

e(M*) = rni?xeij(l\/[*). (6.56)

More details can be found in [89]. Next we prove that e(M*) is invariant under the
transformation A(-) + b.

Lemma 6.1. The measure of Gaussian overlapping e(M*) is invariant under the trans-
formation Ax 4+ b, where A 1is the product of rotation and scaling matrices.

Proof. Since the measure of overlap e(M*) is governed by the overlapping of different
components, we examine only the cases e;;(M™*), where ¢ # j . Under the transformation
2’ = Ax+b and the new parameter vector M*', P(x'| A} 4+ b, AY; AT) can be written as:

P(x/|Au; +b, ASAT) = N(Ax +b|Ap; + b, AS;AT)
= (|27 215187
exp [—(AX +b— (Ap; + v)"
ATTS A
(Ax +b — (Ap! +0))]
= [2r[" 425 S|
(x — p)" S (x — )
202152
= [SI7'P(x|p;, o). (6.57)

exp —
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For i # j, defining P, = P(Ax +b|Ap} +b, ATYF A) and using the property that |R| =1,
and the variable transformation x’ = Ax + b we obtain:
eij(M*) = / Ry (x )1 (x') P (x| M) dx' (6.58)
Rd
;i PP
= ————|SR|dx.
Re > o TP
Given that RTR = I, we obtain:
) mimr P(x|\pr, X7 P(x|ps, X5
Rd

S Yy P (x|, )
= QU(M*)

1S|dx (6.59)

In [89] is proved that if the initial guess of the parameters lies in the neighbor of the
correct, solution N(M*) then, given sufficient samples, the EM converges to the correct
solution. The range of N(M*) has been shown to be related to e;;(M*). Since this in
invariant under the transformation Ax+b, it is also expected that the range of N(M*) will
be also invariant under the same transformation. This is very important, since studying
the initial model, we could infer the range of the transformation parameters, where the
model converges to the true solution and we could therefore construct an optimal grid on
the parameter space to obtain the correct solution. Here, we use a more naive approach,
which is described in the next section.

6.4 EM with multiple starts

For a D dimensional problem we consider P rotation angles. For a 2D dimensional
problem, P = 1, whereas for a 3D dimensional problem P = 3. Thus we have a R”
angle space ®. However considering only the space [—m, 7] for each angle the angle space
is a hypercube. We produce a grid of this hypercube splitting the range of each angle
in K equal distant intervals. Thus we have K possible initializations for the rotation
angles. The optimal value of K depends on the problem complexity. The larger the K
the higher the probability of identifying the global maximum, and of course the higher
the computational cost.

We then consider scale parameters initialization. A large value is initially assigned to
scale parameters. The rationale for this choice, is that the new sample should be covered
by all initial mixtures, thus no mixture is favored to cover a different chunk of the sample.

Furthermore, from the numerical stability point of view, if we assume that the new
model is far out of the initial’s model region, then the estimation of likelihood of the new
data, given the initial model, can create numerical problems.

The method proposed is summarized in Algorithm 6. The algorithm is named msEM
(EM with multiple starts). Starting from different initializations as those are produced by
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Produce a grid of the rotation angle space ®
for all ¢ € ® do
k=20
Imaz = —00
while ||©% — @1 < e do
Calculate expected statistics in E-step
Update transformation ©* parameters in M-step
k=k+1
M* = ©%(M")
if J(M*) > J,nin then
Jimaz = J(M¥)
@opt. — @k:
Algorithm 2: msEM

the grid of the transformation parameter space, we perform the EM steps until convergence

OFM we keep the optimal one @°P"

in the tranformation parameters. From all solutions
the solution that was closer to the expected log-likelihood of the transformed model and

scaled according to S¥M.

6.5 Global and Local Transformation

The assumption of a unique transformation for all mixture model components, may hold
for some problems, but in many others could be a very strict constraint. In order to add
more flexibility in the model, we could allow each component to have an individual (local)
transformation as well. We will consider the 2-D case, but the following results are easily
extendable to the more general case. We start from the definition of the both global and
local transformation in rotation, scaling and translation. The new rotation matrix R;GL)

for a 2-D case can be written as:

@@Ly _ [ cos(¢+ ;) —sin(¢+ ¢ )
= ( sinp+6;)  cos(6 -+ ) ) ’ (0.5

where ¢ the rotation applied to all components and ¢; the rotation applied to the specific
J —th component. Obviously 12; can be also express as the product of a local and a global

rotation:
R = R©.R" (6.61)

@ _ [ cos(¢) —sin(e)
! <sm<¢> cos<¢>>

@ cos(¢;) —sin(¢;)
i = (sin(gbj) cos(¢;) >
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For the translation vector we can write:

b = bl 4 plt) (6.62)
and for scaling
(@) (D)
: 0
@) _ [ S5 , 6.63
j 0 ng) _ 3%) (6.63)

The basic assumption of those local transformation are that are in magnitude smaller
than the global ones. Thus in order to apply this constrained in their estimation we
choose to apply a prior distribution on those parameters. Thus we assume that:

¢\ o< N(0,02), (6.64)
sty o< N(0,02), (6.65)
b o< N(0, o21). (6.66)

The new set of transformation parameters and the incorporation of the prior on the dis-
tribution of local transformations, leads to an MAP EM estimation and the optimization
of the new auxiliary log-likelihood function:

3 = Yo m(X)[2log 4]

_I_

y' (S (S Ly

)

+ A (S TS T AT X]] |

? ? ?

P
— loger+ Y As(9))?

J=1

— loges + Z /\S(sgjL))2
j=1
— logcs + ApbTh, (6.67)

with respect to both local and global transformation parameters. The c¢;, ¢o and c3
are terms not involving transformation parameters, P is the number of angles in the
transformation, D the problem’s dimension, Ay = 1/(203), Ay = 1/(207) and A, = oy.
Furthermore, y = [(AEGL))TEZ- (X] — p; — (AEGL))Tb]. The expectation F;[X], as well as

E;[XXT] calculated in the E-step, are now defined as:

n GL
BxX] = i XPeul A b ITET) 6.68)
’ S S Pl Ay + b, TS
n GL
BXXT] = XX P (i A7y + b, TTT) (6.69)
’ S Y Pl Ay + b, TT,T)

r, = S9 4l (6.70)
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The update equation of the global transformation parameters, taking place in the M-
step, is similar to those presented in Section 6.3.2. The only changes are the definition of
the matrices Af, A%, and Aé? defined in Eqgs. (6.71),(6.71) and (6.71), respectively:

A = (REDT IR (RGN (SO,

J 75t
A5 = (RS JT(RINT . <R<G”>T<s @bt
Af = R KR (RGNS

where j refers to the j-th rotation angle, whereas ¢ to the i-th component.

Furthermore in all equations presented for the global transformation we should re-
place the transformation parameters with the new ones containing both global and local
transformations. We proceed with the update equations of the local transformations.

Translation vector

Taking the derivative of the log-likelihood (6.67) with respect to the translation vector
b’ and setting the derivative to zero we obtain the following update equation:

b/ = (C;+ A, 1)"'D;, (6.71)
where A\ T) = 1/(0}), and C;, D; are defined as:

C; = [T, (6.72)
D = [T EX] - A - @) (6.73)

where I'; defined in Eq. (6.70).
Taking the derivative of the log-likelihood with respect to the scale SZ(]-L) of the i-th
component at j-th dimension and setting the derivative to zero, we obtain:

(85)2 + (b+ st +e— A =0, (6.74)

L]

where a, b and ¢ are defined as:

a = 1, (6.75)
b = yzij +tr[(ATNT sV s 5% AL S X, (6.76)
¢ = alay+tr[(A)T 578,57 AP X]. (6.77)

In the above equations x;; and y,; are defined as:

2y = LiSY (A (B(X] - ¢ - ] (6.78)

vy = LY |(AC)T(EIX] - ") - ) (6.79)
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The matrices S' and S? are defined as:

(Sik)y = { s 00 =57k (6.80)

0, otherwise

G o= =k
Sy = ! . 6.81
(5" )is { 0, otherwise (6.81)

Similarly to Eq. (6.24), Eq. (6.74) has two possible solutions for SZ(]L): one negative and
one positive. We again select the positive one.
Rotation angles

In a similar derivation as that of Section 6.3.2 we obtain an equation of the following
form:

a cos(2¢)Z(jL)) +b sin(2¢§jL)) +c coS(¢§f))
+ dsin(@%)) + )\;5(@%)) =0, (6.82)

where A = 1/(03) and

Q

= [(m iLij — yljyz_])
LA ACS X))

— r(ASTTAS(X]) (6.83)
b = 20zly,; +tr(A3S AT X)), (6.84)
= Q[mij(zij+wi)]51n(¢j), (685)
d = —Q[yg(zij+wi)]cos(qﬁj). (6.86)
The vectors @, y,;, z;; and w; are defined as:
wy = L] AS(Ei[X] —b{"), (6.87)
y, = LTA(E[X] - b7, (6.88)
zy = Lj AJ(Ei[X] - bi"), (6.89)
w; = Lip, (6.90)

The non-linear Eq. 6.82 is also solved using the Levemberg-Marquardt method. The
MAP-EM algorithm estimating both global and local transformations is given in Algo-
rithm 3.

Prior distribution on local transformation parameters

The variance in the prior distribution of the transformation parameters is the parameter
governing the freedom given on those parameters. If we use a vary large variation then

the model diverges from the initial assumption of a geometric transformation of an initial
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while |©% — @1 < ¢ do
E-step: Calculate expected statistics.
M-step:
Update all global rotations ngG) using the solution of Eq. (6.46).
Update all global scale coefficients SEG) using Eq. (6.30).
Update all local rotations ¢>§f) using the solution of Eq. (6.82).
Update all local scale coefficients SEJL) using the positive solution of Eq.(6.74).
Update global translation b(®) using Eq. (6.21).
Update local translations bi(L) using Eq. ().

k=k+1
Algorithm 3: Global/Local MAP-EM

population. Each component will probably converge to the closest component of the new
population. On the other hand, using a very small initial variance, we restrict the model
and we are in-fact neglicting local transformation parameters. A desired behavior would
be, if initially we restrict the local transformation parameters and progressively, while the
global transformation converges to the actual solution, loose the constraints and allow the
adaption of the local parameters as well. This behavior can be achieved using a iteration
varying A defined as:

A = Aoexp(—vk) + Ag. (6.91)

The parameters g, Aj and v for each prior distribution are experimentally chosen. The v
parameter in a large degree defines the behavior of the algorithm, outlined in Algorithm
3. If v is large then the constraints are quickly dropped and this algorithm is equivalent
with an algorithm where at each iteration we seek for both local and global transformation
parameters without constraints. On the other hand if v is very small and we also have
implied large constraints Ay the algorithm initially fits the global transformation, and
after a large number of iterations starts to fit the local ones.

6.6 Results

We performed a series of experiments in order to investigate the estimation of the trans-
formation parameters, using the EM approach and the multiple-start EM for the global
transformation cases, as well as experiments for the MAP-EM approach for estimating
both local and global transformations.
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Figure 6.2: (a) The log-likelihood of the estimated model and the log-likelihood of the
actual one and (b)the rotation error, vs the number of iterations, for a 2D problem with
three components.

6.6.1 EM approach

A 2D problem is initially studied with three mixture components. The parameters of the

initial mixture component are:

and

21222:23:

1 —-0.2
-0.2 1 '

The transformation parameters ®@*, which transformation is applied to the initial mixture

model, are:
( QS — 600 3
B =10
(@} =1 B=10
s1=1.5
( s2 =15 )

In Fig. 6.2(a) we present the log-likelihood of the estimated model for each iteration
step. For comparison we also provide the log-likelihood of the target model. We ob-
serve a fast convergence for the specific case, with an expected monotonically increase in
the estimated model’s log-likelihood. The fast convergence to the correct model is also
demonstrated by the rotation angle error depicted in Fig. 6.2(b).
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Next we examine a 3D case and a GMM with five components. The original component
means are randomly sampled as:

i € 10,40] and || — py]| > 15 for 4, j € {1...L}, i # j,
And the covariance of all components was:

1 -03

;=
03 1

] forie {1..L}

We must notice here that the rotation matrix A used in this case was:

A4 = Rm(¢m) ’ Ry(¢y) ’ RZ(¢Z)) (6'92)
1 0 0
Rm(¢x> - 0 cos ¢x —sin ¢:c ,

0 sing, coso,

)

cos ¢ —sin ¢
Ry(¢y) = 0 Y 1 0 Y 5

sing, 0 cosg,

cos¢p, —sing, 0

R, (¢z) - sing, cos¢, 0
0 0 1

In the examined case ¢, = ¢, = ¢, = /4, the scale coefficients were all set to 2 and
translation vector b uniformed sampled at [0, 50].

In Figs. (6.3(a)), (6.3(b)) we present the log-likelihood of the estimated model and
the rotation error for the three angles in Eq. (6.92). The method also proved to correctly
converge to the actual transformation parameters. We observe that the convergence is
slower compared to the 2D case, which is due to higher problem’s complexity and mixture
component overlapping.

In order to test the robustness of the algorithm with respect to the distance of the
initial guess and actual value of the parameters, we examine a 2D and a more complex
5D case.

(i) 2D case: The varying parameters in the first experiment are the number of compo-
nents and the rotation angle (a unique parameter in 2D case). Each mixture component
is equally sampled with 500 samples (7; = %, for i = 1,--- L). The covariance of the com-
ponents are spherical and fixed to ¥; = I, for i = {1,...L}. The mean of the components
is randomly selected according to:

i € [0,100] and ||p; — pe]| > 20 for 4,5 € {1...L}, i # j. (6.93)

The translation and scale vectors are also randomly selected: the first in the range
[—10,10] and the second in the range [1,3]. In Fig. 6.4(a) we present the rotation error
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Figure 6.3: (a) The log-likelihood of the estimated model and the log-likelihood of the
actual one and (b)the rotation error, vs the number of iterations, for a 3D problem with
five components.

|¢pFM — ¢*| as a function of true rotation angle ¢*. ¢¥M is the estimation of the rotation
angle.

(ii) 5D case: A similar series of experiments is conducted for a 5D problem. The
varying parameters are again the number of components and the rotation angles (all
angles have the same value). We should notice that the rotation matrix adopted for the
5D case is of the form described in Eq. (6.36) and thus we have four rotation angles.
The covariance of the components is spherical and fixed to 3; = I, for i = {1,...L}. The
mean of the components are randomly selected according to:

i € [0,100] and ||p; — pe]| > 20 for 4,5 € {1...L}, i # j.

The translation and scale vectors are also randomly selected, the first in the range [—10, 10]
and the second in the range [1, 3]. In Fig. 6.4(b) the rotation error |¢¥M —$*| as a function
¢EM

of true rotation angle ¢* is presented. is the estimation of the rotation angle.

6.6.2 Multiple start EM approach

A number of experiments are conducted using the msEM. We examine 2D, 3D and 4D
problems, since for higher dimensionality problems the possible number of initializations
becomes very large. We examine the effect of the overlapping of the initial mixture model
in the performance of the algorithm, as well as the K parameter of the EM-algorithm.
The number of the components is equal to the dimension of the problem in all cases. We
expect that with higher K and less overlapping between the mixture components, the
algorithm must perform better. The overlapping between the components is split in 5
ranges according to the min and max distance between components Ly < ||p; — ] <
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Figure 6.4: (a) The estimated rotation error for a 2D case as a function of the mean
component distance and the rotation angle of the new mixture model, and (b) the esti-
mated rotation error for a 5D case as a function of the mean component distance and the
rotation angle of the new mixture model.

Lo fori,j = {1,...L},i # j, where L; € {0.5,1,2,3,5} and L, € {1,1.5,3,5,10} In Fig.
6.5 we show that overlapping e(M) is a function of the distance between components
(with fixed covariance matrices). For each case (dimension, number of initialization and
initial distance between components) we run 100 cases with an initial rotation angles
27 /5, translation vectors uniform sampled in the space [0, 10] and scales uniform sampled
in the space [1,3]. The average rotation, translation and scale errors, as well as the
average likelihood are given in Table 6.2. Furthermore, in Fig. 6.6 we show graphically
the rotation error and the translation error, in order to provide a better overview of the
method behavior as a function of the problem’s dimensionality, overlapping and number of
initializations. We observe that the rotation error is increased with higher dimensionality
and overlapping. Increasing the number of initializations the error is reduced, which
is explained, since with more trials starting from different locations, the probability of
finding the global minimum, i.e. the correct solution, is higher. A similar behavior is
observed in the translation error. The only difference is that translation error is increased
with less overlapping, i.e. larger distance between components. The larger the distance
between components, the larger the expected translation error in case of wrong solution
identification.

6.6.3 MAP-EM approach for global and local transformation

We next examine the convergence of the MAP-EM method for estimating both global
and local transformations, for a 2D case.
We test the impact of the parameter v on the correct solution identification. In this
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Figure 6.5: (M) as a function of the distance between the components Ly < ||p; — p5|] <
Ly fori = {1,...L},i # j, for 2D, 3D and 4D problems (the e(A) axis is in logarithmic
scale).

example we only allow local rotations, in order to have a more restricted problem. For
the local rotations, A¥ = 50e~7*+1 and v € [0.01,0.02,0.05,0.07,1,5]. We have 20 initial
components with randomly distributed means according to:

pi € 10,80] and |[|p; — py|| > 15 for 4,5 € {1...L}, 1 # j.

and identity covariance matrices for all components. In Fig. 6.7(a) we present the mean
squared error of the estimation of the new components. We observe that for this example
and for v < 1, the error is relatively small and the estimated components, correspond
to the true ones. For v > 1 the model converges to false components. Furthermore, in
Fig. 6.7(b) we demonstrate the average error in the estimation of both local and global
rotations at each iteration, for v < 1. We observe a similar behavior, however for larger
v faster convergence was achieved, as expected.
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Table 6.2: (a) The rotation error (R), (b) the scaling error (S), (¢) the translation error
(T) and (d) difference of the estimated log-likelihood from the actual models.

Li=05,L, =08 Li=1,L,=15 Li=2L,=25

R S T L R S T L R s T L
2D/1 | 464 081 1.68 -8502 | 4334 0.74 241 -8233 | 4532 0.8 3.77 -8625
2D/2 | 28.94 054 097 -81874 | 21.78 0.39 1.13  -83904 | 12.94 023 149 -8638
3D/1 | 105.78 125 204 -18575 | 107.52 1.17 271 -18789 | 107.64 1.14 6  -19276
3D/2 | 52.78 0.68 1.55 -18440 | 50.58 0.7 218 -18590 | 47.83 0.65 3.71 -19397
3D/4 | 2521 0.34 0.79 -18264 | 19.05 0.23 0.74 -18376 | 846 0.12 0.88 -19615
4D/1 | 108.91 1.33 3.19 -32499 | 109.7 1.3 526 -32012 | 114.58 1.28 9.59 -34441
4D/2 | 38.05 042 126 -32547 | 4266 0.55 235 -32838 | 547 058 535 -33654
4D/3 | 833 0.09 05 -32584 | 486 0.07 047 -32623 | 822 011 1.17 -33948

Li=3,L,=4 Ly =5,Ly=10

R S T L R S T L
2D/1 | 28.18 0.59 441 -9133 | 1.36 0.08 217 -9720
2D/2 | 6.88 0.13 095 -8912 | 03 004 013 -9534
3D/1| 93.96 1.09 9.03 -20732 | 54.68 224 19.94 -24330
3D/2 | 2849 0.33 3.9 20362 | 439 0.1 227 -21725
3D/3 | 692 01 116 -20340 | 1.29 0.05 0.77 -21654
4D/1 | 111.82 1.38 14.63 -36394 | 802 3.36 30.62 -44601
4D/2 | 3597 052 6.68 -35687 | 16.18 047 9.81  -38659
4D/3 | 871 012 201 -35610 | 3.39 007 282 -37974
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Figure 6.6: (a) The estimated rotation error, and (b) the estimated translation error for

100 runs of different dimension problems with different initial distance between mean of

the components. In the legend notation aD/b, a denotes the problem’s dimension and b

the number of angle space splits.
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6.7 Application to new driver adaptation

The problem as defined before and the methodology presented may be applied on a
variety of applications, such as image and point set registration, tracking etc. However
the problem related with this thesis is the adaptation of an initial model, designed to
discriminate driver states, to new drivers. We can use the following two approaches:

1. Use a GMM model for classification, where each component is assigned for each
driver state of interest.

2. Use an arbitrary classifier, trained on the original feature space F € RP, where
D the number of features. We approximate the feature space density as a GMM
model with arbitrary number of components. In order to estimate the number of
components and the parameters we could use the approach presented in [21]. We
assume that the new feature space (e.g. the physiological features of the new driver)
is a space F’ and there is a mapping function f from the original feature space F to
F’

FYF (6.94)

We assume that f consists of global and local transformations described in the
previous sections. Using the described methodology we could estimate those trans-
formation parameters and then apply inverse mapping to the original feature space.
This approach is described in detail, in section 6.7.2.

For both approaches, the training of the initial classification model (either the GMM
model or the arbitrary classifier) is based on supervised learning, where for every sample
we are also aware of the target class, whereas the adaptation procedure is based on
unsupervised learning, where the target class of each sample is not available. In the
following sections, we demonstrate the two approaches, the first using real drivers data
and the second one on both real and artificial data.

6.7.1 Application on real data

In this section we demonstrate the application of the described methodology where we
assume a GMM based classifier. We used the simulation dataset, where one subject was
used for training whereas a second subject was used for testing. We are restricted to
two only subjects since those two subjects had sufficient data, for both states (fatigue
and normal) in order to apply the method. In the examined case the low fatigue and
high fatigue are merged in one class (fatigue), due to limited data from the high fatigue
class. The physiological features used, are the mean heart rate and the std of RR intervals,
extracted at 5 minute intervals. Those features proved to be very indicative of fatigue state
(see Chapter 4), and the restriction to a 2D feature space allows an easier visualization
of the GMM models.

In Figs. 6.8(a), 6.8(b) we present the distribution of the features for the the two
subjects. The GMM model has two components, the first describing the feature space
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for the normal state (C) and the second one describing the feature space for the fatigue
state (Cy). The GMM parameters are estimated using the following equations:

I > x, (6.95)

x € Cq Cl\ =
¥ = |X€ &l XGZC 1)(x — )T, (6.96)
e = g Cz‘ Z X, (6.97)
Y, = |X€C2‘ Z 2)(x — o) T, (6.98)

where p1, po the mean of the first and second component, respectively, whereas ¥y, >
the covariance of the first and second component, respectively. x € C; and x € C, are
the samples belonging to normal and fatigue classes respectively, whereas |x € Cq| and
|x € Cz| the number of samples belonging to each class respectively. In order to assign a
new sample x to a specific class we use the following Bayesian criterion:

O(a) = { C1,p(alCLp(C1) > p(a]C2)p(Ca) (6.99)

Cy, otherwise

where p(z|C}) = N(u1, %1), p(x|Cs) = N(ug, X2), and p(C1), p(Cy) the prior probabilities
of each state, extracted from the annotated data.

In the two approaches examined, the GMM model is fitted to the data of the first
subject and then this initial model is adapted to the second subject’s data, using: i) the
global transformation approach, ii) global and local transformations approach. The results
of the adaptation are depicted in Figs. 6.8(c) and 6.8(d), respectively. In Table 6.3 we
present the classification results (confusion matrix, sensitivity, specificity and accuracy)
for both approaches. For comparison reasons, we also present the results of fitting the
GMM on the data of the second subject using the labeled data and the Eqs. 6.95-
6.98, which can be considered as the training error of a supervised method. We observe
that the global and local transformation approach gives slightly better results than the
global transformation approach. The error of 17% achieved with the global and local
transformation approach is relatively small, considering it as the generalization error, and
taking into account that the training error was 12%. This justifies the assumption that
at least for specific features, the feature space between different subjects can be described
under the geometric transformation assumption, and furthermore this method can achieve
very good generalization results.

6.7.2 Use of an arbitrary classifier and GMM for density estima-
tion

In this section we describe the second approach, where an arbitrary classifier is built
upon a original dataset, and a GMM model with L components is used to model the
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Figure 6.8: (a) The feature space of the first subject and the fitted Gaussian components
using labeled data. (b)-(c)-(d) The feature space of the second subject with (b) the fitted
Gaussian components using labeled data, (¢) the GMM model of the first subject adapted
based on global transformation and (d) the GMM model of the first subject adapted based
on both global and local transformations

density of the original dataset. The basic idea of this approach is that instead of trying
to adapt the parameters of a classifier on a new data, which in some cases could be very
complicated, we could map the data to the classifier’'s parameters. A common technique
in this direction is the normalization of the data, either using the min-max normalization
or the standardization of the data. However those approaches do not use any prior
information about the data distribution and they cannot handle changes occurring in
specific regions of the feature space. Our approach could overcome these limitations.
We first demonstrate the above method in an artificial dataset. This dataset consists
of a 2D GMM with three components. Each component corresponds to different class.
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Table 6.3: The classification results for: (GMM) learn a GMM using the class labels of
the second subject, (G. Trans.) fit a GMM on the data of the first subject and adapt on
the second subject’s data using the global transformation approach and (G.L. Trans.) fit
a GMM on the data of the first subject and adapt on the second subject’s data using the
global and local transformations approach.

GMM G. Trans. G.L. Trans.
Normal  Fatigue | Normal Fatigue | Normal Fatigue
Classified as Normal 20 22 22 39 22 36
Classified as Fatigue 2 165 0 148 0 151
Sensitivity 0.91 0.88 1 0.79 1 0.81
Specificity 0.48 0.99 0.36 1 0.38 1
Accuracy 89% 81% 83%

The mean and covariance of each component are properly selected in order to give a well
seperated classification problem. For each component we produce 300 samples. Then we
produce a new dataset transforming the original dataset:

x; = Al%x; + b, (6.100)
where x;; the i-th sample coming from the j-component.

g0 _ (039 092

(6.101)
0.92  0.39

aen [ 008 —0.73) (6.102)

0.73  0.68
q@n _ (063 —0.78 (6.103)
3 0.78 0.63
1.
b = 58 (6.104)
1.51
1.56
bW — 6.105
2 2.27 ( )
1.87
bW — 6.106
3 2.12 ( )

After estimating A;GL) and b}GL) we can map the X’ in the original space X using

the following:
_ L
LS e ((AS) T (ki — BIETY)
x/! = - (6.107)
S p(xilCy)
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Figure 6.9: In the above figure, we present the original population X, the transformed
population X’ and the mapped to the original space population X" using (a) global
transformation (b) global and local transformations.

Table 6.4: The classification results for the artificial dataset, using inverse mapping with
global transformation and using both global and local transformations.

G. trans. G.L. trans.
Ch Cy, Cs3 | Cp Cy s
Classified as C 0 4 0 299 0 0
Classified as Cy 0 296 1 0 300 0
Classified as C3 | 300 0 299 1 0 300
Sensitivity 0 099 1 1 1 1
Specificity 0 1 0.5 1 1 1
Accuracy 66% 100%

The mean squared error of the mapping of X” to the original population using global
transformation is 21.19 (Fig. 6.9(a)), whereas using both global and local transformations
is 0.04 (Fig. 6.9(b)). This is also depicted in the classification performance. Using a Naive
Bayes model trained in the original population, the classification error on the dataset
produced by the inverse mapping using the global transformation was 33.89%, whereas
using both global and local transformations, the error was 0.1%. The results are presented
in detail in Table 6.4.

We also applied the above methodology on the previous problem with the real driver’s
data. We again used the same data described in the previous section. We present the
results of four different approaches, for comparison purposes:

A1 10-cross validation on the data of the first subject, using the SVM classifier.

A2 (a) Train an SVM with the original data of the first subject. (b) Fit a GMM model
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with two components to the data of the first subject. (c¢) Fit the GMM model of the
first subject to the data of the second subject using only the global transformation
approach. (d) Apply the inverse mapping using Eq. 6.107. (e) Test using the new
mapped data.

A3 (a) Train an SVM with the original data of the first subject. (b) Fit a GMM model
with two components on the data of the first subject. (¢) Fit the GMM model of
the first subject to the data of the second subject using the approach with both
global and local transformations. (d) Apply the inverse mapping using Eq. 6.107.
(e) Test using the new mapped data.

A4 (a) Normalize the data of the first subject. (b) Train an SVM classifier using the
normalized data of the first subject. (¢) Normalize the data of the second subject.
(d) Test using the normalized data of the second subject. For normalization we
used the min-max approach for each feature:

g = L Tmin_ (6.108)

Lrmaezx — Tmin

where 2,,;, and 4., the minimum and maximum value of the feature, respectively.

In all cases we use radial basis function (RBF) kernel for the SVM. In order to fit a
GMM model on the original data density, we need to estimate the number of mixture
components as well as each component’s parameters. We use the method presented in
[21], which gives very good results (the estimated number of components was two).

In Table 6.5 we present the confusion matrix, specificity and accuracy per class, as
well as the accuracy of the classifier. We observe that the approach using both local and
global transformations outperforms dramatically the approach using the simple min-max
normalization. Moreover, compared to the global transformation approach, although it
has lower accuracy, the error is better balanced between the two classes. Furthermore,
compared to the approach presented in the previous section, the SVM gives better results
for the global and local transformation approach. The advantage of the use of a more
complicated classifier compared to GMM, is expected to be greater in more complex
problems, with more features.

6.8 Discussion

In this work we initially addressed the problem of estimating the parameters of a GMM
from a sample, which is a geometric transformation of an original, considered known,
GMM. The method proposed here is based on the EM framework. We considered both
cases of full positive definite and spherical covariance matrices. The main difference from
other similar approaches presented in the literature is first that no restrictions are assumed
on the covariance matrix and second that we examined a rather generic transformation

matrix, which is a product of elementary rotation and scaling matrices. We examined the

135



Table 6.5: The classification results of the four approaches (A1, A2, A3 and A4) for
evaluating the performance of different mapping methods of the data of new drivers, to
the original space where the classifier is trained.

Al A2
Normal  Fatigue | Normal Fatigue
Classified as Normal 137 60 13 10
Classified as Fatigue 17 134 9 177
Sensitivity 0.89 0.84 0.59 0.95
Specificity 0.7 0.95 0.57 0.95
Accuracy 85% 91%
A3 A4
Normal Fatigue | Normal Fatigue
Classified as Normal 20 26 22 69
Classified as Fatigue 2 161 0 118
Sensitivity 0.91 0.86 1 0.63
Specificity 0.43 0.99 0.24 1
Accuracy 87% 67%

case of a 3D problem with a full 3D rotation matrix and demonstrated that the estimation
of such transformations is feasible with our approach. Next we performed experiments in
order to indicate the method’s behavior regarding to the dimensionality of the problem,
the initial model’s and transformation’s complexity. Intuitively, the larger the complexity
of the problem, the larger the number of the local maxima of the log-likelihood function.
Consequently, the larger the complexity of the problem, the smaller the probability that
the algorithm converges to the actual solution. In the 2D case, the number of components
did not have a significant effect on the rotation error and the correct solution identification.
This can be explained in the sense that the problem is quite well-posed, the number of
parameters is quite limited (5 parameters) and the number of local maxima is expected
to be rather low. The main parameter affecting the correct solution identification is the
rotation angle. The algorithm starting from an initial guess of zero rotation, identified
the correct solution in cases where the true rotation angle was smaller than /2. For
larger angles, the algorithm identified the symmetric one. However these two solutions
have the same log-likelihood if the covariance matrices are spherical. For 2D problems,
such as image registration, this method is expected to give very good results. In higher
dimensional problems the number of components has a more significant effect. From
the 5D case experiments, we observed that in problems with fewer components than
the problem’s dimension, we have a larger error in the rotation angles. Moreover, the
number of cases that the algorithm did not correctly identify the true solution is higher.
We observe that the range where the algorithm gives very good results is in the range of
0—m/4 degrees, compared to 0—m /2 degrees of the 2D case. This is expected, considering
the higher number of local maxima in a more complex problem with larger number of
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parameters. This problem was tackled using the msEM.

Using the msEM algorithm (the respective results are summarized in Table 6.2), we
observe that even in cases with high mixture overlapping and large rotation angle, the
algorithm can identify the correct solution with relatively small error. In 2D cases for
K = 2 we obtain very good results, which indicate that this value of K is sufficient for
2D problems. In higher-dimension problems, the higher K gives better results, but with
inevitable impact on computational cost.

Then we presented an approach for estimating both global and local transformations.
This approach could be suitable for example in image registration or tracking where both
camera and objects in the scene are moving. Our approach is based on MAP-EM esti-
mation method with progressive relaxing of the constraints on the local transformations.
Initial experiments indicated the impact of the relaxing rate on the correct solution esti-
mation.

In the last section we described two different approaches, using the proposed method-
ology, for the unsupervised adaptation of a classifier to a new sample. The first method
adapts the parameters of the classifiers (a GMM model) to the new sample, whereas the
second adapts the data to the classifier’s parameters, through inverse mapping to the orig-
inal data space, used for training the classifier. Both methods were evaluated in terms
of the adaptation of a classifier for normal and fatigue states discrimination, trained on
a specific subject and adapted to a second one. The data of both subjects were acquired
during our simulation experiments. Both methods had similar results, however the use of
the second one could be more beneficial in more complex problems. Although our first
results are quite promising, more experiments, are required in order to investigate the ad-
vantages and disadvantages of each approach as well as to evaluate the proposed method
for the adaptation of a driver physiological state recognition system to new drivers.

Appendix A: Solution of % = 0 with respect to ¢;.
J

We introduce the following matrices:

J
0 00 0
: 0
Ij(nxn) = 0 - 10 0 , (6109)
0 01 0
0 0 0 0
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0 0 0 0

U R 0
JW =g lo - 0 1 0|, (6.110)

0 -1 0 0

0 0 0 - 0

J
1 0 0 0
0
(nxn) _

™™= | o 0 0 0 (6.111)

0 0 0 0

0 --- 00 --- 1

We split Eq. () as the sum of two terms:

3= m(X)3+ 3, (6.112)

where J? and J¢ are given by Eqs. (6.32) and (6.33), respectively. J@ can be written in
an expanded form as:

37 wz;wzg cos(¢;)* + yg;‘yij sin(¢;)?
sz;-yij cos(¢;) sin(g;)
2w, (z;j + w;) cos(¢;)

2y} (zij + w;) sin(¢;), (6.113)

+ 4+ o+

where x;;, y,;, zi; and w;; are defined in Eqs. (6.87), (6.88), (6.89) and (6.90), respec-
tively. Taking the derivative of J with respect to ¢; we obtain:

AN
a;j;‘ = 2[(zjxi; — yj;y;5)] cos(oy) sin(¢;)
j

+ Qmiijij sin(¢j)2 — ngyij Cos(qzﬁj)2

+ 2w£(zij + w;) sin(¢;)

— 2y;;(2i; + w;) cos(;)

= (wg% - y?}yij)] sin(2¢;)

+ sz;-yij cos(2¢;) + sz;-(zij + w;) sin(¢;)

— Qyz;(zij + w;) cos(¢;). (6.114)

138



The term J° can be written in expanded form as:

3B = tr(ASTTAYS;[X))
tr(Aj 1AC U
tr(Aj

+ + 4+ +

ztr(A;S;lAfiU [X]
2tr(A3S; AR [X]) sin(¢;). (6.115)
Then we consider the derivative of J? with respect to ¢;:
oJ°
00,

= (tr(ASS; M ASE (X)) sin(26;)

— tr(ASS; AR (X]) sin(26;)

+ 2tr(4jS; 1AC ii1X]) cos(2¢;)

+  2tr(ASS; 1Ak i1X]) sin(¢;)

— 2tr(A5S; 1Ak i1 X]) cos(;). (6.116)
The last two terms containing the A;? matrix, which is defined by Eq. (6.71), give zero in

the diagonal, thus we obtain:

o’

o6, (tr(A§S;  ASS;[X]) sin(26,)

— tr(ASSTT ALY X)) sin(2¢;)
+ 2tT(A;S[1A§f]ij[X])005(2%) (6.117)

Replacing Eqgs. (6.114) and (6.117) in Eq. (6.113) we finally obtain:

83 co— e
— tr(AjS{lAjiij[X])] sin(2¢);)
+ 2xly,; + tr(AjS;lAgiij [X])] cos(26;)
+

2|
Q[ZBZ; (zij + ’LUZ)] sin(qﬁj)
2[yi; (21 + wi)] cos(d;). (6.118)

Setting Eq. (6.118) to zero an equation of the following form is obtained:
a cos(2¢) + bsin(2¢) + ccos(¢) + dsin(¢) = 0, (6.119)

where a, b, c and d are defined in Eqgs. (6.83), (6.84), (6.85) and (6.86), respectively.
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Appendix B: Estimation of the Rotation Angles in the case of Spher-

ical Covariance matrices.

From the definition of the matrices J; and I; in Eqgs. (6.110) and (6.109), respectively, we
obtain the following properties:

I'n = I (6.120)
JIJ = I, (6.121)
Iy = J (6.122)
J'n = Jrf (6.123)
First we show that:
tr(ASS; T ASY X)) — tr(ASS; ALY [X]) = 0, (6.124)

where Af, A2, 3; and 3, [X] are defined in Section 6.2. The first term, tr((A?)TS;lAjf]i[X]),
in the case of spherical covariance (X; = 02I) can be written as:
tr((AS)TS AT [X]) = Sptr((A5)T A5 (X)), (6.125)

0;

where 7 is the dimension of the matrix ;. For (A5)" AS we observe that:

(AE)TA; = RY .17 RTR, - ;- R,

J

= Ry lj Ry, (6.126)

and defining
AP~ RY I Ry, (6.127)

we can replace (A$)TA$ with A% in Eq.(6.125), obtaining:

tr((AS)TS; AT, (X)) = %tr((A?)Tﬁ)i[X]). (6.128)
For tr(Aj-Ei_lAiji [X]) we have:
br((A2)T ST A X)) = %tr((Aj)TAjii[X]). (6.129)

1

For (A$)TA$ we have:

(A;)TA; = Rg_l...JJT...RlTRl...Jj...Rn_l
RI - I Ry = AL (6.130)
Replacing (A5)" A% with A% in Eq. (6.129) we obtain:
n

tr((A)" ST AN (X)) = —tr(APS[X]), (6.131)

a;
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which is the same as tr((Aj)TS[lAﬁfli [X]) and Eq. (6.124) is proved.
Furthermore tr(AjZi_lA?ii [X]) is zero since:

n

(A7 57 (A SX)) = Dt (A" ASSX)), (6.132)

and

(A5)7 A5

g;

Rf,l"'JjT"'RlT]ﬁ"'fj"'Rn_1

szl"'JJTIj"'Rn—l
R - J] - Ry (6.133)

Since JjT has only zeros in the diagonal the trace in Eq. (6.132) equals zero:

tr((A3)7TS(A9)5[X]) = 0. (6.134)

Finally based on the derivations (6.126), (6.130) and (6.133) it is straightforward to show
that @@, equals y/;y,; and xjy,; = 0. For x]x;; we have:

T

RTR,=I

rr

2

&
I

I;

(Ei[X] — B)" ASLT L, A3 (E;[X] — B)
1

E(EZ[X] — B)Tan'“JiT"'
RIRTS™'S™'R\R,

i RYA(B{X] - B)

1
@(Ei[X] - BRI
o 'RépRipRle
.. 'Ii R Rn—l(Ez[X] _ B)
1
L BX) - BYRL-
II'r
R} \(E[X] - B)
1
3 (BX] = B)' (Ei[X] - B). (6.135)
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Similarly for yj;y;; we have:

T
YiiYi;

Siljs%f
RT Ri=1I
JTJ=I,

i Ji

(Ei[X] = B)" AL L; A5(Ei[X] — B)

1
S(BIX] = B)TRL, -

RIRTS™'S™'R\R,

oo Ji---RY L (F5[X] — B)
1
sto?

- RyRT R R,
oo Ji- - RY(E[X] — B)

Ir...

)

T

)

(Ei[X] = B) Ry -+

We observe that indeed xj;x; equals yjy,;. Finally, for f;y,; we have:

T
LiiYij

RTR,=I

y" Jiy=0

1 T pT
sig2 (Ei[X]=B) R,y
JIJ;
Ry_\(Ei[X] - B)
1
<z (BilX] = B)' (Ei[X] - B) (6.136)
T sc7T s
(E;[X] — B)TASLT L, A%(E;[X] — B)
1 T pT T
RIRTS™'S™'R\R,
~'Jz~~~R§,1(EZ-[X] —B)
1
2 (B;X]-B)TRY ,...JI'...RTRT
RiRy---J;---RY (F;[X] - B)
1
5 (B{X] ~ BRI, -
IrJ;
R, _1(Ei[X] - B)
0. (6.137)

According to the above, and incorporating Eqs. (6.128), (6.131) and (6.134) into Eq.

(6.38) we obtain:

0J
09;

2zl

ij(Zij + w;)] sin(¢;)

Q[yiTj(zij + w;)] cos(¢;)]. (6.138)

Setting Eq. (6.138) to zero and solving with respect to ¢, we obtain a solution ¢;:

by

Yl (zij +wy)

6.139
x;(zij + w;) ( )

= —atan(

);
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where x;;, y,;, zij and w;; are defined in Eqs. (6.87), (6.88), (6.89) and (6.90), respec-
tively.
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CHAPTER 7

ADVANCED DRIVER SUPPORT AND DRIVER
PHYSIOLOGICAL STATE

7.1 Introduction
7.2 A simulation study on co-operative driving systems
7.3 Information handling in a Highway Environment

7.4 Dynamic Bayesian Networks for Decision Making

7.1 Introduction

During the last decades, the development of driver assistance systems is of growing im-
portance as these systems are expected to improve road safety and traffic efficiency. The
Advanced Driver Assistance Systems (ADAS) partly support or take over the driver’s
tasks. ADAS can be defined as in-vehicle system that has a direct supporting interaction
with the driver or the driver task. The way of support may vary from informative to
controlling [58, 74]. ADAS operates from inside the car, but may be connected to ex-
ternal sources. Several ADAS, such as Adaptive Cruise Control (ACC), Lane Departure
Warning (LDW) and Intelligent Speed Assistance (ISA) are already popular among car
manufacturers. ADAS is part of a technology called Intelligent Transportation Systems
(ITS). ITS incorporates intelligence in both roadways and vehicles in order to improve
the traffic low. Co-operative road-vehicle systems and vehicle-vehicle systems are also
emerging worldwide. Intelligent vehicles and roads are the future standard and special-
ized research addresses the identification of their impact as well as their adaptation to
the real user needs for safer and efficient transportation services. Currently, ADAS are
designed to support drivers in maintaining safety thresholds or ensuring compliance with
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Figure 7.1: The basic building blocks of a next generation ADAS system.

formal driving rules, such as maintaining safe time headways in car-following situation or
adhering to speed limits [71, 114].

The next generation of ADAS systems is going to adverse more information and apply
different strategies in order to cope with changing environments and user’s needs. A
significant factor refers to changes in driver’s performance and ability to continue the
driving task. Since the most important variable influencing driver’s performance is the
driver’s physiological state, this information would be certainly exploited by future ADAS
systems. In this Chapter we study the extension of ADAS systems in three directions:

e Cooperative driving that exploits V2V ad V2I communication for extended percep-
tion of the driving environment.

e FEnhanced situation assessment based on the advanced information fusion and ex-
traction of valuable notification messages.

e Extension of the classic rule based warning strategies with advanced probabilistic
decision making, incorporating environment information, as well as the driver’s

state.

In Fig. 7.1 we present the building blocks of a next generation ADAS system, which
are studied in this Chapter. In Section 7.2 we present a simulation study, on the potential
improvement of driving safety using V2V and V2I communication. In this first study a
naive schema for information fusion is used. In Section 7.3 we present a more intelligent
method for incorporation and handling information from low confidence sensors (other
vehicles) as well as from sensors with high confidence (road infrastructure). Finally in
Section 7.4 a decision making method based on Dynamic Bayesian Networks is presented
for deciding whether to notify the driver about a potential hazard as well as how intrusive
the warning should be.
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Figure 7.2: The basic components of a co-operative driver support system.

7.2 A simulation study on co-operative driving systems

One main advantage of co-operative vehicles, which are able to communicate with other
vehicles or infrastructure, is the extension of driver’s perception and eventually the re-
duction of accident risk. In order to test this hypothesis we consider a co-operative driver
support system with an architecture presented in Fig. 7.2. In this section we will examine
the following basic modules of this system:

o Communication module,
e Fqgo-vehicle event detector,
o [vent Handler module.

o Fvent Manager module,

The decision maker and the alert manager (shown in Fig. 7.2), responsible for driver
notification, are considered void components for the purposes of this first study, and are

examined in next sections.

7.2.1 Ego-vehicle event detector

The Ego-Vehicle Event detector is the in-vehicle embedded platform, responsible to rec-
ognize events and conditions in the local environment using on board sensors (e.g. traffic
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conditions, narrow road, lane invasion, static or slow moving obstacles, etc.). The ego-
vehicle can then act as a scouter by communicating the detected events to other vehi-
cles and the road infrastructure. To thin end the ego-vehicle detected events feed the
Communication Module for broadcasting and also pass to the Event Handler for further
processing.

7.2.2 Communication module

The communication between vehicles (V2V) and infrastructure and vehicles (I2V and
V2I) is biderectional and the exchange of messages among them is achieved through the
communication module. We discriminate two kind of vehicles: i) co-operative vehicles
(i-vehicles) which have communication ability and ii) common vehicles without communi-
cation ability. Each i-vehicle produces a number of messages related to potential hazards
either detected by the ego-vehicle or received as messages by other i-vehicles or the road
infrastructure. In this work we do not focus on communication details and only the
average delay (as a function of distance and relative speed) is considered.

7.2.3 Event Handler

Incoming messages arriving from Communication Module and ego-vehicle feed the Event
Handler (the classification of events, as well as the source of information, are shown in
Table 7.1). Three types of events are considered:

e Static events: Those are the events reported from infrastructure or other vehicles,
which are located to a fixed position on the highway. Those events are not removed
from the Event List until the vehicle reaches their location.

e Non-static events (such as slow moving vehicles, slowing down traffic etc.): Those
are events reported from other vehicles or road infrastructure, but their presence is
not guaranteed by the time that the ego-vehicle reaches their reported location.

e Instant Events: Those are critical events either detected from Ego-Vehicle Detector
(i.e. lane invasion) or received from other vehicles (i.e. sudden braking) occurring
in short distance from the ego-vehicle.

The first two categories refer to events on the highway which are potential obstacles for
the ego-vehicle. That is, if the vehicle approaches the event with a speed over a safe limit,
this event becomes threat for the driver. Let the obstacle speed (or the safe speed limit)
be uy and the ego-vehicle speed u.. The risk measure is considered as the braking effort
required in order to reach obstacle’s speed, multiplied by a constant, defined as:
u;

r=co (7.1)
where 7 is the risk, u, = ug — u, the relative speed between ego-vehicle and the obstacle,
d the distance between ego-vehicle and the obstacle and c is a constant depending on the
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Table 7.1: Event Classification

Event Event Category Source
Road works Static 2V
Accident Static 2v
Road Narrow Static V2V/I2V
Road condition Static V2V/I2V
Traffic Non-Static V2Vv/I2V
Fixed or Slow Moving | Non-static/Instant V2Vv/I2V/
Vehicle Ego-vehicle detector
Sudden brake of Instant V2v
foregoing Vehicle
Lane invasion Instant Ego-vehicle detector

IS —MERGED = FALSE
if FilterPass(E) == FALSE then
for each ' € A do
if Merge(E,E') == FALSE then
IS — MERGED =TRUFE
if IS — MERGED then
AddInList(E)

Algorithm 4: Handling new Event Procedures

vehicle and the weather conditions. This constant is common for all events. The last
category of events requires an instant warning; thus they are directly forwarded to the
Alert generator without processing by the Fvent Manager.

7.2.4 Event Manager

The Event Manager is responsible to keep a list of incoming events and sort them according
to their risk. Each node of the list corresponds to a particular event which in turn consists
of the variables: (i) distance (d) which is the distance between the event and the ego-
vehicle, (ii) relative speed (u,) which is the relative speed between ego-vehicle and an
obstacle, (iii) category (¢) and iv) type (¢). An example of category is Static/Non-Static
and for type is road works, road narrowing etc. When a new event is received by the
Communication Module and the Event Manager, undertakes the following tasks; initially
the Event filtering procedure removes irrelevant to ego-vehicle events, while the relevant
ones (Filter Pass) are directed to the matching procedure. During this procedure the
incoming events are compared to existing events (nodes in the list) and are merged with
nodes referring to the same event (Merge). If no merge occurs, the incoming event is
added as a new node in the list. The overall procedure is outlined in Algorithm 4. The
Filter Pass and Merge procedures are described below:
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Filter Pass

This is the function within Event filtering which determines whether the incoming event
is worth reported in terms of relevance to the ego-vehicle. This function reduces compu-
tational cost by avoiding irrelevant information.

The criteria to consider an event as non-worth reporting are:

1. The events whose reported position is either backward or in opposite highway di-
rection from the ego-vehicle. Hence, such events are not considered forthcoming
hazards.

2. For the non-static events we consider the possibility of being no longer valid when
ego-vehicle approaches their reported location. To handle this case, an expire hori-
zon is assigned to non-static events, according to the relative speed and distance.

texpire = % + T07 (72)

where Tj is a constant indicating a time margin used to assure the event expiration.
When time-to-live of the message in the Event List becomes equal to tepire, then
the message is discarded.

Merge

In this simulation environment a simple method for handling events is adopted. The
need of such a mechanism rises from the fact that the same information may arrive from
different sources. Thus we need a mechanism to derive which messages refer to the same
event. More formally, Merge is a function of the matching procedure which removes
multiple nodes from the Event List referring to the same event. For instance, suppose a
vehicle detecting a narrow road in some distance ahead. If the same event is already a
node in the Event List (provided by another source through the communication module)
we can merge or ignore the message coming from the Ego-Vehicle Event Detector.
Another important feature of the Merge function is its ability to provide high level
information from individual messages. Consider for example the scenario of a queue of
K vehicles in some distance ahead from the ego-vehicle detector. Each i-vehicle in the
queue recognizes a slow moving vehicle in front and broadcasts a message. Therefore, a
number of messages with overlapping information is received. This scenario reveals the
necessity of an aggregation mechanism which combines single incoming messages about
slow moving objects and generates high level information such as heavy traffic. The usual
information coming from other vehicles is about obstacles (slow moving vehicles or fixed
objects). Moreover the ego-vehicle is able to detect other vehicles in the vicinity (near
lanes) and monitor their relative speed. Using the above information the Merge function
can infer traffic situation using different approaches such as rules or probabilistic inference.
In this work a simple rule-based approach is considered, following the principles below:

e All highway lanes are occupied by detected vehicles.
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for each £’ € A do
if Ezpired(E’) then
Delete(E")
else
Update Position and Risk of E’
Re-sort List(E')

Algorithm 5: Update list

e The relative speed between ego-vehicle and other vehicles approaches zero.
e The ego-vehicle speed is below a threshold (typical 15 m/s).

If all the above conditions are satisfied then traffic jam event is inferred. Another level
of merging information is the reasoning about specific non-static events. For example
merging traffic jam (non-static event) with road works (static event) in near location,
traffic jam is due to road works is concluded. Thus, the driver could be notified through
a single message containing high-level information instead of two separate messages. In
Section 7.3 a more advanced method of information fusion is described.

Prioritization

The Prioritization function is responsible for storing the new event in the list (Add Node)
keeping the priority order. This involves the re-estimation of all events’ risk according to
Eq. (7.1). The Event List is then re-sorted in descending order. The highest risk event
(top entry) is then forwarded to the decision making (see Section 7.4), which decides
whether and in which way to notify the driver.

Update list

A periodic update of the Event List is performed to ensure that contained events are
still relevant according to the ego-vehicle current position (outlined in Algorithm 5). The
Ezxpired routine determines when the nodes of the Event List are no longer valid and
the Delete routine removes them. The events are considered non-valid when the criteria
described in section 7.2.4 are met. Those are summarized below:

1. If the event type is static and the distance is smaller than zero, E; < 0.

2. If the obstacle type is non static and t,, > tezpire Where t,, is the time-to-live of the
message in the Event List.

If the event is not deleted, we update the distance of the event £y = E; — E,, and the
risk is calculated again. After all events’ risks are updated the list is re-sorted.
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Broadcasting handler

For efficient scouting functionality, a continuous broadcasting of the forthcoming events
(nodes in the Event List) is necessary due to communication range limitations (max 500
meters for V2V). If detected events are broadcasted only once, the currently out of range
vehicles will not be updated for potential hazards. Hence, all nodes in the Event List have
to pass to the communication module for broadcasting. Using no reduction strategy the
total number of messages is (N —1)2. To confront with bandwidth limitations, we apply a
simple reduction strategy: If the position information of an incoming event (message from
Communication module) is close to ego-position with respect to communication range,
we consider that other vehicles within the range of the ego-vehicle are already aware of
the event and thus, this particular message is not broadcasted.

7.2.5 Simulation Environment

In order to test the outcomes of the co-operative driving, we developed an environment
[31, 69] for a macroscopic simulation of the traffic behavior on a highway road. The
simulation environment has been developed in C'#. A brief description of the environment

is given below.

Vehicle Behaviour Model

To model the vehicle behavior in a highway environment we used the Intelligent Driving
Model (IDM) [144]. The following equations describe the model:

dv v s*

=l - () - (27 (73)

% Vo S
), (7.4)

s = so+ (vT'+

where, vg is the desired speed of the vehicle, s* is the desired dynamical distance between
two vehicles, s the actual gap, T is the safety time headway when following other vehi-
cles, a is the acceleration in everyday traffic, b is the ”comfortable” braking deceleration
everyday traffic, sy is the minimum bumper-to-bumper distance to the front vehicle, §
is the acceleration exponent and Aw is the relative speed. To produce a more realistic
model we have expanded the IDM to allow lane changing, obstacle and potential hazard
detection:

e Lane Change: Vehicles are allowed to change lanes if they are following a vehicle
with speed lower than the desired. In a K lane highway each lane has a low and
an upper speed limit. Each vehicle aims to reach the appropriate lane according to
desired speed uy.

e Obstacle detection: In each time instance, vehicles detect obstacles ahead in a range
R. If an obstacle is detected at distance d, the actual gap s in equation (7.3) is set
to d. Otherwise s is set to a maximum value indicating that no obstacle exists.
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e Polential hazard detection: Vehicles detect obstacles in their current and adjacent
(£1) lanes. We characterize an obstacle as potential hazard if the speed of the
obstacle is lower than a predefined threshold. If all adjacent lanes are occupied
by slow moving obstacles then we assume traffic congestion. Furthermore, if ego-
vehicle is slow moving, it’s status is directly forwarded to the communication module

described above.

Communications Simulation

The communication characteristics considered in the simulation, are the following:
e The communication ranges of V2V, V2I and I2V.

e The latency as a function of distance and type of communication (V2V, V2I and
12V).

Vehicles produce three types of messages: i) obstacle detected by ego-vehicle (slow mov-
ing vehicles or fixed obstacles), ii) traffic detected by ego-vehicle when many slow moving
vehicles are present in adjacent lanes and iii) events reported by other vehicles. These
messages are broadcasted to road infrastructure and neighboring vehicles. Whenever ve-
hicles come into the range of an i-vehicle or a road infrastructure base station a new
session is initialized and messages are received within dT' (latency time). The message
delivery fails if the source and target distance exceeds the communication range. i) obsta-
cle detected by ego-vehicle (slow moving vehicles or fixed obstacles), ii) traffic detected by
ego-vehicle when many slow moving vehicles are present in adjacent lanes and iii) events
reported by other vehicles. These messages are broadcasted to road infrastructure and
neighboring vehicles. Whenever vehicles come into the range of an i-vehicle or a road
infrastructure base station a new session is initialized and messages are received within
dT (latency time). The message delivery fails if the source and target distance exceeds

the communication range.

7.2.6 Simulation Results

We used the simulation environment to relate communication characteristics (range, la-
tency) with driving risk (braking effort gain) as well as to demonstrate the way that
information received from different sources (nearby i-vehicles or road infrastructure) is
merged. The latency of the communication is constant, i.e. if the broadcasting duration
set to T, the communication delay is d1', the actual broadcasting duration is 7" + dT'.
Initially we provide results, concerning the range and broadcasting frequency of commu-
nication and their impact on risk reduction. We consider 10 i-vehicles moving on the
highway and a slow moving vehicle being in some distance ahead. Moreover, we suppose
that all vehicles are moving in the same lane and lane changes are not allowed. The
distance between i-vehicles is initially set to 1.5 km. For comparison purposes, we in-
troduce for each i-vehicle a corresponding Zombie vehicle (conventional vehicle without
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Figure 7.3: The risk according to the range of communication for different update intervals
(Slow moving vehicle speed = 20m/s).

communication ability). Each Zombie vehicle has the same initial position, speed and
IDM parameters (as described in Eq. (7.3)) with its corresponding i-vehicle. To illustrate
the performance (in terms of mean breaking effort) we consider two cases; In the first
case, the speed of the slow moving vehicle is set to 10 m/s and in the second 20 m/s. In
both cases, all other vehicles have an initial speed of 35 m/s. Visibility (the maximum
distance where an obstacle or a foregoing vehicle is detected) is set to 200 m.

In Figs. 7.3,7.4 we provide the mean braking effort of the Zombie vehicles and i-
vehicles with broadcasting duration 5, 15, 30 and 60 secs for both cases of slow moving
vehicle speed. We observe that the braking effort in the first case is very high (a safe
value for normal conditions is 0.2 [53]) while in the second case the safety requirement is
achieved with a communication range of 600 m and broadcasting duration smaller than
15 sec. From the above scenario we conclude that for the second case is almost impossible
to ensure safety with only V2V communication. Then we examine the case of 12V and
V2I communication. The great benefit is that the communication range for this case is
almost unlimited, because when a infrastructure station receives a message from a vehicle
it can broadcast it to all other stations using a LAN. In Fig. 7.5, we provide the braking
effort of the i-vehicles with and without infrastructure communication and for Zombie
vehicles for comparison. We observe a significant reduction in braking effort. Moreover,
in this case we can achieve the safety margin of 0.2 braking effort even in the extreme
case of an obstacle with speed of 10 m/s.

Next we provide qualitative results for the function of the Fvent manager, using screen-
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Figure 7.5: The risk of Zombie and i-vehicles with and without road infrastructure com-
munication. Communication range is set to 400m and visibility to 200m.
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Alert Queue Of Ego-Vehicle.
Obstacle Speed 17,991 Distance 9,184 Cost 0,018 TIME 569 Senders {7 } Info OBSTACLE
Obstacle Speed 14,997 Distance 9,718 Cost 0,012 TIME 598 Senders {9 8 } Info OBSTACLE

Figure 7.6: Ego-vehicle receives through the road infrastructure messages reported by
i-vehicles with id numbers 7, 8 and 9.

B ¢ 8 8 4 % e

Alert Queue Of Ego-Vehicle.
Obstacle Speed 14,974 Distance 9,614 Cost 0,012 TIME 598 Senders {7 98 } Info QUEUE

Figure 7.7: When three vehicles are very close they are considered as a queue. Ego-vehicle
receives road infrastructure messages reporting an obstacle and a queue of vehicles.

shots from the simulation of the slow moving vehicle scenario. In this simulation V2I
communication is allowed and information fusion is performed and broadcasted. The
simulation illustrates a mini-map of the highway, where the vehicles are shown as ellipses
with an id number assigned, while road infrastructure base stations are indicated as el-
lipses above the highway. In the bottom of the screenshot we provide a log display where
the Event List of the ego-vehicle (id 0) is indicated. Early in the simulation when no
queue is formed yet, two obstacle messages are reported to the road infrastructure. The
first comes from i-vehicle with id 8 which also merged the message from the slow moving
vehicle (id 9) and the other from the i-vehicles with id number 7 (Figure 7.6). The road
infrastructure broadcasts this information, which in turn is received by the ego-vehicle.
Later when the queue has been formed (from vehicles 7,8,9), the broadcasted messages
from individual vehicles are merged (into vehicle 7) inferring a queue situation (Figure
7.7) forwarded through infrastructure to ego-vehicle.

Furthermore, we developed a second, more complicated scenario, in order to demon-
strate the merging process when many events are present. We assume road works taking
place in two out of the four lanes of the highway. Furthermore, near the road works
event we deploy a large number of vehicles with different speed in order to create a traffic
congestion. In this case, the ego-vehicle receives a large number of messages about slow
moving vehicles along with a message from road infrastructure reporting road works in the
same area. The Event Manager of the ego-vehicle merges the aforementioned messages
producing a high level message, hense ”Traffic due to Road Works”. A screenshot of this
complex scenario simulation is illustrated in Fig. 7.8. Also, the log display demonstrating
the Event List of the ego-vehicle sorted by the estimated events’ risk is provided.

We tested in a simulation environment an ADAS system exploiting V2V and V2I
communication and a significant reduction in the braking effort (risk) was observed for
co-operative vehicles in relation to vehicles without communication capabilities. In this
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Figure 7.8: A more complicated scenario. The Event List of the ego-vehicle contains a
number of messages sorted by their risk.

first approach, we used a rather simplistic information handling method, based on rules.
In the following section we present a more advanced information handling method, based
on Bayesian network inference.

7.3 Advanced Information Handling

Using V2V and V2I communication for driving environment assessment, there is a variety
of information sources with different reliability level. Co-operative vehicles, may broadcast
information coming from other sources or from the in-vehicle sensors. This information
may be of low credibility, due to sensor limitations, or may be rather low level (for example
detect road works as an obstacle). In order to handle this information and furthermore,
extract high level information, we propose the use of Bayesian networks instead of the rule
based method previously presented. The information is exchanged between vehicles (V2V)
and infrastructure (V2I) in the form of messages. Those messages contain information
about the type of the event as well as geographical information (GI), i.e. the longitude and
latitude of the event. Events detected from the ego-vehicle are considered to have a GI
similar to the ego-vehicle, while events coming from other sources (V2V, 12V) have their
own GI. In order to handle those events more efficiently we split the horizon of our vehicle
in virtual circles which we call geographic areas (GAs). This approach allows to handle
groups of events and provide reasoning about possible causes of events or to extract more
important and usable information. This reasoning is based mainly on expert knowledge
(as reported in the literature) but it can easily extended to incorporate information from
statistical data obtained by road management systems.

We consider the GA as a circle with radius R. Considering the ranges of the radar and
the V2V communication, we assume R to have an approximate value of 150m. This is the
maximum sensing range achieved by the i-vehicle .The ego-vehicle position determines
the center of the first GA, while sequential tangent GAs are virtually created to cover a
distance of about 1.5 km. This is regarded as the maximum safety distance, above which
no warning message is considered necessary. This representation can be interpreted as
follows: The 1st GA is the area where the ego-vehicle resides, and thus it constitutes the
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Figure 7.9: Geo-referenced events representation using virtual GAs.

local environment of the ego-vehicle. In the local GA the driving context information
resides such as traffic, road narrow and local weather, detected by the ego-vehicle. This
information is not part of the notifications issued to the driver, since he/she is assumed
to be already aware of.

Considering that the direct V2V communication range is approximately 450-500m,
we could interpret the second GA as the sphere where direct V2V communication is en-
abled, given the communication range of the antenna installed in the vehicle. However
the vehicle-originated messages can be propagated also via the RI infrastructure com-
munication channels (indirect V2V). The discrimination between direct and indirect V2V
communication is useful in the sense that not all V2V messages involve the same confident
level with respect to the ego-vehicle. For instance the vehicle-originated messages about
detected obstacles (produced from slow moving cars) or collision warning (produced from
safety distance violations) are only relevant to the ego-vehicle when sent through direct
V2V communication (close distance to the ego-vehicle) otherwise there is high probabil-
ity that they would have become obsolete (non-valid) by the time the ego-vehicle reaches
their reported position.

All other forthcoming events either vehicle-originated (both direct and indirect) or
infrastructure-originated which are reported at a distance D < 1.5km from the ego-
vehicle reside to one of the rest GAs according to their exact geo-position. Although we
have defined the 1.5 km distance as the maximum distance for notifications generation,
some [2V messages contain information that could affect driver’s trip plans. For example
if there is a road closure/ traffic jam etc. the driver may select to change his route. Such
information is considered valuable for the driver to know well in advance, hence those
types of 12V messages hold the lowest priority and should provided to the driver in the
form of informative messages.

The forthcoming events are stored into a list (event list E) and their geographic position
is checked periodically; when an event resides in a GA, its start and end position is
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Figure 7.10: The graphical model of the relation between driving environment variables.

represented in the corresponding virtual circle and the event is removed from the list.
There may be also a case, when a reported event lies in two or more successive GAs
(event 2 in Figure 7.9). Consider for example ”"Road Works” covering 0.5 km distance.
This event enters two successive GAs, so that in the end it covers the actual geo-area (from
start to end position). The entering of an event into a GA is called geo-referenced event
representation. During the geo-referenced representation the merging of similar events
(with same Event IDs) is also possible within a GA. This allows for efficient handling of
redundant information either from multiple messages sent by the same source (RI, same
vehicle) or from different sources (different vehicles). Considering the case where the same
message for "road works” is reported by many other co-operative vehicles. This is merged
within the corresponding geo-area and is presented only once to the driver.

7.3.1 Inference of new information

Our approach is based on the assumption that the messages coming from different in-
formation sources (other vehicles, infrastructure) contain information which may provide
evidence about the presence of another event. Thus they could lead either to the refine-
ment of the perceived situation or to the extraction of new valuable information. This
consideration allows for the exploitation of events interrelationships in order to:

i) extract new valuable information from the available data
ii) increase confidence of information coming from low-confident sources
iii) generate compact notifications from accumulated geo-related information

For instance, the presence of Road Works in a geo-area leads to Narrow Road event,
which in turn reduces the expected average vehicle speeds in the particular geo-area. The
decrease in vehicle speeds constitutes a possible symptom of traffic congestion in the area.

Moreover the correlations between individual events could be exploited to increase
credibility of low-confidence information. In general terms, the events reported from the
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infrastructure are credited with high confidence while the V2V messages are considered
low-confident information sources. During the geo-reference event representation every
forthcoming event reported by V2V/I2V, which lies within the range of a GA it enters
the GA with a confidence value assigned. Given the information existing in a GA, we use
the model of Figure 7.3.1 in order to make inferences that increase the credibility of low-
confident information. For instance, the vehicle-originated messages reporting obstacles
(slow moving cars), together with the car velocity data enclosed in these messages, can be
fused with statistical traffic flow data in particular days and time of day and/or weather
data to reveal information about the average vehicle speed in a geo-area or infer "heavy
traffic”.

Finally using the same model it is possible to avoid the generation of individual notifi-
cations of different events in the same geo-area but produce instead compact notification
messages that enclose all the available information lying in the area. For example in Figure
7.9 assuming that Event 3 refers to "accident” and Event 2 refers to ”traffic queue” then
the extracted notification message for the geo-area E is ” Traffic queue due to Accident”.
The two events although seem individual, they are combined in a single consolidated mes-
sage revealing also their inter-dependencies. The methodology for performing information
fusion is described in the next section.

7.3.2 Fusion of low-confident information sources

In this chapter we describe how the information coming from different sources lying in
the same geo-area (GA) is used in order to increase confidence of the information lying
within a GA range.

In general terms, the events reported from the infrastructure are credited with high
confidence while the V2V messages are considered low-confident information sources. In
order to deal with both redundant and missing information we developed a methodology
based on Bayesian networks.

Bayesian Networks, are widely used for knowledge representation and reasoning un-
der uncertainty in intelligent systems [112]. The structure of a BN is a directed acyclic
graph (DAG). Its nodes correspond to random variables of interest while the directed
arcs represent direct causal or influential relation between nodes. The uncertainty of the
interdependence of the variables is represented locally by the conditional probability table
(CPT) P(X;|Pay,) associated with each node X;, given its parents Pay,. The graphical
structure of BN allows the representation of interdependency between variables, which
together with an independence assumption leads to the joint probability distribution of
X = {Xy, Xy, -, X,}, one of the most important features of BN. The joint probabil-
ity distribution can be factored out as a product of the conditional distributions in the
network: .,

Pr(X) = [[ P(Xi|Pay,), (7.5)
i=1

where n the number of variables. Causality and inference are two of the main properties
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Table 7.2: The conditional distribution table of accident, road works and weather.

Accident | Probability || Road Works | Probability | Weather | Probability
No 0.95 No 0.95 Good 0.8
Yes 0.05 Yes 0.05 Bad 0.15

Very bad 0.05

Table 7.3: The conditional distribution table of Traffic.

Road Narrow
Road Works Accident | No Yes

No No 0.9 0.1
Yes No 0 1
No Yes 0.1 0.9
Yes Yes 0 1

of Bayesian theory, which make those models appealing for our purpose. In our approach,
we designed a model that encapsulates the causalities between different events, based on
common sense, and expert knowledge. The initial BN model has the structure presented
in Fig. 7.3.1. After defining the structure the next step is to define the parameters of the
model. In the following tables we give the probability tables of each of the variable.

7.3.3 Evidence in the model

As described earlier every forthcoming event reported by V2V /I2V, which lies within the
range of a GA it enters the GA with a confidence value assigned. In principle, the events
reported by other cars have lower confidence than those reported from the infrastructure.
Given the information existing in a GA, we can use the model described here in order to
make inferences that increase the credibility of low-confident information.

The information in classical Bayesian network theory is called evidence and the goal
of the inference is to estimate the posterior probability of the variables given the evidence
I and the model M

P(X|E,M) =Y P(X;|Pax,,E) (7.6)
i

where X the variables of the environment incorporated in the model and Pay, the parents
of the variables X; as denoted by the structure of the model.

To perform inference in Bayesian networks there are two large families of algorithms in
the literature: the exact inference algorithms and the approximate inference algorithms.
Both families have their pros and the cons. In our case, given a small model with discrete
only variables we selected to use the Junction tree inference algorithm [79] developed in
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Table 7.4: The conditional distribution table of Vehicle speeds.

Weather
Good
Bad
Very Bad
Good
Bad
Very Bad
Good
Bad
Very Bad
Good
Bad
Very Bad

Road Narrow Road Closure
No No 0.1
No No 0.2
No No 0.3
Yes No 0.2
Yes No 0.3
Yes No 0.4
No Yes 0.2
No Yes 0.3
No Yes 0.4
Yes Yes 0.2
Yes Yes 0.3
Yes Yes 0.5

0.2
0.4
0.4
0.5
0.5
0.4
0.3
0.4
0.4
0.4
0.5
0.4

Vehicles Speeds
Low Medium High

0.7
0.4
0.3
0.3
0.2
0.2
0.5
0.3
0.2
0.4
0.2
0.1

Table 7.5: The conditional distribution table of Traffic.

Traffic
Vehicle Speeds | No Traffic Traffic Queue
Low 0.05 0.15 0.85
Medium 0.2 0.7 0.1
High 0.7 0.25 0.05
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Figure 7.11: The confidence on Traffic evidence, given the number of i-vehicles reporting
Traffic. Total number of senders: a) 5 and b) 20.

C++. In the following we describe the main steps followed in our approach, while a more
detailed description of the algorithm is included in the Appendix.

In the following we examine the evidence for each one of the variables: i) Traffic, ii)
Road Narrow iii) Low Speeds and iv) Weather for the cases when only V2V communication
is present (the 12V information is inserted as hard evidence in the model).

Traffic evidence

For the Traffic event, which we expect to be reported by all the senders in the affected
area, we apply the following formula

NR

PE) =%

(7.7)

where NF are the senders reported the same event, N the sum of the senders of the
area and K a constant that reduces the reliability of the senders’ information.

Fig. 7.11(a) and Fig. 7.11(b) illustrates the confidence of the traffic event with respect
to the number of the incoming V2V messages reporting traffic in the same area.

Road narrow evidence

The road narrow event reported from vehicles actually refers to the narrowing of the
ego-lane. It is therefore expected that not all i-vehicles will recognize and broadcast this
type of event. For instance in a highway with L the number of lanes, the probability of
a vehicle moving in the narrowing lane is 1/L. Thus, the probability we assign to a road
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Figure 7.12: The confidence on road narrow evidence, given the number of i-vehicles
reporting road narrow. Total number of senders: a) 5 and b) 20.

narrow event reported by V2V messages is given by the following formula:

NR
P(E = RoadWorks) = ————— 7.8
( oadWorks) NI YR (7.8)
NR
= 7.9
NR+N_TNR+K (7.9)
NE
= (7.10)
_ N/L
LLlNR+ _i/_K

where N’ are the co-operative vehicles that did not send a road narrow message.
In Figs. 7.12(a) and 7.12(b) we illustrate the confidence of road narrow event with
respect to the number of the incoming V2V messages reporting road narrow in the same

area.

Low Speeds Evidence

Suppose we have N incoming V2V messages. Each one of them incorporates a field
regarding the sender’s speed, u;. In case the messages refer to obstacles (assuming slow
moving vehicles) the information about the obstacle’s speed (at least, an estimation) is
also included. Taking all this into consideration we could say that we have a collection
of N speed samples for the specific region (here N is the number of senders as well as the
obstacles reported). In order to have a more precise estimation of the actual average speed,
given that we have few samples (number of i-vehicles) we incorporate to our estimation a
prior estimation of the average speed, based on speeds observed in the past.

In road management systems resides a large database of observed average speeds in
the past. Those speeds are dependent mainly on the road section, on the hour of the day
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Figure 7.13: A sample histogram (not real data) of a road section.

(Rush hours) and the day of the week. Given this information we equip our model with
histograms of average speeds and time, referring to different road sections and different
days of week.

We need an estimation of the average speed (AS) of a specific geo-area. In order to
reduce the effect of possible few samples we add K ”virtual” senders with speed calcu-
lated from the specific bin of the histogram database, and the average speed is estimated
according to the following equation

Ezzf[ u; + K - AS'(position, time, DayO fWeek)
N+ K

AS = (7.11)
The K defines how are we going to rely on the statistics. If K is large (relative to the N)
then we always estimate the average speed from the statistics (the histograms stored).
If K is small (relative to the N) then we ignore the statistics and rely only on the i-
vehicles. A good compromise is to set at each time K = N in order to rely equal on
both information sources. AS’ is a look up function which relates the current information
of geographic area (position, time and Day of Week) with a specific bin in the stored
histograms and return the expected average speed. In Fig. 7.3.3 we give an idea of how
those histograms seems. This does not refer to real data, but it is a common pattern,
presenting two main rush hours (morning and afternoon) with low speeds. Such statistic
data could to be exploited in order to have an estimation of expected average speed.
After calculating the average speed, we use a softmax function in order to get the
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probability of the Vehicle speeds (V.S) state:

ai1-(as—p1)
P(V.S. = Verylow = as) = y+(1— Y)Z ¢ @A) (7.12)
i€[1,2,3]
eaz'(a5*52)
P(V.S. = Medium|AS = as) = y+(1— Y)Z g P (7.13)
i€[1,2,3]
eag-(czs—ﬁg)
P(V.S. = High|AS = as) = y+(1— Y)Z g prry (7.14)
i€[1,2,3]
(7.15)

where y is a constant that modifies the credibility we give to our estimation of the
average speed (AS).

Weather Evidence

The major source of information about weather conditions is the Road Infrastructure.
There are several types of weather conditions typically reported by road infrastructure
but in our model we grouped those values in three categories (Good, Bad and Very Bad
weather conditions).

7.3.4 Information value

Taking advantage of the reasoning abilities of Bayesian Networks and the causalities
denoted in the BN model of Fig. 7.3.1. We proceed with the extraction of the usable
information for the driver, which defines the content of a potential notification message.
The content of notification messages derive from the information existing within the
GAs. As already mentioned, the GA A represents the ego-vehicle surroundings and the
information lying there constitutes the driving context. The rest of the GAs cover the area
where a possible notification message could be extracted. In order to decide whether the
information (event) lying into a GA generates a notification message we have to consider
the following:

1. The validity of the information.
2. The information gain.
3. The current driving context

In the following we describe the approach followed to manage the three issues above
mentioned.

1) The validity of information is estimated from the posterior probability of each vari-
able X given the evidence E and the P(X|FE) . Invalid information can be derived
from vehicle-originated messages which are propagated via the RI infrastructure
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Table 7.6: Information Ranking.

Event Source of Info Priority Order
Critical obstacle ahead  Fgo-vehicle 1
Lane invasion Ego-vehicle 2
Slow down traffic V2v 7
Slow moving car V2v 11
Road narrow V2v 10
Safety dist. violation V2v 4
Weather conditions 2V 8
Road closure 2V 9
Accident 2v 3
Road works 2v 5
Traffic Queue 2v 6

communication channels (indirect V2V). For instance the vehicle-originated mes-
sages about moving obstacles (slow cars) or collision warnings are only relevant to
the ego-vehicle when sent through direct V2V communication (close distance to
the ego-vehicle) otherwise there is high probability that they would have become
obsolete (non-valid) by the time the ego-vehicle reaches their reported position.

The Information Gain (IG) is a parameter introduced to express how worthy the
information is for the driver. It is a qualitative measure of the usefulness of the
information, derived from a questionnaire to a number of drivers. Table 7.6 de-
picts the priority order of specific events (1 indicates highest priority) according
to their criticality. From Table 7.6 we extract the Information Gain after a rating

normalization.

Concerning the current driving context this is actually the information lying in
the surrounding of the ego-vehicle (GA: A). Our goal is to avoid the generation
of notifications about events the driver is already aware of. Take for instance a
traffic congestion event recognized by the in-vehicle sensing system; this resides in
the ego-vehicle’s GA. Consider also a traffic congestion event reported by 12V which
is expanded in the next 3 GAs (A, B, C). Apparently there is no need to provide
a notification about forthcoming traffic congestion since the driver experiences it
already. To tackle this issue we define the Temporal Information Gain (TIG) as
the Information Gain of a variable given the current driving context. When the
configuration of a variable in the driving context is the same with the evidence of
that variable in the GA, the Temporal Information Gain is equal to zero otherwise
it is equal to the Information Gain.
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To address all three aforementioned considerations in a similar way, for a configuration j of
a variable X; we estimate the Expected Temporal Information Gain (ETIG) as following:

ETIG! = P(X; =) - TIG! (7.16)

This parameter defines the worth-reporting information and allows the management of
priorities in the sense that the information assigned with high ETIG (over a threshold
value) is included in the notification message.

The procedure is the following:

Stepl : Every time an event enters a GA, its corresponding information gain is assigned
to it.

Step2 : Given the current driving context and the evidence for each model variable derived
from the information fusion we estimate the ETIG for all model variables of the total
number of GAs.

Step3 : All the variables within a GA with ETIG >= Th (Th=threshold) are combined
and generate a compact notification message.

Step4 : The extracted notification message passes to the Decision Making, which deter-
mines when the message will be provided to the driver.

7.3.5 Experiments and results

In this section we test the inference capability of the BN model. Suppose we have K
incoming messages about potential obstacles. Combining those events with the statistical
data available we have an estimation of the average speeds (AS) on a specific GA. We
then examine two cases:

e Ist case: no other evidence (i.e. no message from RI) is available

e 2nd case: two additional messages are received from RI, one reporting an Accident
and the other reporting Heavy Rain (interpreted as bad weather).

In the first case the only information is the Average speed which mainly affects the
probability of Traffic variable. Figure 7.14 illustrates the probability (a) and the Expected
Information Gain (b) of the Traffic variable (No Traffic, Traffic and Queue) in relation to
our estimation of AS. As Traffic we imply the ”slow down traffic” while as queue the traffic
congestion forming a queue of vehicles. The straight lines in both diagrams correspond
to the probability of Traffic variable, without the information of AS.

Fig. 7.14 illustrates the probability (a) and the Estimated Information Gain (b) of the
Traffic variable (No Traffic, Traffic and Queue) in relation to our estimation of AS given
also the other evidence about accident and bad weather. Again the straight lines refer to
the probability of Traffic variable, without the information of AS.
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Figure 7.14: The probability of Traffic states (a) and their Expected Information Gain
(b) with the Average Speed (AS) when there is no other evidence (y = 0.8).
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Figure 7.15: The probability of Traffic states (a) and their Expected Information Gain
(b) with the Average Speed (AS) when there is evidence of Accident and Bad Weather

(v =0.8).

We notice that in the second case the probability of Queue and Traffic (i.e. slow down
traffic) is increased and the probability of No-Traffic does not grow as rapidly as in the
first case with the Average Reported speed. The Average Reported speed however is
considered as a non accurate metric, thus it does not necessarily correspond to the real
speeds occurring on the road. This is enforced by the constant y. Setting y = 1, we treat
the Average Reported speed as the only reliable indicator of the expected speed on the
road.
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Figure 7.16: (a) A long-range view of the traffic simulation and (b) a snapshot of the
visual interface of the information handling.

In order to test the information handling in more complicated scenarios, we extended
the simulator developed in section 7.2. The basic modification lies on the information
handling that is performed according to the method described above instead of the initially
developed rule based method.

Figures 7.16(a) and 7.16(b) constitute a time instance of an experiment execution
that demonstrates the whole functionality of the information handling. In more detail,
the incoming messages stored in the list refer to Obstacles detected by other cars and
to Road Works event sent by the RI. The probabilities of all model variables within a
geo-area are computed according to the evidence of specific events. Here the Road Works
probability is 1 (high confidence) and the probability of slow traffic is increased with the
number of incoming Obstacles messages in a geo-area. Then the Estimated Temporal
Information Gains determine the valuable pieces of information given the current driving
context (1st left circle). In the illustrated example the worth-reporting events are the
Road Works and the Slow traffic which, given their interdependency, are combined in a
single message ”Slow traffic due to road works” (Fig. 7.16(a) ).

7.4 Advanced Decision Making

In this section we present a methodology for advanced decision making based on Dynamic
Bayesian networks. The goal is to provide the driver with tailored messages about critical
forthcoming events. The types of messages vary according to a number of parameters like
the severity of a given event (which is interpreted by the braking effort required by the
driver until he reaches the safety limit), the driver state (stress and fatigue levels), the
local weather and traffic conditions, etc. A sophisticated decision making is necessary to
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ensure that the driver is aware of forthcoming events well in advance so he has enough
time to react while at the same time the alerting system is as less distractive or irritat-
ing as possible. The possible actions of the Decision Maker are: no notification, text
Message with information, light vocal message and intense vocal message. The decision
making is based on the idea of Influence diagrams [60] and dynamic Bayesian networks.
Dynamic Bayesian Networks (DBN) [106], are temporal extensions of the Bayesian Net-
works. When constructing a DBN for modelling changes over time, we include all variables
X = {Xy, Xy,, X,,}, at each time slice. If the current time step is represented by ¢, the
previous time step by ¢ — 1, and the next step by £ + 1.

While in Bayesian Networks we have a unique structure G, denoting dependencies
among variables, in DBNs we have two structures, the first one GGy, defines dependencies
among variables on the same time slice, and the second one variables Gy,q,5, defines time
dependencies among variables in successive time slices. To construct a DBN model, the
same basic steps must be followed, as those for constructing a simple Bayesian Network:

1. Define which variables are inserted in the model.
2. Define the structure of Gy and Gigps-
3. Define the parameters of the variables involved in the model.

After completion of these three steps, one could modify both structure and parameters
using experimental data and existing training algorithms.

DBNs, like simple static Bayesian Networks can be used to estimate the expected
configuration of all or some of the variables, maybe given some evidence (information
about the state of some variables). However in DBNs, those variables may lie on a future
time slice, and represent a future configuration of the environment.

In order to have a Decision making model we need to add on the existing DBN model,
two additional types of variables:

e The Decision Node (which decision to make)
e The Utility Nodes (negative costs on specific configurations of the model)

The Decision Node is usually a multinomial random variable, where the number of
configurations is equal to the number of decisions we are able to make. The Utility Nodes
are usually children of discrete variables and they consist of a table where we assign a
cost for each possible configuration of the parent variables. However in our case, we have
both discrete variables, so one can consider the utility nodes, as utility functions on some
or all of the variables:

If X; is continuous
R(X;) = f(X;), if X; continuous, (7.17)
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and if X; is discrete the utility function is given as:

wo, if Xy = xi0
wy, if X; =z,
R(X;) = . . (7.18)

wy, if X; =y,

where z;j the jth configuration of variable X; and w; the utility assigned to that con-
figuration. Of course X; can be one or more variables that are involved in the function
R.

In the following sections we describe the variables inserted in the model, the structure
and the parameters of the model, as well as the sampling technique used to estimate
the risk function in future time slices. Finally, we examine the behavior of the decision

making model, in predefined scenarios, using a simulation environment.

7.4.1 Variables of the model

First of all the variables of our decision making model are defined. A description of those
is given in the following table. The variables are categorized into discrete and continuous.
Next we describe how we threat the two different categories.

Discrete Variables

In the case of a discrete variable with only discrete parents its distribution follows a

multinomial distribution:

P(X = zi|Pays = z§°) =0 (7.19)

K
where x; is the ith configuration of X, Payas the set of discrete parents of the X, x?s
the jth configuration of the parents and 6;; the probability (3_,6;; = 1). In the case of a
discrete variable with both continuous and discrete parents its distribution is a softmax

distribution
aij(x;—bi;x°)

_ _ _ .d €
P(X = zi|Paxe = 1, Paya = 2§°) ~ S e’ (7.20)
j
where Pax. the set of continuous parents of X.
From the above equation it holds that:
Y P(X = zi|Paye = 2°, Paye = ") = 1, (7.21)

for each configuration x?s of the discrete parents of X.
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Continuous Variables

We model continuous variables as general conditional Gaussian distributions: If the vari-
able X has no parents or only continuous parents:

X ~ N(f(Paxc, At), c At?) (7.22)

If the variable X has discrete parents with K possible configuration then the variable
is distributed according to the following table:

(N(f1(PaX%), At), 01 At?)if Pa(X%s) = xf
X ~ : (7.23)

N(fi(Pa(X9), At), ox At?)if PaX%s) = %)

where Payc are the continuous parents of X and Pa yas the discrete parent of X and At

the time interval between two successive time slices.

Model Structure Definition

Having defined which variables are used in our model, we then describe the structure of
the model considering the inter- and intra- dependencies of our variables. The structure
of Gy is given in Fig. 7.17(a) and of Gyrans in Fig. 7.17(b). We briefly describe hereby
the reasoning of our structure: We first examine the intra-dependencies of the model
(the dependencies in the same time-slice). In the first time slice, the speed of the vehicle
depends only on the traffic conditions. The probability of the driver being distracted
is related to the driver state and to the traffic conditions, since it is more likely to be
distracted when there are a lot of stimulations around. The probability of driver seeing the
obstacle, depends on the driver’s state and the distance from the obstacle. The parameter
of visibility is incorporated in the See’s distribution parameters.

The Acknowledgment depends on the Decision we make (e.g. generate notification),
if the driver is distracted or not, as well as on the driver’s state.

The Memory variable, can be considered as a history variable, and contains the in-
formation about whether the driver has been notified with any message in the past.
Obviously this variable depends only on the Decision variable.

In the following we examine the time-dependencies between the variables. For instance:

e If the driver sees the obstacle in the previous time slice then it also sees it in the

next time slice.

e If the driver is aware (acknowledged) of the obstacle in time slice, then he will be
aware also in the next time slice.

e If the driver reacts to the potential hazard in the previous time slice then it also
Reacts in the next time slice.

e The reaction time increases when the driver is aware of the obstacle.
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Figure 7.17: (a) The structure of G and (b) the structure of Gyrans-

7.4.2 Variable Distributions

In Section 7.4.1 we gave an overview of the variables that are inserted in the model. For
each of them we have to define the parameters of their distribution function, for both the
Gy and Gypqns- Here we give some insight about the most important ones.

Decision

The Decision is treated as a random discrete variable. We have four possible decisions
(Table 7.8) and obviously the discrete variable corresponding to the Decision shall have
four states. We always estimate the expectations given the Decision in the first time slice
Dy. In the first time slice all actions (Decision states) have the same probability. For the
next time slices we give a large probability to the No-Message action and small to the
other, in order to take the "optimal” decision, without let the model depend on future
actions.

Speed

We have two different functions for the speed change. The first one is the free model when
the driver does not react to the potential hazard:

fr="Vi, (7.24)

and the second one is the model according to which driver decelerates when acknowledged
about the hazard:
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Table 7.7: The parameters of speed distribution of G;rans.

React | See | Traffic | f Gmaz Vo
No No No fr - -
No No Yes | ff - -
No Yes No fo ug-g Obstacles Speed
No Yes Yes fo ur-g Obstacles Speed
Yes | No No fo | (ur-9)/c 20 m/s
Yes | No | Yes | f, | (uf-9)/c 12 m/sec
Yes | Yes No fu Us-g Obstacles Speed
Yes | Yes Yes fo Urg Obstacles Speed

fV = ‘/1;‘—1 — Omazx * At - B_b(a_amaz/2)7 <725>
where % V)2
a = min(0, % (7.26)

The a4, and V; are the only values that change according to discrete parents config-
uration.

In Table 7.7 we the a,,,, and V; according to different configurations of discrete par-
ents.

Where uy is the friction constant which depends on the weather conditions, g the
gravity speed and ¢ a constant (¢ > 1) which implies that the driver tend to decelerate
more softly when not seeing the obstacle.

Distance

As far as the distance variable is concerned, the prediction of the distance in the future
time slices is significantly important. The function of distance is obviously:

fs=8St—1) =Vt —1)x At (7.27)

React

The react function is a softmax CPD used to model the cumulative distribution of the
log-normal distribution of the Reaction Time of the driver. The React variable has a
continuous parent (the Time to React) and three discrete parents:

e React (¢ —1): If the driver is supposed to react in the previous time slice, then with
high probability he will also react on the current time slice

e Driver State: The average reaction time increases when the driver is fatigue.

e Traffic: The average reaction time increases when there is traffic.
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For each configuration of the above mentioned we have different expected reaction time
distribution and we fitted the softmax function on the cumulative distribution of that
distribution. In Fig. 7.18 we illustrate the cumulative distribution of the Log normal
distribution (mean 1.2 with standard deviation 0.2 ) and the corresponding softmax func-

tion.

Time to React (R1})

If the driver is acknowledged about the obstacle, or ”sees” the obstacle, then we consider
that there is a time interval until the driver do react (we observe some speed reduction).
If the driver Sees or is Aware of the obstacle, the function of time to react is considered

as:
frT = RT(t — 1) + At, (7.28)
otherwise
frT = 0. (7.29)
Acknowledge

The Acknowledge variable describes the probability of the driver being aware of the po-
tential Hazard. The basic rules used to derive the probability table are: i) the driver
cannot be acknowledged if we give a Text Message and he is distracted, ii) there is a
smaller probability for the driver to be acknowledged when he is tired (fatigue) and the
notification is a Text Message and iii) moreover the driver tends to forget (slowly) the
information, so the probability of acknowledged at (¢ + 1), given that he is acknowledged
in (¢) is less than 1.

Memory

Memory variable is used as the history of the past decision we made. It has two states (No
Message Given/Message Given). When a Decision for a message is taken, the Memory
takes the state Message Given. For the next time slice the Memory variable has the
same state as in the previous time slice, so if at some point we decide to give a message,
thereafter the Memory variable will always have the Message Given state, otherwise it
will always have the No Message Given state.

Utility Functions

Having defined the parameters of the model, we need also to define the cost functions
according to which the decisions are made. We have two basic categories for utility
functions: safety related system acceptance related In the following we briefly describe
the utilities functions for each of the two categories.
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Figure 7.18: The cumulative distribution of the Log normal distribution (mean 1.2 with
standard deviation 0.2 ) and the corresponding softmax function.

Table 7.8: The variables of the DBN model.

Variable Description Type Notation

Decision No Message/ Discrete D
Text Message/
Voice Message/

Intense Voice Message

Memory A variable indicating if Discrete M
we provided message on the past
Driver State If the driver is in fatigue or stress state Discrete Ds
in fatigue or stress state
Weather Good/Bad/Very Bad Discrete w
Traffic Traffic condition Discrete T
Distracted An estimation if the driver Discrete Da

is distracted or not

Acknowledged An estimation if the driver Discrete Ack
is aware of the hazard
See If the driver sees the obstacle Discrete See
Acknowledged or See A combination of the two variables Discrete AcqOrSee
React If the driver reacts to the potential Hazard Discrete R
Reaction Time Time passed from the time driver Continuous Rt
has been acknowledged about the hazard
Speed Speed of the Vehicle Continuous V
Distance Distance from the Hazard Continuous S
Time of Day Day/Night Discrete Day
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7.4.3 Safety Related Utility Functions
Reaction Time

The first function used to meet safety requirements is a function of the reaction time of
the driver according to the estimated speed and distance in different time slices

t_(Vt*Vo)Q
259
B = —— 7.30
: v (7.30)
C
Rt — m (731)

C' is a multiplicative factor, that depends on the context. In our first approach this factor
depends on weather conditions. However almost all the other variables (e.g. driver state)
are also involved in this utility function, since they contribute in the estimation of speed
in next time slices.

Driver State

A utility is assigned to voice messages when the driver state is stress. This utility is
magnified in traffic conditions and very high speeds (where a nervous reaction could
cause accident). This should lead to strategies where Voice messages are produced earlier
in order to avoid possible invocation of intense voice messages.

A utility is also assigned to intense voice messages when the driver state is fatigue.
This is to ensure that the driver is alerted about the forthcoming event.

Driver Distraction

When the speeds are high or an obstacle is close, the Text Message has an additional cost,
because it can distract the driver.

7.4.4 System acceptance Utilities

Message Repetition

In order to avoid unnecessary messages to the driver we assign negative utilities (cost) to
the Text Message (-100), Voice Message (-200) and Intense Voice Message (-300).
Information Provision

We also assign a very large utility to the state of Memory variable corresponding to
"message provided”. This enforces the system to produce at least one message, since it
is not acceptable to hide information from the driver.
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for all j =1--- M where M the number of samples do
for all d =1---D where D the number of possible decisions do
VO=FE%d
wj =1
Get the 7 variable in the elimination order El.
if the variable X? is Evidence then
w; = w; - PY(X) = Ej|Paxe € V)
else
Sample the X7 variable (according to X’s distribution) given the sampled values
of its parents:
xy; ~ PY(X), Payo € V?)
VP =Viua
for all ¢t =1--- K where K the number of time slices do
Vt=F'
Get the ¢ variable in the elimination order El.
if the variable X? is Evidence then
wj = w; - PN(X} = Ej|Pax: € V], Pay € Vi)
else
Sample the X} variable (according to X’s distribution) given the sampled
values of its parents:
)y ~ PY(XP, Payo € V)
VP =vus

Algorithm 6: Sampling(Fl:Elimination order of G, FE:Evidence)

7.4.5 Utility estimation for each possible action

The next step is the estimation of the expected utility of each decision. This is not trivial
in case of both discrete and continuous variables, so we use approximate inference instead,
based on sampling.

After applying the sampling procedure we get a set of samples for each time slice.
Using those samples we can estimate the expectation of the utility function according to
the following equation:

ER(XH|D=d = 2y where 4,4 "s%) (7.33)
Zj where d;=a Wi
> ij(xfj)

E[R(X})] = ]Z—wg (7.34)

In a similar way we can estimate the variance of our variables:
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Varl[R(X})|D =d] = E[R(X})|D =d]— E[R(X})|D =d]- E[R(X})|D = d|(7.35)

2
Zj where d;=d ij(:Elz?j)

= (7.36)
2_; where dj=d s
—E[R(X1)|D = d] - E[R(X})|D = d (7.37)
1% n o wiR(e)? t t
arlR(X;)] = —<——— — E[X]]- E[X]] (7.38)

Z]‘ wj

We should notice one potential drawback of the above-mentioned algorithm. In many
cases when the evidence is very unlikely the w;’s could be very small, or even zero and
our estimation of F[X/] is far from accurate. This could be magnified if we had evidence
in far time slices. However in our case, due to the nature of evidence and the model design,
this is not the case and we are always able to take a fair estimation of the E[X}|D = dJ.
Moreover, there is an additional advantage of our solution. The approximate inference
algorithms are in many cases also called any-time inference algorithms. The reason is that
at any time you can stop the procedure and use the samples that are already produced
for at least a poor estimation.

The total utility of any decision is a sum over all the different utility functions.
R,=> R, =) E[R;(X})|D=d (7.39)
J J

where X jt the variables involved in the utility function R; in time slice ?.
The average utility of a decision d over P time slices is given as

1 t=P
Ry= 5 > R} (7.40)

t=1

The action d that the system does is the one with the higher R,.

7.4.6 Driver warning simulator

In order to test the decision making mechanism and the driver warning we extended the
simulator used for the fatigue study presented in Section (3). The simulation environment
(Fig. 7.19) supports a short-range view of the ego-vehicle and its surroundings. The
simulator contains the following parts:

1. A 3d environment
2. The ego-car sensor emulators

3. An HMI emulator.

In the following we describe the development of the 3 main parts of the simulator.
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Figure 7.19: The simulation environment

The 3D environment

For the development of a realistic 3d environment we used the Microsoft XNA framework,
which is based on the Directx3d and provides many higher level utilities for a developer
of 3d engines. The world on this environment consists of:

e A highway Road (with four lanes)

e Surrounding Environment (sky, trees, grass, sun)

e Other vehicles (eventually some of those, will be other vehicles)
e Potential Obstacles (e.g. road works)

The user has control over the ego-vehicle. The camera follows that vehicle, and for
vehicle controlling we use the Logitech Steering Wheel, which includes:

e Steering wheel: used to steer the vehicle.

e (ear: each gear has a maximum and minimum speed, as well as different maximum
acceleration. The change of gear is manual.

e Acceleration and brake pedals: used to accelerate and decelerate the vehicle.

e Buttons on the steering wheel: used to emulate other functions (activating right
and left indicators)

Furthermore since we have a vehicle controlled by the user (steering angle, acceleration),
we needed a vehicle dynamics model to simulate the behavior of the vehicle, according to
the input of the driver. Those dynamics are described in detail in [35, 101]. For the other
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Figure 7.20: The utility of each decision as a function of the distance from the obstacle.
We also demonstrate the time instances where the system makes a decision different from

no message.

vehicles in the environment we used the IDM model [144]. This model calculates the
acceleration and deceleration of vehicles on a single lane in order to keep a safety distance
between them. In order to produce a more realistic environment we added a simple lane

change behavior to those vehicles as described in Section 7.2.

Ego-Vehicle Sensor Emulators

The sensors emulated are: i) a radar sensor for detection of preceding vehicles (distance
and speed) and ii) a video sensor for lane detection and lateral vehicle position estimation.

Can-Bus/Radar Sensor Emulators

Those two sensors are more easily emulated. The basic information of the can-bus (speed,
left /right indicator etc) are extracted from the simulation context.

GPS Emulation

The GPS information (latitude, longitude, speed and heading) are extracted from the
simulation context. Our road is straight, and starts from a specific latitude and longitude
position with a specific angle. All vehicles have the same heading. The current position
of a vehicle is extracted from the position on the road (distance traveled) and the starting
position. This holds also for the ego-vehicle.

Using the information of the above sensors we detect events in the proximity of the
vehicle, whereas a list of various long range messages, corresponding to infrastructure
or other vehicles, is stored in a database and provided to the vehicle at specific time
instances. In Figs. 7.20(a) and 7.20(b) we present the behavior of the decision making
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for two scenarios. In both cases we have received a message of an obstacle ahead and we
instructed the driver to keep a constant speed near 35 m/sec as approaching the virtual
obstacle, and to decelerate once arriving at a specific distance from it. In the first scenario
the driver state is considered normal, whereas the weather is considered good. We observe
that the system produces two messages: one text message and one regular voice message.
In the second scenario, the driver is considered in fatigue state and the weather rainy.
We observe that the system instead of a regular voice message produces an intense voice
message.

7.5 Discussion

We have presented three studies on individual parts of an advanced cooperative driving
system. A cooperative driving system is an advanced driver assistance system (ADAS)
that exploits wireless communications (vehicle -to- vehicle communication and road infras-
tructure -to- vehicle communication) with the scope to extend driver’s perception through
the information coming from the external environment and to develop more accurate pre-
crash warning systems. In the first study we focused on the communication requirements
(range, latency, broadcasting frequency) of a driving cooperative system that need to be
met, in order to achieve a safety gain. An enhanced situation assessment was also achieved
through the merging of different information sources and the evaluation of individual risks,
which was tested through a long-range simulation environment, specially built for testing
purposes. In the second study an intelligent information handling mechanism was devel-
oped. It is designed to perform information fusion and reasoning and to extract high-level
worth-reporting information for the driver. For the information fusion we followed an ap-
proach based on geo-reference representation of the ego-vehicle and forthcoming events
while for the inference on the road situation and the definition of the notification content,
we developed a methodology based on Bayesian networks. The proposed methodology
supports the management of low-confident or missing information sources (e.g. absence of
road infrastructure), as well as the generation of consolidated messages about geo-related
events (e.g. Traffic due to Road Works, Accident caused Road Closure, etc). The validity
and prioritization of forthcoming events are also tackled through the Information Gain,
a parameter introduced as a measurable indicator of notification importance, given the
current driving context. The outcome of the advanced information handler is the gener-
ation of enhanced notification messages. These enhanced notifications are further used
by a decision making mechanism [124] in order to provide the driver with an optimal
warning strategy about forthcoming hazards. This is described in the third study of this
chapter. The decision making is based on sampling of Dynamic Bayesian networks for
driving risk evaluation and decides upon the best warning strategy, taking into account
both environmental conditions and driver’s state. The decision mechanism was evaluated
on a user interactive simulation environment. The conducted experiments showed that
the information of the driver psycho-physiological state if incorporated into the pre-crash
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warning systems, can evolve further this technology by increasing the safety margins with
the provision of alerts tailored to the current driver status.
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CHAPTER &

(CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

8.2 Future work

8.1 Conclusions

We presented a study on the detection of driver’s fatigue and stress levels. Our estimation
of fatigue levels is feasible using only physiological signals (ECG, Respiration, EDA) with a
86% accuracy on three fatigue levels. Stress detection, based only on physiological signals
proved a more difficult problem. By incorporating more information into the system,
such as video features or environmental factors, wthe accuracy in fatigue and stress levels
estimation is increased (87.5% accuracy on three fatigue levels and 85% accuracy on two
stress levels).

The main difference from similar works, is that drivers were monitored during ordi-
nary work days, without restriction on sleep hours or external stimulations, for a long
period of time. Thus, we consider that this study truly depicts the actual physiological
status of the particular subject during driving, and the obtained results correspond to
near optimum performance of a real (personalized) driver status monitoring system. In
a simulation environment it was verified that both low and high fatigue states lead to
driving performance impairment. Furthermore the relation of physiological signals and
driving performance was studied. Our results indicate that using only drivers’ physiologi-
cal measurements, a prediction of reaction time is possible. This implies that an in-vehicle
system capable of monitoring driver’s physiological signals, could be trained to predict
the reaction times of the driver prior to events and adjust accordingly the safety margins
of a driver assistance system.

The physiological state of stress is strongly associated with driving conditions and
the presence of specific increased-risk driving events. Towards this direction, we pro-
posed a methodology, applicable in real-time, for assessing drivers’ stress events based
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on physiological signals’ monitoring (ECG, EDA and respiration) and a driving history
which is built upon information from GPS and CAN-bus. The information extracted is
incorporated into a BN model for stress event detection. The proposed methodology was
evaluated in real driving conditions and demonstrated good generalization performance,
mainly due to the online parameter estimation. The proposed methodology, associating
driver’s stress events with specific driving events, could exploit Bayesian Framework’s rea-
soning ability and answer to queries of the type ”is the driver stressed when overtaking?”.
Such queries reveal valuable information about driving behavior which can be exploited
by the new generation of advanced driver assistance systems.

A very important issue in physiological state recognition systems, is the adaptation to
new subjects-drivers. We presented an approach based on the estimation of the param-
eters of a geometric transformation applied on a Gaussian mixture model. The method
proposed here is based on the EM framework. We considered both the cases of full positive
definite and spherical covariance matrices. The original approach gives very good results,
when the distance of the initial guess and the actual transformation parameters is rela-
tively small. This is a restriction inherited from EM behavior, since it can be considered
as a local optimization method. To overcome this problem, we extended the original EM
approach to a multiple start one. The multiple-start EM had significant higher probability
of finding the correct solution. Finally we extended the initial transformation model, al-
lowing each component having an individual-local transformation, under the assumption
that local transformations are smaller in magnitude than the global one. This assumption
is incorporated in the EM framework using prior distribution on the local transformation
parameters, leading to a MAP-EM approach. Finally we demonstrated how the described
method can be applied for the adaptation of a driver state recognition system to new
drivers, with very promising initial results.

Information about driver’s physiological state is valuable for modern driver support
systems, since they could adapt their strategies accordingly, increasing driving safety. In
the last Chapter we perform a study on the basic functionalities of a new generation driver
support system, which is able to assess driver’s state, as well as the driving environment
through in-vehicle sensors and communication with other vehicles and road infrastruc-
ture. We initially conducted a series of experiments in a macroscopic traffic simulator
to investigate the safety gain from such systems and derive some minimum requirements
in communication characteristics in order to maximize this gain. An emerging need for
those systems is the advanced information fusion, since there is incoming information
from different sources with low confidence and credibility (other vehicles) as well from
high confidence sources (road infrastructure). We propose a solution based on Bayesian
networks, which is suitable for both information fusion and evidence explanation. Us-
ing the proposed solution we could extract the messages which are more informative for
the driver. Furthermore, we investigate the use of Dynamic Bayesian networks for opti-
mal warning strategy selection, replacing the simplistic non-adaptive rule based methods
employed by the state-of-the-art alerting mechanisms.
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8.2 Future Work

In the recognition of driver’s physiological state, there are several future directions. The
first one is to search for physiological signal characteristics that could discriminate better
different fatigue and stress levels. We could also use more information, such as facial
expressions, or to investigate new sensors such as thermal imaging. Next we should test
the adaptation methodology proposed in a large set of drivers.

Concerning stress event detection, the discrimination of stress events in a larger scale
could be very beneficial, since events including higher risk are more probably to lead to
changes in the physiological state and driving behavior. In order to distinguish stress
event in a larger scale, we need a more precise annotation method, a better physiological
signal acquisition equipment, neglecting noise due to drivers movements, and probably
incorporate additional information, such as facial expressions and head movements. An-
other possible extension of the proposed methodology is the prediction and evaluation,
in terms of the risk involved, of specific driver actions, i.e. overtaking. We observed that
prior to such an event there is an activation of the nervous system, related to the decision
making process. Using the evidence of this activation and the driving behavior of the
driver we could estimate driver’s intension for overtaking. Having also a better assess-
ment of the driving environment we could evaluate the risk of such a decision and either
warn the driver or simply evaluate his driving behavior (aggressive, passive etc.). Re-
garding the proposed method for estimating the geometric transformation on a Gaussian
Mixture mode, we should study more comprehensively the convergence criteria of this
method. Concerning the global and local transformations estimation, we progressively
relax the constraints imposed on local transformation parameters. However, there could
more advanced methods for constraints adaptation, for example relaxing and tightening
according to the increase in the log-likelihood function. Finally, the proposed method, is
quite generic and can be easily applied to other problems, such as image and point set
registration.

Finally for the system proposed for advanced driver support systems, the information
fusion and the decision making should be reshaped using data collected from an improved
and even more realistic simulation environment, which will truly reveal drivers’ responses

to the outputs of a warning system.
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