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ABSTRACT 

Karagiannis Anastasios. MSc, Computer Science Department, University of Ioannina, 

Greece. July, 2007. Scheduling policies for the refresh management of Data 

warehouses. Thesis Supervisor: Panos Vassiliadis. 

 

Data Warehouses are collections of data coming from different sources, used mostly 

to support decision making and data analysis in an organization. To populate a data 

warehouse with up-to-date records that are extracted from the sources, special tools 

are employed, called Extraction – Transform – Load (ETL) tools, which organize the 

steps of the whole process as a workflow. An ETL workflow can be considered as a 

directed acyclic graph (DAG) used to capture the flow of data from the sources to the 

data warehouse. The nodes of the graph are activities that apply transformations or 

cleansing procedures on data or recordsets used for storage purposes. The edges of the 

graph are input/output relationships between the nodes. The workflow is an abstract 

design at the logical level, which has to be implemented physically, i.e., to be mapped 

to a combination of executable programs/scripts that perform the ETL workflow. 

Each activity of the workflow can be implemented physically, to be mapped to a set 

of software modules that can execute the ETL workflow. 

 

This thesis proposes the design of an ETL workflow engine, in which all logical-level 

activities can be implemented with various algorithmic methods; every one with 

different cost in terms of time or system resources (e.g., main memory, disk usage). 

The system is easily expanded to support any possible activities. Another contribution 

of this thesis is the systematic study of tuning the execution of a workflow concerning 

its logical and physical characteristics; the size of the input data, the workflow 

complexity and selectivity, etc. Lacking of related research methodology the 

workflows that are used in the experimental methodology are grouped into fiducial 
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structures. Finally, the third contribution of this thesis is the suggestion of a well 

organized set of experimental scenarios is. 
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ΠΕΡΙΛΗΨΗ 

Αναστάσιος Καραγιάννης, του Γεωργίου και της Μαρίνας. MSc, Τµήµα 

Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Ιούλιος, 2007. Πολιτικές ρύθµισης της 

διαχείρισης της ενηµέρωσης αποθηκών δεδοµένων. Επιβλέπων: Παναγιώτης 

Βασιλειάδης. 

 

Οι Αποθήκες ∆εδοµένων είναι συλλογές δεδοµένων που προέρχονται από 

διαφορετικές πηγές και χρησιµοποιούνται κυρίως για τη λήψη αποφάσεων σε ένα 

οργανισµό. Για να τροφοδοτηθεί µια αποθήκη µε νέα δεδοµένα, όπως αυτά 

παράγονται στις πηγές, χρησιµοποιούνται εργαλεία Εξαγωγής – Μετασχηµατισµού – 

Φόρτωσης δεδοµένων (Extract – Transform – Load εργαλεία, ETL), τα οποία 

οργανώνουν τα επί µέρους βήµατα της όλης διαδικασίας σαν µια ροή εργασίας. Μια 

ροή εργασίας ETL µπορεί να θεωρηθεί ως ένας κατευθυνόµενος ακυκλικός γράφος 

που χρησιµοποιείται για να αναπαραστήσει τη ροή δεδοµένων από τις πηγές 

δεδοµένων προς την αποθήκη δεδοµένων. Οι κόµβοι του γράφου είναι διαδικασίες 

καθαρισµού/ µετασχηµατισµού δεδοµένων ή σύνολα εγγραφών και οι ακµές σχέσεις 

εισόδου/εξόδου µεταξύ των κόµβων. Η ροή εργασίας είναι ένα αφηρηµένο σχήµα σε 

λογικό επίπεδο, το οποίο πρέπει να υλοποιηθεί σε φυσικό επίπεδο, δηλαδή να 

αντιστοιχηθεί σε ένα συνδυασµό από εκτελέσιµα προγράµµατα που εκτελούν την 

ETL ροή εργασίας.  

 

Στην εργασία αυτή, κατασκευάστηκε ένα σύστηµα εκτέλεσης ροών εργασίας ETL, 

στο οποίο οι λογικού επιπέδου διαδικασίες της ροής εργασίας µπορούν να 

υλοποιηθούν µε ποικίλες αλγοριθµικές µεθόδους, καθεµιά µε διαφορετικό κόστος 

όσον αφορά απαιτήσεις σε χρόνο ή πόρους συστήµατος (π.χ., µνήµη, χώρο στο δίσκο, 

κλπ.). Το σύστηµα είναι εύκολα επεκτάσιµο σε σχέση µε τις διαδικασίες που µπορεί 

να υποστηρίξει. Η αρχιτεκτονική του συστήµατος είναι σχεδιασµένη µε τέτοιο τρόπο, 
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ώστε να γίνεται αποδοτική χρήση των ενδιάµεσων δεδοµένων, κάνοντας χρήση της 

τεχνικής της διοχέτευσης, όπου αυτό είναι εφικτό.  

 

Μια περαιτέρω συµβολή της εργασίας είναι η συστηµατική µελέτη της ρύθµισης της 

λειτουργίας µιας ροής εργασίας σε σχέση µε λογικά και φυσικά χαρακτηριστικά της: 

όγκο πηγαίων δεδοµένων, πολυπλοκότητα της δοµής της ροής, επιλεκτικότητα στον 

όγκο των τελικών δεδοµένων κλπ. Τρεις πολιτικές ρύθµισης προτείνονται σε αυτή 

την εργασία. Η µία είναι πολιτική Round Robin, γνωστή από το τοµέα των 

λειτουργικών συστηµάτων. Η δεύτερη είναι η Minimum Cost, όπου έχει ως στόχο τη 

µείωση του χρόνου εκτέλεσης. Τέλος,  η τρίτη πολιτική ρύθµισης, Minimum Memory, 

µειώνει τις απαιτήσεις του συστήµατος για µνήµη κατά τη διάρκεια εκτέλεσης ενός 

ETL σεναρίου.  

 

Ολοκληρώνοντας, ελλείψει σχετικής πειραµατικής µεθοδολογίας στη βιβλιογραφία, 

οι ροές που χρησιµοποιούνται στην πειραµατική µελέτη της εργασίας οργανώνονται 

σε πρότυπες δοµές, τύπου πεταλούδας. Η πρόταση ενός καλά σχεδιασµένου συνόλου 

πειραµατικών σεναρίων για την µελέτη ροών εργασίας ETL είναι η τρίτη συµβολή 

της εργασίας. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

1.2 Thesis Structure 

1.1. Introduction 

 

A Data Warehouse (DW) is an information infrastructure that collects, integrates and 

stores an organization's data. The most important feature of a Data Warehouse is that 

it produces accurate and timely management information, so companies utilize data 

warehouses to enable their employees (executives, managers, analysts, etc.) to make 

better and faster decisions. Furthermore, data warehouses can be used to support 

complex data analysis. According to Inmon [Inmo02], a DW is “a collection of 

subject-oriented, integrated, non-volatile and time-variant data in support of 

management decisions”.  

 

W. H. Inmon [Inmo02] presents a formal definition of a data warehouse as a database 

consisting of computerized data that is organized to most optimally support reporting 

and analysis activity. According to Inmon, a data warehouse has four characteristics: 

1. It is subject-oriented, meaning that the data in the DW is organized so that all 

data elements relating to the same real-world event or object are linked 

together. 

2. Integrated, meaning that the database contains data from most or all of an 

organization’s operational applications, and that this data is gathered in a 

single location to be made consistent.  

3. Non-volatile, meaning that data in the database is never over-written or 

deleted, but retained for future reporting. 



2 

 

 

4. Time-variant, meaning that the changes to the data in the database are tracked 

and recorded so that reports can be produced showing changes over time.  

 

There are many advantages of using a data warehouse. First of all, a data warehouse is 

able to combine a variety of data from different sources in a single location. 

Interesting information is extracted from various distributed sources, which are 

usually heterogeneous. This means that the same data is represented differently at the 

sources, for instance through different database schemata. The data warehouse has to 

identify same entities, represented in different ways at the sources, and model it under 

a unique database schema. This means that data in a data warehouse have to go 

through a series of transformations to be made consistent and up-to-date. This process 

is often referred to as semantic reconciliation and is an important property of the data 

warehouse. Another advantage of a data warehouse is that it can support changes to 

data, since modifications to the data in a data warehouse are tracked and recorded. 

The data warehouse also keeps a historical record of the loaded data.  

 

Figure 1.1 Architecture of a Data Warehouse. 

Finally, data quality is an important issue, since data arriving at the data warehouse 

are in most cases inconsistent. The above features of a data warehouse show that a 

data warehouse is always expected to contain up-to-date, consistent and integrated 
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data in order to support decision making and data analysis. Figure 1.1 presents the 

architecture of a data warehouse. 

1. The primary components of a data warehouse are Data Sources, Data Staging 

Area, Data Marts, the Metadata Repository, ETL and other reporting and 

OLAP applications.  

2. Data Sources or Operational Databases are databases that store structured or 

unstructured data as part of the operational environment of a company or an 

organization. Data Sources supply the data warehouse with operational data. 

Data derived from various Sources are usually heterogeneous. 

3. The Data Staging Area (DSA) is a smaller database used to store intermediate 

results produced by the application of cleansing techniques or transformations 

to the source data. 

4. The Data Warehouse and the Data Marts are systems that store data provided 

to the users. The data in the warehouse are organized in fact and dimension 

tables. Fact tables contain the records with the actual information in terms of 

measured values, whereas dimension tables contain reference values for these 

facts. For example, assuming that a customer purchases a part for a certain 

price, the reference values for the customer and the part are stored (along with 

all their extra details) in the dimension tables, and the fact table records the 

references to these records (through foreign keys) along with the price paid. 

Data marts focus on a single thematic area and usually contain only a subset of 

the enterprise information. For example, a data mart may be used in a single 

department of the company and may contain only the data that is available to 

this department.  

5. The Metadata Repository is a subsystem that stores information concerning 

the structure and the operation of the system. This information is called 

Metadata and concerns the ETL design and runtime processes. 

6. ETL (Extraction - Transformation - Loading) applications extract the data 

from the sources, clean it and apply transformations over it before the loading 

of data to the data warehouse.  

7. Finally, reporting and OLAP tools are reporting applications that perform 

OLAP and Data Mining tasks. OLAP tools form data into logical multi-

dimensional structures and allow users to select which dimensions to view 



4 

 

 

data by. On the other hand, Data mining tools allow users to perform detailed 

mathematical and statistical calculations on data to detect trends, identify 

patterns and analyze data.   

 

The process of moving data from the sources into a warehouse is performed in three 

steps: 

− Extraction – is the process used to determine which data stored in the sources 

should be further processed and ultimately loaded to the data warehouse. 

− Transformation – is the step in which data are adapted into the format required 

by the warehouse. 

− Loading – is the process of populating the data into the warehouse. 

− This process is normally abbreviated ETL. Figure 1.2 presents these three 

steps of an ETL process. 

 

In order to manage the data warehouse operations, specialized tools are available in 

the market, called ETL tools. ETL (Extraction-Transformation-Loading) tools are a 

category of software tools responsible for the extraction of data from distributed 

sources, their cleansing and customization and finally their loading to the data 

warehouse ([VaSS02]).  

 

Figure 1.2 Extract - Transform - Load. 
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Their basic tasks are: 

− the identification of relevant information at the source side 

− the extraction of this information 

− the customization and integration of the information coming from multiple 

sources into a common format 

− the cleansing of the resulting data set, on the basis of database and business 

rules 

− the propagation and loading of the data to the data warehouse and/or data 

marts. 

 

As we mentioned earlier, in data warehousing, data are extracted from various sources 

and have to go through a set of transformations and cleansing procedures before they 

reach their destination, usually a data warehouse and/or data marts. Typical data 

transformations are data conversions (e.g., conversions from European formats to 

American and vice versa), orderings of data, generation of summaries of data (in other 

words groupings), etc. Finally, data are loaded into the data warehouse. A typical load 

of data involves processing large volumes of data (e.g., several GBs of data) and 

requires many complex transformations of data. This means that this process is time-

consuming (often takes many hours or even days to complete) and usually takes place 

during the night, in order to avoid overloading the system with extra workload. 

Moreover, in many systems, the warehouse load must be completed within a certain 

time window, which means that the request for performance is pressing. Based on the 

above, we can summarize the main problems of ETL tasks: (a) the enormous volumes 

of data for processing, (b) performance, since all operations must be completed within 

a specific period of time, (c) quality problems, since data usually have to be cleansed. 

Furthermore, (d) failures during the transformation process or the warehouse loading 

process, cause significant problems to the warehouse operation and finally, (e) the 

evolution of the sources and the data warehouse can lead to daily maintenance 

operations. Under these conditions, we see that we can overcome the problems of 

ETL tasks by designing and managing ETL tasks efficiently.  

 

This thesis makes the following three contributions in the research area of ETL tools: 
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− Our first contribution concerns the design and implementation of an execution 

engine of ETL scenarios. The elements of the ETL scenario are mapped from 

a logical level to a physical level. In other works, all logical-level activities 

and recordsets are mapped to the appropriate physical-level software modules. 

The execution engine provides the software components that a scenario needs. 

The ETL engine guarantees that all source data will be produced and there will 

be no data loss. 

− We have designed and studied three scheduling algorithms. A scheduling 

mechanism is necessary to lead the execution towards optimizing a measure 

such as execution time or low memory requirements. The measures that are of 

interest in the case of ETL are execution time or low memory requirements. 

Our algorithms are the following: 

o Round Robin: A simple scheduling algorithm that assigns the activities 

to execute in FIFO order. 

o Minimum Cost: This algorithm improves the execution time of the 

execution by assigning for execution the activity that has more data to 

process (at the time of scheduling). 

o Minimum Memory: This algorithm reduces the execution's 

requirements for memory. At every time the activity that will consume 

the largest number of tuples. 

− Our experiments suggest than Minimum Cost performs better than Round 

Robin in all cases; at the same time, Minimum Memory though is the most 

time consuming policy of all three policies, still Minimum Memory is the most 

efficient policy when it comes to average memory requirements. In most cases 

Minimum Cost has less average memory requirements than Round Robin.  

1.2. Thesis Structure 

 

This thesis consists of 6 chapters. Chapter 2 presents related research in the area of 

ETL tools. Also, we discuss the related work on scheduling in data stream systems, 

among with some basic principles in scheduling in the same chapter. In chapter 3, the 

architecture of the ETL engine is explained in detail among with the class diagrams of 
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the implementation. In chapter 4 the implemented scheduling algorithms are 

explained, along with examples of how they apply on a specific scenario. In chapter 5 

we experimentally assess the studied scheduling algorithms. Finally in chapter 6 all 

results and conclusions are summarized and there is a discussion for future work.  
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CHAPTER 2. RELATED WORK 

2.1. Data Warehouses and ETL  

2.2. General Theory on Scheduling 

2.3. Scheduling in Data Stream Systems 

 

The related work that concerns us is research on systems that process a great amount 

of data. Such systems are traditional ETL engines and data stream systems. It is 

common to data stream system to have a scheduler that will coordinate the query 

execution. In such systems we will emphasize in this chapter, since the aim for this 

thesis is the design for a scheduler for the Arktos project. 

2.1. Data Warehouses and ETL 

 

Due to their importance and complexity, ETL tools constitute a multi-million market. 

There is a plethora of commercial ETL tools available. The traditional database 

vendors provide ETL solutions built in the DBMS’s. In [SVSS07] and [SiVS05] there 

is a list with the most popular ETL market tools; we briefly mention them in the 

following section. Also, there have been research efforts towards the design and 

optimization of ETL tasks. We mention three research prototypes: (a) AJAX 

[GFSS00], (b) Potter’s Wheel [RaHe01], and (c) ARKTOS II [VSG+05]. The first 

two prototypes are based on algebras, which are mostly tailored for the case of 

homogenizing web data; the latter concerns the modeling of ETL processes in a 

customizable and extensible manner, without the support, though, of an execution 

engine. 
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2.1.1. Commercial studies and tools.  

 

In terms of technological aspects, the main characteristic of the area is the 

involvement of traditional database vendors with ETL solutions built in the DBMS’s. 

The three major database vendors that practically ship ETL solutions “at no extra 

charge” are pinpointed: Oracle with Oracle Warehouse Builder [Oracle07], Microsoft 

with Microsoft with SQL Server 2005 Integration Services (SSIS) (the next version of 

Data Transformation Services in MS-SQL Server 2000) [SSIS07] and IBM with the 

Data Warehouse Center [IBM07]. Still, the major vendors in the area are 

Informatica’s Powercenter 8 [Infrm07] and Ascential’s DataStage suites [Asc03] (the 

latter being part of the IBM recommendations for ETL solutions). As a general 

comment, we emphasize the fact that the former three tools have the benefit of the 

minimum cost, because they are shipped with the database, while the latter two have 

the benefit to aim at complex and deep solutions not envisioned by the generic 

products. The aforementioned discussion is supported from a second recent study 

[Gart03], where the authors note the decline in license revenue for pure ETL tools, 

mainly due to the crisis of IT spending and the appearance of ETL solutions from 

traditional database and business intelligence vendors. The Gartner study discusses 

the role of the three major database vendors (IBM, Microsoft, Oracle) and points that 

they slowly start to take a portion of the ETL market through their DBMS-built-in 

solutions. 

2.1.2. Research Studies 

 

The AJAX [GFSS00] system deals with typical data quality problems, such as the 

object identity problem, errors due to mistyping and data inconsistencies between 

matching records. This tool can be used either for a single source or for integrating 

multiple data sources. AJAX provides a framework wherein the logic of a data 

cleaning program is modeled as a directed graph of data transformations that start 

from some input source data. AJAX also provides a declarative language for 

specifying data cleaning programs, which consists of SQL statements enriched with a 

set of specific primitives to express mapping, matching, clustering and merging 
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transformations. Finally, an interactive environment is supplied to the user in order to 

resolve errors and inconsistencies that cannot be automatically handled and support a 

stepwise refinement design of data cleaning programs.  

 

The Potter’s Wheel [RaHe01] system is targeted to provide interactive data cleaning 

to its users. The system offers the possibility of performing several algebraic 

operations over an underlying data set, including format (application of a function), 

drop, copy, add a column, merge delimited columns, split a column on the basis of a 

regular expression or a position in a string, divide a column on the basis of a predicate 

(resulting in two columns, the first involving the rows satisfying the condition of the 

predicate and the second involving the rest), selection of rows on the basis of a 

condition, folding columns (where a set of attributes of a record is split into several 

rows) and unfolding. Optimization algorithms are also provided for the CPU usage for 

certain classes of operators. The general idea behind Potter’s Wheel is that users build 

data transformations in an iterative and interactive way; thereby, users can gradually 

build transformations as discrepancies are found, and clean the data without writing 

complex programs or enduring long delays. 

 

Arktos II [VSG+05] is a coherent framework for the conceptual, logical, and physical 

design of ETL processes. The uttermost goal of this line of research is to facilitate, 

manage and optimize the design and implementation of the ETL processes both 

during the initial design and deployment stage, as such during the continuous 

evolution of the data warehouse. To this end, in [VaSS02] and [SVSS03] a conceptual 

model is proposed. Further, in [SVSS03] a logical model is presented. The proposed 

models, conceptual and logical, are constructed in a customizable and extensible 

manner, so that the designer can enrich them with his own re-occurring patterns for 

ETL processes. Therefore, Arktos II offers a palette of several templates, representing 

frequently used ETL transformations along with their semantics and their 

interconnection (Figure 2.1). In this way, the construction of ETL scenarios, as a flow 

of these transformations, is facilitated.  
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Filters 

Selection (σ) 

Not null (NN) 

Primary key violation (PK) 

Foreign key violation (FK) 

Unique value (UN) 

Domain mismatch (DM) 

 

Transfer operations 

Ftp (FTP) 

Compress/Decompress (Z/dZ) 

Encrypt/Decrypt (Cr/dCr) 

Unary transformations 

Push 

Aggregation (γ) 

Projection (π) 

Function application (f) 

Surrogate key assignment (SK) 

Tuple normalization (N) 

Tuple denormalization (DN) 

 

File operations 

EBCDIC to ASCII conversion 

(EB2AS) 

Sort file (Sort) 

Binary transformations 

Union (U) 

Join (><) 

Diff (∆) 

Update Detection (∆UPD) 

 

Composite transformations 

Slowly changing dimension (Type 

1,2,3)(SDC-1/2/3) 

Format mismatch (FM) 

Data type conversion (DTC) 

Switch (σ*) 

Extended union (U) 

Figure 2.1 Typical template transformations provided by ARKTOS II. 

2.2. General Theory on Scheduling 

 

This section contains some general theory about scheduling, which derives from the 

operating system research. Also the terminology that is used is very close to operating 

system theory; in operating systems scheduling is among processes and not activities. 

We discuss the basic types of processor scheduling, fundamental principles and 

criteria that characterize these algorithms. Moreover we mention a few well known 

simple algorithms such as FIFO, Round Robin etc. There is a brief description of 

these algorithms in Table 2.1 [Sched06], at the end of this section. 

2.2.1. Types of processor scheduling 

 

There are three different types of scheduling [UnSched07], identified by the size of 

the time fragment that the scheduler provides to each process. 

− Long-term scheduling is performed to decide if a new process is to be 

created and be added to the pool of processes. Long-term scheduling controls 

the degree of multiprogramming. The more processes that are created, the 

smaller is the percentage of time that each process can be executed. Thus, the 
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long term scheduler may limit the degree of multiprogramming to provide 

satisfactory service to the current set of processes. Whenever a process 

terminates, or the fraction of time that the processor is idle exceeds a certain 

threshold, the long-term scheduler may be invoked. The decision may be made 

on a first-come-first-served basis or it can be a tool to manage system 

performance. For example, if the suitable information is available, the 

scheduler may attempt to keep a mix of processor-bound and I/O-bound 

processes. A processor-bound process is one that mainly performs 

computational work and occasionally uses I/O devices, while an I/O-bound 

process is one that uses I/O devices more than the microprocessor. 

− Medium-term scheduling is a part of the swapping function of the operating 

system. In operating systems, in order to increase the amount of total memory 

the idea of virtual memory is used. This technique increases the resources of a 

computer in main memory by using some disk space also. When a process is 

idle there is no use to keep it loaded in the main memory. So, the process is 

copied to a file (swap file) and the freed space in memory is then available to 

the system. The way virtual memory is handled can affect the performance of 

a system. The scheduler can decide if a process should be loaded into the main 

memory either completely or partially so as to be available for execution and 

improve the system's performance. 

− Short-term scheduling is the most common use of the term scheduling, i.e. 

deciding which ready process to execute next. The short-term scheduler, also 

known as the dispatcher, is invoked whenever an event occurs that may lead to 

the suspension of the current process or that may provide an opportunity to 

preempt a currently running process in favor of another. Examples of such 

events include: 

o Clock interrupts 

o I/O interrupts 

o Operating system calls 

o Signals 
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2.2.2. Criteria 

 

There are various algorithms available for the short-term scheduling work. Each 

scheduling algorithm is built in such a way that one or more fundamental criteria are 

best served by it. The major criteria relating to processor scheduling are as follows: 

− Turnaround time is the interval of time between the submission of a process 

and its completion. This is an appropriate measure for a process in a batch 

operating system. 

− Response time is the elapsed time between the submission of a request and 

the moment the response appears. 

− Throughput is the rate at which processes are completed. The scheduling 

policy should attempt to maximize the throughput so that more tasks could be 

performed. 

− Processor utilization is the percentage time that the processor is busy. For a 

shared system, this is a significant criterion, while in single-user systems and 

real-time systems, this criterion is less important than some of others. 

− Fairness addresses whether some processes suffer starvation. Fairness should 

be enforced in most systems. 

 

These criteria may be categorized into two groups: user-oriented and system-oriented. 

The former group focuses on the properties that are visible and of interest to the users. 

For example, in an interactive system, a user always wishes to get response as soon as 

possible. This may be measured by response time. Some criteria are system oriented, 

focusing on effective and efficient utilization of the processor, such as throughout. 

System-oriented criteria are usually important on multi-user operating systems, while 

on the single-user system, it is probably not important to achieve high processor 

utilization or high throughput as long as the single user’s need is fully met. It is 

obvious that the above criteria are interdependent and cannot be optimized 

simultaneously. For example, providing good response time may require a scheduling 

algorithm that switches between processes frequently, which increases the overhead 

of the system, reducing throughput. In a particular operating system, some criteria 
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may be of more importance than others, thus the designer of the operating system may 

simply focus on improving those concerned aspects. 

Table 2.1 Summary table of scheduling algorithms for microprocessors [Sched06] 

FCFS (First Come 

First Served, also 

known as FIFO) 

The first ready task is executed first until it is done. The next one is 

the second ready task and so on 

RR (Round Robin) 

 

Every ready task is kept in a queue and they take control of the CPU 

for a while. Another version is VRR (Virtual Round Robin), where 

blocked tasks from I/O are put in another queue and the system gives 

them the remaining time of their time slice. 

SPN (Shortest Process 

Next) 

 

In this algorithm every task has a priority. The one that is expected to 

need the least CPU time to finish has the bigger priority. It is not easy 

to tell the remaining time of a task. There are not time slices here 

SRT (Shortest 

Remaining Time) 

This algorithm is similar to SPN but the running task might be 

interrupted when a new task is ready for execution and the new task 

will finish sooner than the running task. 

HRRN (Highest 

Response Ratio Time) 

 

This algorithm has a simple formula calculating the priorities of all 

tasks, favoring those that have the smallest remaining execution time. 

It seems better that the two above because in the formula there is 

estimated the time a tasks waits to get the CPU. This way starvation is 

avoided. There are no time slices, a task gets the CPU only when the 

active has finished or blocked (due to I/O). 

Feedback (with q as 

the number of priority 

queues) 

 

This algorithm keeps a number of priority queues and places tasks to 

one of these queues. The new tasks are put in first queue, which is the 

one with the higher priority. This algorithm is preemptive and uses 

time slices. When the time slice is finished, the scheduler picks one 

task from the first queue (biggest priority), and if it is empty it goes to 

the next queue. The task that has been interrupted gets a lower priority 

and is put to the appropriate queue. For example a new task is put at 

first to the first queue, and the second time (when its time slice was 

finished) will be put to the second queue and so on. This algorithm 

could possibly lead some tasks to starvation 
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2.2.3. Preemption 

 

Another issue relating to scheduling is whether a running process could be preempted 

or not. There are two categories: 

− Non-preemptive: In this case, a running process continues to execute until (a) 

it terminates or (b) blocks itself to wait for I/O or to request some operating 

system service. 

− Preemptive: The currently running process may be interrupted and moved to 

the "ready" state by the operating system. The preemption may possibly be 

made due to the arrival of a new process, or the occurrence of an interrupt that 

places a blocked process in the "ready" state. 

 

Preemptive policies incur greater overhead than non-preemptive ones but may be 

preferred since they prevent some processes from monopolizing the processor for a 

long time. 

 

Figure 2.2 An example of a data flow diagram [CCR+03]. 

2.3. Scheduling in data stream systems 

 

Data stream systems process great amounts of continuous data that derive from sensor 

networks, position tracking, fabrication line management, network management, and 

financial portfolio management, where data come in continuous and asynchronous 

fashion, in volumes and rates so high that it is not possible to store them in a 
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traditional DBMS. Because of their idiomorphic nature, data stream systems must 

perform basic operations such as selections (filters in ETL and data streaming 

terminology) and joins without the service of a DBMS system.  

 

The sequence of the applied operators in one or more input streams defines a data 

flow diagram (Figure 2.2). One issue that rises is how these operators will be 

executed. Two basic patterns can be proposed for the design of an execution engine 

for data stream systems. One is to have one thread per operator, and all operations are 

executed simultaneously. The second pattern is to execute one operator at a time, so 

using one single thread is sufficient. In either case having a scheduler that will 

coordinate the execution of the query, even a naive scheduler that will apply a FIFO 

or a Round Robin scheduling policy, is necessary. More advanced scheduling policies 

are essential because in most cases some extra requirements must be met. These 

requirements typically involve the (a) minimization of memory usage, (b) response 

time and (c) execution time. The related work that is presented throughout this chapter 

concerns of scheduling the execution of streams in some well known stream systems. 

We specifically focus on the design of their scheduler, and how the requirements 

mentioned above are accomplished. 

2.3.1. Aurora Data Stream Manager 

 

The Aurora stream manager [CCR+03] has three techniques for scheduling operators 

in streams, for minimizing execution time (MC), latency time (ML) and memory 

(MM). The Aurora system can execute more than one query (continuous queries) for 

the same input stream(s). Every stream is modeled as a graph with operators. 

Scheduling each operator separately is not very efficient, so the notion of a superbox 

is introduced. A superbox is a sequence of boxes that is scheduled and executed as an 

atomic group. A superbox is not necessarily a whole query. 

 

There is a two-level scheduling algorithm for the Aurora stream manager. The first 

level is to decide which superbox to execute, while the second level is to schedule the 

operators inside the selected superbox. There are two ways to deal with this problem. 
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Specifically, at the first level, the scheduler chooses dynamically or statically the next 

superbox. The static approach is rather simple, a single superbox is pre-defined for 

every query, and a scheduling policy can be applied (e.g., round robin) for selecting 

every time which superbox to execute. The dynamic approach defines at run time 

which will be the next superbox to execute. In [CCR+03] the static approach is used. 

Three strategies are proposed for the second level, to minimize the execution time 

(MC), the latency time (ML) and the memory consumption (MM). 

 

The minimum cost (MC) strategy serves the basic idea of minimizing the number of 

box calls per output tuple. This means that every operator will be executed only if the 

preceded operators are already scheduled. Every operator is scheduled only once.  

 

The minimum latency (ML) strategy uses a metric called output cost whose value is 

an estimate of the latency incurred in producing some output data and processing 

them to all following operators of the stream, until they reach the streams final output. 

Each time, the operator with the smallest output cost is selected.  

 

The minimum memory (MM) strategy tries to maximize the data consumption per 

time unit. In other words it yields the maximum increase of the available memory. 

The formula that is used estimates the memory reduction rate per operator. The 

operator with the largest value is selected.  

2.3.2. Chain Scheduling Policy 

 

The Chain [BBDM03] scheduler reduces the required memory when executing a 

query in a data stream system. [BBDM03] focuses on the aspect of real-time resource 

allocation. The basic idea for this scheduler is to select an operator path which will 

have the greatest data consumption than the others. The scheduler selects a group of 

operators instead of one. The authors use a progress to explain the functionality of 

their scheduler. The horizontal axis of the progress chart represents time and the 

vertical axis represents tuple size. The chart contains operator points. The operators 

that participate in the execution create an operator path, which is the flow of data 
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during the execution of the query. Every time the scheduler runs, a part of the 

operator path is selected dynamically. To accomplish this, the scheduler must get a 

snapshot of the system. The progress chart is refreshed and demonstrates the current 

state of the system; the selectivity of every operator and its input. Based on a 

mathematical formula some adjacent points are grouped. The first and the last point of 

the group are connected with a dashed line. Every such group is called as a lower 

envelope. The steepness of every line indicates how effective each group would be if 

it is set for execution. 

 

The scheduling strategy is rather simple, every time they select the steepest lower 

envelope. The system makes sure that there are no tuples in the middle of any 

operator group. This makes possible to treat all lower envelops (operator groups) as 

single units of processing. In other systems the basic idea to decrease the required 

memory is to select one operator that has the biggest data consumption. In this work 

this idea is expanded a little by selecting a group of operators instead. 

2.3.3. Pipeline Scheduling 

 

[UrFr01] presents two scheduling algorithms when pipelining is employed in query 

execution. Both algorithms aim to improve the system's response time; therefore it is 

necessary that all operators are non-blocking. The scheduler needs to compute the 

output rate of every operator in the stream and select the one with the highest rate. 

 

At first three non-blocking join operators SHJ, DPHJ and XJOIN are discussed. These 

operators have one, two and three stages of execution. In every stage, the XJOIN 

operator has a different behavior, and this is something that affects the scheduler. In 

every stage, the scheduler must use different formulas to estimate correctly the 

operators output rates.  

 

The authors propose a rate based algorithm, which schedules streams, rather than 

operators. A stream is considered as an execution unit which consumes tuples and 

produces output data. In every execution of the scheduler the stream with the biggest 
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output rate is selected. The scheduler runs every one second. If the selected stream 

finishes in less than one second, the next stream that is selected is based the previous 

estimates of the scheduler.  

 

A second approach on this problem is also discussed; here the authors consider that 

some data are more important than other, based on the preference of the user (an 

ORDER BY clause in the query). The second algorithm presented can schedule 

streams in a way that important data will be preceded than others in the execution, and 

reach the final output first. Every tuple is assigned a rank which shows how important 

this tuple is. The important data are favored at the join operators, will others are put 

aside for some time. There are two formulas to estimate the importance of data, CM 

and AM. Two variants of the algorithm are presented, called SIP and SJP. The above 

formulas can be applied in both cases. In SIP when a tuple arrives there is a check on 

its rank and it is compared with a random value. If the tuple's value is greater it is 

processed. SJP works in a similar manner with the difference that it decides to process 

the tuple, not when the tuple arrives but when it is about to be joined. 

2.3.4. Summaries of the studied algorithms 

 

In this summary we present all the scheduling algorithms we studied in related work 

papers. All algorithms have some common properties, which are presented in Table 

2.2. Our classification is performed through the following axes: 

− Who is next: This dimension presents the parameter or parameters each 

scheduler uses to select the next operator. 

− For how long: This dimension tells us whether each algorithm is dependent 

on the use of time slot or not. In the latter case, an operator typically becomes 

idle if all its input is consumed or its output queue is full. Some algorithms can 

incorporate both criteria in the calculation of the duration of the execution of 

an operator. Concerning the preemptiveness property, one could possibly 

argue that time-slot based algorithms are preemptive in a sense, since their 

execution is stalled whenever they reach their designated deadline. Still, since 

the most clear case of non- preemptiveness is the case where each operator 
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consumes all its input, possibly stores it, and then passes the execution to the 

next operator, it is clear that several degrees of preemptiveness can be 

considered. 

− Criterion: In this dimension we can see the criterion each algorithm tries to 

favor.  

− Decision: Some algorithms base their decision on each operator's condition 

only, while others need to consider more than one operator to make a decision. 

For example MC checks the input size of every operator, while ML for every 

operator needs to know the output rates of its successors in the stream. 

− Parameters: This dimension presents the parameters that every algorithm 

requires for its decision. 

 

For an ETL engine the criteria fairness, execution time and memory consumption are 

important and we provide a scheduling algorithm for each criterion. Our scheduling 

policies are explained in detail in chapter 4. The criterion response time is not 

appropriate for an ETL engine because response time mostly concerns interactive 

query processes where an end user is involved, while the ETL setting we are 

interested in, involves off-line refreshment of the warehouse. Moreover, the presence 

of blocking activities, such as aggregator and join, eliminates any chances to improve 

the system's response time. 
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Table 2.2 Summary table of all stream scheduling algorithms 

Name Source Who Is Next 
For How 

Long Criterion Decision Parameters 

FIFO [BBDM03], [UrFr01] next token 
until idle / 
time slot 

Fairness Local operator ID 

Round Robin [BBDM03], [UrFr01] next ready token 
until idle / 
time slot 

Fairness Local operator ID 

Equal Time [UrFr01] 
least executed 

time 
until idle / 
time slot 

Fairness Global execution time 

Cheapest First [UrFr01] 
least processing 

cost 
until idle response time Local processing cost 

Greedy Scheduling [BBDM03] least selectivity time slot 
memory 

consumption 
Local selectivity 

Min Latency [CCR+03] largest output size until idle response time Global selectivity, cost 

Rate Based [UrFr01] largest output size until idle response time Global selectivity, cost 

Min Cost [CCR+03] largest input size until idle execution time Local input size 

Min Memory [CCR+03] 
largest data 

consumption 
until idle 

memory 
consumption 

Local 
input size, 

selectivity, cost 

Chain Scheduling [BBDM03] 
largest data 

consumption 
time slot 

memory 
consumption 

Global 
input size, 

selectivity, cost 

 



23 

 

 

CHAPTER 3. SYSTEM ARCHITECTURE 

3.1. General Idea 

3.2. Description and logical representation of an ETL Scenario 

3.3. Logical and physical perspective of an ETL scenario 

3.4. Execution model and requirements for the ETL engine 

3.5. Scheduler 

3.6. Implementation of the logical level 

3.7. Implementation of the physical level  

 

This thesis focuses on the design and the implementation of a parametric ETL system, 

in which simple and complex ETL scenarios can be defined and executed. The user of 

this ETL execution engine is able to define the scenarios easily. In this thesis we 

centre our efforts to implement the execution model of this system. Another basic 

goal is to design a scheduler for this system, able to tune the execution of the data 

cleaning and transformations, based on an operating policy the user has selected. 

3.1. General Idea 

 

When starting the design of an ETL engine, we must consider a few basic issues. At 

first, we should provide some functionality to the user, so that he will be able to 

define a scenario, and all of the components that compose a complete ETL scenario. 

The definition of the scenario will keep a level of abstraction, so that some of the 

implementation details will not be a part of it. Then, we need to design the logical 

representation of these components. We also need to design a model for the physical 

representation of the same objects, in which implementation and execution details will 
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be important, and an execution engine which will be responsible for the correct 

execution the ETL scenario. 

3.2. Description and logical representation of an ETL Scenario 

 

As mentioned before, the definition of an ETL scenario is a composition of the 

definitions of the elements that form a scenario, as well with its respective parameters. 

At this point we will describe its basic components, and also the logical model on 

which our definition is based. 

 

The execution of a scenario can be divided into three basic steps. At first, data are 

extracted from several data sources (text files, databases, etc), then certain 

transformation, cleaning or integration operations are applied on the input data, and 

finally the processed data are put into a data warehouse.  

 

Figure 3.1 Notation of the architecture graph [VSG+05]. 
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The basic structure of an ETL scenario consists of data sources and targets, which we 

will refer to them as recordsets, and a set of operations that are performed on the data 

which we will refer to them as activities. The activities are the transformation, 

cleaning or integration operations, while the recordsets are the places where data is 

either extracted or loaded by the system. An activity can be a filter, a join or an 

aggregation operator. In an ETL scenario the activities that are applied on some data 

have a specific execution order. Therefore it is important to define the order the 

activities are executed and we can treat an ETL scenario as a composite workflow. 

The full layout of an ETL scenario, involving activities and recordsets can be modeled 

by a graph, which we call the architecture graph [VSG+05], in which all the details 

relating to the ETL scenario are enclosed. 

 

The architecture graph is directed and acyclic. The direction of the graph represents 

the flow that the input data will follow inside the ETL scenario. The nodes of the 

architecture graph will be the activities and the recordsets, while the edges will 

provide information for the flow of the processed data, and which node (activity or 

recordset) will work as a data provider for another node (the data consumer). For 

every activity or recordset, we need to set some properties. An activity can be defined 

as an entity with possibly more than one input schemata, an output schema and a list 

of parameters that specify the current activity. A recordset, can be defined as an entity 

with one input (or output) schema, and a parameter list that identify the data source or 

target. The edges of the graph describe the relationships between the nodes. There is 

more than one type of edges in the architecture graph. The basic relationship is the 

provider relationship, which illustrates the provider-consumer relationships between 

the activities and recordsets of the scenario. The schemata of the data are also shown 

in the architecture graph. The part-of relationship associates each schema with one 

activity or recordset. The regulator relationship shows the relation between attributes 

of the input and output schemata of an activity. The complete notation for the 

architecture graph is shown with detail in Figure 3.1 [VSG+05]. A complete 

definition of a complex scenario might give us a heavy and overloaded representation 

of the graph. It is not expected for the user to fully design the graph, but the graph is 

used mainly to give the user a graphic perspective of the scenario. 
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In Figure 3.2, a simple ETL scenario is shown with the use of the notation described. 

In this figure some details are omitted, so that the reader can understand the actual 

scenario, as well as the basic structure of the architecture graph. 

 

Figure 3.2 Representation of an ETL scenario with the architecture graph. 

The scenario that is presented in Figure 3.2 is mainly composed by four activities. We 

will now briefly describe this scenario. The big rectangle on the figure is the data 

staging area (DSA). 

 

The first thing to do is to start extracting data from out data source. Depending on the 

scenario, it is not necessary to always wait for all input data to be loaded. Since input 

data are loaded, or have started loading in the DSA, the first activity will separate the 

new tuples from the old ones. It is supposed that we have extracted data from the 

same source at some point in the past, and now we want to process only the tuples that 

have been created since. So, the first activity will reject all the tuples that have been 

already loaded in the system. The remaining tuples are (a) persistently stored for 

checkpointing reasons and (b) passed to the next activity for further processing. 

The next activity will perform a null-check on the new tuples, on the attribute "cost". 

All tuples that have the NULL value at this field will be rejected. 

When extracting data from more than one source, it is very useful to add an attribute 

to each tuple indicating the data source. The third activity does that operation, adding 

one attribute to each tuple, in this case the integer value 1. 
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The last activity of the scenario adds a surrogate key to each tuple. The need for a 

global key for all the tuples is pretty much clear. All tuples have a primary key from 

their source. Usually each source has a different data type for a primary key, or if it is 

of the same type, it is most likely that the same value (e.g. id = 5) is already assigned 

to more than one tuple. Since all tuples will be placed into the same table their 

existing primary key can not be used. The activity has a lookup table, and also uses 

the attribute added from the previous activity to provide each tuple with a unique 

value, which usually is an integer for performance issues. 

 

We have now defined the logical model to represent an ETL scenario. We must 

provide the user with some functionality so that he can be able to easily create his 

own scenarios. We could use a graphic environment in which the user actually 

sketches the architecture graph [VSG+05]. Another way to do so is to use a 

declarative language for the definition of the ETL scenario. In [VVS+01] the SADL 

language is proposed. A variant of this language can be used, in which the user will 

specifically define the nodes and the edges of the graph, in terms of activities, 

recordsets, schemata etc. 

3.3. Logical and physical perspective of an ETL scenario 

 

The model we just described briefly has a certain level of abstraction for all the 

elements of the ETL scenario. As mentioned before, we follow a traditional approach 

and group the design elements into logical and physical, with each category 

comprising its own perspective. At the logical perspective, we classify the design 

elements that provide an abstract description of the workflow environment, where as 

in the physical perspective all the design elements enclose the details and parameters 

required for their execution. In other words, the activities defined at the logical layer 

(in an abstract way) are materialized and executed through the specific software 

modules of the physical perspective. 
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Since we have decided that the logical and physical level to be independent, we need 

a mechanism that given as input the logical representation of an ETL scenario, it will 

provide us the respective physical representation. This mechanism is responsible for 

the correct and efficient mapping of logical objects to the respective physical objects, 

which are the appropriate software modules that exist inside the system. For example, 

this mechanism is in charge of to decide which join operator should be selected 

(Nested Loops Join, Merge Join, etc) when an activity in the logical level is defined as 

join. Also, inside this mechanism we could integrate an optimizer in order to achieve 

a different representation of the objects at the physical level, which will possibly lead 

to a faster execution of the scenario. Designing an optimizer for this system is not a 

part of this thesis. In Figure 3.3 there is a simple sketch illustrating this general 

mechanism and how it interacts will other parts of the system. 

 

Figure 3.3 Logical and physical level for the scenario elements. 

In order to correctly depict the design elements to the physical level, a set of template 

classes can be used [VSG+05]. The objects that exist in the physical perspective of 

the ETL scenario are instances of these template classes. In Figure 3.4 the mapping 

between the logical level and the physical level appears through the template classes. 

When the mapping process is completed, the execution of the ETL scenario can be 

initiated. 
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Figure 3.4 Association of the logical and physical level [VSG+05]. 

3.4. Execution model and requirements for the ETL engine 

 

Having defined the logical and the physical level, we need to design an execution 

model for the activities of the physical level. Generally, each activity receives tuples 

and processes them, and puts the result tuples into the input of another activity, 

according to the edge in the architecture graph. On the other hand recordsets do not 

always have both producers and consumers. Recordsets are entitled to feed the 

workflow with source data from an external source (e.g., text file, database) or write 

output data to an external target (e.g., a data warehouse).  

There are three fundamental issues that we need to resolve in the design of an ETL 

execution engine, and a scheduler for it: 

− The management of intermediate data. 

− The strict requirement for zero data losses. 

− The avoidance of deadlocks. 
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Management of intermediate data: One basic issue that rises is how to manage the 

intermediate data that are produced. One idea is to execute each activity separately, 

and store its output to a file. When this activity is done, its consumer activity can be 

started by reading the providers output file. This approach is simple, but it has two 

main disadvantages: (a) the need for disk space, which might not always be available 

and (b) the overhead of temporarily staging intermediate results and subsequently 

retrieving them again for the next activity. An alternative solution is to keep input and 

intermediate tuples into main memory and the activities will process them without the 

need to store intermediate data. Parts of the workflow that do not contain blocking 

operators can take advantage of the pipelining method. With this approach all 

activities need to be executed simultaneously, since we can not load all the input data 

into main memory. Every activity will read and write tuples from the appropriate 

shared data structures, such as queues (Figure 3.5). In the case of blocking operators 

(e.g., aggregator, sort-merge join) the intermediate data need to be stored temporarily.  

 

Figure 3.5 Pipelined execution of an ETL scenario. 

This approach has a few more benefits. In the case where the input data are not stored 

locally, but the system receives them from a remote computer there is an extra 

communication cost for receiving the data from the remote computer. During this 

time, we can start processing the tuples that have arrived. The method of pipelining is 

also efficient in the case where the produced data must be sent to a remote computer. 
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The output data which are already produced can be sent to the remote target without 

having to wait for the execution of the scenario to finish. In both cases we can reduce 

the execution time since it overlaps with the time spent for communications. 

 

Zero data losses: An essential principle for this system is that there is no data loss. 

All the tuples that are present in the input must be appropriately processed and 

propagated as the scenario dictates. The execution model must guarantee that no tuple 

will be lost during execution, due to the fact that some output buffer has been filled 

and its producer continues to output data to this buffer. Moreover, we need to come 

up with an implementation in the absence of the luxury of load shedding. When a 

DSMS (Data Stream Management System) experiences data overload, the load 

shedding technique is applied and some of the input data are ignored; then, each query 

is executed with the remaining data. Load shedding is useful in such cases, so that 

possible time constraints are satisfied. On the contrary, in our setting, all data are 

important, so we must ensure that we have zero data losses. 

 

Deadlocks: One vital issue in the case of pipelined execution is that it is possible to 

have deadlocks during execution. The method of pipelining is commonly used when 

an SQL query is executed by a DBMS. There are cases where in a pipelined execution 

a deadlock might appear [DSRS01]. In a similar manner we may experience 

deadlocks when executing an ETL scenario. Our system should avoid the appearance 

of deadlocks.  

 

Figure 3.6 Deadline example (preliminary implementation). 
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In our preliminary implementations, when the scheduling was left to the operating 

system, the following kind of deadlock was observed: an original producer A would 

feed two parallel "lines" of activities, that would ultimately converge to a binary 

activity Z. Assuming that a blocking operator X participates in one of the two "lines", 

then Z's input queues could possibly come to the state where one was completely 

empty and the other full. At the same time, all the queues between X and Z are empty 

and the queues in the other "line" of activities between A and Z were full. Then, Z 

cannot execute since one of its input queues is empty and A cannot execute since one 

of its output queues is full.  

3.5. Scheduler 

 

Designing the engine's scheduler is one of the main tasks for the construction of an 

ETL engine. There are many possibilities for tuning a scheduling protocol. A first, 

simple to implement opportunity (without the existence of a scheduler) involves 

having the activities of the scenario running concurrently in random (as threads). The 

lack of a user-level scheduler means that we rely on the scheduling provided by the 

underlying operating system; we cannot get any guarantee that this is the best way 

(e.g., fastest, memory efficient) to execute the scenario. Designing a user-level 

scheduler gives us the ability to schedule the running activities with our own 

standards; therefore we can achieve a more efficient execution of the ETL scenario. 

Based on a user selected policy, the scheduler can tune the execution of the running 

activities. The user can pick from a palette of fundamental goals, e.g., (a) select to 

tune the scenario so that the total execution time is minimized or (b) to minimize the 

memory requirements, average and maximum.  

3.6. Implementation of the logical level 

 

As mentioned before, the definition of an ETL scenario is a composition of the 

definitions of the elements that form a scenario, as well with its respective parameters. 

A scenario is a graph, so is composed of nodes and edges. A node could be either an 
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activity or a recordset. Every node has some input schemata, and one output schema. 

Every schema is a finite list of attributes. Finally, attributes are characterized by their 

name and data type.  

 

Figure 3.7 The class diagram of the logical level. 

Therefore a scenario is a set of activities, recordsets, edges and schemata. In Figure 

3.7 a class diagram of the logical level is depicted. Since every scenario is a graph, 

node and edge classes are defined in the class diagram. A node can be an activity or a 

recordset, so the Node class is extended to an Activity class and a Recordset class. The 

Node class is abstract, since it does not represent a specific element of an ETL 

scenario. The Schema class and the Attribute class represent the schemata and 

attributes of a scenario. There is also a Scenario class which holds all the elements 

that define it in collections. A simple declarative language is used, in which scenarios 

and all of its elements can be declared. Given a declaratively specified scenario the 
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engine's parser transforms it into objects of the aforementioned classes. We used the 

AntLR [AntLR07] parser, a simple and efficient tool that generates the code for a 

parser. With the parser a Loader class was created that reads the information the 

parser provides and creates the instances of the classes in Figure 3.7, and ensures that 

all elements are created and loaded correctly to a Core object.  

3.7. Implementation of the physical level 

 

Considering the above requirements for the ETL engine, its implementation 

necessitates the use of threads. Every activity and recordset will be executed from a 

single thread. A monitor thread is also essential for the control of the scenario 

execution, and will have a supervising role over the executing activities and 

recordsets. In order for the threads to communicate, a messaging system must be put 

into operation. This architecture is easy and simple to understand.  

 

Figure 3.8 The class diagram of the physical level. 
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The design of the physical level requires dealing with ETL scenarios from a different 

perspective. Every node of a scenario is a unit that performs a portion of processing, 

even if that is simply reading or writing data. Therefore we consider every node 

(activity or recordset) as an execution item or operator. All intermediate data that 

execution items process must be stored in queues, so that the pipelined execution is 

accomplishable. These queues are called data queues and they contain tuples. As seen 

in the Aurora Stream Manager [CCR+03] processing every tuple separately is not 

efficient, so we use row packs, a structure which holds a number of tuples. Data 

queues keep row packs instead of tuples. 

 

Since the graph is directed and acyclic every node can be characterize its neighbors as 

producers or consumers. Every execution item must have a mailbox, in order to 

support the messaging system that is required. Every execution item should know the 

mailbox of its producers and consumers, as well as the monitor's mailbox. The 

monitor is a component of the system that supervises and directs the execution. In 

Figure 3.8 there is the class diagram of the physical level. The two basic components 

of the physical level are the Monitor and the Execution Item classes. The Execution 

Item class is extended to the Execution Recordset class and the Execution Activity 

class. These two classes are also abstract. The basic functionality though exists in the 

Execution Item class. The other classes simply provide functionality for assigning 

producers and consumers to the nodes. A recordset has either only one consumer or 

only one producer, while an activity can have both many producers and many 

consumers. 

3.7.1. Execution Item functionality 

 

When a scenario starts to execute, the Execute() function is called for every operator. 

The execution of the operator is complete when the function returns. At each time 

point, it is possible that some of the operators will not have any data to process. For 

performance reasons we need to stall them for a small portion of time (every thread 

sleeps for a small time fragment).  
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The Execute() function is constructed as a loop (Table 3.1) in which (a) the operator 

checks its inbox regularly and (b) decides whether to processes some data or to stall 

for a small time fragment. Every operator has a status flag that indicates whether it 

must process data or not and a finished flag that indicates whether the operator should 

exit the Execute() function. Thus, it is necessary for the operator to check its inbox 

frequently, since the monitor or some other operator might have sent an appropriate 

message. The operator will exit the while loop when the finished flag will turn its 

value form false to true. The DataProcess() function is not implemented in the 

ExecutionItem class, but by a concrete sub-class that overrides this function.  

Table 3.1 The Execute() function of the Execution Item class 

Sub Execute() 

  InitExecute() 

  While  ( Not  OperatorStatus.Finished) 

    InboxManagement() 

    If  (OperatorStatus.Stalled) Then 

      Thread.Sleep(EngineStallTime) 

    Else  

      DataProcess() 

    End If  

  End While 

  EndExecute() 

End Sub 

 

In any case, though, a critical point in our design has to do with the implementation of 

the DataProcess() function. As we shall see later in this section, the inbox of an 

operator receives messages from a monitor of the engine, with directives on when the 

current round of its execution completes and another operator must be activated. If we 

want an operator to relate to these notifications, the DataProcess() function must be 

constructed in such a way that it processes a small number of data -- small enough, so 

that their processing will have been completed before the designated deadline arrives. 

Moreover, the implementation of the DataProcess() function must respect the 

constraint that whenever the output queue is full, the operator must be stalled. 
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As seen in Figure 3.8 the recordsets of the scenario can be instantiated as Readers or 

Writers. These classes are responsible to feed the workflow with input data or store 

the output data, correspondingly. Every Reader or Writer uses a proxy inside the 

DataProcess() function. The proxy is simply a wrapper for objects that read from (or 

write to) text files, databases etc. Depending on whether the recordset is used for 

reading, writing or both, we define the correct proxy to instantiate, e.g., a FileReader 

or FileWriter class. In Table 3.2 we see the implementation of the DataProcess() 

function of a Reader class. The Status variable keeps the status of the consumer's data 

queues. If the queues are full the operator must stop processing data.  

Table 3.2 The DataProcess() function of a Reader 

Protected Overrides Sub DataProcess() 

  Dim Status As Boolean  

 

  For  I As Integer  = 1 To EnginePackSize 

    MyProxy.ReadTuple(CurrentTuple) 

    If  (CurrentTuple Is  Nothing) Then 'Reached End Of Input  

      OperatorStatus.Finished = True  

      Exit  For  

    Else  

      Status = ForwardToConsumers(CurrentTuple) 

      If  ( Not  Status) Then 

        StallThread() 

        Exit  For  

      End If  

    End If  

  Next 

End Sub 

 

The activities of the scenario will be instantiated to a sub-class of the Execution 

Activity class. The DataProcess() function will contain the code that reads from its 

data queues, process the tuples and then forwards them to its producers. In Table 3.3 

we see the implementation of the DataProcess() function of a Filter class. Again the 

operator must check the status of the consumer's queue, and if they are full the data 

processing must temporarily stop. In other activities, such as joins the DataProcess() 

function is more complex; yet the logic is the same. In every case the DataProcess() 
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function must process only a small amount of input data, so that the operator can 

check its inbox frequently.  

 

Every Execution Item has a Status object. The Status class simply holds some flags 

and values for the status of the operator. This class acts as a grouper of these values, 

simply to keep the code organized and nice. The values that a Status class gathers are: 

− Stalled (boolean): This value, if true, allows the operator to call the 

DataProcess() function 

− LastMessage (boolean): This value is set true only when the operator will not 

receive any more messages from its producers. This will happen only if all of 

its producers are finished. 

− Finished (boolean): This value is set true if the execution of the operation is 

complete. 

Table 3.3 The DataProcess() function of a Filter 

Protected Overrides Sub DataProcess() 

  Dim Status As Boolean = True 

 

  Producer.Queue.GetData(InPack) 

  If  (InPack Is Nothing) Then 

    If  (OperatorStatus.LastMessage) Then 

      OperatorStatus.Finished = True 

    Else  

      StallThread() 

    End If  

  Else 

    While  (InPack.GetRow(CurrentTuple)) 

      If  (FilterCalculator.Evaluate(CurrentTuple)) Then 

        Status = Status And ForwardToConsumers(CurrentTuple) 

      End If 

    End While 

    If  ( Not  Status) Then 

      StallThread() 

    End If 

  End If 

End Sub 
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3.7.2. Monitor functionality and messages 

 

The Monitor thread is responsible for the correct initialization and execution of the 

scenario. The execution of this thread has three basic steps. The first step is to create 

the physical object with respect to the logical objects the Loader created. In our 

system this mapping process is done by the Optimizer class. For all source recordsets 

the Optimizer returns a Reader object, and for target recordsets it returns a Writer 

object. For activities the Optimizer returns an object that inherits the 

ExecutionActivity() class. Since designing an Optimizer is not part of this thesis, the 

user defines explicitly e.g., which join activity prefers. Also during this process the 

Optimizer assigns a unique id to every operator. This id is used as an identifier so that 

threads can communicate to each other. Moreover, the Optimizer performs a simple 

check on the graph. Some errors, such as the incorrect definition of an edge, that were 

not detected from the parsing process will be found here. The Optimizer also makes 

sure that every thread knows its producers and consumers data queues and mailboxes.  

 

After creating the physical objects, the monitor raises the threads of every operator by 

calling the Execute() function and then the monitoring process starts. This is the basic 

functionality of the monitor. When the execution starts all threads begin in stalled 

mode and simply wait for a message from the monitor to begin the execution process. 

The monitor uses an ArktosScheduler object, which selects the next thread to activate. 

Its interface is simple; on creation it creates a list with all threads. The NextActivity() 

function returns the id of the selected thread and the Remove(Id As Integer) function 

removes a thread from the list. This function is used when a thread is finished, to 

remove it from the list of the scheduler. Every time the monitor wants to activate a 

thread and allow it to execute, it must use the NextActivity() function to select the best 

operator according to the scheduler.  

 

The monitoring process is a loop in which the monitor thread checks its mailbox and 

gathers some statistics. The statistics it gathers concern the required memory during 

the scenario execution. The monitor checks its messages to see when an operator has 

stalled or finished its execution. Depending on the message the monitor acts 

accordingly. Every operator has a mailbox and knows the mailbox of the monitor, as 
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well as its neighbors. All these objects communicate by sending messages. There are 

a few message types that the threads use. In Table 3.4 we see a brief description of the 

message types.  

Table 3.4 The message types of the ETL engine 

Message type Description 

MsgEndOfData 
This message is sent among operators so that an 

operator will notify its consumers that it has 
finished producing data. 

MsgTerminate 
This message forces the thread t terminate even if 
the data process is not complete. If it sent to the 

monitor it notifies that the sender has terminated. 

MsgResume 
When an operator receives this message it resumes 
the data processing by switching the flag Stalled to 

false. 

MsgStall 
When an operator receives this message it stops 

temporarily processing data by switching the flag 
Stalled to true. 

MsgDummyResume 

This message type is used to force all operators to 
execute once the DataProcess() function. This is 
used only when the scheduler could not select the 

next thread. This will give the chance to the 
operators to update some flags used internally. 

3.7.3. Unary activities 

 

These activities are filters and function activities. They have only one input edge and 

they are rather simple to implement. The function activities simply change a field of 

the tuple and forward the result tuple to its consumers. The filter activities are also 

simple and check the tuples they process based on a constrained defined at the 

semantics of every activity. This could be a domain filter or a null check.  
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Our implementation supports filters that compare fields with constant values that are 

of type integer, double and string. Also the filters can perform a null check for a set of 

fields. Every filter uses an instance of a SingleTupleEvaluator class. This class is 

abstract and it is instantiated to a specific concrete object when the filter is initialized. 

For example, if the filter performs the check "age > 0" the evaluator object will be an 

instance of the IntegerBigger class, because the field "age" is of type integer and the 

comparison is of type "bigger". If the filter performs a null check the instance will be 

the NotNullCheck class, which also inherits the SingleTupleEvaluator class. Selecting 

the correct evaluator is simple and should be done at the initialization of the 

execution. Using the evaluator is straightforward, since all that is necessary is to call 

the Evaluate(Tuple As String) which will return a Boolean value, indicating whether 

the tuple is to be kept or rejected. 

3.7.4. Binary activities 

 

The binary activities our system supports are Join, Surrogate Key, Diff (with sort-

merge and nested-loops variants) and Aggregator. These activities are blocking (or 

semi-blocking in the case of nested-loops) since they have to gather all input data to 

text files and sort them. Every operator handles these files. These operators have two 

stages of execution. 

The first stage simply collects all input data and places them at a file. When all input 

is put into the file, it is sorted on the join field (except from the case of nested-loops 

activities, where only one input is blocking and this input is stored to a file).  

The second stage is the joining process, where the sorted inputs are read and joined. 

In the case of the aggregator in this stage the grouping process occurs. 

 

The SMJoin class performs a join, based on the join condition provided. If there is no 

match, no tuple will be produced. The SMSkey class adds a surrogate key to the tuple 

based on a lookup table. The SMDiff class implements the diff operation on the two 

input datasets. The Aggregator class groups the tuples based on one or more fields 

and calculates all aggregate functions (maximum, minimum, sum, average and count). 
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3.7.5. Sorter 

 

The sorter is a useful tool that allowed us to implement the binary operators 

mentioned above. The file that is used to store the incoming tuples is handled by the 

VBSorter class. When a tuple is stored to the unsorted file, one extra field is put on the 

start of the tuple. This field is the sorting field. In some cases we need to sort with 

more than one field. In this case we sort with the concatenation of the sorting fields. 

In order for this technique to work, each sorting field must be of equal size, so we use 

padding to achieve equality in the length of the sorting fields. For padding, we use the 

space character. When a sorting field is a string or date we add padding from the left 

and when the sorting field is an integer or double we add padding from the right. This 

trick allows us to treat the sorting field as a string. The concatenation of the fields is 

done after the padding is added. 

 

When the operator calls the Sort() function the sorter runs a batch file in which the 

input data are sorted. We use an external program to sort our files, borrowed from the 

cygwin UNIX emulator [Cygwin07]. Before using this sorter, we tried to find the 

source code of a file sorter, but we didn't find something that would suite us. In all 

cases the sorting process was very slow. For instance one of the sorters we found 

required two or three hours to sort a few hundred tuples, while the cygwin sorter 

managed to finish sorting in a few seconds.  

 

The unsorted data are put in text files. Putting all input in one file creates one big file 

that the sorter cannot sort; there was no CPU utilization and the function never 

returned. To override this difficulty we adopted the following approach. The input is 

spitted into many text files. Every such file has a maximum capacity of 1,000,000 

rows. If the unsorted input is more than 1,000,000 rows, it is divided to many such 

files. Then, every file is sorted separately and then merged, again with the help of the 

Sort() function. When the sorting is complete, the Sort() function returns and when 

the operator asks for a tuple the sorter removes the unnecessary sorting field from the 

tuple and returns it to the caller. 
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CHAPTER 4. SCHEDULING ALGORITHMS 

4.1. Problem formulation 

4.2. Categories of algorithms 

4.3. Round Robin 

4.4. Minimum Cost 

4.5 Minimum Memory 

 

In this section we formalize our problem suggesting a mathematical definition. Then 

will describe the algorithms we implemented, and finally discuss a few simple 

examples of how these algorithms work. 

4.1. Problem formulation 

 

Consider a graph G(V,E), and V = VA ∪ VR = VA ∪ {VSOURCE ∪ VTARGET ∪ VINTERM}. 

VA denotes the activities of the graph and VR the recordsets. VR can be further divided 

into three disjoin sets; for the source, intermediate and target recordsets.  

 

Also the set of all the nodes of the graph can be considered as V = {VFINISHED ∪ 

VCANDIDATES}, where VCANDIDATES is the set of operators that are active and participate 

in the execution and VFINISHED is the set of nodes that have finished their processing. 

 

For each activity node v∈ VA we define: 

− µ(v), as the consumption rate of node v. 

− queue(v), as the sum of all input queue sizes (not capacity) of node v 

− σv, as the selectivity of node v. 

For each recordset node v∈ VR we define: 
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− µ(v), also as the consumption rate of node v. 

Furthermore, for each source recordset node v∈ VS we define: 

− volume(v) as the size of the recordsets input of node v. 

 

We consider T as an infinite countable set of timestamps and a scheduler with policy 

P. The scheduler divides T into disjoint and adjacent intervals T = T1 ∪ T2 ∪ … with: 

− Ti = [Ti.first, Ti.last] 

− Ti.last = Ti+1.first - 1 

 

Whenever a new interval Ti begins, (at timestamp Ti.first) the scheduler decides one or 

some of the following actions; Option (1) is mandatory. 

1. active(Ti), the next activity to run. 

2. Ti.last. This value is the timestamp that the operator active(Ti) will stop 

executing. In other words it is Ti.length(), the schedulers time slot. 

3. Status of all queues at Ti.last. 

 

The operator active(Ti) will stop its processing if one of the following occurs: 

1. clock = Ti.last. That means that the time slot has exhausted. 

2. queue(active(Ti)) = 0. This means that the active operator has no more input 

data to process. 

3. ∃ v, v∈ consumer(active(Ti)) such that queue(v) = M(v)max. This means that 

one of the consumers of the active activity active(Ti) has a full input queue. 

 

At this point we must check if active(Ti) should be moved to VFINISHED. In order for an 

operator v to be moved to VFINISHED, both of the following must be valid. 

− ∀ v∈ producer(active(Ti)), v∈ VFINISHED, and 

− queue(active(Ti)) = 0 or volume(v) = 0, if v∈ VSOURCE. 

 

A workflow G(V, E) ends when V = VFINISHED. The interval during which this event 

takes place is denoted as T.last. 
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Based on the previous we can implement a scheduling policy P for a scenario G(V, E) 

such that: 

− P creates an appropriate division of T into intervals T1 ∪ T2 ∪ … Tlast 

− ∀ t ∈T, v ∈V queue(v) ≤ Max(queue(v)) (i.e., all data are properly processed).  

− One of the following holds:  

− Tlast is minimized, Tlast is the interval where G stops 

− max Σ queueTi(v) is minimized, t∈T, v∈V. 

Table 4.1 Categories of scheduling algorithms 

Category Description 

Token Based 
Every operator has a token, and based on that the 

scheduler assigns the CPU 

Execution Time 
This category contains scheduling policies that target 

to optimize the system's execution time. 

Response Time 
Such scheduling policies try to improve the systems 

response time 

Memory 
In this category the scheduling policies aim to 

minimize the required memory during the execution 

4.2. Categories of algorithms 

 

While studying the related work we discerned four basic categories of algorithms. The 

first category includes the token based algorithms, such as Round Robin. These 

algorithms are used mostly as a baseline to compare other algorithms. The second 

category includes the algorithms that aim to reduce the total execution time. In the 

third category reside the algorithms that aim to improve the response time and the last 

category includes the algorithms that target to reduce the required memory during the 

execution. In Table 4.1 we see these categories with a brief description. As mentioned 

in chapter 2, the improvement of response time is npt a requirement, thus we choose 

to design one algorithm from every category apart from the third one. Therefore, we 
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concentrate on the three other categories, and propose one policy for each of them 

(Table 4.2).  

Table 4.2 Scheduling steps of the studied scheduling policies 

 RR MC MM 

Pick Next Operator ID 
Max Input 
Queue Size 

Max tuple 
consumption 

Reschedule when 
Input queue 
is exhausted 

Input queue 
is exhausted 

Time slot 

 

Figure 4.1 An example butterfly scenario. 

4.3. Round Robin 

 

The Round Robin (RR) scheduling algorithm is very simple to implement since its 

only requirement is to assign a unique identifier to every operator and order them with 

this identifier. Then, based on this order the scheduler sets the operators to run. This 

simple algorithm has some very good properties; every operator gets the same 
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chances to run (fairness) and it will not lead the system to starvation. In Figure 4.1 

there is an example scenario with their operators (activities and recordsets) numbered. 

The numbering is random. This scenario will be used as an example so that we can 

demonstrate how the scheduling algorithm works.  

The Round Robin algorithm selects the operators based on their identifier. At start up 

only operators 1 and 2 can do some data process. The algorithm selects at first 

operator 1. The scheduling that Round Robin will apply is presented in Table 4.3. In 

step 10 the operator 10 is set to run, but at this point 10 has no data to process, since 9 

is blocking.  

Table 4.3 Scheduling steps of Round Robin 

Step Can Select Selects 
1 1 1 
2 Next(1) = 2 2 
3 Next(2) = 3 3 
4 Next(3) = 4 4 
5 Next(4) = 5 5 
6 Next(5) = 6 6 
7 Next(6) = 7 7 
8 Next(7) = 8 8 
9 Next(8) = 9 9 
10 Next(9) = 10 10 

 

4.4. Minimum Cost 

 

The Minimum Cost (MC) scheduling algorithm minimizes the scenario's execution 

time. This is achieved by minimizing any overhead that occurs from the scheduler and 

mainly from the communications between the threads. The operator that is selected 

must have data to process, and preferably, this will be the operator with the most input 

data. In addition, no time slots are used, so that the selected operator can process all 

its input data with no interrupts from the monitor thread. We consider that all 

operators that read data from an external source are always available for execution. In 



48 

 

 

order to demonstrate the scheduling of the Minimum Cost algorithm we will use the 

example in Figure 4.1. 

Table 4.4 Scheduling steps of Minimum Cost 

Step Can Select Selects 
1 1 (R), 2 (R) 1 
2 1 (R), 2 (R), 3 (100) 3 
3 1 (R), 2 (R), 5 (90) 5 
4 1 (R), 2 (R), 6 (80), 8 (80) 6 
5 1 (R), 2 (R), 8 (80) 8 
6 1 (R), 2 (R), 2 
7 1 (R), 2 (R), 4 (100) 4 
8 1 (R), 2 (R),7 (50) 7 
9 1 (R), 2 (R), 8 (30), 9 (30) 8 
10 1 (R), 2 (R), 9 (30) 9 

 

In Table 4.4 we see how the Minimum Cost algorithm works. The second column 

shows the id's of the operators that are candidates for execution accompanied with the 

size of their input queue. Since some operators are Readers (i.e., proxies for source 

recordsets and as such they continuously retrieve the next available tuple from their 

recordset, which they add to their input queue), we use the symbolism (R). The third 

column has the choice of the scheduler. In every step, the scheduler selects the 

operator with the biggest input size. Between operators with equal input size, we can 

select either, without affecting the performance of the execution.  

 

4.5. Minimum Memory 

 

The Minimum Memory (MM) scheduling algorithm tries to schedule the operators in a 

way that the maximum and average memory that the system requires during the 

execution of a scenario is minimized. The scheduler must select the operator that will 

consume the biggest amount of data. The amount of data an operator consumes is the 

data that the operator removes from memory, either by rejecting the tuples or writing 

them into a file, for a specific portion of time. In order to achieve this scheduling we 
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need small selectivity as well as large processing rate and input size from the 

preferred operator. The input size should be large so that the operator can process and 

possibly reduce many data. The selectivity needs to be small enough so that the 

operator can actually consume its input tuples. Finally the processing rate should be 

large in order for the data consumption to occur as fast as possible. 

 

Alternatively we could compute the consumption rate directly, considering the 

number of tuples consumed (input data - output data) divided by the processing time 

of the input data. The overall memory benefit is the input size of an operator 

multiplied by its input size, as seen in equation (4.1).  

 

MemB(p) = ((In(p) – Out(p)) / ExecTime(p)) * Queue(p) Eq. 4.1 

 

In this equation p is the operator. In(p) and Out(p) denote the number of tuples that p 

has as input and as output respectively. ExecTime(p) is the time the operator p needed 

to process the In(p) tuples. Queue(p) is the number of tuples that are in p's input 

queues. The MM scheduler selects the operator with the biggest MemB() value at 

every scheduling step. 

Table 4.5 Scheduling steps of Minimum Memory 

Step Can Select Input Size Selects 

1  1 (R), 2 (R) 1 
2 1 (-0.16) 3 (11) 3 
3 1 (-0.16) 5 (11) 5 
4 1 (-0.16)  8 (11) 8 
5 1 (-0.16), 8 (0.27) 8 (6), 6 (5) 8 
6 1 (-0.16) 6 (11) 6 
7 1 (-0.16) 1 (R), 2 (R) 1 
8 1 (-0.26), 3 (5.75) 3 (23) 3 
9 1 (-0.26), 5 (1.3) 5 (23) 5 
10 1 (-0.26) , 6 (1.03) , 8 (1.13) 6 (23), 8 (23) 8 
11 1 (-0.26) 6 (23) 6 

 

When the scenario starts to execute, no operator has processed any data, so the above 

formula cannot apply. In this case we use the logic of Minimum Cost algorithm, so the 
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operator with the biggest input size is selected. In Table 4.5 we see how the MM 

algorithm behaves. The second column contains the calculations of MemB(p) for 

every scheduling step. In every step, some operators are omitted because the MemB() 

value is equal to 0. In such a case, or when all operators have a negative MemB() 

value, we select an operator based on its input size. The third column contains the 

input size for every operator in every scheduling step.  
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CHAPTER 5. EXPERIMENTS 

5.1. Measures and Parameters 

5.2. Datasets 

5.3. Scenarios and data sources 

5.4. Tuning scheduling policies 

5.5. Line workflow 

5.6. Wishbone workflow 

5.7. Primary flow workflow 

5.8. Butterfly workflow 

5.9. Tree workflow 

5.10. Fork workflow 

5.11. Observations deduced from experiments 

 

This section provides the details for the experiments performed in order to test the 

efficiency of the Arktos scheduler. The first section of this chapter describes the 

metrics and the measures that are of interest, the second section has a brief description 

of the datasets used during the experiments and the remaining sections present and 

comment the experimental results. In Table 5.1 we see the hardware and software 

specifications of the computer we conducted the following experiments.  
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Table 5.1 Development environment 

Hardware 

CPU Dual Core 2 @ 2.13 Ghz 
M/M 1 GB 

Hard Disk 230 GB 
Software 

Operating System 
Windows XP 

Professional SP2 
Development 

Software 
Visual Studio 2005, SP1 

Programming 
Language 

VB 2005, C# 2005 
.NET 2.0 framework. 

5.1. Measures and Parameters 

 

The measures that concern us in this thesis are following: 

− Execution Time 

o Execution time is a basic measure to quantify each scheduling policy's 

efficiency. 

− Memory consumption 

o Memory consumption measures the memory requirements of every 

scheduling policy during execution. We are concerned for average, as 

well as, maximum memory requirements. In regular time intervals we 

get a snapshot of the system, keeping information for the size of all 

queues. We keep the maximum value and a sum, which gives 

eventually the average memory.  

 

The input parameters that will be used to quantify the above measures will be: 

 

− Workflow size 

− The number of activities in an ETL scenario will have an effect on the 

above measures. The kind of activities (blocking or non-blocking) is also a 

considerable parameter. 

− Workflow selectivity 
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− If in an existing scenario most of the input data are dirty, the execution 

time and the memory requirements can be affected. As workflow 

selectivity we consider the selectivity a workflow has from its sources to 

its body (Figure 5.1). 

− Time Slot 

− This parameter defines the time interval that each operator runs. At the end 

of each time interval the scheduler selects the next operator. 

− Row Pack Size 

− The selected size of the row pack defines the granularity of the 

DataProcess() function.  

− Queue size 

− Using various queue sizes we can see whether the execution time will 

increase linearly with the input size, and if there are any changes in the 

memory minimization algorithm. 

− Workflow Structure 

− We handle the complexity of workflow characteristics with a set of 

characteristic scenarios instead of employing large and randomly 

generated workflows. To this end, a broad category of workflows is used, 

called Butterflies [Tzio06]. A butterfly is an ETL workflow that consists of 

three distinct components: (a) the left wing, (b) the body and (c) the right 

wing of the butterfly. The left and right wings are two non-overlapping 

groups of nodes which are attached to the body of the butterfly. In Figure 

5.1 there is the basic structure of a butterfly workflow. Different variations 

of this structure are used in the experiments, which are discussed in section 

5.3.2.  

 

We tune row pack, time slot size and queue size parameter for every scheduling 

policy. We determine best possible values with micro-benchmarks so that we can 

proceed to the experiments. In section 5.4 we present the experiments we conducted 

to determine these values. 
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Figure 5.1 The basic structure of a butterfly workflow. 

5.2. Datasets 

 

One popular benchmark for evaluating database systems is the TPC-H benchmark. 

Recently the TPC-DS benchmark was released, as a follower of the TPC-H. A draft 

version of the TPC-DS benchmark is also available.  

5.2.1. TPC-H 

 

The TPC Benchmark™ H (TPC-H) [TPCH07] is described as a decision support 

benchmark. It consists of a suite of business oriented ad-hoc queries and concurrent 

data modifications. The queries and the data populating the database have been 

chosen to have broad industry-wide relevance. Also, this benchmark illustrates 

decision support systems that examine large volumes of data, execute queries with a 

high degree of complexity, and give answers to critical business questions. 

 

TPC-H evaluates the performance of various decision support systems by the 

execution of sets of queries against a standard database under controlled conditions. 

The queries that this benchmark provides give answers to real-world business 

questions and simulate generated ad-hoc queries. They are far more complex than 
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most OLTP transactions and they include a rich breadth of operators and selectivity 

constraints. Also, they generate intensive activity on the part of the database server 

component of the system under test. The relational schema of the data that TPC-H 

provides consists of eight separate tables, as illustrated here in Figure 5.2. It describes 

a sales system, keeping information for the parts and the suppliers, and data about 

orders and the supplier's customers. The dataset can be generated in variety of sizes 

up to 100 TB. Update datasets are also provided but in this benchmark there are no 

update functions. 

 

Figure 5.2 The TPC-H relational schema. 

5.2.2. TPC-DS 

 

The TPC Benchmark™ DS (TPC-DS) [TPCDS07], [OtPo06] is a new Decision 

Support (DS) workload being developed by the TPC. This benchmark models the 

decision support system of a retail product supplier, including queries and data 

maintenance. Although the underlying business model of TPC-DS is a retail product 

supplier, the database schema, data population, queries, data maintenance model and 
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implementation rules have been designed to be broadly representative of modern 

decision support systems. 

 

The relational schema of this benchmark is more complex than the schema presented 

in TPC-H. There are three sales channels, store, catalog and the web. There are two 

fact tables in each channel, sales and returns, and a total of seven fact tables. In this 

dataset the row counts for tables scale realistically. Specifically in fact tables the row 

count grow linearly, while in dimension tables grow sub-linearly. 

 

This benchmark also provides update data. Moreover it has a set for update functions. 

All these functions are primary flows, in which surrogate and global keys are assigned 

to all tuples. 

5.3. Scenarios and data sources  

 

This section contains all the experimental scenarios we have designed in order to test 

our system. As a source for the experiments the dataset from the TPC-H benchmark 

was used, in various sizes. The dataset is about a sales system. The information kept is 

for the parts and its suppliers. Also detailed information is kept about the orders that 

the suppliers have, and some demographic data for the customers. The scenarios that 

are used in the experiments clean and transform the source data into the desired 

warehouse schema. The schema of the data warehouse consists of the table PART 

(s_partkey, name, mfgr, brand, type, size, container, comment), the table SUPPLIER 

(s_suppkey, name, address, nationkey, phone, acctbal, comment, totalcost), the table 

PARTSUPP (s_partkey, s_suppkey, availqty, supplycost, comment), the table 

CUSTOMER (s_custkey, name, address, nationkey, phone, acctball, mktsegment, 

comment), the table ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate, 

orderpriority, clerk, shippriority, comment) and table LINEITEM (s_orderkey, 

partkey, suppkey, linenumber, quantity, extendedprice, discount, tax, returnflag, 

linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode, comment, 

profit). The relational schema of each source is similar to the TPC-H schema in 

Figure 5.2.  
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5.3.1. Data Sources 

 

The sources for our experiments are of two groups, the storage houses and the sales 

points. Every storage house keeps the data for the suppliers and the parts, while every 

sale point keeps the data for the customers and the orders. The storage house schema 

consists of the table PART (partkey, name, mfgr, brand, type, size, container, 

comment), the table SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, 

comment) and the table PARTSUPP (partkey, suppkey, availqty, supplycost, 

comment) who relates the previous two. The storage house is in Figure 5.3. 

 

Figure 5.3 The storage house relational schema. 

The sales point schema consists of the table CUSTOMER (custkey, name, address, 

nationkey, phone, acctball, mktsegment, comment), the table ORDER (orderkey, 

custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriority, comment) 

and table LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, 

extendedprice, discount, tax, returnflag, linestatus, shipdate, commitdate, receiptdate, 

shipinstruct, shipmode, comment), The schema of the sales points is in Figure 5.4 
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CUSTKEY
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SHIPPRIORITY
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COMMENT

 

Figure 5.4 The sales point relational schema. 

5.3.2. ETL Scenarios 

 

The experiments for the cleaning of the data sources include many workflow types, 

which are explained in detail in [Tzio06]. These workflow types are: (a) line, (b) 

wishbone, (c) primary flow, (d) butterfly, (e) tree and (f) fork. The scenarios that 

appear in this section will be used to evaluate our system. 

 

An example of a line workflow is in Figure 5.5. This scenario type is used to filter a 

source table and make sure that the data meet the logical constraints of the data 

warehouse. In the example in Figure 5.5 the applied operations are: 

1. Checking the fields "partkey", "orderkey" and "suppkey" if they have NULL 

values. 
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2. Converting the dates in the "shipdate" and "receiptdate" fields into a date id, a 

unique identifier for every date. 

3. This activity is a calculation of a value "profit". This value derives from other 

fields in every tuple; is the amount of "extendedprice" subtracted by the values 

of the "tax" and "discount" fields. 

4. This activity changes the fields "extendedprice", "tax", "discount" and "profit" 

to a different currency. The results of this operation are loaded into the data 

warehouse. 

5. The workflow is not is not stopped since we would like to create some 

materialized views. This operation keeps only the data that its return status is 

"False". 

6. This is an aggregation, calculating the sum of "profit" and "extendedprice" 

fields grouped by "partkey" and "linestatus". 

7. This activity keeps the tuples that the "linestatus" field has the value 

"delivered". 

8. This final aggregation calculates the sum of "profit" and "extendedprice" 

fields grouped by "partkey". 

 

Figure 5.5 A Line Scenario 

A wishbone workflow joins two tables into one, as appears in Figure 5.6. This 

scenario is preferred when two tables in the source database must be joined in order to 

be loaded to the data warehouse. The example scenario in Figure 5.6 has as input data 

the tables "customer" and "orders". 

1. This activity checks for NULL values in the "nationkey" field. 
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2. This activity converts the phone numbers in a numeric format, removing 

dashes and replacing the '+' character with the "00" equivalent. 

3. This is activity checks the "custkey" fields for NULL values. 

4. The Date-Key activity is applied on the "orderdate" field. 

5. This activity applies the currency operation on the "totalprice" field. 

6. On this activity the source tables are joined. The Sort-Merge Join activity will 

be used at the experiments. 

7. On the joined result an aggregation is applied calculating the sum and the 

maximum of the "totalprice" field, grouped by the "nationkey" and "orderdate" 

field. 

8. This aggregator calculates the sum and the maximum of the "totalprice" field, 

as in the previous activity, but grouped only by the "nationkey". 

 

Figure 5.6 A Wishbone Scenario 

The primary flow scenario is a common scenario in cases where the source table 

must be enriched with surrogate and global keys. It is not a line scenario because the 

operator that adds surrogate keys to every tuple is a join variant. In general, a primary 

flow could easily have a join operator. An example of a primary flow scenario is in 

Figure 5.7. This primary flow scenario has as input the "lineitem" table 
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(1-4).The first four activities are the same four of the line scenario. 

(5-7).The other three activities assign to each tuple a surrogate key for the 

"partkey", "suppkey" and "orderkey" fields which are business keys. 

 

Figure 5.7 A Primary Flow Scenario 

The most common scenario type is a balanced butterfly scenario. It joins two or 

more source tables into one, then a set of aggregations are performed on the result of 

the join. The left wing of the butterfly joins the source tables, while the right wing 

performs the desired aggregations producing materialized views. An example of a 

butterfly scenario is in Figure 5.8. For this scenario the "partsupp" and "supplier" 

tables are used as input. 

1. Checking for NULL values on the "partkey" and "suppkey" fields. 

2. Calculating and adding to each tuple the "totalcost" field. 

3. Checking the "nationkey" field for NULL values. 

4. This activity transforms the "phone" field. 

5. This activity joins results from activities 2 and 4 on the "ps_suppkey" and 

"s_suppkey" fields. 

6. This aggregation calculates the maximum and the minimum value of the 

"supplycost" field grouped by the "nationkey" and "partkey" fields.  

7. This aggregation calculates the maximum and the minimum of the 

"supplycost" field grouped by the "partkey" fields. 
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8. This activity calculates the sum of the "totalcost" field grouped by the 

"nationkey" and "suppkey" fields. 

9. This activity calculates the sum of the "totalcost" field grouped by the 

"suppkey" field. 

 

Figure 5.8 A Balanced Butterfly Scenario 

The tree scenario in Figure 5.9 joins two or more source tables and applies 

aggregations on the result recordset. This tree scenario uses as input the "partsupp", 

"part" and "supp" tables. 

1. This activity checks for NULL values the "suppkey" and "partkey" fields of 

the "partsupp" table. 

2. This activity calculates the "totalcost" field for the tuples of the "partsupp" 

table. 

3. This activity checks for NULL values the "partkey" field of the "part" table. 

4. This activity joins the transformed "part" and "partsupp" tables on the 

"partkey" field of every table. 

5. This activity checks for NULL values the "suppkey" fields of the "supplier" 

table. 

6. This activity transforms the "phone" field. 
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7. This activity joins the "supplier" table with the result of the activity (4) on the 

"suppkey" field of every input. 

8. The last activity aggregates the result of the activity (8), calculating the 

maximum and the minimum value of the "totalcost" field, groupd by the 

"suppkey" and "partkey" fields. 

 

 Figure 5.9 A tree scenario 

Finally the fork scenario applies a set of aggregations on a single source table. First 

the source table is cleaned, just like in a line scenario and the result table is used to 

create a set of materialized views. The tree scenario in Figure 5.10 uses as input the 

"lineitem" table. 

1. Checking the fields "partkey", "orderkey" and "suppkey" if they have NULL 

values. 

2. Converting the dates in the "shipdate" and "receiptdate" fields into a date id, a 

unique identifier for every date. 

3. This activity is a calculation of a value "profit". This value derives from other 

fields in every tuple; is the amount of "extendedprice" subtracted by the values 

of the "tax" and "discount" fields. 
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4. This activity changes the fields "extendedprice", "tax", "discount" and "profit" 

to a different currency. The result of this scenario will be forwarded so that a 

number of aggregations can be performed. 

5. This filter activity keeps the tuples where the "returnstatus" field has the value 

"true". 

6. This aggregator calculates the sum of the "profit" and "extendedprice" fields 

grouped by the "partkey" and "linestatus" fields. 

7. This aggregator calculates the sum of the "profit" and "extendedprice" fields 

grouped by the "linestatus" fields. 

8. This aggregator calculates the sum of the "profit" field and the average of the 

"discount" field grouped by the "partkey" and "suppkey" fields. 

9. This filter activity keeps the tuples where the "discount" field has the value 

"0". 

10. This aggregator calculates the average of the "profit" and "extendedprice" 

fields grouped by the "partkey" and "linestatus" fields. 

 

 Figure 5.10 A fork scenario 
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5.4. Tuning scheduling policies 

 

Our ETL engine has a few parameters that can affect the execution. These parameters 

are: 

− Time Slot: This value determines the size of the time slot the scheduler will 

use. The time slot is determined in milliseconds. 

− Stall Time: This value sets the duration each thread will remain stalled; is 

measured in milliseconds. 

− Data Queue Size (DQS): This value sets the maximum size of the systems 

data queues. In data queues row packs are inserted. 

− Row Pack Size (RPS): This value sets the size (number of tuples) of every 

row pack. 

 

The Stall Time value is used as parameter for the system command 

Thread.Sleep(EngineStallTime). This command is not very reliable, since there is no 

guarantee that the thread will continue its execution after sleeping for 

EngineStallTime milliseconds. So we need to keep it very small; big values lead the 

system to an idle state for some time. This occurs because the use of big values would 

make the operators to be idle for a long period of time and also they would read their 

messages long after it was sent. In all algorithms we used the value of 4 milliseconds.  

 

We need to determine which set of values optimizes the execution of every scheduler. 

For the RR and MC algorithms we will try to optimize the execution time, while in 

the MM we will try to find a set of values that give smaller memory demands and 

relatively good execution time. Using time slots in this RR and MC scheduling 

policies would lead to more communication and scheduling overhead and finally to a 

bigger execution time. In MC for example, consider an operator p than needs 150 

msec to empty its data queue. If the time slot is 50 msec, the scheduler will interrupt p 

two times before its queue is empty. The two interrupts are unnecessary and add 

additional cost to the execution. Since our concern is to minimize execution time we 

avoid such unnecessary scheduling interrupts by not using time slots. So in these two 

policies we will conduct experiments to find an area of good values for the DQS and 

RPS parameters. For the MM algorithm we will use the values for the DQS and RPS 
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parameters from the previous experiments and try to find a good value for the TmSl 

parameter. 

 

To conduct our experiments after tuning our scheduling policies we created variations 

at the input size and the selectivity of the workflows.  

− Concerning the input size, we used the data generator the TPC-H [TPCH07] 

provided. The data generator has a scale factor (SF) that defines the size of the 

data to be generated. When SF is set to 1, the data generator produces one GB 

of data. For our experiments we created three datasets with scale factors 0.1, 

0.5 and 1.0.  

− Concerning the selectivity of the workflows, we changed the semantics of one 

or more filter activities so that the desired selectivity occurred. The selectivity 

values we used are 0.5, 0.8 and 1.0. This broad range will give us a good 

perspective of how selectivity affects the execution of every scenario. 

5.4.1. Tuning Round Robin 

 

To determine the values of DQS and RPS for this scheduling algorithm we have 

conducted two set of experiments. The first set aims to find a good area of values for 

the DQS parameter, while the second set aims to find a good area of values for the 

RPS parameter. For each set we have used two different scenarios, the butterfly in 

Figure 5.8 and a small line scenario, (a variation of the line scenario in Figure 5.5, 

keeping only the first four activities).  

 

For the first set we have used four different values {100, 150, 200, 250} for the RPS 

parameter. In Figure 5.11 we can see how RR behaves in the line scenario. For any 

value of RPS, we observe that any value of DQS above 30 performs equally for any 

value of RPS. For this range of values the execution time is very close to the best 

execution time on this chart. When DQS has small values (< 30) the execution time is 

bigger since small DQS values require much more scheduling steps; this means that 

we have more scheduling and communication overhead. When there are many 
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unnecessary communications the system stays idle and there is not a good utilization 

of the CPU.  
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 Figure 5.11 Tuning DQS in the small line scenario (RR) 

In Figure 5.12 there we can see the results of the RR algorithm with the butterfly 

scenario. In this chart, the RR scheduler optimizes its execution time when the DQS 

parameter has values bigger than 45. Greater values of DQS do not affect the 

execution time of the scenario.  
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 Figure 5.12 Tuning DQS in the butterfly scenario (RR) 

In Figure 5.13 and in Figure 5.14 we can observe the results for the second set of 

experiments. We used for the DQS parameter the values {80, 100, 120}. The RPS 

parameter has a range from 100 to 550 tuples. In both cases (small line and butterfly 

scenarios) the execution time remains at the same levels with slightly a better 

performance between 200 and 500.  

Table 5.2 Configuration of RR 

 Good Areas Configuration 

TmSl 0 0 

DQS 30-150 100 

RPS 200-500 400 

 

Based on the above observations we end up with a good configuration for RR, which 

is presented in Table 5.2. This configuration is used in the subsequent experiments.  
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Figure 5.13 Tuning RPS in the line scenario (RR) 
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Figure 5.14 Tuning RPS in the butterfly scenario (RR) 

5.4.2. Tuning Minimum Cost 

 

We conduct the same set of experiments with RR for the MC scheduling policy. The 

scheduling of RR and MC in the small line scenario is identical. We present results of 

the MC scheduler only for the butterfly scenario. In Figure 5.15 the schedule behaves 

in a similar manner with RR. While the value of DQS increases the execution time 

decreases and when DQS is over 80 the execution time remains steady.  
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 Figure 5.15 Tuning DQS in the butterfly scenario (MC) 

In Figure 5.16 we can observe the behavior of MC at the second set of experiments 

that tunes RPS. The execution time is not affected at all from the different values of 

RPS we see on the chart. In Table 5.3 we can see the configuration we used for the 

subsequent experiments. 

Table 5.3 Configuration of MC 

 Good Areas Configuration 

TmSl 0 0 

DQS 80-150 100 

RPS 200-450 400 
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 Figure 5.16 Tuning RPS in the butterfly scenario (MC) 

5.4.3. Tuning Minimum Memory 

 

For the MM scheduling policy we will use the same values for DQS and RPS that we 

selected for RR and MC. Using the same values we can get an objective perspective 

of how good MM is. In Figure 5.17 and in Figure 5.18 we can see the execution time 

for MM at the small line and butterfly scenario for different values in the time slot 

parameter. As the TmSl increases the execution time decreases. The reason for that is 

that a communication overhead occurs since more scheduling steps are required. For 

the small line scenario MM seems to remain unaffected for TmSl values. The 

workflow size is a parameter for that behavior.  
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Figure 5.17 Execution time and TmSl in the small line scenario (MM) 
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Figure 5.18 Execution time and TmSl in the butterfly scenario (MM) 
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Figure 5.19 Max and avg memory and TmSl in the small line scenario (MM) 

In Figure 5.19 and in Figure 5.20 we observe how the memory requirements change 

for different values of TmSl. Using smaller values in TmSl we achieve smaller 

requirements in maximum and average memory. Considering the increase of 

execution time for this range of TmSl, we choose to use for TmSl the value 70. In 

Table 5.4 we see the configuration of MM.  
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Figure 5.20 Max and avg memory and TmSl in the butterfly scenario (MM) 
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Table 5.4 Configuration of MM 

 Good Areas Configuration 

TmSl 60-70 70 

DQS - 100 

RPS - 400 

 

5.5. Line workflow 

 

The experiments we present in this section show the behavior of a line scenario 

(Figure 5.5) with various input sizes as well with the workflow's total selectivity.  

5.5.1. Effect of input size 

 

The chart in Figure 5.21 shows how execution time changes in various input sizes. 

MC performs better than RR especially in the case of 1GB of data input, while MC is 

more time consuming than MC and RR. In all three scheduling policies the increment 

in the y-axis is practically linear, as one would typically expect from a linear 

workflow.  
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Figure 5.21 Execution time for a line scenario (Sel = 0.5) 

In Figure 5.22 and Figure 5.23 we can see how the average and maximum memory 

requirements of the three scheduling policies. RR has the greatest requirements in 

average memory. MC is a bit better than RR, while MM achieves a 50% smaller 

memory consumption compared to MC and RR. All policies have the similar 

maximum requirements in memory. Since MM has much lower average values, we 

come to the conclusion that the result are not so often peaks during the scenario 

execution. 
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Figure 5.22 Average memory for a line scenario (Sel = 0.5) 
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Figure 5.23 Maximum memory for a line scenario (Sel = 0.5) 

5.5.2. Effect of workflow selectivity 

 

In Figure 5.24 we see how our execution time changes for different selectivity values, 

from 0.5 to 1.0. RR and MC are close but MC performs a little better. MM needs 

more time to complete the execution. 
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Figure 5.24 Execution time for a line scenario (SF = 0.5) 
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In Figure 5.25 and in Figure 5.26 we depict the memory requirements of each 

scheduling policy. RR has the biggest requirements in average and maximum 

memory. MC performs better and MM has smaller memory requirements than MC 

and has similar maximum requirements. 
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Figure 5.25 Average memory for a line scenario (SF = 0.5) 
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Figure 5.26 Maximum memory for a line scenario (SF = 0.5) 

5.6. Wishbone workflow 
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The experiments presented in this section show the behavior of a wishbone scenario 

(Figure 5.6) with various input sizes as well with the workflow's total selectivity.  

5.6.1. Effect of input size 

 

The chart in Figure 5.27 shows how execution time changes in various input sizes. 

MC performs better than RR when the input size is 0.5 GB or more, while MC is 

more time consuming than MC and RR. In all three scheduling policies the increment 

in the y-axis is practically linear.  
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Figure 5.27 Execution time for a wishbone scenario (Sel = 0.5) 

In Figure 5.28 and in Figure 5.29 we can see how the average and maximum memory 

requirements of the three scheduling policies. RR and MC have the greatest 

requirements in average memory. MM achieves a 60% memory consumption 

compared to MC and RR. RR and MM have the similar maximum requirements in 

memory. MC performs better for big input sizes. Again since MM has much lower 

average values, it is safe to come to the conclusion that there are not so often peaks 

during the scenario execution. 
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Figure 5.28 Average memory for a wishbone scenario (Sel = 0.5) 
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Figure 5.29 Maximum memory for a wishbone scenario (Sel = 0.5) 

5.6.2. Effect of workflow selectivity 

 

In Figure 5.30 we see the performance of our engine in a wishbone scenario. MC is 

clearly better than RR, but again MC is more time consuming than the others. It is 

interesting though that all algorithms behave the same when the selectivity is above 

0.8 the execution time does not increment as expected but practically remains the 

same. This workflow has only one join operation; this operation is costly, mainly 
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because of the sorting actions this operator performs. The filter we used to achieve the 

different selectivity values is applied on the small recordset. So the big recordset in all 

cases is the same and its sorting process is the one that defines the sorting cost. 
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Figure 5.30 Execution time for a wishbone scenario (SF = 0.5) 

In Figure 5.31 and in Figure 5.32 we see our scheduling policies memory 

requirements. For average memory, RR AND MC perform worse than MM who has a 

very low average here. For maximum memory MC is performing better than RR and 

MM, which have similar values.  
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Figure 5.31 Average memory for a wishbone scenario (SF = 0.5) 
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Figure 5.32 Maximum memory for a wishbone scenario (SF = 0.5) 

5.7. Primary flow workflow 

 

The experiments we present in this section show the behavior of a primary flow 

scenario (Figure 5.7) with various input sizes as well with the workflow's total 

selectivity.  
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5.7.1. Effect of input size 

 

The chart in Figure 5.33 shows how execution time changes in various input sizes. 

MC performs slightly better than RR. Again MM is more time consuming than MC 

and RR. In all three scheduling policies the increment in the y-axis is practically 

linear. MC and RR are very close because all operators have data to process. There is 

no operator that all its producers are blocking activities. Even so, MC is slightly 

better. 
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Figure 5.33 Execution time for a primary flow scenario (Sel = 0.5) 

In Figure 5.34 and in Figure 5.35 we can observe the average and maximum memory 

requirements of our scheduling policies for the case of the primary flow scenario. RR 

performs much worse that the other two. The reason for this is that RR will schedule 

many recordsets before it schedules an activity that might consume data. Remember 

that in a primary flow there are many input source recordsets because of many look 

up tables. Concerning average memory MC has lesser requirements than RR and MM 

is better than MC and RR. Concerning maximum memory RR has the biggest 

maximum requirements in memory. MM is better than RR but MC is doing much 

better.  
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Figure 5.34 Average memory for a primary flow scenario (Sel = 0.5) 
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Figure 5.35 Maximum memory for a primary flow scenario (Sel = 0.5) 

5.7.2. Effect of workflow selectivity 

 

In Figure 5.36 we see the execution time of our scheduling policies for different 

workflow selectivity values. RR and MC are close, with MC having slightly better 

times. MM consumes more time to complete the execution of the scenario.  



84 

 

 

Primary flow Scenario

0

100

200

300

400

500

600

700

800

900

1000

0.5 0.8 1

Workflow selectivity

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
)

Round Robin

Minimum Cost

Minimum Memory

 

Figure 5.36 Execution for a primary flow scenario (SF = 0.5) 

In Figure 5.37 and in Figure 5.38 we see the average and maximum memory 

requirements of our scheduling policies for the primary flow scenario. RR performs 

much worse that the other two. The reason for this is that RR will schedule many 

recordsets before it schedules an activity that might consume data, because of the 

presence of many input source recordsets (many look up tables). MC has less average 

memory requirements than RR and MM is better than MC and RR. RR has the biggest 

maximum requirements in memory. MM is better than RR but MC is doing better. 
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Figure 5.37 Average memory for a primary flow scenario (SF = 0.5) 
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Figure 5.38 Maximum memory for a primary flow scenario (SF = 0.5) 

5.8. Balanced butterfly workflow 

 

The experiments we present in this section show the behavior of a balanced butterfly 

scenario (Figure 5.8) with various input sizes as well with the workflow's total 

selectivity.  

5.8.1. Effect of input size 

 

The chart in Figure 5.39 shows how execution time changes in various input sizes in a 

balanced butterfly scenario. MC performs better than RR. MM performs worse than 

the other two. In all three scheduling policies the increment in the y-axis is practically 

linear.  
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Figure 5.39 Execution time for a balanced butterfly scenario (Sel = 0.5) 

In Figure 5.40 and in Figure 5.41 we see the memory demands of our scheduling 

policies for a balanced butterfly scenario. RR has the greatest values in average and 

maximum memory requirements, except when the input size is 1 GB, where RR and 

MC have very close values. MM is doing very well since it manages to achieve very 

low average memory requirements, about 15% and 20% of the demands of RR and 

MC. For this scenario MM has the lowest value in for maximum memory, especially 

when the input size is 0.1 GB; the maximum value is very small comparing to RR and 

MC. In a balanced butterfly scenario we have small non-blocking parts (sequence of 

non-blocking operators) and many blocking operators. This forces the system to 

gather all its input data temporarily many times. This state helps MM to avoid high 

memory peaks. 
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Figure 5.40 Average memory for a balanced butterfly scenario (Sel = 0.5) 
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Figure 5.41 Maximum memory for a balanced butterfly scenario (Sel = 0.5) 

5.8.2. Effect of workflow selectivity 

 

In the case of the balanced butterfly workflow the execution time all of our scheduling 

policies' increases linearly (Figure 5.42) as the workflow selectivity increases. Again 

MC is a little better than RR, while MM is much more time consuming.  
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Figure 5.42 Execution time for a balanced butterfly scenario (SF = 0.5) 

In Figure 5.43 and in Figure 5.44 we depict the average and maximum memory 

requirements for our scheduling policies. RR and MC are close, but MC outperforms 

RR when the selectivity is below 1.0. MM behaves very well since it requires only the 

20% of average memory of MC and RR. Also, for the balanced butterfly workflow 

MM has the best maximum memory requirements. 
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Figure 5.43 Average memory for a balanced butterfly scenario (SF = 0.5) 
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Figure 5.44 Maximum memory for a balanced butterfly scenario (SF = 0.5) 

5.9. Tree workflow 

 

The experiments we present in this section show the behavior of a tree scenario 

(Figure 5.9) with various input sizes as well with the workflow's total selectivity.  

5.9.1. Effect of input size 

 

In Figure 5.45 we see the time performance of the three scheduling policies as we 

vary the input size. Again RR and MC are very close, but MC is slightly better. MM 

needs more time to complete the execution of the scenario.  
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Figure 5.45 Execution time for a tree scenario (Sel = 0.5) 

In Figure 5.46 and in Figure 5.47 we see the memory requirements for the tree 

scenario. RR and MC are close, but MC is performing slightly better. MM has about 

the 20-25% of RR's and MC's average memory requirements. In the case of the 

maximum memory metric all policies are close except for MC, where in the case of 

0.1GB has a small maximum value, since the input is small (therefore the execution 

time was also small), there were no peaks during the execution.  
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Figure 5.46 Average memory for a tree scenario (Sel = 0.5) 
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Figure 5.47 Maximum memory for a tree scenario (Sel = 0.5) 

5.9.2. Effect of workflow selectivity 

 

In Figure 5.48 we can observe the time each scheduling policy needs to complete the 

execution of a tree scenario. All three scheduling policies behave as expected. The 

execution time increases slowly and RR is slightly worse than MC. Finally MM needs 

more time to finish. 
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Figure 5.48 Execution time for a tree scenario (SF = 0.5) 
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In Figure 5.49 and in Figure 5.50 we can observe the memory requirements of each 

scheduling policy. RR and MC have the biggest requirements in average memory. 

MM has smaller average memory requirements. All scheduling policies have similar 

maximum memory requirements except for the case of (sel=1.0) where MM has a 

distinguishably bigger maximum value. 
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Figure 5.49 Average memory for a tree scenario (SF = 0.5) 
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Figure 5.50 Maximum memory for a tree scenario (SF = 0.5) 
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5.10. Fork workflow 

 

The experiments we present in this section show the behavior of a fork scenario 

(Figure 5.10) with various input sizes as well with the workflow's total selectivity.  

5.10.1. Effect of input size 

 

In Figure 5.51 we see the time performance of the three scheduling policies as we 

vary the input size. Again RR and MC are very close, but MC is a little better. MM 

needs much more time to complete the execution of the scenario. 
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Figure 5.51 Execution time for a fork scenario (Sel = 0.5) 

In Figure 5.52 and in Figure 5.53 we see our scheduling policies' memory 

requirements. Concerning average memory, RR performs worse than the other two, 

while MC is a little better than RR. MM has a very low average here. For maximum 

memory MC is performing much better than RR and MM, which have similar values. 

Again when the input is small MM has the smallest maximum memory. 
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Figure 5.52 Average memory for a fork scenario (Sel = 0.5) 
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 Figure 5.53 Maximum memory for a fork scenario (Sel = 0.5) 

5.10.2. Effect of workflow selectivity 

 

In Figure 5.54 we see how our scheduling policies perform in the case of a fork 

scenario. For all scheduling policies the execution time increases linearly. 
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Figure 5.54 Execution time for a fork scenario (SF = 0.5) 

In Figure 5.55 and in Figure 5.56 we see the average and maximum memory 

requirements for a fork scenario. RR has the worst average memory requirements and 

MC is doing a little better than RR. MM though outperforms RR and MC, having 

very low average values. All three scheduling policies have similar values for 

maximum memory. 
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Figure 5.55 Average memory for a fork scenario (SF = 0.5) 
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Figure 5.56 Maximum memory for a fork scenario (SF = 0.5) 

5.11. Observations deduced from experiments 

 

At first we conducted some preface experiments so that we can tune and optimize 

each scheduling policy. For RR and MC we found a good set of values that optimize 

the executions' time. For MM we chose asset of values that could give a good 

execution time as well as distinctly smaller memory requirements. 

 

From our experiments we come to the following conclusions: 

− RR: This simple scheduling policy does not perform well; in all cases was 

worse than MC, in terms of execution time and memory requirements, both 

average and maximum.  

− MC: This scheduling policy outperforms the other two for the execution time 

metric. Also, in most cases it has better maximum and average memory 

requirements.  

− MM: This scheduling policy manages to outperform the other two, when it 

comes to average memory requirements. MM could be used in an environment 

where more than one concurrent operations run, and being memory efficient is 

important, but memory can be available at peak times.  
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In general, our three scheduling algorithms increment their execution time linearly as 

the selectivity of a workflow or the input size increases. As the selectivity or the input 

size increase, MC outperforms RR. Also, regardless of the input size or the selectivity 

the average memory requirements are not affected. Also, when the execution time of a 

scenario is relatively small, MM might not have any peaks at all.  
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CHAPTER 6. CONCLUSIONS AND FUTURE 

WORK 

6.1 Conclusions 

6.2 Future Work 

6.1. Conclusions 

 

In this thesis we designed an ETL engine, powerful enough to support all possible 

data operations. The architecture of our engine is simple. Every logical-level activity 

that participates in an ETL scenario is implemented in more than one physical-level 

operators. Every operator participating in the scenario's execution is performed by 

using a single thread. The threads communicate and exchange data, through the data 

structures they share. Disk usage is necessary only by blocking operators for saving 

data temporarily, e.g., when they need to sort their input and the size is too big to fit in 

the system's main memory. The progress of the execution is controlled by a monitor 

thread. The monitor thread performs the execution's scheduling. At every scheduling 

step the monitor activates the operator the scheduler suggests.  

 

In our system we have implemented three scheduling policies. Round Robin (RR), 

Minimum Cost (MC) and Minimum Memory (MM). RR is a simple and fair 

scheduling policy, since it schedules the operators according to a pre-defined order. 

MC schedules the operator that has many data to process, achieving better execution 

times. Finally MM is a time slot-based scheduling policy, and at every scheduling 

step it selects the operator that consumes many data. We consider that an operator 

consumes data when it process and rejects data.  
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Finally, a set of fiducial ETL workflows is proposed as an experimental methodology, 

lacking related methodology in the research area of ETL tools. This well organized set 

contains a broad variety of workflows covering many cases of ETL scenarios. 

6.2. Future Work 

 

There are many issues that are of interest for future research. The execution engine, 

though well designed, can be expanded to a more mature architecture. Also, there are 

a few issues concerning our scheduling policies. 

− Α set of well designed software modules (page-based database algorithms) 

could be embedded so that the common operations supported by the engine 

can function in a more efficient manner. For example, our external sorter is 

one issue, since the engine has no control over it and any unexpected behavior 

cannot be handled (e.g., a possible crash would require the sorting to start 

over). The adaptation of optimizing techniques is also a good opportunity for 

future research.  

− Α more specialized design for the physical-level object would offer the ability 

to embed easily more activity types. The design of binary and unary templates 

is a first step towards this direction.  

− One important issue in this engine is the communication cost we experienced 

while conducting our experiments. A lighter and faster messaging system 

could benefit all scheduling policies.  

− Α failure handling system could also be designed, so that in case of a system 

failure (e.g., process termination), the engine could recover and continue the 

scenario's execution.  

− MM can be improved so that we will not experience any peaks in maximum 

memory requirements. 

− Also a different approach could be used, based on the idea that some operators 

need more memory to keep their input tuples, while the sum of all queues 

capacity will remain fixed.  

− Finally, adapting our scheduling policies in order to schedule not only one 

operator at each scheduling step is of interest, since multi-core computers are 
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very common in our days. This could be achieved by having the scheduler to 

propose two operators instead of one, the one that seems most appropriate and 

the operator that is the second most appropriate. 
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APPENDIX 

Table A.1 Experiments from the Aurora Scheduler [CCR+03] 

Description Y-axis X-axis 

Comparison between the thread-per-box and the 

Aurora architecture. The thread-per-box is not 

scalable. 

Average Latency 

(seconds) 

Number of 

Boxes 

The second experiment shows that two level 

scheduling (application at a time) is more 

efficient that simple scheduling (box at a time), 

specifically using the MC strategy. 

Average Latency 

(seconds) 

System load 

(input queue 

capacity) 

Comparison between MC and ML strategies on 

average latency for different processing costs in 

each operator box. 

Average Latency 

(seconds) 

Cost per box 

(msec) 

Comparison of MC, ML and MM strategies for 

memory consumption during the run of a 

superbox. 

Memory required 

(normalized on 

MM) 

Time (sec) 

This experiment shows how tuple batching can 

reduce overhead in bursty inputs. There are 

measures for three burst sizes, in each case there 

is less overhead when the train size is bigger 

Average overhead 

(tuples / sec) 
Train size 

A graph that shows the distribution of execution 

workloads with different scheduling tactics. The 

tactics compared are "tuple at a time", "tuple 

train" and "superbox" 

Relative overhead 

(percentage values 

from 0 to 100) 

The three 

scheduling 

tactics 
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Table A.2 Experiments from the Chain Scheduler [BBDM03] 

Description Y-axis X-axis 

A simple comparison of FIFO and greedy 

scheduling. The greedy algorithm performs much 

better. 

  

Comparison of all scheduling algorithm in a 

single stream with two operators and a real data 

set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with two operators and a synthetic 

data set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with four operators and a real data 

set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with four operators and a synthetic 

data set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with two operators and a synthetic 

data set and s> 1. 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with sliding-window join, three 

selections and a real data set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm in a 

single stream with sliding-window join, three 

selections and a synthetic data set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm with 

multiple queries and a real data set 

total queue size 

(Kbytes) 
Time (msec) 

Comparison of all scheduling algorithm with 

multiple queries and a synthetic data set 

total queue size 

(Kbytes) 
Time (msec) 
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Table A.3 Experiments from the X-Join Scheduler [UrFr01] 

Description Y-axis X-axis 

Shows how the scheduling algorithms behave 

when we schedule 4 streams with 16 input 

relations (lower is better) 

Time (sec) 
Size of final 

output (#tuples) 

Shows how the scheduling algorithms behave 

when we schedule 2 streams with 4 input relations 

(lower is better) 

Time (sec) 
Size of final 

output (#tuples) 

These results show the selective input and join 

processing behave, with each algorithm. Also they 

measure the simple case of ordered and unordered 

input data. Joined relations are of equal size. Here 

are the results after 5 seconds of execution. 

Percentage of final 

output 

Methods that are 

compared 

Here are the results after 25 seconds of execution. 

Joined relations are of equal size 

Percentage of final 

output 

Methods that are 

compared 

Here are the results after 5 seconds of execution. 

Joined relations are not of equal size. 

Percentage of final 

output 

Methods that are 

compared 

Here are the results after 25 seconds of execution. 

Joined relations are not of equal size. 

Percentage of final 

output 

Methods that are 

compared 
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