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Abstract

We present an optimization environment for multidimensional continuous functions. Robust and powerful algorithms are
used that guarantee its effectiveness. The environment offers programmability and ease of use by providing a specialized
operating system and a control language that can be used to create successful optimization strategies. We report on several
applications where this software has been successfully used. (©) 1998 Elsevier Science B.V.
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Nature of physical problem

Many problems in Physics, Chemistry, Engineering and in other
disciplines are frequently reduced to minimizing a function of
many variables. As examples we refer to systems of nonlinear
equations, to modeling, to variational methods, to curve fitting
and to the training of neural networks.

Method of solution

MERLIN provides a programmable environment that makes the
whole process of minimizing multidimensional functions with
bound constraints, flexible and efficient. Ten algorithms and a
strategy are implemented. Two of them use only function values,
while the rest use gradient information as well. One algorithm is
specific for functions that can be cast in a sum of squares form.

ware configuration.

Typical running time
Depending on the objective function. The test run took 1.55 sec-
onds on a Sun SPARCstation 5.

Unusual features of the program

The source code can be customized in regard to the required
precision (single or double), to the maximum number of vari-
ables and to the maximum number of the squared terms, via a
provided installer program. MERLIN can be easily extended by
the user through a predesigned plug-in mechanism. Additional
documentation is provided in the user manual (147 pages) that
accompanies the distributed program.

Restrictions on the complexity of the problem
The only restriction is set by the available memory of the hard-

LONG WRITE-UP

1. Introduction
1.1. What kind of problems MEELIN handles

Multidimensional minimization is a common procedure needed in many fields. A variety of problems in
engineering, physics, chemistry, etc., are frequently reduced to ones of minimizing a function of many variables.
For instance we refer to systems of nonlinear equations, to variational methods, to curve fitting and to the
training of neural networks. Minimizing a multidimensional function faces a lot of difficulties. There is no
single method that can tackle all problems in a satisfactory way. It has been realized that one needs a strategy,
combining different methods, to efficiently handle a wide spectrum of problems. The presence of constraints,
even of simple ones, enhances the difficulty. In addition most algorithms require evaluation of the gradient. This
imposes additional problems since it is not always straightforward to code it. Hence one resorts to approximating
the derivatives using differencing, that costs in computing time as well as in accuracy.

MERLIN is an integrated environment designed to solve optimization problems. It is devised to be easy-to-use,
and implemented so as to be portable among different platforms. Another feature is that MERLIN is open, i.e.
a plug-in mechanism is provided so that others can easily embed their own code modules. MERLIN handles the
following category of problems:

Find a local minimum of the function

f(x),

under the conditions

xeRV x=(x1,x2,...,xN)T

x;i € [1;,u;) fori=1,2,...,N.

Special merit has been taken for problems where the objective function can be written as a sum of squares, i.e.

M
fxy=) flx).

i=1
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This form is particularly suited when one needs to fit data points using a model function. One then minimizes the
chisquare which is of the above form. In this case MERLIN can calculate parabolic estimates of the confidence
intervals for the model parameters as well as partial covariance matrices.

MERLIN can be used both interactively and in batch. Interactively the user drives MERLIN by entering
commands through the keyboard. In batch MERLIN reads commands from an input command file. Interactively
MERLIN is tolerant to errors in input and issues appropriate warning messages, while in batch aborts. There are
various commands at the user’s disposal that either invoke minimization algorithms or perform other auxiliary
operations.

MERLIN is programmable. Its programming language MCL (Merlin Control Language), is a high level, easy
to learn language and is described in a separate article [ 1]. The MCL compiler takes as input a strategy (coded
in McL) and produces as output a file that contains commands that can steer MERLIN appropriately. MERLIN
and MCL are both written in ANSI Fortran-77 to guarantee portability.

1.2. Conventions

1.2.1. Typing
e Lower case boldface letters (x, g, etc.) stand for vectors in the N-dimensional space.
Upper case boldface letters (G, H, etc.) stand for N X N matrices.
MERLIN commands, Fortran code and I/O data are printed using a monospaced font.
{cr) denotes keying the “carriage return”.

. implies that preceding symbols may be repeated.

1.2.2. Symbols

e N,n The number of parameters (dimensionality of the problem).
e f(x) The objective function.

® X; The ith component of x.

e fi(x) The kth term entering in the calculation of the objective function
when it has the form Y"p, f2(x).

The number of the squared terms involved in the above sum.
The gradient vector of the objective function V f(x).

The Jacobian matrix with J;; = dfi/dx;.

The Hessian matrix with G;; = 8° f/dx; dx;.

An approximation to G.

An approximation to G'.

The lower and upper bounds for x;.

® ® © o o o o
~mWQS® X

?‘
=

2. The MERLIN operating system

MERLIN provides an operating system in order to render the whole process efficient, flexible and pro-
grammable. MOS has a command interpreter as a front end that accepts the input commands and instructs
MERLIN to take an appropriate action. Like most operating systems, MOS supports command aliasing, as well
as argumentary command packages called macros. In addition, there is the Merlin Control Language (MCL)
through which one can devise intelligent minimization strategies. The MCL compiler is a separate software
package built specifically for this purpose.
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2.1. Input

The underlying mechanism for input is what we call one line inpur. When a line of input is entered, it
is accepted by MOS as a character string. This string is being parsed and lexically analyzed in order to be
interpreted. The interpretation of the input line depends on the preceding command, since different commands
expect different kind of input. There are commands that require no input, commands that require a simple
and rather obvious type of input and commands that require specialized and rather involved type of input. To
ease the operation, the commands that require complex input have been implemented via a self-explanatory
mechanism, that issues a reminder to the user. This is what is called panel mechanism. A command’s panel is
a table consisting of indexed keywords that correspond to the required input parameters, the current parameter
values, a very short description of their function and a menu of possible values. Each panel is followed by a
prompt to enter the appropriate input which is to be handled by the one line input mechanism. Panels can be
deactivated and reactivated at will, via corresponding MOS commands.

2.2. Output

During operation MERLIN outputs standard information (normal output) and error messages (error output).
MOS provides several ways to control the amount of issued output. In addition it supports output redirection
to a file via a Unix like syntax. The output of a whole set of consecutive commands can be redirected as well.

2.3. Help

An on-line help facility is available in MERLIN. The user can request help for any MERLIN command or
panel parameter. The help texts describe the command’s function, its proper syntax and include examples and
pointers to related information.

2.4. Commands

MOS has a large repertoire of commands. These can be classified into categories according to their action.
In order to present the general idea we will mention the most essential categories. Note that commands can be
entered in either lower or upper case invariably.

e Commands that manipulate the attributes of the minimization parameters. The ith minimization parameter
has the following attributes:
Its current value x;.
A unique symbolic name, up to 10 characters long, that may be set by the user.
An indication whether this parameter is fixed. This is referred to as the fix status of the parameter. The
minimization routines do not alter the value of fixed parameters.
An indication whether there exist lower and/or upper bounds for this parameter. This is referred to as
the margin status of the parameter. The minimization routines make sure they never evaluate the function
outside the allowed bounds.
The lower bound [, if it exists.
— The upper bound u;, if it exists.
A few illustrative specific examples may be useful:
- point index value ...
Assigns values to the minimization parameters.
Example: point 1 1.2 2 4.7

1
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- fix index ...
Declares that a variable is fixed.
Example: fix 1 7 4
— loose index ...
Declares that a variable is no longer fixed.
Example: loose 2 3 6
- lmargin index value ...
Sets the lower bounds.
Example: lmargin 2 2.7
- ldemargin index ...
Removes the lower bound from a variable.
Example: 1demargin 2
- godfather index name ...
Assigns symbolic names to the minimization parameters.
Example: godfather 1 rho 2 sigma
One can then use these names in place of the parameter indices:
point rho 10.1 sigma 0.1l
Commands that invoke one of the coded minimization algorithms, for example: simplex, congra, bfgs. All
these commands are equipped with panels. As an example we list below the input that invokes the BFGS
algorithm with a maximum allowed 1000 calls to the objective function.

bfgs <cr>
noc 1000 <cr>

Commands that set the options for the various operation modes. These modes determine the overall behavior
of MERLIN. To be more specific, there is the printout mode that determines the amount of output issued by
MERLIN. The printout mode is set by the commands fullprint, halfprint and noprint, corresponding
to full output, only error messages and no output at all. As another example consider the gradient mode. The
gradient mode is set by the commands fast, quad, numer, anal and mixed, corresponding to calculating
all gradient components using forward differences, two point central differences, six point central differences,
user supplied code, or any of the above choices for different components of the gradient.

Commands that issue information about the current state of both the optimization process and the system.
For example, the command shortdis displays the attributes of the current minimization parameters, the
corresponding value of the objective function and the number of function, gradient, Hessian and Jacobian
calls spent so far. Also the command modedis displays the currently chosen options for the various modes.
Commands that perform file manipulation operations. For instance, the command delete that erases a file
or the command memo that appends the current attributes of the minimization parameters to a file, etc.
Commands that deal with the construction of macro packages, aliasing and other utilities.

5. Extensions

MOS is an open operating system in the sense that it allows for extensions, called plug-ins, and provides
mechanism to ease their integration into the environment. If the plug-ins are coded according to certain

guidelines, they become automatically recognized by the MCL compiler as well. In addition a number of
useful routines, called glue-routines, have been devised that enable the programmer to easily access all the
important MERLIN variables, arrays and common blocks. The programmer may also take advantage of the
panel mechanism in his code, by calling a provided routine and filling in a text file template.
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2.6. Installation—customization

MERLIN is distributed in a form which is not directly compilable. It comes with an installation program that
takes the distributed files as input and produces a standard ANSI Fortran-77 source code. The installer sets
several required dimensions, some constants as well as the desired precision (single or double). The MERLIN
command limits displays the values of these installation parameters. MERLIN has also some hard-coded
defaults. Most of these can be modified without changing the source code. The customization mechanism is
facilitated by editing a configuration text file (CONFIG) that is read during MERLIN startup. Also the default
panel parameters can be customized by editing a corresponding Panel Description text file (PDESC).

3. Algorithms

MERLIN contains implementations of powerful minimization algorithms. In particular there are two direct
methods (Roll and Simplex) that use no derivative information. These are appropriate for small problems,
when the objective function is subject to noise or when derivatives cannot be calculated. From the conjugate
gradient methods three algorithms are chosen: the Fletcher-Reeves, the Polak-Ribiere and the Generalized
Polak-Ribiere. From the quasi-Newton family the DFP method and several versions of the BFGS method are
coded. For the special case when the objective function is a sum of squares, an efficient Levenberg-Marquardt
method is included.

The algorithms implemented in MERLIN are described in the following sections. Wherever appropriate we
use a Fortran like form for the sake of clarity.

3.1. Direct methods

3.1.1. The Roll method
This method [2] belongs to the class of pattern search methods. It proceeds by exploring the local topology
of the objective function and taking proper steps along each direction separately. In that it resembles the obvious
(and ad hoc) alternating variables method [6]. When, however, the correlation among the variables becomes
important, this procedure cannot proceed further. In order to cure this problem the method performs a line
search along a properly formed direction, after each iteration over all the variables.
Let x¢ = (x{,x5,... ,xfl)T be the current point and f. = f(x°). Let also s; be a step associated with each
free variable x;. On each direction i the algorithm executes the following steps:
(1) Pick a trial point x; = x§ for all j # i and xt=x{ + s
(2) Calculate fi = f(x).
3) If fi < foset x° =x', fo= fy and s; = as;. Then, go to step (8).
(4) If fy > fe, pick another trial point as x} =x{ forall j # i and xi=x{ — s
(5) Calculate f_ = f(x").
(6) If f_ < fe, set x° =x', fo = f_ and s; = —as;. Then, go to step (8).
(7) If f_ > fe, calculate an appropriate step by s; = —3 (—fg*f;_’:‘{f—) Si.
(8) Proceed from step (1) for the next value of i.
In the above, a > 1 is a user-set factor. After looping over all variables, a line search is performed in the
direction s = (s1, 52, ..., 5,)T. The above procedure is repeated until a termination criterion applies.

3.1.2. The Simplex method

This method belongs to the class of the direct search methods for nonlinear optimization. It should not be
confused with the well-known simplex method of linear programming. Originally this algorithm was designed
by Spendley et al. [3] and was refined later by Nelder and Mead [4,5]. A simplex (or polytope) in R” is a
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construct with (n + 1) vertices defining a volume element. For instance, in two dimensions the simplex is a
triangle, in three dimensions it is a tetrahedron, and so on so forth. The input to the algorithm, apart from a
few parameters of minor importance, is an initial simplex. The algorithm brings the simplex in the area of a
minimum, adapts it to the local geometry, and finally shrinks it around the minimizer. It is a derivative-free,
iterative method that proceeds towards the minimum using a population of n + 1 points (the simplex vertices)
and hence it is expected to be tolerant to noise, in spite of its deterministic nature. The method executes the
following steps (simplex vertices are denoted by w;):
(1) Examine the termination criteria to decide whether to stop or not.
(2) Number the simplex vertices w; so that the sequence f; = f(w;) is sorted in ascending order.
(3) Calculate the centroid of the first n vertices: ¢ = %Eg)lw,-.
(4) Invert the “worst” vertex w, as r = ¢+ a(c — w,) (usually a = 1).
(5) If fo < f(r) < fu-1 then
set w,=r, f, = f(r), and go to step (1)
endif
(6) If f(r) < fo then
expand as e =c+ y(r —¢) (y > 1, usually y = 2)
If f(e) < f(r) then
set w, = e, fn= f(e)

else
set wp=r, fn= f(r)
endif
go to step (1)
endif

(7) If f(r) 2 fa-1 then
If f(r) > f, then
contract as k= ¢+ B(w, — ¢) (B <1, usually B=1)
else
contract as k=c¢+ B(r —c¢)
endif
If f(k) < min{f(r), f.}, then
set wp, =k, fn = f(k)
else
shrink the whole polytope: as
set w; = S(wo +w;), fi= f(w;) fori=1,2,...,n
endif
go to step (1)
endif
The initial simplex may be constructed in various ways. We have implemented two. One approach is to pick
for the first vertex the current point and the rest of the vertices by line searches originating at the first and
heading along each of the n directions. The second approach picks again for the first vertex the current point
and generates the rest by taking a single step along each of the n directions.

3.2. Quasi-Newton methods

The backbone algorithm for the quasi-Newton methods [6-8] is presented below. Detailed descriptions for
the several versions follow. At the start of the kth iteration a point x¥), the gradient g¥) and an approximation
B™ to the Hessian matrix G** are available. The following steps are then executed:

(1) Check the termination criteria in order to stop or not.
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(2) Solve BRI sy = _g(k) for (k)
(3) Select a new “better” point x*+1),
(4) Calculate the gradient vector gt<+D,
(5) Update B%® to B**Y using a quasi-Newton formula.
Steps (3) and (5) above need further description. To obtain a new point either a line search is performed along
the quasi-Newton direction (commands bfgs, tolmin, and dfp), or a trust region strategy is applied using the
double dogleg technique [9,10] (command trust).
The line search determines a value A = A* so as to reduce the value of the function f(x¥ + As(®), according
to the so-called Wolfe-Powell [11-13] criteria. The new point is then taken to be x¥t1) = x ) 4 y*g(k)
The trust region strategy minimizes with respect to h'* the quadratic form

q(h(k)) = f(x(k)) + g(k)Th(k) + %h(k)TB(k)h(k) ,

subject to ||B®]| < R™®, where R™® is a properly chosen radius (the trust region radius) so that the quadratic
approximation is reliable. In this case the candidate point x® 4 r™® is either accepted, if it corresponds to
a lower value, or rejected otherwise. The trust region radius is then updated to R**D in order to make the
quadratic approximation more trustworthy at the next iteration. Algorithmic details are given in Sections 3.5.1
and 3.5.2.

The updates used in step (5) are the BFGS [14-17] update (commands bfgs, tolmin and trust) and the
DFP [18,19] update (command dfp). Using the definitions: 8 = x*+1) _ x(&) apd 40 = gkt _ (k)
we can write down the update formulas (the iteration superscript (k) is dropped on the right-hand side). The
BFGS update is

g _p o 1Y B56'B _
8y &6'Bs

The DFP update is

8"Bs T y8"B + Boy"
,,(m:“(H iL );_3’__7__.5_5“/_,
Y Y Y

These updates are implemented using factorizations for the B matrix: the Choleski B = LL" factorization [7]
(commands dfp, bfgs and trust), and the Goldfarb-Idnani [20] ZTBZ = I factorization (command tolmin).

3.2.1. The Choleski factorization
Let B® = LLT and B**Y = L LT, where the lower triangular matrix L, is calculated from a matrix J

obeying B&*+D = J+J1 by QR decomposition: Ji =Q +L£ where Q. is an orthogonal matrix. Obviously we
have

BMY =g T =1,0"0, LT =L,LT.
This J, matrix is given for the BFGS case as

B (y — Lv)ov"

J+ - L + DTD )
where v = aL"8 and o = 8"y/6" B8, while for the DFP case it is given as
y(8'L —wT)

'y
where w is given by Lw = By and 8% =8 y/y"B™'y.

»

J+=L"‘
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3.2.2. The Goldfarb~Idnani factorization
If ZOTBOZ® < I and BV is given by the BEGS update, we want to find a matrix Z**1) such that
ZHDTgUAD ZU+1) — [ If the first column of Z® is parallel to %, then the matrix with columns

ngﬂ) - /5(/:)77(,()5(1:) ,

(k)T

Z*D =20 T 50 for j=2,3,...,n,

. . . . Sk .

is the required Z**" matrix. Since, however, Z " = ZP QW with Q® any orthogonal matrix also satisfies

Z(k)TB(k) Z(k)
(%) . . L .

procedure on the Z = matrix to get Z**1). This factorization is the one preferred by Powell [21] and used

in [22].

. k) .
= I, one can construct a @°) matrix such that Z,  is parallel to 6 and then apply the above

3.3. Conjugate gradient methods

The conjugate gradient methods are economical in computer memory since they require only a few arrays
of N-elements each. The backbone algorithm for the Fletcher-Reeves [23] and Polak—Ribiere [24] methods
is described below,

Initially at the provided point x! we set s(!> = —g(1). The kth iteration consists of the following steps:

(1) Perform a line search along s'¥’ and obtain x**+1),
(2) Check the termination criteria in order to stop or not.
(3) Calculate the gradient vector g¢*+1),

(4) Calculate a scalar B®) using one of the following prescriptions:
kDT (k1)

(a) Fletcher-Reeves: 8¥ = *'—r&—g(k) pom
(1) _ (*))T (k+1)

(b) Polak—Ribiere: g% = &8 ) g

g(k) g(k)
(5) Calculate a new search direction as s(¥t1} = —g(k+1) 4 gl g(b)
The generalized Polak-Ribiere [25] method is as follows:
(1) Perform a line search along s'®) and obtain x(*+1),
(2) Check the termination criteria in order to stop or not.
(3) If k+ 1 > n > 2 restart the procedure.

k+D7T (0
(4) Calculate d¥ = s® — & 57 okt

g(k+|) g(l‘—{»!)
(5) Choose 8 = min {1, . /.ﬂ—*)?ﬁ } 7 being the machine’s accuracy.
) ) T kD) (k)
(6) Calculate a new search direction as s*+1) = —g(ktD) 4 gD | yhere g = _ gkt W and
gl(k) — g(x(k-H) _ Sd(k)).

3.4. Levenberg—Marquardt method for sum of squares

For the case where the objective function is a sum of squares, i.e.

M
f(x)= f1(x) =r(x)r(x),

i=1
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with 7T (x) = (fi1(x), f2(x),..., fu(x))T, a special method has been proposed first by Levenberg [26] and
later on by Marquardt [27]. Let J be the Jacobian matrix df;(x)/dx; and let D be a diagonal matrix. The
quadratic approximation to f(x - &) is given by

q(h) = f(x) +g"(x)h + }h"B(x)h

and is being minimized under the condition ||[DhA|| < R, where R is the radius of the trust region. The trust
region in this case is a hyper-ellipsoid with semi-axis lengths R/D;;. Since g = 2J7r and if the Gauss—Newton
approximation is made, i.e. B(x) = 2J7J, we get using the Lagrange multiplier procedure,

[(J"J+ AD™D1h=~J"r or h(A)=—-[J"J+AD"D]"'J"r.

Initially we set D\ = ||ar(x'?)/éx;|| ¥ i=1,2,...,N. The kth iteration of the algorithm is as
(1) If | D®R® (0] < R then
set 8% = % (0)
else
find a A% > 0 such that | DP RO (A®) | = RK
set 8K = B® (AR
endif
If f(x® +6%) < f(x®) then
set x*tD = x® 1 §0  and calculate J*+D

else
set x(D) = x® and J*+D = g®
endif
(2) Update R® to R**D (the algorithm is similar to the one described in the next section for the dogleg
case).

(3) Choose D*+D as D+ = max {DS") u"—'Lf,—jfflln} Vi=1,2,....N.

0o

A very robust implementation of the above is described by Moré [28].

3.5. Selection techniques

3.5.1. The dogleg technique
Given a quadratic model

Flx+h) ~q(h) = f(x) + BTV f(x) + LAV f(x)h = f(x) + k' g+ ;h'Gh,
the problem

m}in{q(h)} subject to ||A|| < R

is solved approximately by the following technique termed by Powell as the dogleg method [9]. Two points
are calculated. The Cauchy point x, = x + k. and the Newton point xy = x + hy. The Cauchy point is the
minimum along the gradient direction, i.e. b, = —Ag with A = g"2/g"Gg, while the Newton step is given by
hy = —G~'g. If ||hy|| < R the Newton point is taken as the next trial iterate. Otherwise the first point where
the piecewise linear trajectory x — X, — Xy intersects the sphere of radius R centered at x is taken as the
next trial iterate.

Dennis and Mei [10] proposed a similar procedure termed double dogleg, that defines another point xp =
x +hp with hp = Chy, £ =08y +0.2, v = (g78)?/[(g"Gg) (g'G7'g)] and a modified trajectory x — x. —
xp — x. The updating scheme of the trust region radius is given below:
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(1) Calculate the ratio of the actual to the expected reduction r® = ( f0 — fk+Dy /¢ () _ 0Oy yhere
% stands for f(x®) and F*D = F(x®) 4 g By,
(2) Accept or reject the trial point according to
If r© < Q then
x(BD = g0 gkt = 0
else
F kD = x4 o
endif
(3) If r® < 0.25 then
Rk+1) — Ilh(k)||/4
else if #© > 0.75 and ||k®|| = R™® then
R+ = o RK)
else
R+ — RO

endif

3.5.2. Line search for descent methods

Line searches are used in quasi-Newton and conjugate gradient methods. The idea of a line search algorithm
is simple: given a descent direction s*), we take a step A¥) in that direction that yields an acceptable next
iterate. For convenience we denote f(A) = f(x® +A®s®) and /(1) = sOTg® (x*) 4 105Ky Descent
methods are known to converge [11-13] when A is chosen to satisfy the weak Wolfe~Powell conditions,

F(A) < £(0) + Apf'(0) (1)
and

fi() =2af'(0), (2)
where p € (0,3) and o € (p, 1). In practice, we prefer to use the more stringent test

|f' (D] < —af'(0) (3)

in place of Eq. (2), which along with Eq. (1) are called the strong Wolfe-Powell conditions.

Our line search algorithm uses a sectioning scheme, that mainly follows Al-Baali and Fletcher [30]. In the
sectioning scheme, sequences a;, bj, A; are generated. g; is always the current best point (least f) that satisfies
Eq. (1) but neither Eq. (2) nor Eq. (3). A; is the current trial point. b; either fails to satisfy Eq. (1), or
f(b;) > f(aj), or both. However, the interval (a;, b;) will always bracket either an interval of acceptable
points, or points for which f(A) < f, with f being a lower bound on f.

The line search is initialized with a; =0, b, = oc, 7 < f(0) and an estimation for A; > 0. The jth iteration
is given below:

(1) Evaluate f(A;).
(2) If f(A;) < f then terminate.
(3) If £(A)) > f(0) + A;pf’'(0) or f(A)) > f(a;) then
choose Aj+1 € T(aj, A;) using either a quadratic interpolating f(a;), f'(a;) and f(4;),
or a cubic interpolating f(a;), f'(ay, f(A;) and f(b))
set ajy = aj, bj.H = /\j
else
evaluate f'(A;)
test for termination; for the weak Wolfe-Powell conditions use Eq. (2), otherwise use Eq. (3)
set @jp1 = Aj



238 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 227-249

If (b] - aj)f’().j) < 0O then

choose A;y1 € E(aj, A;, b;) using a cubic interpolating either f(a;), f'(a;), f(A;) f'(A}),
or f(aj), f(bj), f(A;), f'(A})

set bj+1 = bj

else
choose Aj41 € T(aj, A;) using a cubic that interpolates f(a;), f'(a;), f(A;), f'(A))
set bj+1 = a;

endif

endif
When interpolating, we use the truncation scheme defined by

_Jla+nb—a),b—7(b—a)] ifa<hb,
T(a’b)"{[b+rz(a-—b),a—n(a—b)] if b<a, (4)

where 0 < <7 < % When extrapolating, we define

[min(73, A), min(74, A) ] ifa< A< b=o0,
E(a,A,b) =< [A+75(b—a),b—T16(b—a)] ifa<A<b, (5
[b+76(a—b),A—75(a—b)] ifb<A<a,

where 1 <73 <74 and 0 < 75 < 76 < 1.

3.5.3. One-dimensional minimization
A one-dimensional minimization procedure is needed by the Roll and simplex methods. Given an interval

[ai, b;] that brackets a minimum, we use Brent’s method [29] that locates the minimum A, within a prescribed

tolerance €. At every iteration j the method keeps track of six points a;, b;, u;, vj, w; and A;, not necessarily

distinct. A minimum always lies in the interval [a;, b;]. A; is the point with the least value of f. w; is the

point with the next lowest value of f. v; is the previous value of wj, and u; is the last point at which f has

been evaluated. Initially v; = w; = A =a; + %( b, — ay). The jth iteration is described below.

(1) Test for termination. If max(A; — a;j, b; — A;) < 2¢ then return with A; as the approximate position of
the minimum.

(2) Calculate p, g so that Aj+ p/q is the turning point of the parabola passing through the points (v;, f(v;)),
(wj. f(w;)) and (Az, F(A})).

(3) Calculate the new point u;4;: let e be the value of p/q at the second-last cycle. If |e| < &, ¢ = 0,
Aj+p/q & (a,b) or |p/q| > |e|/2, then take a golden section step, otherwise u;.; is taken to be
Aj + p/q, except that the distances |u;+1 — Aj|, #j41 — a; and bj — u;,, must be at least &.

(4) Evaluate f at the new point ;4.

(5) Update the points a;, b;, v;, w; and A; as necessary.

3.6. Termination criteria

Termination criteria are conditions that control the termination of the algorithm. In our case they contain
convergence as well as other conditions that serve practical issues. Different methods use different criteria for
termination. However there are some criteria shared by all methods. These are:

(1) The number of calls to the objective function has exceeded a preset limit.
(2) The value of the objective function surpassed a preset target value.
The quasi-Newton and the conjugate gradient methods use in addition the following:
(1) The reduction rate of the objective function is slower than specified.
(2) The number of iterations has exceeded a preset limit.
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(3) The absolutely maximum relative gradient component is less than a preset limit.
(4) The relative change of each of the x;’s is absolutely lower than a preset limit.

The Roll method terminates if the reduction rate of the objective function is for a number of consecutive
iterations, less than a specified minimum value. For the Simplex method the termination criterion relies on
comparing a measure of the polytope’s “error” to a preset small positive number. Specifically, the algorithm
terminates if

1 < .
dolri-Fl<e,
n+1 prs

where

- 1 <
f=n+l§fi'

For the Levenberg-Marquardt method three tests are used in addition:
(1) The reduction rate of the objective function is slower than specified.
(2) The change ||A||/||Dx|| is lower than a preset limit.
(3) The quantity max;{J r/||Ji||l7]|} is less than a preset limit, where J; is the ith column of the Jacobian
matrix.

3.7. Simple bound constraints

The treatment of the simple bound constraints /; < x; < u; is different for each method.

e All methods that use a line search to select the new point (bfgs, congra, dfp and tolmin), handle the
bounds by calculating the feasible segment on the search direction. The line search is then performed in
the feasible domain. If this segment is very short, then the direction of search is modified so as to become
parallel to the limiting constraint boundary.

e In the Simplex method, all operations (reflection, expansion, contraction) are performed by first defining a
direction and then selecting a point on this direction. Again the feasible segment is determined and the point
is constrained inside this segment.

o In the Roll method, if a variable steps beyond a bound, it is reset to the middle of the distance between the
original position and the limiting bound.

¢ In the Levenberg-Marquardt method, where code from the MINPACK-1 is used (command leve), as
well as in the trust region implementation of the BFGS method (command trust), the following variable
transformations are used:

- if only a lower bound exists, i.e. l; < x;, then x; = [; + yi2;
- if only an upper bound exists, i.e. x; < u; then x; = u; — y,~2;
- if both bounds exist, i.e. [; < x; < u;, then x; = (u; — l,~)e‘y-'2 + 1.

4. User written programs

MERLIN offers an optimization environment, supplies several utility as well as minimization tools, so that
the user can choose whatever is convenient and effective each time. The programs the user may have to write
are the following:

(1) The main program.
(2) The objective function in a general form, or in a sum of squares form.
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(3) The gradient vector (optional).

(4) The Jacobian matrix (optional).

(5) The Hessian matrix (optional).
In what follows we give some examples for the user supplied modules. These examples are in single precision
and should be used with the single precision installation. Double precision user modules should be used in
conjunction with the double precision installation.

4.1. The main program

The role of the main program is to initiate MERLIN’s execution. The user may write his own main program
or may use the sample provided below modified appropriately to meet his needs. To invoke MERLIN one should
make a call to the subprogram:

SUBROUTINE MERLIN ( N, M, VERSIM, MAXW, IQUIT )

where

N (input) is the dimensionality of the problem.

M (input) is the number of the squared terms (useful for the sum of squares form)

VERSIM is a work-space array dimensioned as VERSIM(MAXW).

MAXW (input) = max{N(N + 11), NM}.

IQUIT (output) is an output flag specified by the user at run-time, or set by MOS to indicate an error
condition.

We list a sample main program for illustration purposes.

PROGRAM MASTER
* Maximum dimensionality handled.
PARAMETER (MXV = 200)
* Maximum number of squared terms.
PARAMETER (MXT = 1000)
* Storage required: MAX( MXV*MXT, MXVx(MXV+11) )
PARAMETER (MAXW = MXT*MXV)
DIMENSION VERSIM (MAXW)
WRITE (*,*) ’Enter number of variables, number of squared terms’
READ (*,%) N, M
* Now invoke the Merlin system.
CALL MERLIN(N,M,VERSIM,MAXW,IQUIT)
END

4.2. The objective function. General form

This must be written as a function subprogram:

FUNCTION FUNMIN(X,N)
DIMENSION X(N)

e X (input) is an array holding the values of the parameters x;.
e N (input) is the dimensionality of the problem.
e FUNMIN (output) upon return assumes the value of the objective function f(x).

An example for the Rosenbrock test function is given below:

f(x) =100(xz — x1)* + (1 - x1)2.
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FUNCTION FUNMIN(X,N)

DIMENSION X(N)

FUNMIN = 100%(X(2)-X(1)**2)**2 + (1-X(1))*=*2
END

4.3. The objective function. Sum of squares form

This must be written as a subroutine subprogram:

SUBROUTINE SUBSUM ( M, N, X, F)
DIMENSION X(N), F(M)

e M (input) is the number of the squared terms.

N (input) is the dimensionality of the problem.

X (input) is an array holding the values of the parameters x;.
F (output) is an array holding the values of the terms f;(x).

An example is given below again for the Rosenbrock test function with f; = 10(x; — x:,") and f, =1 — x;.

SUBROUTINE SUBSUM(M,N,X,F)
DIMENSION X(N),F(M)

F(1) = 10%(X(2)-X(1)**2)
F(2) = 1-X(1

END

4.4. The gradient vector

This must be written as a subroutine subprogram:

SUBROUTINE GRANAL(N,X,GRAD)
DIMENSION X(N),GRAD(N)
e N (input) is the dimensionality of the problem.

e X (input) is an array holding the values of the parameters x;.
e GRAD (output) is an array holding the values of the gradient components g;(x).

An example is given below for the gradient of the Rosenbrock function.

SUBROUTINE GRANAL(N,X,GRAD)
DIMENSION X(N),GRAD(N)
A = X(2)-X(1)*x2

GRAD(1) = -400*A*X(1) - 2*x(1-X(1))
GRAD(2) = 200xA
END

Note that in earlier versions of MERLIN this routine had a different calling sequence.
4.5. The Jacobian matrix

This must be written as a subroutine subprogram:
SUBROUTINE JANAL ( M, N, X, FJ, LD )
DIMENSION X(N), FJ(LD,N)

e M (input) is the number of the squared terms.
e N (input) is the dimensionality of the problem.
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e X (input) is an array holding the values of the parameters x;.
¢ FJ (output) is an array holding the values: FJ(I,J) = df;/dx;.
e LD (input) is the leading dimension of the matrix FJ used by MERLIN to store the Jacobian.

An example is given below for the Jacobian of the Rosenbrock function.

SUBROUTINE JANAL ( M, N, X, FJ, LD )
DIMENSION X(N), FJ(LD,N)
FJ(1,1) = -20%X(1)

FJ(1,2) = 10
FJ(2,1) = -1
FJ(2,2) = 0
END

4.6. The Hessian matrix

This must be written as a subroutine subprogram:

SUBROUTINE HANAL ( H, LD, N, X )
DIMENSION H(LD,N}, X(N)
H (output) is an array holding the values of the Hessian elements G;;(x).
e LD (input) is the leading dimension of the matrix H used by MERLIN to store the Hessian.
e N (input) is the dimensionality of the problem.
e X (input) is an array holding the values of the parameters x;.

Note that only the lower triangular part of H must be filled in. The rest of the Hessian matrix is completed by
MERLIN, using symmetry. An example is given below for the Hessian of the Rosenbrock function.

SUBROUTINE HANAL(H,LD,N,X)
DIMENSION H(LD,N), X(N)

H(1,1) = 2 + 1200%X(1)**2 - 400%X(2)
H(2,1) = -400*X(1)

H(2,2) = 200

END

4.7. Important note

The user must always construct one of the FUNCTION FUNMIN, or the SUBROUTINE SUBSUM subprograms.
However, a dummy routine must be provided for the one that is left out, since many linkers will not create the
executable file otherwise. We list below examples for the dummy subprograms.

FUNCTION FUNMIN(X,N)
DIMENSION X(N)

END

SUBROUTINE SUBSUM(M,N,X,F)
DIMENSION X(N),F(M)

END

The same action must be taken when the user does not wish to code the SUBROUTINE GRANAL, the SUBROUTINE
JANAL and the SUBROUTINE HANAL subprograms. The dummy routines should read as

SUBROUTINE GRANAL(N,X,GRAD)
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DIMENSION X(N),GRAD(N)
END

SUBROUTINE JANAL ( M, N, X, FJ, LD )
DIMENSION X(N), FJ(LD,N)
END

SUBROUTINE HANAL(H,LD,N,X)
DIMENSION H(LD,N), X(\
END

5. About the software

The present package MERLIN/MCL version 3.0 has evolved from earlier versions. The first published version
dates back to 1987 [2]. The first programmable version along with the definition of the MCL programming
language appeared in 1989 [31,32], and a double precision version in 1990 [33]. Since then there were
numerous unpublished revisions, in an effort to improve and enhance the whole environment. Note that the
MERLIN package in its 1989 versicn was around 10000 lines of code long, while the current edition is about
four times longer. The current version is almost entirely rewritten and has been tested in various fields, especially
in molecular physics and in particular in conjunction with the molecular mechanics method [34,35]. We have
also used this software extensively for training neural networks in various circumstances [36-40]. Users of
the older MERLIN/MCL packages will be able to work immediately with the present software, since we made
every effort to maintain the old style and philosophy of operation.

At this point we would like to acknowledge the incorporation of software written by others.

(1) MINPACK-1
We have used parts of the MINPACK [41] software (subroutines LMDIF, FDJAC2, LMPAR, QRFAC,
QRSOLV and ENORM) (o treat the special case of the “sum of squares” objective function. The related
command leve invokes the above-mentioned routines.

(2) TOLMIN
We have incorporated the TOLMIN package [22] written by M.J.D. Powell, that is based on [21].
This software is capable of treating general linear constraints in addition to simple bounds. However, for
reasons of uniformity with the rest of the environment, this feature has been disabled.

(3) RANLUX
We have incorporated the random number generator RANLUX, due to F. James [42].

6. Description of the test run

The test run was performed in a Sun SPARCstation 5 in double precision, using Rosenbrock’s function. The
test run input consists of 17 lines.

Lines 1-6 set an initial point, and assign symbolic names, lower and upper bounds for parameters. Line 6
sets a title for the current session. Line 7 displays the parameters and their attributes, while line 9 invokes
the Roll method with a maximum of 20 function calls. Line 9 instructs MERLIN to use the user supplied
SUBROUTINE GRANAL to obtain the gradient vector. Lines 10-11 calculate the Hessian matrix (using the user
supplied SUBROUTINE HANAL) and its Choleski decomposition. Line 12 invokes the BFGS method using the
previously decomposed Hessian as an initial approximation and a maximum of 10 function calls. Lines 13-14
invoke the Levenberg-Marquardt method using the user supplied SUBROUTINE JANAL to estimate the Jacobian.
Finally, lines 15-16 display the current values of the parameters and terminate execution.
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TEST RUN INPUT

22

point 1 0.333 2 -999.0
godfather 1 rho 2 sigma
Ilmargin rho -1000 sigma -2000
rmargin rho 100 sigma 200
title Rosenbrock\’s two-dimensional test function
shortdis

roll noc 20

anal

hessian do ¢ use a

hessian do d

bfgs noc 10 useh 1

janal

leve noc 20

shortdis

stop
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TEST RUN OUTPUT

Enter number of variables, number of squared terms:

........................... MERLIN-3.0
........................... D.G. Papageorgiou, I.E. Lagaris
............................ I.N. Demetropoulos
............................ University of Ioannina
........................... GREECE
............................ Email: merlin@nrt.cs.uoi.gr
........................... Web: http://nrt.cs.uoi.gr/merlin

The Merlin help file "HELP" is present.
The panel description file "PDESC" is present.
Use the "help" command to obtain on-line information.

Number of terms: 2

Number of variables: 2

Estimated machine’s accuracy: 1.E-15

Merlin uses "SUBROUTINE SUBSUM" as the objective function.

WARNING
Initialize variables

VAVAVAVAVAVAN Merlin is at your command !!!
POINT

FAVAVAVAVAVAN Merlin is at your command !!!
GODFATHER

IN/NN/NAN Merlin is at your command !!!

LMARGIN

VAVAVAVAVAVAN Merlin is at your command !!!
RMARGIN

IN/NIN/N/NN Merlin is at your command !!!
TITLE

Title is set to: "Rosenmbrock’s two-dimensional test function”

INININ/NAN/A Merlin is at your command !!!
SHORTDIS

Title: Rosenbrock’s two-dimensional test function

Number of evaluations: Function Gradient Hessian Jacobian

Total: 1 0 0 (¢}

Since last reset: 1 0 0 0

Index Name Fix Parameter value Left margin Right margin
1) rho = ....... 0.333000000000000 -1000. 100.0

2) sigma = ....... -999. 000000000000 ~2000. 200.0

247
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Value ....... 99822257 .2967260
INININ/NN/N Merlin is at your command !!!
ROLL
Iter: 1 Lower value: 99622535.1189260 Calls: 3 of 20
\/ == \/ == \/ Line-search
Iter: 1 Lower value: 0.4448839000000000 Calls: 11 of 20
\/ -- \/ == \/ Line-search
Iter: 2 Lower value: 0.435470882134324 Calls: 24
ROLL: All function evaluations have been used
Function evaluations: 24
Iterations: 2
INININ/NNN Merlin is at your command !!!
ANAL

IN/NIN/N/NAN Merlin is at your command !!!
HESSIAN

The Hessian matrix has been calculated. 1 Hessian call was used.

VAVAVAVAVAVAN Merlin is at your command !!!
HESSIAN

The Choleski factorization of the Hessian matrix has been calculated.

The Hessian matrix was positive definite.

INININANN/A Merlin is at your command !!!
BFGS

Iter: 1 Lower value: 0.323818045962521 Calls: 2 of 10
Iter: 2 Lower value: 0.244359687078232 Calls: 3 of 10
Iter: 3 Lower value: 0.148591410516486 Calls: 4 of 10
Iter: 4 Lower value: 0.107527523391454 Calls: 6 of 10
Iter: 5 Lower value: 9.194458231573392E-02 Calls: 8 of 10
Iter: 6 Lower value: 7.210135854827365E-02 Calls: 9 of 10
Iter: 7 Lower value: 4.239716800159461E-02 Calls: 10 of 10

BFGS: All function evaluations have been used

Function evaluations: 10
Gradient evaluations: 8
Iterations: 7

ININ/N/N/N/N Merlin is at your command !!!
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JANAL

IN/NIN/N/N/A Merlin is at your command !!!
LEVE

Iter: 1 Lower value: 4.289716800094422E-02 Calls: 1 of 20

Tter: 2 Lower value: 2.193020559607765E-02 Calls: 3 of 20

Iter: 3 Lower value: 9.784395597646321E-03 Calls: 4 of 20

Iter: 4 Lower value: 1.053350333714181E-03 Calls: 5 of 20

Iter: 5 Lower value: 1.298059206400674E-14 Calls: 6 of 20

Iter: 6 Lower value: 0. Calls: 7 of 20

LEVE: The gradient criterion is satisfied

Function evaluations: 8
Jacobian evaluations: 6
Iterations: 6

IN/N/NIN/NA Merlin is at your command !!!
SHORTDIS
Title: Rosenbrock’s two-dimensional test function
Number of evaluations: Function Gradient Hessian Jacobian
Total: 43 8 1 6
Since last reset: 43 8 1 6

Index
1)
2)

Name

rho

sigma
Value ....

VAVAVAVAVAVAN

STOP

Parameter value

1.00000000000000

1.00000000000000
0.

Merlin is at your command !!!

Merlin run has ended
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