Computer Physics Communications 109 (1998) 250-275

Computer Physics
Communications

The Merlin Control Language for strategic optimization

D.G. Papageorgiou?, LN. Demetropoulos?, LE. Lagaris®!

2 Department of Chemistry, University of loannina, P.O. Box 1186, GR 45110 loannina, Greece
b Department of Computer Science, University of loannina, P.O. Box 1186, GR 45110 loannina, Greece

Received 8 December 1997

Abstract

MCL is the programming language of the MERLIN optimization environment. It can be used for the implementation of
efficient optimization strategies, abolishing to a great extend the need for user intervention. The language is simple to learn
and its structure is similar to Fortran. We report on successful applications where MCL played an instrumental role, as for
example in molecular physics problerns and in the training of neural networks. © 1998 Elsevier Science B.V.

Keywords: Optimization; Optimization strategies; Global optimization; Programming language; MERLIN

PROGRAM SUMMARY

Title of program: MCL-3.0
Catalogue identifier: ADHR

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. lreland

Computer for which the program is designed and others on which
it is operable:

Computers: Designed to be portable. Developed on a Sun SPARC-
station 5. Tested on Sun Classic (SunOS 4.1.3C), Sun Ultra-2
(SunOS 5.5.1), SGI Challenge-M (IRIX 6.2), CD4680 (EP/IX
1.4.3), Intel-based PCs (Linux 2.0.18 and MS-Windows 95),
Macintosh (MacOS 7.5); Installations: University of loannina,
Greece

Programming language used: ANSI Fortran-77

Memory required to execute with typical data: Approximately 256
Kwords on a Sun SPARCstation 5

! Corresponding author. Email: lagaris@cs.uoi.gr.

No. of bits in a word: 32
No. of processors used: 1
Has the code been vectorised or parallelized?: No

No. of bytes in distributed program, including test data, etc.:
219621

Distribution format: uuencoded compressed tar file

Keywords: optimization, optimization strategies, global optimiza-
tion, programming language, MERLIN

Nature of physical problem

Complex optimization problems that cannot be solved efficiently
via a single algorithm and rather need to be tackled by a mult-
algorithm strategy.

Method of solution
This special purpose language is built to allow the user to devise

0010-4655/98/$19.00 © 1998 Elsevier 5cience B.V. All rights reserved.

PII S0010-4655(98)00006-X

D.G. Papageorgiou et al. /Computer Physics Communications 109 (1998) 250-275 251

successful and efficient strategies based on diverse algorithmic ap-
proaches, in a systematic and orderly manner, using the MERLIN
optimization environment [1].

Restrictions on the complexity of the problem
None.

Typical running time:
Depending on the MCL program to be compiled. The test run took

Unusual features of the program:
Must be installed using the MERLIN-3.0 [1] installer program.
The procedure is described in detail in the MERLIN User Manual.

References

[1]1 D.G. Papageorgiou, LN. Demetropoulos, I.E. Lagaris,
MERLIN-3.0. A multidimensional optimization environment,
Comput. Phys. Commun. 109 (1998) 227-249, preceding ar-
ticle.

1.66 sec on a Sun SPARCstation S.

LONG WRITE-UP

1. Introduction

McL stands for MERLIN Control Language and is a high level, special purpose language. Using MCL one
can drive the MERLIN optimization environment [1] in a convenient and intelligent manner. Use of MCL
abolishes to a great extend the need for user intervention which is particularly annoying when dealing with
large and complex problems that require a lot of computing time. In addition, MCL can be used to implement
strategies aiming at a host of different objectives. For instance, one can use MCL to substantiate global optimum
searches [2], to train artificial neural networks [3,4], or to develop smaller but convenient utility programs.

For a better understanding of this article and for immediate use of MCL, one needs to be familiar with the
MERLIN optimization environment at the user level. In order to achieve precise and economical description,
we adopt the following conventions: MCL statements, keywords and sample code fragments are printed using a
monospaced font. Optional items are enclosed in square brackets ([1). Braces ({ }) indicate items that may
be repeated zero or more times. Alternative items are separated by a vertical bar (]). Arguments for which the
user supplies a value are shown in italics. x; designates the ith parameter of the MERLIN objective function.

2. The structure of an MCL program

An MCL program consists of exactly one main program and zero or more subprograms. Subprograms are
described in Section 6. The main program has the form

PROGRAM
MCL statements
END

The main program as well as the subprograms are made up from sequences of lines containing MCL
statements. Each line can be up to 120 characters long; longer lines are subject to truncation, and may lead
to inexplicable errors. An MCL statement may be split across two or more lines by using the continuation
character & as the last character of the line. Up to 10 continued lines may be used. Blank lines, as well as
leading blank or tab characters, are ignored. However, they may be used so as to improve the readability of a
program. Comments may be entered at the end of any statement, following the percent character %.

252 D.G. Papageorgiou et al. /Computer Physics Communications 109 (1998) 250-275

Table 1
MCL operators according to their precedence

MCL operator Precedence

NOT highest precedence

XO0R lowest precedence

3. Variables, arrays and expressions
3.1. Data types and operators

MCL supports only one data type: floating point numbers. Floating point constants must have at least one
digit before the decimal period. For example, 0. 15 is an acceptable number, while .15 is not.

There are three types of operators in MCL: arithmetic, relational and logical. The arithmetic operators are the
usual ones: +, -, *, / and ** standing for addition, subtraction, multiplication, division and exponentiation. The
relational operators are >, <, >=, <=, == and # and they are equivalent to the Fortran, .GT., .LT., .GE., .LE., .EQ.
and .NE. operators. The logical operators are NOT, AND, OR and XOR, standing for the usual logical operations
in an obvious notation. All operators are listed in Table 1 in order of descending precedence. The associativity
of all the above operators is from left to right.

3.2. Simple variables and arrays

A variable is a name which refers to a storage location in the MERLIN run-time memory. An array is a series
of storage locations referenced by the same name. Arrays can have an arbitrary number of dimensions. Each
dimension has a specific size and its bounds determine the numbering of the individual elements.

Variable and array names are case insensitive alphanumeric strings of up to 30 characters, the first of which
must be a letter. Longer names are subject to truncation without any warning. Underscores can be used anywhere
in between for the sake of clarity and are ignored by the compiler. The names JUST, THEN, FROM, BY, and TO
are reserved and cannot be used as variable or array names.

All variables and arrays used in an MCL program must be declared using the VAR declaration statement

VAR name { ; name }
where name is either a simple variable or an array specification of the form
arrayname [L:u{ , l:u }]

The [:u specifiers are the lower and upper dimension bounds, respectively. They must be integer constants
(positive negative or zero) with [< u. For example,

VAR a_long. but_acceptablename; minimum; test_value
VAR root; a[1:20]; b[-10:10,1:100]

Most array references are made to a specific array element through its subscripts. The number of subscripts
must always match the number of dimensions in the array. An array subscript can be any MCL expression. The

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275 253

1 if expr=10
NOT expr = »
0 otherwise

expr, if ezpry #£0
ezpry AND ezpry Pn P27

it

0 otherwise

1 if expry, #0
expr; OR expry e

ezpr; otherwise

expr; if expry # 0 and ezpry, =0

Il

ezpr; XOR expry expry if expry # 0 and ezpry =0

0 otherwise

1 if ezpry relop expry is true
ezpr) relop expry =
0 otherwise

Note: relop is any of the relational operators >, <, >=, <=, == and #
expr, expr; and erpry are MCL expressions

Fig. 1. Rules for evaluating MCL expressions.

entire array can be specified without subscripts only as an actual argument in a subprogram call.

There is a number of intrinsic variables and arrays used to monitor the optimization process that should not
be declared in a VAR statement. They can be used in an MCL expression as any ordinary variable or array. It
is not possible however to change their values through assignment or GET statements since intrinsic variables
and arrays assume their values from the MERLIN run-time environment. A complete listing along with their
significance is given in Appendix A.

3.3. Expressions and assignments

An expression represents a single value created from the evaluation of its components. The value of an
expression is stored in a variable or used as an argument. An expression is composed of numeric constants,
variables, array elements, function references, operators and parentheses. Expressions are evaluated in order of
precedence of the operators, then from left to right if the operators have equal precedence. Parentheses can
be used to override the order of evaluation. All elements in an expression must be defined by the time the
expression is evaluated. The rules for evaluating expressions involving the above relational and logical operators
are given in Fig. 1. Note that an MICL expression is considered by convention false if its value is zero; true
otherwise.

An assignment statement stores a value from an expression into a variable or array element,

varname = expression

where var_name is any variable or array element and expression is any MCL expression. A number of sample
assignments and expressions is shown in Table 2.

254 D.G. Papageorgiou et al. /Computer Physics Communications 109 (1998) 250-275

Table 2
Sample MCL assignments and expressions

Plain expressions MCL expressions
t=ax*+bx+c T = A%X#*2 + B*X + C
z=m+l/a Z=M+1/A

ai=pi—1 A[1] = PII]) - 1
p=la<®u>1) P=(4<0)0OR (B> 1)
g=@>0)Nw»BL1) Q= (A>0) AND (B <= 1)

4. Flow control statements

An MCL program runs from the first statement to the last, in sequence, unless directed to do otherwise by a
flow control statement. These statements include direct transfer to another statement (MOVE TO), repetition of
statements (LOOP), conditional branching to several different statements (IF and WHEN) and subprogram calls
(CALL is described in Section 6.2). In addition one can pause or terminate execution of the MCL program.

4.1. Labels and the MOVE TO statement

The MOVE TO statement causes an unconditional branch to another statement:
MOVE TG label

where label is the symbolic name of a label at which control is to be transferred. Both MOVE TO and MOVETO
are acceptable.
A label statement has the form

label :

where label is the label name. Labels are used inside a program as addresses where the control may be
transferred. Duplicate label names are not allowed in the same program unit.

4.2. The WHEN statement

The WHEN statement causes execution of a statement only when specific conditions are met:
WHEN condition JUST ncnlcs

with ncnlcs being any executable statement besides the LOOP and the IF-THEN and WHEN conditional statements.
If condition is true, then the ncnics statement is executed. If condition is false, control transfers to the statement
at the next line and the ncnlcs statement is ignored. As an example one may have

WHEN R>BIG JUST BIG=R

4.3. The block-if

A block-if consists of two groups of statements, one of which is executed when a logical condition is met:

IF condition THEN
statement block
[ELSE

D.G. Papageorgiou et al. /Computer Physics Communications 109 (1998) 250-275 255

statement block]
END IF

with condition being any valid MCL expression. The ELSE statement and the second block are optional. If
condition is true, the first block is executed and the control transfers to the statement immediately following the
END IF statement. If condition is false and if a second block exists, it is executed and the control transfers to
the statement immediately following the END IF statement. Each block may contain additional, nested block—if
constructs. Since each block—if must be terminated by an END IF, there is no ambiguity in the execution path.
Both END IF and ENDIF are acceptable. An example is shown below:

IF FUNMODE == 0 THEN
BFGS (NOC=2000)

ELSE
LEVE (NOC=500)
TERMDIS

END IF

Note that control cannot be transfeired into an IF block from outside that block. In addition, loop statements
must be terminated inside the same IF block where they began.

4.4. The PAUSE and FINISH statements

PAUSE temporarily suspends execution of an MCL program. One can resume execution with an entry from
the keyboard. The syntax is
PAUSE

FINISH terminates execution of an MCL program. Control is then transferred to the MERLIN operating
system. The syntax is

FINISH

An MCL program also terminates when the END statement of the main program is reached.

4.5. The LOOP statement

The LOOP statement provides the means for repeating a sequence of statements. The syntax is

LOOP var FROM init_val TO final_val | BY step]
statement block
END LOOP

where var is a simple variable used to control execution of the LOOP statement, referred to as the loop control
variable, and init_val, final_val, and step are expressions. If step is omitted it defaults to 1.

Upon entry to a LOOP-block, the expressions init_val, final_val, and step are evaluated. These values are used
to compute the number of repetitions of the LOOP using the formula

inal_val — init_val + st
n = max {0, int (fmal val — init val + s ep) } .
step

Once the count is determined, it does not change, even if init_val, final_val, and step are assigned new values
inside the loop. var_name is assigned the value of init_val and the statements inside the loop-block are executed

256 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

LOOP I FROM 1 TO DIM
WHEN FIX(I] == O JUST EXIT
END LOOP

Fig. 2. Exit statement example

sequentially until the corresponding END LOOP is reached. var_name is then incremented by the value of step
and control transfers to the statement following the LOOP statement. The above process is repeated n times.

Each LOOP statement must have a corresponding END LOOP statement, which can be written either as END
LOOP or as ENDLOOP. Nested LOOP structures are allowed. An example is shown below:

LOOP I FROM 1 TO DIM
LOOP J FROM 1 TO DIM
H[I,J] =0
END LOOP
H[I,I1 =1
END LOOP

If a variable is used as a loop control variable, it should not be used as a control variable in another loop
nested inside the first one. Loop control variables should not be assigned any value, via an assignment or GET
statement inside the loop they control. The only way to enter a LOOP is by its initial LOOP statement. Attempting
to transfer the control inside the loop-block, from the outside, will result in an error. IF statements inside a
loop-block must terminate inside the same block.

4.6. The EXIT statement

The EXIT statement causes a loop to terminate, with execution resuming immediately after the corresponding
END LOOP. The syntax is
EXIT

EXIT can be used only inside a LOOP-block. An example of its use is shown in Fig. 2. After exiting the loop,
the loop control variable retains its previous value.

5. Input-output statements

McL handles its input via the GET statement and its output via the DISPLAY statement.

5.1. The GET statement

The syntax is
GET var { ; var } [FROM ’file_name’ |

where var is either a simple variable or an array element. file_name is the name of the file where the corre-
sponding values reside. For every GET statement the input data must be in a single line. When file_name is
omitted, MERLIN’s default input file is assumed. A few examples follow:

GET A; I; B[I-2]; Pressure; First_Root
GET C; D FROM ’special_file’

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275 257

5.2. The DISPLAY statement

The syntax is
DISPLAY var { ; var } [TO ’file_name’]

where var is either an expression or a character string delimited by single quotes. Character strings may contain
any character except the single quote (’). Single quotes may be output using the escape sequence \’. Each
arithmetic expression is evaluated and its value is output using a fixed format. For each delimited character
string the output consists of the string itself. file_name is the name of the file, to which the output is directed.
When file_name is omitted, MERLIN’s default output file is assumed. A few examples are shown below

DISPLAY ’\’Quality\’ of fit is’; QF
DISPLAY ’New period is’; S(RT[4*X[1]]; ’msec’ TO ’FILE1l’

Assuming QF=0.93 and x;=1, we obtain the following output in the default output file, and in FILE1,
respectively:

’Quality’ of fit is 0.93
New period is 2. msec

5.3. The CLOSE statement

When a GET or DISPLAY statement that involves a file is executed, the corresponding file is associated
(‘opened’) with the currently running MCL program by the MERLIN run-time environment. The file remains
‘open’ for further GET or DISPLAY statements. The CLOSE statement is used to disassociate (‘close’) a file
from the currently running MCL program and flush its contents to disk. The file is re-associated (‘reopened’)
when another GET or DISPLAY statement contains a reference to it. The syntax is

CLOSE (FILE = ’file_name’)
Note that a file is never opened as a result of a REWIND or GOEOF MERLIN command.

6. Subprograms
6.1. Writing a subprogram

MCcCL supports only one type of subprogram (analogous to the Fortran subroutine subprogram). An MCL
subprogram has exactly the same overall structure with the main program, except that the first statement is a
SUB statement:

SUB sub_name [(list_of dummy_arguments)]
declaration statements
executable statements

END

where sub_name is a symbaolic name assigned to the subprogram. It must not coincide with the name of any other
subprogram, or with the intrinsic subprograms listed in Section 6.2. The optional list_of dummy arguments is
used to transmit information between the calling program and the subprogram. Its form resembles a VAR
declaration (without the word VAR however). Simple variables as well as arrays may be present in the
list_of .dummy_arguments. Some examples follow:

258 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

SUB complex (alpha; beta; point[1:10,1:3])
SUB another_one (big[1:200]; trm)

The names in the list_of dummy_arguments should not coincide with any of the intrinsic variables, arrays
or functions. MCL stores arrays in memory using the convention that their last subscript varies most rapidly.
Hence one can use an adjustable upper bound denoted by a *, in the last dimension on an array, as in

SUB adj (arr[-5:5,1:%])
SUB increase (v; al[1:10,1:3,-2:%]; dest)

All variables and statement functions declared in a subprogram, as well the names in the
list_of dummy_arguments, are local to the subprogram. They are not known to the main program or any other
subprogram. The only way to communicate information to or from a subprogram is through its arguments.

6.2. Calling a subprogram

A subprogram is accessed by means of a CALL statement which contains the name of the subprogram and
optionally a list of arguments,

CALL sub_name [(list_of-actual arguments) |

The arguments in the list_of-actual_arguments have a one to one correspondence with the dummy arguments in
the SUB statement. Arguments are always passed by reference to the subprogram. If the dummy argument is a
simple variable, then the actual argument must be a simple variable, array element, or a valid MCL expression.
If the dummy argument is an array, the actual argument must be an array; either one defined by the user, or an
intrinsic one. Note, however, that when an intrinsic variable or array is used as an actual argument in a CALL
statement, any changes made by the subprogram are not communicated back to the calling program.

There are three intrinsic subprograms:
e SUB NORM (A[1:#]; K; L; R)

This subprogram calculates the Lth norm of the first K elements of array A using the formula

‘ /L
P I0 if L>0,
R= i=1
I“I_lfl})((ﬂﬂ(i)l} if L=-1.

e SUB GETSEED (A[1:25])

e SUB SETSEED (A[1:25])
These subprograms are used to manipulate the seed of the MERLIN random number generator. The seed (25
integers stored in array A) contains the information needed to restart the random sequence. More specifically
GETSEED returns the seed in array A while SETSEED restarts the random sequence using the contents of array
A.

6.3. The SUBRETURN statement

A subprogram returns control to the calling program as soon as its closing END statement is reached. In
addition, SUBRETURN can be used wherever appropriate to terminate execution of the subprogram. The syntax
is

SUBRETURN
Note that SUBRETURN cannot be used in the main program.

D.G. Papageorgiou et al. /Computer Physics Communications 109 (1998) 250-275 259

6.4. The FUNCTION statement

The FUNCTION declaration statement allows an expression to be referenced through a symbolic name, in a
way reminiscent of the Fortran statement functions. Function declarations are placed immediately after all VAR
declarations but before any executable statements,

FUNCTION function.name [arg, { arg } 1 = expression

where function_name is the symbolic name used to reference the function, arg is a dummy argument and
expression is any valid MCL expression that involves the arguments from the dummy argument list, variables
and functions already declared, and intrinsic variables and functions. A function must not contain a forward
reference to another function, and its symbolic name should not coincide with any of the reserved names or
with any other symbolic names previously declared. Array elements and intrinsic variables are not allowed into
the dummy argument list of a function. Some examples of valid FUNCTION statements are given below:

FUNCTION G[A,B,C] = A*xB~B*xC
FUNCTION Root[A,B,C] =(-B+SQRT[B**2-4%AxC])/(2xA)
FUNCTION F[A,B] = Root[3.0,4,X[4]] + B*xVALUE

When referencing an intrinsic or a statement function, the arguments can be either simple variables or valid
McL expressions. There should be at least one dummy argument in the declaration and call of a function, even
if the function does not need one. For example,

VAR dummy
FUNCTION SumIt[dummy] = X[1]**2 + X[2]%%2 + X[3]*%2

St;;It [dummy] /3
SumIt [0]

T
S

There is a number of intrinsic functions whose names are reserved, and need no declaration. They are all listed
in Table 3 along with their meaning.

7. Non-parametric statements

These statements are in direct correspondence with the synonymous MERLIN commands an interactive user
would issue to guide the minimization process. They are ADJUST, ALIASDIS, ANAL, CFLAGDIS, EVALUATE,
FAST, FIXALL, FLAGDIS, FULLBACK, FULLPRINT, GENERAL, GNORM, GRADDIS, HALFPRINT, JANAL, JNUMER,
LASTBACK, LIMITS, LODSALL, MODEDIS, NOBACK, NOEVAL, NOPRINT, NOTARGET, NUMER, QUAD, RESET, REVEAL,
SHORTDIS, SOS, STEPALL, STEPDIS, TERMDIS and VALDIS. They accept no parameters. Their syntax is

command_name

where command_name is any of the above statements.

8. Parametric statements

These statements use order independent parameters and are distributed among the following categories:
e index parametric statements;
e index-value parametric statements;
e index-string parametric statements;

260 D.G. Papageorgiou et al./ Computer Physics Communications 109 (1998) 250-275

Table 3
MCL intrinsic functions

Function name Operation Remarks
ABS(z] |z]
ACOS[z] arccos z
ACOSH[z] arccosh z z>1
ASIN[z] arcsin z -
ASINH[z] arcsinh z
ATAN[z] arctan z
ATANH[z] arctanh z |z] < 1
cos(z] cos z
COSHI[z] coshz
EXP[z] e?
FACT[z] Factorial of the nearest integer to z z>0
GRADNORM[/] Ly, Ly or Loo (I=1,2,—1) gradient norm

1/2
GRMS (2] RMS gradient = (# > ggz) ! z is ignored
LOG[z] Inz z>0
L0G10(z] logz z>0
MAX[z1, 22, ., 2] max {z1, 22, ..., 2}
MEAN(21, 22, .. » 2] WY
MIN[z;,z2,..., 2] min {zy, 22, ..., 2k}
MOD [z, 23] z1 modulo z
MIN(zi,22,..., 2] min{zl,zg,“.,zk}
RAN[zZ] Random number in (0,1) z is ignored
ROUND[z] Nearest integer to z
SIN[z] sinz
SINH[Z] sinh z
SQRT(z] Vz z>0
TAN[z] tan z
TANH[z] tanh z
TRUNC[z] Integer part of z

e general parametric statements;

e panel parametric statements.

For details on the functionality of each command and the meaning of the keywords one should consult the
MERLIN users manual. Only the relevant MCL syntax is presented here.

8.1. Index parametric statements

These are the statements CONFIDENCE, FIX, LOOSE, LDEMARGIN, RDEMARGIN and NONAME. They obey the
following syntax:

command_name (key.index { ; key.index })

index is an expression. The keywords denoted by key can be
e X for the FIX, LOOSE and NONAME statements.

e L for the LDEMARGIN statement.

e R for the RDEMARGIN statement.

A few examples follow:

D.G. Papageorgiou et al./Computer Physics Communications 109 (1 998) 250-275 261

FIX (X.1; X.5) Fixes parameters x; and xs.
LDEMARGIN (L.2; L.4) Removes the lower bound from x, and x,.
LOOSE (X.1; X.7) Looses parameters x; and x;.

8.2. Index—value parametric statements

These are the statements POINT, STEP, LMARGIN, RMARGIN and FLAG. They obey the following syntax:
command name (key.index=val { ; key.index=val })

index and val are expressions. The keywords denoted by key can be
e X for the POINT statement.

e L for the LMARGIN statement.

¢ R for the RMARGIN statement.

e S for the STEP statement.

e F for the FLAG statement.

Some examples follow

POINT (X.I=SQRT(I**2+1)/3) Assigns values to x;.
LMARGIN (L.1=8; L.4=-10) Sets lower bounds to x; and x4.

8.3. Index-string parametric statements

These are the statements GODFATHER, CFLAG and MIXED. They obey the following syntax:
command_name (key.index=str { ; key.index=str })

index is an expression while str is a delimited string. The keywords denoted by key can be
o X for the GODFATHER and MIXED statements.

o C for the CFLAG statement.

Some examples follow

GODFATHER (X.1=’Rho’; X.2='Psi’) Assigns symbolic names to x;, x3.
CFLAG (C.1=’/disk1/mcl/out’) Assigns a value to the first character flag.

8.4. General parametric statements

These are the statements CLOSE, DELETE, DISCARD, REWIND, GOEQF, HIDEOUT, STOP, RETURN, ALIAS,
UNALIAS, EPILOG, TITLE, PDUMP, PANELON, PANELOFF, PSTATUS, GRADCHECK, TARGET and QUIT. Their syntax
is

command name (key=str { ; key=str })

Some or all the keywords may be omitted, according to the command. Multiple instances of the same keyword
are not allowed. In the description that follows, file_name is any valid file name and panel_command is any of
the MERLIN commands that use the panel mechanism.
e DELETE (FILE = ’file.name’)
file_type can be either TEXT or BIN corresponding to a text or binary MERLIN file. If omitted, the MERLIN
default (TEXT) is chosen at run-time.
e DISCARD (FILE = ’filename’ [; TYPE = ’file.type’])
e REWIND (FILE = ’ file_name’)
e CLOSE (FILE = ’file_name’)

262 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

e GOEOF (FILE = ’file_name’)
e HIDEOUT (FILE = ’filename’ [; APPEND = ’append_mode’])
append_mode must be either YES or NO. If omitted, the MERLIN default (NO) is chosen at run-time.
e STOP [(EPILOG = ’epilog_mode’)]
epilog_mode must be either YES or NO. If omitted, the MERLIN default (YES) is chosen at run-time.
e RETURN [(EPILOG = ’epilog-mode’)]
epilog_mode must be either YES or NO. If omitted, the MERLIN default (YES) is chosen at run-time.
e ALTAS (NAME = ’alias_name’ ; COMMAND = ’alias.command’)
alias_name is any valid MERLIN alias name.
e UNALIAS (NAME = ’alias.name’)
e EPILOG (COMMAND = ’epilog._command’)
e TITLE (TITLE = ’short_.title’)
short_title is a short title, describing the current minimization session.
PDUMP (FILE = ’filename’ [; COMMAND = ’panel_command’])
PANELON [(COMMAND = ’panel_command’)]
PANELOFF [(COMMAND = ’panel_command’)]
PSTATUS [(COMMAND = ’panel_command’)]
GRADCHECK (MODE = ’gradient_mode’ [; MODE2 = ’gradient_mode])
gradient_mode can be ANAL, NUMER, QUAD or FAST. If MODE2 is omitted, the current MERLIN default is used.

8.5. Panel parametric statements

The following MERLIN commands that use the panel mechanism to obtain their input belong to this category:
CONGRA, DFP, BFGS, ACCUM, COVARIANCE, ROLL, SIMPLEX, GRAPH, AUTO, MAD, LEVE, TOLMIN, TRUST, PSGRAPH,
CONTROL, MEMO, INSPECT, PICK, BACKUP, INIT, DUMP, HISTORY and HESSIAN. Their syntax is

command_name [parameter_pair { ; parameter_pair })]

command_name can be any of the panel parametric statements listed above. A parameter_pair is used for
communication between the MCL program and the panel. There are two kinds of parameter pairs:
e Parameter pairs used to pass a value from the MCL program to the panel. These are of the form

key = val

where key is a keyword specific to the statement being used and val is either an expression or a character
string depending on the nature of the keyword. For example,

PICK (FILE = ’Previous_Bun’ ; REC = NR+1)
e Parameter pairs used to pass a value from the panel, back to the MCL program. These are of the form
key 7= var
where var is a simple variable or array element. For example,
CONGRA (FCALLS 7= NC)
Both types of parameter pairs can be used in a single statement. For example,
BFGS (NOC=1000 ; PRINT=0 ; FCALLS?=N ; ITERDONE?=IT)

A complete list of the keywords allowed for each statement is given in the MERLIN user manual. Note that
each keyword can be specified at most once.

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275 263

9. Description of the MCL compiler

The MCL compiler translates MCL programs to instructions that are to be given to MERLIN as input. The
compiler is written in ANSI Fortran-77, and it is truly portable. The present version of the software has evolved
directly from its predecessor MCL-1.0 [6]. A substantial part of the source code has been totally rewritten
while large parts of new code were added in order to support the new features. The source code is distributed
in a form which is not directly compilable. It comes with an installation program that takes the distributed files
as input and produces a standard ANSI Fortran-77 source code. The installation procedure is described in the
MERLIN-3.0 { 1] user’s manual.

During operation the MCL compiler performs two passes. On the first pass, three operations take place on
each line of the MCL program, with the exception of comments and blank lines which are skipped:

(i) Lexical analysis, that transforms each line into tokens, i.e. unambiguous syntactic entities that ease the
code generation.
(ii) Parsing, that performs syntax checks and arranges for appropriate error messages.
(iii) Assembling, that creates the basic object code, which however may not be executable at this stage.
The second pass takes care of the loops, the jumps and the associated labels, checks the validity of the nesting
structures and generates the MERLIN Object Code (MOC), to be executed by the MERLIN environment.
Upon invocation the compiler issues an informative message and expects an input line of the form

keyword = value { , keyword = value }

that specifies the MCL source file to be compiled along with some additional options. The allowed keywords

are

o T specifies the MCL source code file. This keyword cannot be omitted since it has no default value.

e B specifies a file where the MOC is disposed at. This file can be later executed by MERLIN using the RUNMCL
command. If omitted, B defaults to MOC.

e E specifies a file where error messages are issued. This file contains the incorrect lines of an MCL program,
along with a brief explanation of the error. If omitted, E defaults to the standard output.

e BOUNDS which if set equal to TRUE instructs the compiler to generate code that checks for violation of array
boundaries. If omitted, BOUNDS defaults to FALSE.

e DEBUG which if set equal to TRUE instructs the compiler to generate code that provides debugging information
when run-time errors are encounrered. If omitted, DEBUG defaults to FALSE.

Instead of TRUE and FALSE, one may simply use T and F correspondingly. A sample invocation of the MCL

compiler is shown below:

The Merlin Ccntrol Language compiler v. 3.0
D.G. Papageorgiou, I.E. Lagaris, I.N. Demetropoulos
University of Ioannina, GREECE
http://nrt.cs.uoi.gr/merlin

Enter compilation parameters - I, B, E, DEBUG, BOUNDS -
I=prog.mcl, B=runit, E=errors, DEBUG=true, BOUNDS=true

10. Description of the test run

The test run was performed in 2 Sun SPARCstation 5 in double precision. It illustrates a simple strategy
that fixes all parameters whose partial derivative is below a given threshold (lines 8-16), and minimizes the

264 D.G. Papageorgiou et al./ Computer Physics Communications 109 (1998) 250-275

objective function with respect to the rest of them (line 24). Variations of this scheme have been successfully
used on several occasions [3,4].

Acknowledgements

This work has been partially supported by the Greek Government through the General Secretariat of Research
and Technology, under contracts IENEA 89EAS3 and [TIENEA 91EA959.

Appendix A. Intrinsic variables and arrays

The following is a complete list of all intrinsic MERLIN variables and arrays. These can be used in an
MCL expression as any ordinary variable or array. It is not possible, however, to change their values through
assignment or GET statements. Intrinsic variables and arrays assume their values from the MERLIN run-time
environment and should not be declared through VAR statements. Note that N' denotes the number of parameters
and M the number of squared terms of the MERLIN objective function.

A.l. Intrinsic variables

DIM The dimensionality of the objective function. It is set by the user when SUBROUTINE MERLIN is
called.
TERMS The number of terms, if the objective function is a sum of squared terms. It is set by the user

when SUBROUTINE MERLIN is called.
PRINTOUT The current MERLIN printout mode. Possible values are

1 NOPRINT
PRINTOUT = { 2 HALFPRINT
3 FULLPRINT

DERIVA The current MERLIN derivative mode. Possible values are

1 ANAL
2 NUMER
DERIVA= (¢ 3 QUAD
4 FAST
5 MIXED

Its value is changed by the MERLIN commands ANAL, NUMER, QUAD, FAST, MIXED, or after a
minimization command that used automatic derivatives, terminates.
PROCESS The current MERLIN processing mode. Possible values are

1 BATCH
PROCESS = { 2 IAF
Its value is changed by the MERLIN commands IAF and BATCH.
BACKUP The current MERLIN backup mode. Possible values are
1 NOBACK
BACKUP = ¢ 2 LASTBACK
3 FULLBACK

Its value is changed by the MERLIN commands BACKUP, FULLBACK, LASTBACK and NOBACK.

JACOMO

PRECISION

VALUE
FUNMODE

TCOUNT
PCOUNT
GTCOUNT
GPCOUNT
HTCOUNT

HPCOUNT
JTCOUNT

JPCOUNT
NFLAGS
NCFLAGS

D.G. Papageorgiou et al./ Computer Physics Communications 109 (1998) 250-275 265

The current MERLIN Jacobian mode. Possible values are

1 JANAL

JACOMO = { 2 JNUMER

Its value is changed by the MERLIN commands JANAL and JNUMER.

The relative machine’s precision as estimated at MERLIN startup or as specified the user with the
MACHINE DIGITS configuration directive.

The current value of the objective function.

The functional form of the objective function. Possible values are

0 GENERAL

FUNMODE = { 1 sos

Its value is changed by the MERLIN commands GENERAL and SOS.

The total number of calls to the objective function,

Number of calls to the objective function, since the last RESET command was issued.

The total number of calls to the user supplied routine GRANAL that calculates the gradient vector.
Number of calls to the user supplied routine GRANAL since the last RESET command was issued.
The total number of calls to the user supplied routine HANAL that calculates the second derivative
matrix.

Number of calls to the user supplied routine HANAL since the last RESET command was issued.
The total number of calls, since MERLIN startup, to the user supplied routine JANAL that calculates
the Jacobian matrix.

Number of calls to the user supplied routine JANAL since the last RESET command was issued.
Number of numerical flags.

Number of character flags.

A.2. Intrinsic arrays

X[1:N]
GRAD[1:N]
FIX[1:N]

MARG[1:N]

L{1:N]

RI[1:N]

The current values of the minimization parameters
The gradient vector at the current point, calculated using the current derivative mode.
The fix status of the minimization parameters. Possible values are

0 Parameter x; is fixed.
1 Parameter x; is not fixed.

FIX[i]l = {

MARG[i] indicates whether a lower and/or upper bound has been set for parameter x;. Possible
values are

—1 Only a lower bound has been set.
0 Neither an upper nor a lower bound has been set.
1 Only an upper bound has been set.
2 Both bounds have been set.

MARG[i] =

When MARG[i] = —1 or MARG[i] =2, L[i] is the lower bound. Otherwise L[i] is set to a large
negative number.
When MARG[i] = 1 or MARG[i] = 2, R[{] is the upper bound. Otherwise R[i] is set to a large
positive number.

STEP[1:N] STEP[i] is the Roll search step that corresponds to parameter x;.
TERM[1:M] When the objective function is a sum of squared terms, TERM[i] is the ith term.
FLAG[1:nf] FLAG[{] is the value of the ith flag. nfis the number of available MERLIN flags.

266 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

Appendix B. Technical presentation of MCL
B.1. A note on syntax semantics

In order to make this article self-contained, we give here a brief summary of EBNF [5], along with a few
additional conventions which we use.

o Syntactic units are enclosed in brackets ().

e The symbols ::= and | are interpreted as ‘is defined as’ and ‘or’, respectively.

e The implied concatenation operator has priority over the alternation operator. For example, in the hypothetical
rule (a) ::= (b) (c) | (d), the syntactic entity (a) may be either (b) (c) or {(d). In order to alter the order of
evaluation, we use parentheses, so that (a) ::= (b} ({c) | (d)), would define (a) to be either (b) {(c) or (b)
(d).

e Spaces, tabs and newline characters are irrelevant in between syntactic units.

e The existence of at least n and at most m occurrences of (x) is denoted by { (x) };. In the absence of
the minimum replication factor 7, zero is assumed. In the absence of the maximum replication factor m, an
arbitrary number of repetitions is assumed.

e One at most occurrence of (x) (an optional item) is denoted by [(x)].

e Terminal symbols like VAR, SIMPLEX, etc., and key symbols (such as semicolons or parentheses) are enclosed
in single quotes and appear as ‘VAR’, ‘SIMPLEX’, ‘;’, etc.

e EOS stands for ‘End Of Statement’ and denotes the end of a statement. An MCL statement may be split
across several physical lines, using the continuation symbol & at the end of each line. A statement ends,
when the last non-blank, non-tab character of a line, is not the continuation symbol &. It also ends when the
comment character % is encountered outside a pair of single quotes.

B.2. Context-free part of the MCL syntax

(1) (McL_Source) ::= { (Program Unit) },
(2) (Program_Unit) ::= (Program) | (Subprogram)
(3) (Program) ::= ‘PROGRAM’ EOs { (Var_Declaration) } { (Function Declaration) } (Block_Of Lines)

‘END’ EOS
(4) (Subprogram) ::= (Subprogram Header) { (Var Declaration) } { (Function_Declaration) }

(Block_Of Lines) ‘END’ EOS
(5) (Subprogram Header) ::= ‘SUB’ (Subprogram Name) [‘ (’ (Var_List))’] EOS
(6) (Var_Declaration) ::= ‘VAR’ (Var_List) EOS
(7) (VarList) ::= (Simple_Variable) | (Simple_Array) { “;’ (Simple _Variable) | {Simple_Array) }
(8) (Function Declaration) ::= ‘FUNCTION’ (Functlon_Name) (Argument List) ‘=’ (MCL_Expression) EOS
(9) (Argument List) ::= <[’ (Simple_Variable) { ¢ » (Simple_Variable) } ‘]’
(10) (Block Of Lines) ::= { [(Statement) | (Label_Deﬁnmon)] EOS }
(11) (Simple_Array) ::= (Simple_Array Name) ‘[’ (Lower Bound) ¢:’ (UpperBound) { *,’
(Lower Bound) :’ (UpperBound) } ‘1’
(12) (Lower_Bound) ::= [(Sign)] (Integer)
(13) (UpperBound) ::= [(Sign)] (Integer) | ‘¥’
(14) (McL Expression) ::= [(Sign) | ‘NOT’] (Expression)
(15) (Expression) ::= (Xterm) [‘XOR’ (Expression)]
(16) {(Xterm) ::= (Rterm) [‘OR’ (Xterm)]
(17) (Rterm) ::= (Dterm) [‘AND’ (Rterm)]
(18) (Dterm) ::= (Lterm) [(<’ | ©>7 | ‘<=2 | >=2 | ‘== | ‘@7) (Dterm)]
(19) (Lterm) ::= (Term) [(“+’ | ‘=?) (Lterm)]

(20)
(21
(22)
(23)

(24)
(25)
(26)
(27)
(28)

(29)
(30)
(3D
(32)
(33)
(34)

(35)
(36)
(37)
(38)
(39
(40)
(41)
(42)
(43)

(44)

(45)

(46)
(47)
(48)

(49)

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275 267

(Term) ::= (Factor) [(“*’ | ¢/’) (Term)]
(Factor) ::= (Base) [‘#**’ (Factor)]
(Base) ::= (Real) | (Variable) | (* (MCL_Expression) ‘)’
(Variable) ::= (Intrinsic_Variable) | (Simple_Variable) | (Function_Reference) |
(Simple_Array Element) | (Intrinsic_Array Element)
(Real) ::= { (Digit) }; [“.” { (Digit) }s 1 [(‘E” | ‘D*) [(Sign)] { (Digit) },]
(Sign) = 47 | =2
(Statement) ::= (Simple_Statement) | (Block.If) | (When) | (Loop_Statement)
(Simple_Statement) ::= {Assignment) | (Get) | (Display) | (Move) | (Call) | (Merlin_Control_Statement)
(Loop_Statement) ::= ‘LOOP’ (Loop.Control_Variable) ‘FROM’ (Starting_Value) ‘TO’ (Ending_Value)
[“‘BY’ (Step_Value)] EOS (Block_Of Lines) (‘END’ ‘LOOP’ | ‘ENDLOOP’)
(Starting_Value) ::= (MCL_Expression)
(Ending_Value) ::= (MCL_Expression)
(Step_Value) ::= (MCL_Expression)
{Loop-Control_Variable) ::= (Simple_Variable)
(When) ::= ‘WHEN’ (MCL_Expression) ‘JUST’ (Simple_Statement)
(Block If) ::= ‘IF’ (MCL_Expression) ‘THEN’ EOS (Block Of Lines) [‘ELSE’ EOS
(Block.Of Lines)] (‘END’ ‘IF’ | ‘ENDIF’)
(Assignment) ::= {Simple_Variable) | (Simple_Array Element) ‘=" (MCL_Expression)
(Get) ::= ‘GET’ (GetItem) { ;’ (GetItem) } [‘FROM’ (Filename)]
(GetItem) ::= (Simple_Variable) | (Simple_Array Element)
(Display) ::= ‘DISPLAY’ (Display Item) { ‘;’ (Display.Item) } [‘TO’ (Filename)]
(Display Item) ::= (MCL.Expression) | (String)
(Move) ::= (‘MOVE’ ‘TO’ | ‘MOVETO’) (Label)
(Label Definition) ::= (Label) :’
(Call) ::= ‘CALL’ (Subprogram Name) [’(* (MCL Expression) { ’;’ (MCL Expression) } *)’]
(Simple_Array_Element) ::= (Simple_Array Name) ‘[’ (MCL_Expression) { ‘,’ (MCL_Expression) }
€1
{

Function_Reference) ::= ((Function Name) | (Intrinsic_Function Name)) ‘[’ (MCL_Expression) {
¢, (McL_Expression) } ‘1’
(Intrinsic_Variable) ::= ‘BACKUP’ | ‘DERIVA’ | ‘DIM’ | ‘FUNMODE’ | ‘GPCOUNT’ | ‘GTCOUNT” |
‘HPCOUNT’ | ‘HTCOUNT’ | ¢ JACOMO’ | ¢JPCOUNT’ | ‘JTCOUNT’ | ‘NCFLAGS’ |
‘NFLAGS’ | ‘PCOUNT’ | ‘PRECISION’ | ‘PRINTOUT’ | “PROCESS’ |
“TCOUNT’ | ‘TERMS’ | ‘VALUE’
(Intrinsic_Array Element) ::= (Intrinsic_Array Name) ‘ [(MCL_Expression) ‘]’
(Intrinsic_Array Name) ::= ‘FIX’ | ‘FLAG’ | ‘GRAD’ | ‘L’ | ‘MARG’ | ‘R’ | ‘STEP’ | ‘TERM’ | ‘X’
(Intrinsic Function Name) ::= ‘ABS’ | ‘ACOS’ | ‘ACOSH’ | ‘ASIN’ | ‘ASINH’ | “ATAN’ | ‘ATANH’ |
<COS’ | ‘COSH’ | “EXP’ | ‘FACT’ | ‘GRADNORM’ | ‘GRMS’ | ‘LOG’ |
‘LOG10’ | ‘MAX’ | ‘MEAN’ | “MIN’ | ‘MOD’ | ‘RAN’ | ‘ROUND’ |
‘SIN’ | ‘SINH’ | ‘SQRT’ | ‘TAN’ | “TANH’ | ‘TRUNC’
{Merlin_Control_Statement) ::= (Non_Parametric) | (I_Parametric) | (IV Parametric) | (IS_Parametric) |
(Panel Parametric) | (General Parametric)

268 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

(50) (Non_Parametric) ::= ‘ADJUST’ | ‘ALIASDIS’ | ‘ANAL’ | ‘CFLAGDIS’ | ‘EVALUATE’ | ‘EXIT’
‘FAST’ | ‘FINISH’ | ‘FIXALL’ | ‘FLAGDIS’ | ‘FULLBACK’ | ‘FULLPRINT |
‘GENERAL’ | ‘GNORM’ | ‘GRADDIS’ | ‘HALFPRINT’ | ‘JANAL’ | JNUMER’ |
‘LASTBACK’ | ‘LIMITS’ | ‘LOOSALL’ | ‘MODEDIS’ | ‘NOBACK’ | ‘NOEVAL’ |
‘NOPRINT’ | ‘NOTARGET’ | ‘NUMER’ | ‘PAUSE’ | ‘QUAD’ | ‘RESET’ |
‘REVEAL’ | ‘SHORTDIS’ | ‘S80S’ | ‘STEPALL’ | ‘STEPDIS’ | ‘SUBRETURN’ |
‘TERMDIS’ | ‘VALDIS’
(51) (I_Parametric) ::= (I_Parametric Name) ‘ (* (Key) ‘.’ (MCL Expression) { ¢;’ (Key) .’
(MCL_Expression) })’
(52) (I_Parametric Name) ::= ‘CONFIDENCE’ | ‘FIX’ | ‘LDEMARGIN’ | ‘LEFTDEMARGIN’ | ‘LOOSE’ |
‘RDEMARGIN’ | ‘RIGHTDEMARGIN’ | ‘NONAME’
(53) (IV_Parametric) ::= (IV_Parametric Name) ‘ (* (Key) ‘.’ (MCL Expression) ‘=’ (MCL Expression) {
;7 (Key) “.’ (McL_Expression) ‘=’ (MCL_Expression) } ‘)’
(54) (IV_Parametric_Name) ::= ‘FLAG’ | ‘LEFTMARGIN’ | ‘LMARGIN’ | “POINT’ | ‘RIGHTMARGIN’ |
‘RMARGIN’ | ‘STEP’
(55) (IS_Parametric) ::= (IS_Parametric Name) ‘ (’ (Key) ¢.’ (MCL Expression) ‘=’ (String) { “;’ (Key)
‘.7 (McL Expression) ‘=’ (String) } ‘)’
(56) (IS_Parametric_Name) s:= ‘CFLAG’ | ‘GODFATHER’ | ‘MIXED’
(57) (Panel Parametric) ::= (Panel Parametric Name) [¢ (* (Key_Value Pair) { ¢;’ (Key_Value Pair) }

(58) (Key_Value Pair) ::= (Igey) ‘=2 (Value) | (Key) “?=’ ((Simple_Variable) | (Simple_Array_Element))
(59) (Panel_Parametric_Name) 1:= ‘ACCUM’ | ‘AUTO’ | ‘BACKUP’ | ‘BFGS’ | “CONGRA’ | ‘CONTROL’ |
‘COVARIANCE’ | ‘DFP’ | ‘DUMP’ | ‘GRAPH’ | ‘HESSIAN’ | ‘HISTORY’ |
“INIT’ | ‘INSPECT’ | ‘LEVE’ | *MAD’ | “MEMO’ | ‘PICK’ |
‘PSGRAPH’ | ‘ROLL’ | ‘SIMPLEX’ | ‘TOLMIN’ | “TRUST’ |
(User Defined_Panel Name)
(60) {User_Defined Panel Name) ::= Any name defined in the panel description file
(61) (General Parametric) ::= (General Parametric Name) [¢ (* (Key) ‘= (Value) { ‘;’ (Key) ‘=’
(Value) })7]
(62) (General_Parametric_Name) ::= ‘ALIAS’ | ‘CLOSE’ | ‘DELETE’ | ‘DISCARD’ | ‘EPILOG’ | ‘GOEOF” |
»GRADCHECK’ | ‘HIDEQUT’ | ‘PANELOFF’ | ‘PANELON’ | ‘PDUMP’ |
'PSTATUS’ | ‘QUIT’ | ‘RETURN’ | ‘REWIND’ | ‘STOP’ | ‘TARGET’ |
‘TITLE’ | ‘UNALIAS’
(63) (Value) ::= (MCL_Expression) | (String)
(64) (Filename) ::= (String)
(65) (String) s:= ¢ 7 * { (Letter) | (Digit) | (Special Character) }; ¢ * *
(66) (Key) ::= (Identifier)
(67) (Label) ::= (Identifier)
(68) (Subprogram Name) ::= (Identifier)
(69) (Simple_Variable) ::= (Identifier)
(70) (Simple_Array Name) ::= (Identifier)
(71) (Function Name) ::= (Identifier)
(72) (Identifier) ::= (Letter) {‘_* | (Letter) | (Digit) }
(73) (Letter) z:= ‘a’ | ‘b’ | ‘c? | “d’ | ‘e’ | “£7 | ‘g’ | ‘b7 | ‘i’ | ‘5| ‘K| D | ‘m’ | “n’ | ‘o’ |
| @ | x| s | e [qw | v w0 |y | fzr | A | B | e | D |
‘E? | ‘g | el | ‘H’ | (12 1 3 I ‘K l ‘L’ I ‘M’ | ‘N’ l ik l p> | tQ; I ‘R’ ‘ ‘g’ l
U | v | W | X2 | Y|z
(74) (Digit) 2= €0’ | ‘17 | ‘27| 3| ‘4’| ‘6’| 6’| ‘7|8 |9

D.G. Papageorgicu et al./Computer Physics Communications 109 (1998) 250-275 269

Table B.1
Keywords and allowed values for (General_Parametric) statements

(General _Parametric_Name) (Key) (Value) Must be present
ALIAS NAME (String) Yes
COMMAND (String) Yes
CLOSE FILE (String) Yes
DELETE FILE (String) Yes
DISCARD FILE (String) Yes
TYPE ‘“TEXT’ | ‘BIN? No
EPILOG COMMAND (String) Yes
GOEOF FILE (String) Yes
GRADCHECK MODE (String) Yes
MODE2 (String) No
HIDEOUT FILE (String) Yes
APPEND ‘YES’ | ‘NO’ No
PANELOFF GOMMAND (String) No
PANELON COMMAND (String) No
PDUMP FILE (String) Yes
COMMAND (String) No
PSTATUS COMMAND (String) No
QUIT FLAG (McL_Expression) Yes
RETURN EPILOG ‘YES’ | ‘NO’ No
REWIND FILE (String) Yes
STOP EPILOG ‘YES’ | ‘NO’ No
TARGET VALUE (McL _Expression) Yes
TITLE TITLE (String) Yes
UNALIAS NAME {String) Yes

(75) (Special Char) sz= > [<12 [0 | 142 [87 | % | &2 | <O 00| ar | car]]
AR R R R R R A R S RN S EN R RN I
(I)|(}; (~;|l¢)

B.3. Context-sensitive part of the MCL syntax

The following rules complement the syntax definition of MCL.
(1) Keywords for {General Parametric) statements are shown in Table B.1.
(2) Keywords for (IV_Parametric) statements are shown in Table B.2.
(3) Keywords for (IS_Parametric) statements are shown in Table B.3.
(4) Keywords for (I_Parametric) statements are shown in Table B.4.
(5) An MCL line is up to 120 characters long counting underscores. An MCL identifier can be at most 30
characters long, not counting underscores.
(6) Up to 10 continued lines are allowed. Each continuation line ends with the symbol &.
(7) A function declaration cannot contain a forward reference to another function. Function dummy arguments
cannot be array elements or intrinsic items.
(8) Identifiers and terminal symbeols are case insensitive.
(9) The identifiers JUST, TO, BY, THEN, and FROM are reserved words and cannot be used as symbolic
names.
(10) All operations are performed from left to right.
(11) A proper reference to a function or array element should contain all of the declared arguments.
(12) A (Block_Of Lines) must not contain a label which is referenced from outside the block.

270 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

Table B.2
Keywords and corresponding values for {1V_Parametric) statements

(IV_Parametric_Name) (Key)

FLAG
LEFTMARGIN
LMARGIN
POINT
RIGHTMARGIN
RMARGIN
STEP

momITx<ro o

Table B.3
Keywords and corresponding values for {IS_Parametric) statements

(IS_Parametric_Name) (Key)
CFLAG X
GODFATHER X
MIXED X
Table B.4

Keywords for (I_Parametric) statements

-~

(I_Parametric_Name)

CONFIDENCE
FIX
LEFTDEMARGIN
LDEMARGIN
LOOSE

NONAME
RDEMARGIN
RIGHTDEMARGIN

-l N i] frae)
&
«<

(13) A (Block If) or (Loop-Statement) that belongs to a (Block Of Lines) must terminate inside the same
(Block_Of Lines).

(14) A (Key) may not be specified more than once in a statement.

(15) The priority of evaluation of the MCL operators is implied into definitions 14 through 22. (Base) is
evaluated first, then (Factor), etc.

(16) A SUBRETURN statement is not allowed in the main program.

(17) An asterisk denoting an adjustable (UpperBound) is allowed only in the dummy argument list of a
subprogram.

(18) A single quote inside a string must be entered as the escape sequence \’.

(19) (Panel Parametric) statements, their corresponding keywords and allowed values are read in from the
MERLIN panel description file.

(20) Exactly one main program must be present in an MCL source file.

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275 271

References

[1] D.G. Papageorgiou, L.N. Demetropoulos, LE. Lagaris, MERLIN-3.0. A multidimensional optimization environment, Comput. Phys.
Commun. 109 (1998) 227-249, preceding article.

[2] D.G. Papageorgiou, I.N. Demetropoulos, LE. Lagaris, P.T. Papadimitrion, How many conformers of the 1,2,3-Propanetriol Triacetate
are present in gas phase and in aqueous solution?, Tetrahedron 52 (1996) 677-686.

[3] D.A. Karras, LE. Lagaris, A novel neural network training technique based on a multi algorithm constrained optimization strategy,
Preprint 14-96 (Dep. Computer Science, Univ. loannina, 1996).

{4] A. Likas, D.A. Karras, LLE. Lagaris, Neural network training and simulation using a multidimensional optimization system, Int. J.
Comput. Math,, to appear.

[5] J.P. Tremblay, P.G. Sorenson, Theory and Practice of Compiler Writing (McGraw-Hill, New York, 1985).

[6] C.S. Chassapis, D.G. Papageorgiou, L.LE. Lagaris, MCL - Optimization oriented programming language, Comput. Phys. Commun. 52
(1989) 223-239.

272 D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

TEST RUN INPUT

program
var i; sml; bfgs_calls; nfix; max_calls

sml = 1.e-4 % Gradient threshlod.
bfgs_calls = 1000 % Number of BFGS calls.
max_calls = 10000 % Max. calls to spend.
again:

loosall

nfix = 0

loop i from 1 to dim
if abs[gradlil] <= sml then

fix (x.i)
nfix = nfix+1
end if
end loop
if nfix == dim then
display ’Gradient is below the threshold...’
loosall
finish
end if

bfgs (noc=bfgs_calls)
when pcount < max_calls just move to again
display ’We probably failed...’

end

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

TEST RUN OUTPUT

MCL-3.0
$PUSHC
10
$ALLOC
$POPMB
$PUSHA
2
$PUSHC
1.0000000000000D-04
$POPCONT
$PUSHA
3
$PUSHC
1000. 00000000000
$POPCONT
$PUSHA
5
$PUSHC
10000.0000000000
$POPCONT
$CONTINUE
$PUSHA
4
$PUSHC
0.
$POPCONT
$PUSHC
1.0000000000000
$POP
5]
$DIM
$POP
7
$PUSHC
1
$POP
8
$PUSH
7
$PUSH
6
$_
$PUSH
8
$+
$PUSH
8
$/
$TRUNC
$PUSHC
0
$MAX
2
$POP
10

273

274

$PUSH

6

$POP

1

$PUSHC

1

$POP

9

$PUSH

9

$PUSH

10

b5

$TESTMOVE
41

$PUSH

1

$GRAD

$ABS

$PUSH

2

$<=

$NOT

$TESTMOVE
14

$PUSH

1

$PUSHC

1

FIX

$PUSHA
4

$PUSH

4

$PUSHC

1.0000000000000

$+

$POPCONT

$CONTINUE

$PUSH

1

$PUSH

8

$+

$POP

1

$PUSHC

1

$PUSH

g

$+

$POP

9

$MOVE
-45

$CONTINUE

$PUSH

D.G. Papageorgiou et al./Computer Physics Communications 109 (1998) 250-275

D.G. Papageorgiou et al./ Computer Physics Communications 109 (1998) 250~275 275

4
$DIM
$=
$NOT
$TESTMOVE
9
$NOTE
34
Gradient is below the threshold...
.STANDARD
$FLUSH
.STANDARD
LOOSALL
$FINISH
$CONTINUE
$PUSH
3
BFGS
11
NaC
I
$PCOUNT
$PUSH
5
$<
$NOT
$TESTMOVE
3
$MOVE
-120
$NOTE
21
We probably failed...
.STANDARD
$FLUSH
.STANDARD
$FINISH

