
Äéáêïìéó�Ýò êñõöÞò áðïèÞêåõóçò ìå äéá�Þñçóç�ïðéêü�ç�áò äåäïìÝíùí ãéá êá�áíåìçìÝíáóõó�Þìá�á áñ÷åßùí
Ç ÌÅÔÁ�ÔÕ×ÉÁÊÇ ÅÑ�ÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓõðïâÜëëå�áé ó�çíïñéóèåßóá áðü �ç �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò�ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò Åîå�áó�éêÞ Åðé�ñïðÞáðü �ç

ËáìðñéíÞ Êþíó�áùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ
ÌÅÔÁ�ÔÕ×ÉÁÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇÌÅ ÅÎÅÉÄÉÊÅÕÓÇÓÔÁ Õ�ÏËÏ�ÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁÖåâñïõÜñéïò 2009

Dediation
To my lovely family...

Aknowledgements
At this point, i would like to mention all those people that strongly supported me duringthe design and implementation of this work.I wish to thank my supervisor, Prof. Stergios Anastasiadis, for his signi�ant guidaneand preious advie throughout this researh. I am mostly grateful to my family thatontiguously enouraged and supported me. I would also like to thank the membersof the Systems Researh Group (SRG) at the University of Ioannina, for the perfetollaboration. Espeially, Andromahi Hatzieleftheriou and Giorgos Margaritis who werealways willing to disuss di�erent issues that helped me improve several hekpoints ofmy thesis.Finally, it should be noted that the work presented in this thesis was supported inpart by the projet Interreg IIIA Greee-Italy 2000-2006 Grant No I2101005.

Table of Contents
1 Introdution 11.1 Thesis sope . 11.2 Thesis outline . 32 Related Researh 52.1 Cahing in network �lesystems . 52.1.1 Cahing failities for distributed �lesystems 62.2 Storage alloation in related ahing systems 72.2.1 FS-Cahe . 72.2.2 Nahe . 92.2.3 Reent ahing systems . 112.2.4 Previous modi�ations made to the AFS Cahe Manager 122.3 Web Cahing Proxies . 122.3.1 Hummingbird �le system . 132.3.2 The BUDDY storage management method 162.3.3 File spae management algorithms 172.3.4 Methods to redue the disk head seek time 182.4 Summary . 193 Andrew File System 213.1 AFS: A Distributed File system . 223.1.1 Salable Arhiteture . 233.1.2 Client-server model . 243.1.3 The Cahe Manager . 253.2 Basi de�nitions . 26i

3.2.1 Cells . 263.2.2 Volumes . 273.2.3 Uniform Namespae . 273.3 Major strutures . 283.3.1 On-disk strutures . 293.3.2 In-memory strutures . 313.4 Storage management in AFS . 343.4.1 Cirular queues . 353.4.2 Mapping from a remote to a loal �le o�set 373.4.3 Alloating a new loal ahe �le to store remote data 374 Arhitetural De�nitions 394.1 Design issues . 394.1.1 Storage alloation . 414.1.2 Data Replaement . 444.2 Design goals . 444.3 Proposed arhiteture . 454.3.1 Storage management . 464.3.2 File Replaement . 474.4 Summary . 485 Implementation of Hades 505.1 Hades proxy server . 515.2 Cahe Files . 525.3 Bitmap List . 535.4 Mapping . 545.5 Alloation . 555.5.1 Data lustering based on the remote �le's identi�er 555.5.2 Data lustering based on the user's identi�er 565.6 Hashing . 575.6.1 Hash lists . 575.6.2 Searhing in hash lists . 595.7 Replaement . 59ii

5.8 A File Retrieval Example . 616 Experimental Evaluation 636.1 Environment . 636.2 Retrieval of Cahed Data . 646.3 Software Compilation . 676.4 Summary . 697 Conlusions - Future Work 707.1 Conlusions . 707.2 Future Work . 71

iii

List of Figures2.1 FS-Cahe arhiteture. 82.2 Nahe arhiteture blok diagram. 103.1 The AFS Cahe Manager. 253.2 The uniform namespae of Andrew File System. 283.3 The fahe struture . 293.4 The dahe struture . 313.5 The vahe struture . 323.6 The volume struture . 333.7 Hash tables used to loate data at the lient's disk ahe. 343.8 Major strutures of Andrew File System and their orrelation. 364.1 The basi arhiteture of a proxy server in a distributed �le system. . . . 404.2 Time to retrieve one large �le diretly from the loal �le system in om-parison to aessing it through OpenAFS from the loal disk or the remoteserver. 424.3 Time to retrieve numerous small �les diretly from the loal �le system inomparison to aessing them through OpenAFS from the loal disk or theremote server. 434.4 Proposed arhiteture . 465.1 The Hades system ombines a modi�ed OpenAFS lient with a user-levelNFS server . 515.2 The main struture of the modi�ed OpenAFS lient in Hades. 535.3 Using hash tables and hash lists to loate remote data at the proxy aheof Hades. 58iv

5.4 We prefer as vitims for replaement the least reently used loal �les ratherthan the remote ones. 606.1 We measure the �le aess throughput at the proxy server aross di�er-ent sizes of transferred �les. Consistently, Hades ahieves a substantialthroughput improvement with respet to OpenAFS that gets up to 80%.See text for explanation of the Par/Seq and Wm/Cd abbreviations. 656.2 At the proxy server, we measure the time to read multiple �les in parallelfrom the origin server (Remote), and in parallel (Parallel) or sequentially(Single) from the proxy disk ahe. The lateny to transfer eah �le blokto the proxy server is broken down into fething from the origin server,mapping to the loal �le, reading of the loal �le. In omparison to Ope-nAFS, Hades redues substantially the blok aess lateny up to 59%. . . 666.3 We build the Linux kernel on one (1) lient, four (4) lients, and four lientswith the origin 50ms away (4D). O refers to OpenAFS, N to NFS and H toHades. The proxy ahe is old before eah experiment that uses it. (a) Wemeasure the total number of reeived and transmitted bytes in the origin(S) and the proxy (P) server. (b) With old proxy ahe, the interventionof the proxy server inreases the ompilation time. For retrieved �les ofonly a few kilobytes eah, Hades only ahieves a modest redution from2315 to 2119 s (8.5%) in omparison to the original OpenAFS. 68

v

List of Tables2.1 Major ahing systems and their basi harateristis 20

vi

AbstratLamprini K. Konsta, MS, Computer Siene Department, University of Ioannina, Greee.February, 2009. Hades: Loality-aware Proxy Cahing for Distributed File Systems.Thesis Supervisor: Stergios V. Anastasiadis.Reent trends in business and researh ollaboration enourage seure data sharing overwide area networks with the minimal intervention from the end user. Alhough traditional�le transfer mehanisms have been used for seure data sharing over the last deades, theyfae the main disadvantage of getting the user to expliitly initiate the whole transfermehanism, whih bears signi�ant replia bookkeeping overhead to the user. As analternative, ahing proxies have been lately introdued to redue WAN lateny by ahingdata loser to the lient.In this thesis, we propose alternative storage management issues in ahing proxyservers for distributed �le systems, based on Andrew File System. We organize the re-quested data at the disks of the proxy server using loality-aware approahes. Addition-ally, we introdue improvements in the mapping mehanism from remote to loal dataand onsider ost-aware replaement methods. Thus, we sueed to improve existing per-formane of retrieving �les from proxy's disk ahe, espeially in the ase of onurrent�le aesses. In a prototype implementation that we developed, we experimentally om-pare alternative distributed �le systems as omponents of the proxy servers. Throughextensive measurements, we demonstrate throughput improvements at the proxy serverup to 80% in omparison to the disk-based ahe of Andrew File System.
vii

Åê�å�áìÝíç �åñßëçøçËáìðñéíÞ Êþíó�á �ïõ Êùíó�áí�ßíïõ êáé �çò �éáííïýëáò. MS, ÔìÞìá �ëçñïöïñéêÞò,�áíåðéó�Þìéï Éùáííßíùí, ÖåâñïõÜñéïò, 2009. Äéáêïìéó�Ýò êñõöÞò áðïèÞêåõóçò ìå äéá�Þñçóç�ïðéêü�ç�áò äåäïìÝíùí ãéá êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí.ÅðéâëÝðùí: Ó�Ýñãéïò Áíáó�áóéÜäçò.Ïé óýã÷ñïíåò áíÜãêåò åðé÷åéñçìá�éêÞò êáé åñåõíç�éêÞò óõíåñãáóßáò åíèáññýíïõí �çí áõ�ïìá-�ïðïéçìÝíç êáé áóöáëÞ êïéíï÷ñçóßá äåäïìÝíùí ðÜíù áðü äßê�õá åõñåßáò ðåñéï÷Þò ìååëÜ÷éó�ç åìðëïêÞ �ùí �åëéêþí ÷ñçó�þí. Ç áðáß�çóç áðü �ïí �åëéêü ÷ñÞó�ç íá áí�éãñÜöåé�á äåäïìÝíá êïí�Ü ó�ïõò õðïëïãéó�éêïýò ðüñïõò ìå �çí åê�Ýëåóç åí�ïëþí ìå�áöïñÜòáñ÷åßùí äçìéïõñãåß óçìáí�éêÞ åðéâÜñõíóç êáé êáèõó�åñÞóåéò. Óõíåðþò, èá Þ�áí ðñï�éìü�åñçç ýðáñîç åíüò äéáêïìéó�Þ êñõöÞò áðïèÞêåõóçò ðïõ èá áí�éãñÜöåé áõ�üìá�á �á áðïìáêñõóìÝíáäåäïìÝíá êáé èá áðïêñýð�åé �éò êáèõó�åñÞóåéò ìå�áöïñÜò êá�Ü �éò åðáíáëç�éêÝò ÷ñÞóåéò�ùí äåäïìÝíùí. Ç äçìéïõñãßá äéáêïìéó�þí êñõöÞò áðïèÞêåõóçò ãéá êá�áíåìçìÝíá óõó�Þìá�ááñ÷åßùí åëêýåé áñêå�Ü �ï åíäéáöÝñïí �çò åñåõíç�éêÞò êïéíü�ç�áò �á �åëåõ�áßá ÷ñüíéá,êõñßùò ùò ðñïò �çí êá�åýèõíóç �çò äéáóýíäåóçò õðáñ÷üí�ùí óõó�çìÜ�ùí áñ÷åßùí ìå�ïðéêÜ óõó�Þìá�á áñ÷åßùí ìå �åëéêü óêïðü �çí áðïäï�éêü�åñç áðïèÞêåõóç áðïìáêñõóìÝíùíäåäïìÝíùí.Ôá ðåñéóóü�åñá óõó�Þìá�á áñ÷åßùí ó÷åäéÜó�çêáí áñ÷éêÜ ãéá íá åîõðçñå�Þóïõí �éòáðïèçêåõ�éêÝò áíÜãêåò ÷ñçó�þí óå �ïðéêÜ óõó�Þìá�á áñ÷åßùí. ¸�óé, ç êñõöÞ áðïèÞêåõóçáðü �ç ìåñéÜ �ïõ ÷ñÞó�ç ðåñéïñéæü�áí ìüíï ó�çí êýñéá ìíÞìç, êáèéó�þí�áò ìç áíáãêáßá�çí êñõöÞ áðïèÞêåõóç ó�ï óêëçñü �ïõ äßóêï. Ìéá ÷áñáê�çñéó�éêÞ åîáßñåóç áðï�åëåß�ï Andrew File System, Ýíá êá�áíåìçìÝíï óýó�çìá áñ÷åßùí ðïõ äßíåé �ç äõíá�ü�ç�á�çò ðñïóùñéíÞò áðïèÞêåõóçò äåäïìÝíùí ó�ï �ïðéêü óýó�çìá �ïõ ðåëÜ�ç, ãéá ìåãáëý�åñçäéáèåóéìü�ç�á óå êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí.Ôï Andrew File System Ý÷åé ÷ñçóéìïðïéçèåß åðé�õ÷þò �éò �åëåõ�áßåò äýï äåêáå�ßåòviii

êõñßùò óå óõó�Þìá�á ãåíéêïý óêïðïý. Ôá äåäïìÝíá ìå�áöÝñïí�áé áðü �ïõò áðïìáêñõóìÝíïõòåîõðçñå�ç�Ýò áíá �ìÞìá�á ó�áèåñïý ìåãÝèïõò êáé áðïèçêåýïí�áé ó�çí êñõöÞ ìíÞìç ó�ïäßóêï �ïõ ðåëÜ�ç. ÊÜèå áðïìáêñõóìÝíï �ìÞìá äåäïìÝíùí áðïèçêåýå�áé óå Ýíá ìüíï�ïðéêü áñ÷åßï. Ùó�üóï, óå óýã÷ñïíá åðéó�çìïíéêÜ ðåñéâÜëëïí�á åßíáé ðïëý óõ÷íÞ çýðáñîç ðïëëáðëþí áé�Þóåùí ãéá ðïëý ìéêñÜ Þ áñêå�Ü ìåãÜëá áðïìáêñõóìÝíá áñ÷åßá.Ôü�å, ç õðÜñ÷ïõóá ðñïóÝããéóç �ïõ Andrew File System ìðïñåß íá ìçí åßíáé áñêå�Üáðïäï�éêÞ, êõñßùò ùò ðñïò �ç äéá÷åßñéóç äåäïìÝíùí êáé ìå�áäåäïìÝíùí.Ó�çí ðáñïýóá åñãáóßá, äéåñåõíïýìå èÝìá�á áðïèÞêåõóçò äåäïìÝíùí óå åíäéÜìåóïõòäéáêïìéó�Ýò ãéá êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí. Áí�éãñÜöïõìå áõ�ïìÜ�ùò �á äåäïìÝíáðïõ æç�ïýí�áé áðü �ïí áñ÷éêü äéáêïìéó�Þ áñ÷åßùí ó�ïõò äßóêïõò �ïõ åíäéÜìåóïõ äéáêïìéó�ÞêñõöÞò áðïèÞêåõóçò. Åêåß ïñãáíþíïõìå �á äåäïìÝíá ìå �å÷íéêÝò äéá�Þñçóçò �çò �ïðéêü�ç�áò.ÅðéðëÝïí, åéóÜãïõìå âåë�éþóåéò ó�ï ìç÷áíéóìü áðåéêüíéóçò �ùí áðïìáêñõóìÝíùí äåäïìÝíùí�ïðéêÜ êáé ëáìâÜíïõìå õðüøç èÝìá�á áí�éêá�Üó�áóçò �ùí äåäïìÝíùí. Óå ìéá ðñù�ü�õðçõëïðïßçóç ðïõ áíáð�ýîáìå, åîå�Üæïõìå �éò ðáñáðÜíù âåë�éþóåéò ìå åíáëëáê�éêÜ óõó�Þìá�ááñ÷åßùí ùò ìÝñç �ïõ åíäéÜìåóïõ äéáêïìéó�Þ. Ìå åê�å�áìÝíåò ìå�ñÞóåéò ðïõ ðñáãìá�ïðïéÞóáìåäéáðéó�þíïõìå âåë�ßùóç ó�ç ñõèìáðüäïóç �ïõ åíäéÜìåóïõ äéáêïìéó�Þ ìÝ÷ñé 80% óå óýãêñéóçìå �ï Andrew File System.

ix

Chapter 1
Introdution

1.1 Thesis sope1.2 Thesis outline
1.1 Thesis sopeReent trends in business and researh ollaboration enourage seure data sharing overwide-area networks, aiming at ahieving the best possible performane with the minimalintervention from the end user. Traditional �le transfer mehanisms suh as FTP havelong be used for seure data and �le transferring. However, suh mehanisms fae themain disadvantage of getting the user to expliitly initiate the whole transfer mehanism,whih bears signi�ant replia bookkeeping overhead to the user and only makes datausable after an entire �le has been fully repliated loally. Thus, ahing proxies havebeen lately introdued as an alternative approah, to redue WAN lateny by ahingdata loser to the lient. Suh proxies automatially repliate datasets and hide transferdelays during the repetitive use of data. Nahe is a representative example of a ahingproxy server for NFSv4, designed to retain a onsistent ahe of remote �le servers ina distributed environment in order to improve �le aesses performane by rediretingrequests that were initially intended for the �le server to the intermediate ahing proxy[4℄. In fat, the design of ahing proxies for distributed �lesystems is mainly attrating1

researh interest in the diretion of getting existing �lesystems interoperable with loal �lesystems for persistent ahing purposes. Therefore, we explore basi storage managementissues in ahing proxy servers for distributed �le systems. Our main goal is to point outthe need for eÆient storage management in ahing proxies so that we make performaneof aessing ahed data from proxies omparable to or better than diret aesses fromloal �le system.Traditional distributed �lesystems were originally designed for serving the storageneeds of users within the same organization at a single geographial site. The assumeduse of a loal-area network limited lient-side ahing to main memory and made unne-essary the orresponding disk-based ahing. However, wide area networks may introduelatenies that may be orders of magnitudes greater than diret disk aesses. Suh longlatenies enourage the design of a lient-side disk ahe for e�etive storage manage-ment. Andrew File System and its desendants make a notable exeption as they providethe apability to temporarily store data at the loal �le system of the lient mahine forimproved salability and availability in distributed environments [14℄.Although Andrew an ahieve e�etive storage management in distributed environ-ments, it makes the assumption that the lient mahines from individual users are pow-erful enough to relieve entralized servers from omputations. Nevertheless, this is notthe ase when building ahing proxies for data sharing among large numbers of lientswithin an organization. Therefore, it is essential to build an e�etive ahing proxy thatwould redue server's load while it is not based on the above assumption.In our proposed arhiteture, we investigate alternative loality-aware storage man-agement methods to improve Andrew's eÆieny and performane. Although Andrewhas been widely suessful for over two deades in general �le system use, it does not o�era proxy ahing servie as it limits ahing to the loal �le system. Initially, it reates alarge number of individual loal �les at the lient and subsequently uses eah of them tostore an individual hunk requested from the server. Remote data is repliated in hunksof a on�gurable �xed size. However, in modern sienti� and business environments it isommon to have numerous small �les or enormously large ones. Then, the existing AFSapproah of having a separate loal �le per hunk might not be the best possible in termsof data aess or metadata management eÆieny.The most widely used method in reent published literature is to map eah remote �le2

to a loal �le in the ahing proxy [4,16℄. It o�ers a onsistent view of remote data as itappears at the remote server. On the other hand, web ahing proxies an store multipleremote �les per loal ahe �le. They manage loal data in a way that serves their designobjetives and have already been broadly used for over a deade in ontent distributionnetworks. Originally, opies of web pages requested by users were repliated on proxyservers lose to the web browsers over traditional loal �le systems. However, relatedexperimentation in published literature demonstrated several performane de�ieniesrelated to metadata management of multiple small �les, frequent reation and deletionof �les, exessive disk head movement from poor lustering of jointly used data or aessoverheads from multiple small writes. Subsequently, ustomized �le systems emerged thatomplementarily addressed the above issues through speial internal arhitetures and newaess interfaes. On the ontrary, we laim that apart from o�ering a onsistent view ofthe data as they appear at the origin server, the ahing proxy should be free to manageits loal data in whatever way serves its design objetives better. Therefore, we proposeinnovative storage management methods, ombining existing approahes to manage eithermultiple remote small or large �les. Furthermore, we onsider data replaement issues toenhane existing performane.In the present thesis, we propose alternative storage management issues in proxyservers for distributed �le systems, based on Andrew File System. We organize the re-quested data at the disks of the proxy server using loality-aware approahes. Addition-ally, we introdue improvements in the mapping mehanism from remote to loal data andonsider ost-aware replaement methods. Thus, we sueed to improve existing perfor-mane of retrieving �les from proxy's disk ahe, espeially in the ase of onurrent �leaesses. In a prototype implementation that we developed, we experimentally omparealternative distributed �le systems as omponents of the proxy servers. Through exten-sive measurements, we demonstrate throughput improvements at the proxy server up to80% in omparison to the disk-based ahe of a ommonly used distributed �le system.
1.2 Thesis outlineThe remainder of this thesis is organized as follows:3

In hapter 2, a majority of ahing failities for distributed �le systems is presented.We review previous related searh in the area of ahing systems for distributed �lesys-tems. Initially, lient-server arhitetures where ahing is done primarily at the lient'sdisk ahe are examined. Then, we present ahing proxies that relieve entralized �le-servers and improve performane by ahing data loser to the lient. The storage al-loation methods that eah system uses are examined. Furthermore, some pre-existingmodi�ations made to the AFS Cahe Manager are displayed. Finally, we depit how webahing proxies manage their storage spae to improve performane.In hapter 3, an overview of Andrew File System is presented. The storage manage-ment that AFS uses is desribed as well as the basi AFS strutures that we modi�ed inHades implementation.In hapter 4, we present the basi design issues that emerge in proxy servers and ledto our prototype implementation. We detet the design ineÆienies of existing ahingsystems, inluding Andrew File System. Furthemore, we de�ne the design goals of ourstudy along with our arhitetural deisions, emphasizing on storage spae managementand �le replaement. Finally, we present an overview of the proposed arhiteture.In hapter 5, we introdue the design and implementation of the Hades proxy server.Hades is a loality-aware ahing proxy for distributed �le systems that was implementedas a ombination of a modi�ed OpenAFS lient and a regular user-level NFS server. Then,the modi�ations made to the OpenAFS lient are thoroughly examined, emphasizing onthe storage management and replaement methods.In hapter 6, we evaluate our implemetation aross a mirobenhmark and an atualappliation. We make extensive experimental evaluation on the parallel retrieval of re-mote �les and the reuse of ahed data aross multiple lients. Aording to our alloationalgorithm, data are lustered in proxy ahe in suh a way that leads to throughput im-provements at the proxy server up to 80% in omparison to the disk ahe that OpenAFSuses.Finally, in hapter 7 we outline our onlusions and future work.
4

Chapter 2
Related Researh

2.1 Cahing in network �lesystems2.2 Storage alloation in related ahing systems2.3 Web Cahing Proxies2.4 SummaryIn this setion, we desribe approahes that have been previously proposed in orderto ahieve high performane in distributing �le systems when we need to aess dataavailable from remote �le servers. Furthermore, we review previous researh related withdisk-based ahing as well as ahing proxies that lie between lients and �leservers. Next,we examine storage alloation methods that have already been proposed to e�etivelymanage data that are ahed in the loal disk ahes. Finally, we present reent researhrelated to data and metadata management in web ahing proxies.
2.1 Cahing in network �lesystemsCahing has been a well-aepted solution for e�etive �le storage during the last deades.Most popular distributed �lesystems use a ahe to gain performane improvement. Espe-ially for network �lesystems in a distributed environment, lient-side performane heavilydepends on the number of RPC alls that are made to the servers. It is worth mentioning5

that in network-based �lesystems, the latenies that are introdued by the network areorders of magnitudes greater than diret disk aess. Thus, in order to improve perfor-mane one should try to minimize these latenies, using a lient-side ahe or one thatwould simply ahe data loser to the user, so as to redue the need to go to the network.The basi idea is the following: when a lient needs to operate on a �le of a remote �leserver, it should make an RPC all to the server only the �rst time he aesses the �leand then hold a valid opy of it in the appropriate ahe, so as to make future operationson the �le aim at its opy in the ahe. As a result, network traÆ and server load areredued. Furthermore, disonneted operation is better supported beause even thougha server loses onnetion with the network, the lient may still have opies of the server's�les in its ahe. Generally, for both network and non-network based �lesystems, aheson a faster medium improve performane as they redue the amount of traÆ to the slowermedium.2.1.1 Cahing failities for distributed �lesystemsA variety of ahing failities for �lesystems has been introdued lately. Most distributed�lesystems rely on a lient-server arhiteture where ahing is done primarily at thelient. Network �lesystems like Andrew File System, DFS, Network File system (NFS) andCoda, support lient-side ahing. NFS enfores only weak-ahe onsisteny. However,in some later NFS versions, like NFSv4, the Sprite ahe onsisteny protools were usedto improve ahe onsisteny by using server allbaks. Although NFS is primarily used inLANs, Andrew is better used for �le-sharing in WANs. It supports lient-side �le ahingand ahe onsisteny through allbaks. What is more, there exist some kernel failities,like FS-Cahe, that an be used by network �lesystems to take advantage of persistentloal storage to ahe data and metadata. FS-Cahe uses CaheFS as its major ahingsoure for storing and retrieving data.Exept from lient-side ahing, there have been introdued ahing proxies who liebetween loal lients and remote �leservers. In wide area networks, a ahing proxy thatwould ahe data loser to the lients is preferrable as it redues the need to aquiredata from the remote �leserver. Suh proxies intend to enable a onsistent ahe of the�leservers' �les so as to generally improve lient performane by bringing the data loser6

to the lient. Nahe is a representative example of suh systems.Apart from ahing proxies, eÆient researh has been done in the area of web ahingproxies. Individual ahe �les or general-purpose �le systems are used to store one or moreURLs that are required by web lients and fethed from several web servers.
2.2 Storage alloation in related ahing systemsA large number of disk-ahe storage management methods have been introdued in reentpublished literature. In general, the overall time to aess ahed data from a ahingproxy may vary aording to the way data are plaed in the proxy's disk ahe. Earlysystems opied entire �les from the �le server to the lient. This approah, originally usedin Andrew, was problemati beause it inurred high transfer lateny and large resourerequirements at the lient. In later approahes, the designers adopted partial ahingapproahes. One possible solution manages the remote �les in �xed-size hunks that itopies and stores onto orresponding individual loal �les at the lient. That is the urrentalloation tehnique of Andrew File System.However, in more reent prototypes the system dynamially repliates the diretoryand �le naming struture from the origin server to the ahe. It also transfers the �leontents on demand in pages of on�gurable size. Loally, the system uses a typial �lesystem or a raw disk partition to temporarily store the data of the ahe. FS-Cahe is arepresentative example that was reently introdued by Howells to be used by a network�le system to ahe data on loal disks [5℄.2.2.1 FS-CaheFS-Cahe is a kernel faility that an be used by network �le systems to ahieve e�etivedata ahing. It improves lient performane and redues network traÆ as it avoidsaessing the network to aquire remote server �les. It gives the lient the opportunityto ahe loally �les that it fethes from remote �le servers. It is primarily designedfor use with network �le systems, suh as AFS, NFS and CIFS. It an support di�erenttypes of ahe that have di�erent trade-o�s while it puts little overhead to the lient�le system. There are two types of ahe: CaheFS and CaheFiles. They are used for7

Figure 2.1: FS-Cahe arhiteture.storing and retrieving data. FS-Cahe forwards the requests that are issued from thenetwork �lesystems to the available data ahes (�gure 2.1). Both ahes an be addedor removed at any time. CaheFS uses a blok devie as a ahe. The blok devie anbe mounted using the mount system all to make the ahe available. If the ahe isnot needed any longer, it an be deativated using the umount system all. CaheFilesdefers from CaheFS in that it does not use a blok devie as its ahe but a diretoryin an already mounted �lesystem. CaheFiles is usually used when CaheFS annot beused, probably beause we are not able to aquire a blok devie. It uses the VFS/VM�lesystem interfaes to get another �lesystem (suh as Ext3) to do the neessary I/O onits behalf.Client �lesystems an use FS-Cahe to obtain ahing servies. FS-Cahe is a thinlayer in the kernel that direts the above requests for ahing servies to the availableahes. Client �le systems need not know the type of the attahed ahes as they getin ontat with them through FS-Cahe. If two di�erent �le systems issue requests forthe same �le, FS-Cahe will fae every request individually. The ahe will �nally havetwo di�erent opies of the same �le, whih is known as ahe aliasing. It is possible thatthe system will not have a ahe at one time, or a remote �le may be larger than theahe size limit. Thus, FS-Cahe tries to ensure that a remote �le will be available foruse before it downloads and stores it in the ahe. When a network �le system requestsa �le, FS-Cahe serves data out of the ahe in pages. To aess �les in the ahe, it isneessary to use sequenes of keys, where keys are arbitrary sequenes of binary data. Tosearh for a �le, one must examine the suessive keys that orrespond to indexes whih8

may lead to the required �le.A major harateristi of FS-Cahe is that it an support disonneted operation. Ifthe network omes unavailable, the network �le system will be able to ontinue aessingthe �les through the available ahes. When the network beomes available again, it ansynhronize them with the server in ase they were modi�ed while we were working of-ine. To ahieve disonneted operation, FS-Cahe provides three failities: reservations,pinning and auxiliary data. Reservations let the network �le system reserve a hunk ofthe ahe for a �le, so that the �le an be loaded or expanded up to the spei�ed limit.Pinning guarantees that �les would be available in the ahe even when working o�ine.When a �le is pinned in the ahe, it is sure that it would not be removed from it so asto free spae for other �les. Auxiliary data permits the network �le system to keep trakof a ertain amount of writebak ontrol information in the ahe.2.2.2 NahePrevious evaluations of systems using the FS-Cahe faility showed some performanelimitations due to double bu�ering aross the loal �le system and the lient of the network�le system. Therefore, Gulati et al. implemented the Nahe ahing proxy for the NFSv4[4℄. The proxy uses an NFSv4 lient to aess the remote server, an NFSv4 server toreexport the lient to the loal users, and CaheFS to ahe �les in persistent storage(�gure 2.2). However, in our proposed arhiteture we onsider AFS as an alternativebasis for building a proxy server. We modi�ed the AFS proxy server to improve readperformane of �les stored at the origin server.Nahe is a ahing proxy for NFSv4 designed to retain a onsistent ahe of remote �leservers in a distributed environment. It an be shared between multiple loal NFS lientswho wish to aess �les of a remote NFS �le server. The objetive is to ahe data loserto the lients so as to improve �le aesses performane by redireting requests that wereinitially intended for the �le server to the intermediate ahe proxy. The main idea is thefollowing: should a lient issue a request for a �le loated in a remote �le server, it must�rst searh if this �le exists in its own ahe and if not try to go to the network to aquireit. To avoid direting the request to the server whih may ause the server to overload,the lient direts the request to the intermediate ahe proxy. If the required �le exists in9

the ahe proxy, the lient fethes the data from it and stores them in its loal ahe tosatisfy future requests for this �le. If the requested �le does not exist in the ahe proxy,the proxy forwards the request to the NFS server.

Figure 2.2: Nahe arhiteture blok diagram.Thus, the ahe proxy operates both as a server for the NFS lients and as a lientfor the remote NFS server. Its goal is to ahe the remote data loser to the lients soas to redue network traÆ towards the server and improve the network latenies thatlients fae when they need to aess remote �les. The ahe proxy server lies betweenthe lients and the servers and is loated muh loser to the lients to redue frequentWAN aesses.The Proxy NFS lient is responsible for the ommuniation with the remote NFS serverso as to mount the server's �les. The proxy may mount either the root diretory or oneof its sub-diretories. Then, the Proxy NFS server exports these �les to the loal lients.Those two omponents ommuniate via the VFS layer. Nahe uses as its major ahe thesystem's bu�er ahe but CaheFS is also used to add persistene to the ahe. CaheFSis a ahing faility available for use with NFS. It an be used to enhane the performaneof a distributed �le system suh as NFS and uses a mounting protool whih presupposes10

that the ahe must manually be attahed to eah NFS mount after the mount has beenmade. CaheFS was originally designed for AFS but it an also be used by any otherdistributed �le system. Its main feature is that it an ahe any bak �le system on thefront (loal) �le system. In Nahe, CaheFS an be onsidered as an extension of thebu�er ahe that is loated on the disk, not in the memory. CaheFS does not maintainthe diretory struture of the soure �lesystem. Instead, �les are loated in ahe in theform of a database to make �le searh easier. A partition in a blok devie an be usedfor ahing and a loal mount point an be spei�ed for it to let any �le system (likeNFS) mount it and disover the available ahed �les. The data size that an be storedin CaheFS an vary from few �le pages to whole large �les.To be more spei�, there exist some speial lient and server kernel modules thatommuniate through an unmodi�ed VFS layer. When a lient needs to aess a remote�le, it sends an RPC request for it to the ahe proxy. The proxy has two types ofmodules: the server-side and the lient-side module. The request is reeived from theproxy's server-side module that forwards it to the proxy's lient-side module through aVFS interfae. If the �le does not exist in the ahe, the lient-side module forwards itto the remote server and stores the response to the lient-side bu�er ahe. As a result,suessive requests for the same �le, or part of it, an be satis�ed from the nearby proxyinstead of the remote �le server.2.2.3 Reent ahing systemsIn more reent prototypes, the system dynamially repliates the diretory and �le namingstruture from the origin server to the ahe. It also transfers the �le ontents on demandin pages of on�gurable size [5,16℄. Loally, the system uses a typial �le system or a rawdisk partition to temporarily store the data of the ahe. Sivathanu and Zadok proposedthe xCahefs framework that allows to persistently ahe the data from any slow �lesystem to a faster �le system [16℄. xCahefs o�ers a performane enhanement of 64%and 20% for normal read and read-write workload respetively over NFS. They use adiretory struture at the ahe as exat opy of the soure �le system, while we organizethe ahed data at the proxy in ways that improve storage loality.Matthews et al onsidered the dynami reorganization of the stored data in order to11

improve the read performane of the log-strutured �le system [8℄. In a di�erent work,Vongsathorn and Carson proposed a disk subsystem that adaptively orrets the disparitybetween expeted and atual aess pattern by reorganizing the disk data [18℄. Instead,in Hades we organize the remote data when �rst ahed at the proxy server disks by �leid and requesting user.2.2.4 Previous modi�ations made to the AFS Cahe ManagerStolarhuk uses several hints in order to improve the speed of the ommon ase of theAFS Cahe Manager [17℄. The AFS Cahe Manager fethes �les from the AFS �le server,and ahes them into a loal �le system. Given this model, users expet reads of loallyahed �les to perform at loal �le system rates. However, read performane of the AFSahed �les is half the read performane of the loal �le system. Stolarhuk examinesthe reasons for the large performane di�erene, and displays the modi�ations made toAFS so that reads of loally ahed �les perform within 10% of the performane of theloal �le system. After reduing the overheads of ahe onsisteny heks and �le-to-hunk mapping, aess of the AFS ahe beomes omparable to that of the loal �lesystem. Additionally, we onsider storage loality as an alternative diretion to improveperformane.
2.3 Web Cahing ProxiesA somewhat similar storage alloation problem showed up in web proxy servers. World-wide web proxies are widely used to allow web lients aess web pages that several webservers o�er, even behind �rewalls. The objetive is to improve user lateny and redueserver load as well as network traÆ, espeially in wide-area networks. Web proxies haveadopted the idea of data ahing to generally improve performane. They lie betweenweb lients and web servers. When a web lient issues a request for a web objet, theintermediate web proxy tries to satisfy it on behalf of the web server. If the requestedobjet relies in its ahe, the web proxy forwards it to the lient. Otherwise, it fethesthe objet from the appropriate server, stores it in its ahe and �nally forwards it to theinitial lient. 12

Although most web browsers ahe data in their loal disk or main memory, webahing proxies are onsidered to be more eÆient as they improve ahe hit rates. Theyuse large ahes to satisfy huge amounts of requests from a variety of web lients. In asea ahe �lls up, an eÆient ahe replaement algorithm is used to free enough spae forthe newly arrived requests. To further improve hit rate some ahes employ prefethingmethods based on the assumption that if a web page is requested, several related pagesare likely to be requested in the near future.In web ahing proxies, storage loality onerns an be handled by grouping �les andmetadata into lusters stored on onseutive bloks of disk. The lustering is based on thetemporal loality of the aess requests. Additionally, the web proxy server an treat large�les speially and transfer them diretly to the disk bypassing the memory ahe [15℄. Inorder to redue management overheads for small �les, the system may group the �les bysize and store them in a buddy organization. Thus, it eliminates �le spae fragmentationand redues onsiderably the overhead for �le reations and deletions. Aggregation of thewritten data in memory and subsequent appending to disk an provide additional writethroughput improvement [7℄. We now analytially present the reent approahes thatwere introdued with regard to the storage alloation problems in web ahing proxies.2.3.1 Hummingbird �le systemCahing web proxies usually use general-purpose �le systems to store web objets. Manywidely used web proxies, like Apahe and Squid, use the standard Unix �le system (UFS)for data ahing. However, several other �lesystems have been designed for the samepurpose.Hummingbird is a light-weight �lesystem library that web proxies an use to e�etivelystore web objets they reeive from web �le servers [15℄. It is made to run on top of araw disk partition. It manages a large memory ahe and has two major harateristis:1. it separates objet naming and storage loality through diret appliation-providedhints2. its lients are ompiled with a linked library interfae for memory sharing
13

Comparison with UFSIt has been proved that UFS has a number of features that ould limit �le system per-formane. On the ontrary, Hummingbird is able to simplify these features in order toimprove the overall performane. To be more spei�, UFS uses a hierarhial name spaewhih means that �les are separated aross diretories. A pathname translation may re-quire a long time interval, espeially beause a linear searh is exeuted to loate a �le inits diretory ontents. This is not needed by a web proxy that wishes to have a at namespae and the ability to speify storage loality. As opposed to UFS, Hummingbird usesa at name spae for its �les.Furthermore, UFS keeps �le meta-data on disks, in separate i-nodes. Synhronousdisk-writes are used to update �le-metadata and to preserve onsisteny. A web proxy doesnot need to exeute suh synhronous disk-writes. It an replae them with asynhronouswrites to improve performane. Hummingbird keeps most metadata in memory and, ifneeded, uses asynhronous writes to update the on disk �le metadata. It also storesahed �les in �xed-sized 8KB bloks.In order to minimize the disk head positioning time, Hummingbird attempts to store�le bloks ontiguously. To further improve performane, UFS tries to prefeth bloks fora �le that is sequentially aessed. For small �les, UFS attempts to minimize aess time.However, if a large number of �les are sequentially requested, large disk delays may beobserved due to the referene stream loality not orresponding with the on-disk layout.To overome this problem, UFS lets the user plae �les into diretories and attempts tostore the �les that a diretory ontains in ontiguous disk bloks alled ylinder groups.The main problem is that users have the responsibility to onstrut a hierarhy withdiretory loality that mathes future usage patterns. In ontrast, Hummingbird usesloality hints generated by the proxy to store olloated �les together. Clusters are theunit of disk aess in ontrary to disk bloks in UFS. They usually ontain �les and some�le metadata. Files are grouped into lusters, typially 32 or 64KB, aording to existingloality hints, so as to olloate �les together. Least reently used �les are examined. Ifthe least-reently-used �le has a list of olloated �les, then these �les are added to theluster if they are in main memory. When we read a luster from the disk, all olloated�les that are ontained in the luster are read.14

Furthermore, in traditional �le systems like UFS, the standard �lesystem interfaeopies data from kernel VM into the appliation's address spae. It also ahes �le bloksin its own bu�er ahe. However, many web proxies have their own appliation-level VMahes to ahieve more e�etive ahe management. If a �le is reently aessed fromthe disk, we may end up with two in-memory opies of this �le: one in the web proxyappliation-level ahe and another in the �lesystem's bu�er ahe. To eliminate theproblem of multiple bu�ering, we need a single uni�ed ahe. Hummingbird an solve theabove problem, as it is a �lesystem implemented by a library that aesses the raw diskpartition, so as to avoid ahing �le bloks in the �lesystem's bu�er ahe.Data and metadata managementHummingbird stores two types of objets in main memory, �les and lusters. It an thenmove lusters from main memory ahe to disk in order to free main memory spae. Datastored in the disk an be ategorized into four regions:1. lusters with the real data and metadata2. mappings of �les to lusters3. the hot luster log used to ahe frequently used lusters4. the delete log used to store small reords desribing intentional deletesTwo daemons are used to perform the maintenane ativities in Hummingbird: one torelaim main memory spae by writing �les into lusters and another one to relaim diskspae by deleting unused lusters. Hummingbird keeps three types of metadata: �lesystemmetadata, �le metadata and luster metadata. It uses two LRU lists to determine whih�les or lusters to move from main memory to disk, in order to free main memory spae.The one list is used for �les whih have not yet been paked into lusters and the other isused for lusters that are in memory. To retain �le metadata Hummingbird uses a hashtable that stores pointers to the �le information. If a �le is not ontained in any luster,Hummingbird must keep the �lename (usually its URL), �le-size and a list of �les thatshould be olloated with it, as the �le's metadata. When the �le is added to a luster,it keeps the luster ID and the �le referene ount for that �le. Similarly, a luster table15

is used to maintain information about eah luster in the disk, like a list of �les in theluster and the last time-aesed.2.3.2 The BUDDY storage management methodReent work has shown that disk I/O overhead is beoming an important bottlenek in theperformane of web proxies. Espeially, it has been found that the most important soureof overhead is assoiated with storing eah �le in a separate �le. Many web proxies fethURLs from web servers and store their ontents in separate �les in their ahe. When theahe �lls up, a ahe replaement algorithm is used to delete �les in order to store thenew �les. This means that a �le reation in the ahe is followed by a �le deletion. If weonsider that the median size of a ahed �le is 3Kbytes and �le system operations, suhas �le reation or �le deletion, may take up to 50 milliseonds, we onlude that the rateat whih a web server an store data to disk is 60 Kbytes/se, whih is muh lower thanthe data transfer rates that the urrent disks an sustain.To alleviate the above �le management ovehead Markatos et al. proposed a storagemanagement method alled BUDDY that stores several URLS per �le [7℄. They triedto improve overall performane by altering the way that URL ontents are stored on theweb proxies' ahe. BUDDY is a �le management algorithm that stores remote �les ofthe same size in the same ahed �le. All �les that are smaller than one blok are storedin one ahe �le, �les with size in between one and two bloks are stored in anotherseparate �le, until a prede�ned number of bloks is reahed. If a �le's size is larger thanthis upper bound, a separate ahe �le is used to store the ontents of it. When a new�le-write request is issued, BUDDY �rst identi�es the appropriate �le in the ahe tostore it, aording to its size. It then seeks for the �rst free slot in that �le to store theontents of the remote �le there. When a �le-delete request is issued, BUDDY �rst seeksfor the ahe �le that stores the �le's ontents, identi�es the appropriate slot in it andmarks it as free, so as to make it reusable for a future �le-write request. When a �le-readrequest is issued, BUDDY �nds the slot in the appropriate �le and reads its ontents.Thus, BUDDY manages to:1. Redue �le management overhead as remote �les do not need individual ahe �lesto store their ontents. One only needs to know the ahe �le and the slot in it that16

the remote �le's ontents are stored. Hene, only metadata for ahe �les need tobe managed rather than metadata for the remote �les' ontents.2. Eliminate �le spae fragmentation by plaing same-sized remote �les in one ahe�le. BUDDY fores eah remote �le to oupy onseutive bytes within a singleahe �le.2.3.3 File spae management algorithmsThe next largest soure of overhead, after the storage of eah remote �le to a single ahe�le, is the ost assoiated with �le write operations. This soure of overhead is due todisk latenies inurred by writing data sattered all over the disk. Although it redues�le management overhead, BUDDY does not improve write throughput to a onsiderableextent. Markatos et al. proposed two �le spae management algorithms to redue diskseek overhead and perform write operations at maximum speed.The STREAM �le spae management algorithmThe STREAM algorithm was inspired from log-strutured �le systems and intends toimprove write performane. The main idea is to store all remote �les in a single �leontiguously, if possible, in slots of 512 bytes long. STREAM tries to redue disk seekand rotational overhead by writing to the disk in a log-strutured mode. It tries to makeall writes in ontiguous bloks. If the disk is full, write operations ontinue from thebeginning of the disk.However, it was observed that STREAM did not write to disk at maximum through-put. This happened beause when a proess is writing few bloks of a page in a page thatis not in the main memory ahe, both disk-read and disk-write ours. The operatingsystem must �rst read the page from the disk, make all updates in the main memoryand then write the page to the disk. To redue this overhead, a paketized version ofSTREAM is used.The STREAM-PACKETIZER �le spae management algorithmSTREAM-PACKETIZER uses a paketized bu�er that is one page long and an reah anupper boundary. When a �le write request is issued, it is not sent to the �lesystem for17

writing to the disk but it is stored in the paketizer ontiguously with the previous �lerequests. File write requests are forwarded to the �lsesystem only when the paketizer�lls up or a request that is not ontiguous with the previous arrives.2.3.4 Methods to redue the disk head seek timeOne write operations proeed at maximum speed with the use of STREAM-based al-gorithms, read operations represent the next single largest soure of overhead. In fat,this overhead is due to head movements when read requests are issued. Markatos et al.proposed two methods that redue disk seek overhead assoiated with read operations [7℄.The LAZY-READ methodIf a �le read request is issued between �le write requests, the head has to move from thepoint it �nished writing data to the point it starts reading data, omplete the read requestand move bak to the previous point. To redue this extra head movement overhead, alazy-read approah was introdued, that is muh like STREAM-PACKETIZER. In LAZY-READ method, a �le read request is not initially forwarded to the appropriate data inthe disk. It is �rst stored into an intermediate bu�er, but not yet satis�ed. When thebu�er �lls up, the read requests it ontains are forwarded to the �le system, eah requestto the appropriate �le.The LAZY-READ-LOC methodIn the LAZY-READ method, if the loality of the stream is taken into aount, �leread overhead an be further redued. When a user requests an HTML page, he willprobably request all the embedded images as well. Suessive requests from a web lientmay not neessarily arrive ontiguously at the web proxy server beause it an supporta large number of lients issuing onurrent requests. Therefore, �les that orrespond toontiguous requests from a single lient may be stored in the magneti disk hundreds ofKbytes away from eah other. However, storing requests arriving from a single web serverto a single loality bu�er would improve performane to an extent. LAZY-READ-LOCis an algorithm that uses several loality bu�ers to put together requests from a singleweb server. Is main intention is to preserve loality of the URL stream. The idea is18

to store suessive requests from a web lient to nearby disk loations so as to re-aessthem quikly in ase the user issues a request for them in the future. If requests froma single web server are stored in a single loality bu�er, then URLs from the same webserver requested within a short time interval will probably be written in ontiguous �leloations. When a proxy fethes a URL from a web server, it tries to loate the bu�erthat stores requests from this server and saves the data in this bu�er. If suh a bu�erdoes not exist, an existing bu�er is hosen to write its data to the disk and it is thenreused to store the ontents of the requested URL.
2.4 SummaryIn distributed environments, a large amount of �les is usually shared between multipleilents and �leservers. Espeially in wide area networks, latenies introdued by thenetwork may be muh greater than diret disk aesses. Thus, the use of ahing systemsthat would ahe data loser to the lient is essential. A summary of the major ahingsystems that we studied and were previously desribed is presented in table 2.1. Hades isthe ahing proxy server that we implemented and propose in the present thesis. It mustbe noted that SSMWP stands for Seondary Storage Management for Web Proxies andrefers to the data and metadata management methods that were proposed by Markatoset al.Eah of the above ahing systems uses its own storage alloation method to e�etivelyplae data in the disk ahe. In reent prototypes, the diretory and �le naming struturesan dynamially be repliated from the origin server to the ahe. Data an be fethedand stored in ahe in �xed-size ahe �les, as part of the loal �lesystem or even at asingle raw partition. The basi goal of eah system is to manage data in ahe in suha way that the overall performane of aessing remote data is signi�anlty enhaned.Similar storage alloation problems showed up in the area of web ahing proxies, wheredata and metadata an be grouped into lusters stored on onseutive bloks of disk toimprove existing performane.In this thesis, we onsider Andrew File System as an alternative basis for building aproxy server for distributed �lesystems. We �rst investigate previous modi�ations made19

Table 2.1: Major ahing systems and their basi harateristisFS-Cahe Nahe Hummingbird SSMWP HadesUsed by network �lesystems » » »Supports multiple lients » » » »Supports disonneted operation »Cahing proxy » » » »Layer in the kernel »Double bu�ering » » » »Uses a at namespae »Clusters data and metadata » » »Uses a raw disk partition as its disk ahe »Multiple remote �les per loal ahe �le » »Writes to the disk in a log-strutured mode »Read or write requests kept in bu�ers »Uses loality bu�ers »Stores a �le in ontiguous bloks »Stores parts of the same �le in nearby loations »Clusters data based on �le or user id »to the AFS Cahe Manager that improve aess of the AFS ahe, by reduing aheonsisteny heks and �le-to-hunk mapping. However, we onsider storage loality asan alternative diretion to improve performane. At the same time, we aquire metadatamanagement and �le replaement methods that support the design of an eÆient ahingproxy server in wide area networks.

20

Chapter 3
Andrew File System

3.1 AFS: A Distributed File system3.2 Basi de�nitions3.3 Major strutures3.4 Storage management in AFSIn this hapter, we present the Andrew File System (AFS), a loation-transparentdistributed �lesystem that an support growth up to thousands of workstations whileproviding users, appliation programs and system administrators with the amenities of ashared �le system. We �rst examine Andrew's advantages over ontentional �lesystems,emphasizing on its salable arhiteture. Then, we de�ne the lient-server model thatAndrew uses as well as the set of modi�ations to the lient mahines' kernel that enableommuniations with the server proesses running on server mahines. Furthemore, weanalyze the way remote AFS �les are distributed in order to form a uniform namespae.Next, we de�ne the basi on-disk and memory-based data strutures of the OpenAFSsystem that we modi�ed in our prototype implementation. Finally, we examine how AFSmanages its storage spae and give a detailed desription of the steps that are followed inorder to store a remote AFS �le on the lient's disk ahe.21

3.1 AFS: A Distributed File systemAndrew File System is a distributed �le system that enables o-operating hosts (lientsand servers) to eÆiently share �le system resoures aross both loal area and wide areanetworks. It is similar to Sun Mirosystems Network File System (NFS). AFS is apableof saling to thousands of users. It enables users to share and aess all of the �les storedin a network of omputers as easily as they aess the �les stored on their loal mahines.The �le system is alled distributed for this exat reason: �les an reside on many di�erentmahines, but are available to users on every mahine.AFS is based on a distributed �le system originally developed at the InformationTehnology Center at Carnegie-Mellon University in 1984. The idea was to provide aampus-wide �le system for home diretories whih would run e�etively using a limitedbandwidth ampus bakbone network. In 1989, the Transar ompany was formed toevolve the Andrew File System into a ommerial produt. Transar renamed the produtfrom Andrew File System to AFS. In 1990, the Open Software Foundation (OSF) hoseAFS from Transar as the Distributed File System (DFS) omponent of its DistributedComputing Environment (DCE).AFS joins together the �le systems of multiple �le server mahines, making it as easyto aess �les stored on a remote �le server mahine as �les stored on the loal disk. Adistributed �le system, like AFS, has two main advantages over a onventional entralized�le system:� Inreased availability: A opy of a popular �le, suh as the binary for an appliationprogram, an be stored on many �le server mahines. An outage on a single mahineor even multiple mahines does not neessarily make the �le unavailable. Instead,user requests for the program are routed to aessible mahines. With a entralized�le system, the loss of the entral �le storage mahine e�etively shuts down theentire system.� Inreased eÆieny: In a distributed �le system, the work load is distributed overmany smaller �le server mahines that tend to be more fully utilized than the largerand usually more expensive �le storage mahine of a entralized �le system.AFS hides its distributed nature, so working with AFS �les seems like working with �les22

stored on the user's loal mahine, exept that we an aess many more �les. Whatis more, beause AFS relies on the power of users' lient mahines for omputation,inreasing the number of AFS users does not slow AFS performane appreiably, makingit a very eÆient omputing environment.3.1.1 Salable ArhitetureThere are three important problems in making a distributed �le system salable. If asingle server handles a large number of lients, we get both server ongestion and networkoverload. Inadequate lient-side ahing auses exessive network traÆ. Finally, if theserver performs the bulk of the proessing of all operations, it will beome overloadedsooner. A salable system, like AFS, must address all these issues orretly.In a standard AFS on�guration, lients provide omputational power, aess to the�les in AFS and other "general purpose" tools to the users seated at their onsoles. Thereare generally many more lient workstations than �le server mahines. AFS �le servermahines run a number of server proesses, so alled beause eah provides a distintspeialized servie: one handles �le requests, another traks �le loation, a third managesseurity, and so on.AFS ontrols network ongestion and server overload by segmenting the network intoa number of independent lusters. Unlike NFS and RFS, AFS uses dediated servers.Eah luster ontains a number of lients plus a server that holds the �les of interest tothose lients, suh as the user diretories of the owners of the lient workstations. Eahmahine is a server, a lient or both in rare situations. The above on�guration providesfastest aess to �les residing on the server, on the same network segment. Users anaess �les on any other server, but the performane will be slower. The network an bedynamially reon�gured to balane loads on servers and network segments.AFS uses aggressive ahing of �les, oupled with a stateful protool, to minimizenetwork traÆ. Clients ahe reently aessed �les on their loal disks. The originalAFS implemetation ahed only entire �les, whih was not pratial in ase we neededto aess a part of a very large remote �le. AFS 3.0 divides the �les into hunks of adefault size (usually 256KB), and ahes individual hunks separately. The AFS serverspartiipate atively in lient ahe management, by notifying lients whenever the ahed23

data beomes invalid. Finally, AFS redues server load by moving the burden of namelookups from the server to the lients. Clients ahe entire diretories and parse the�lenames themselves.3.1.2 Client-server modelAFS uses a lient-server model. In general, a server is a mahine, or a proess running ona mahine, that provides speialized servies to other mahines. A lient is a mahine orproess that makes use of a server's speialized servie during the ourse of its own work,whih is often of a more general nature than the server's. Some mahines at as bothlients and servers. In most ases, users work on a lient mahine, aessing �les storedon a �le server mahine. AFS divides the mahines on a network into two basi lasses,�le server mahines and lient mahines, and assigns di�erent tasks and responsibilitiesto eah.File server mahines store the �les in the distributed �le system, and a server proessrunning on the �le server mahine delivers and reeives �les. AFS �le server mahines runa number of server proesses. Eah proess has a speial funtion, suh as maintainingdatabases important to AFS administration, managing seurity or handling the disk spaewhere a set of �les resides. This modular design enables eah server proess to speializein one area, and thus perform more eÆiently. Not all AFS server mahines must run allof the server proesses. Some proesses run on only a few mahines beause the demandfor their servies is low. Other proesses run on only one mahine in order to at as asynhronization site.The other lass of mahines are the lient mahines, whih generally work diretlyfor users, providing omputational power and other general purpose tools. Clients alsoprovide users with aess to the �les stored on the �le server mahines. Clients do not runany speial proesses, but do use a modi�ed kernel that enables them to ommuniatewith the AFS server proesses running on the �le server mahines and to ahe �les. Thisolletion of kernel modi�ations is referred to as the Cahe Manager.
24

3.1.3 The Cahe ManagerThe Cahe Manager resides on lient mahines rather than on �le server mahines. It isnot tehnially a stand-alone proess, but rather a set of extensions or modi�ations in thelient mahine's kernel that enable ommuniation with the server proesses running onserver mahines. Its main duty is to translate �le requests, made by appliation programson lient mahine, into remote proedure alls to the File Server. The Cahe Manager�rst �nds out whih File Server urrently houses the requested �le. When the CaheManager reeives the requested �le, it ahes it before passing data on to the appliationprogram (�gure 3.1).The Cahe Manager also traks the state of �les in its ahe ompared to the versionat the File Server by storing the allbaks sent by the File Server. When the File Serverbreaks a allbak, indiating that a �le hanged, the Cahe Manager requests a opy ofthe new version before providing more data to appliation programs.

Figure 3.1: The AFS Cahe Manager.More spei�ally, the Cahe Manager helps us to aess all �les that remote AFS�leservers export when working on an AFS lient mahine. It plays fundamental roleat the lient kernel, beause it improves data transfer eÆieny through loal memoryand on-disk strutures. When we aess a �le, the Cahe Manager on our lient mahine25

requests the �le from the appropriate �le server mahine and ahes a opy of it on ourlient mahine's loal disk. Appliation programs on our lient mahine use the loal,ahed opy of the �le. This improves performane beause it is muh faster to use a loal�le than to send requests for �le data aross the network to the �le server mahine.Beause appliation programs use the ahed opy of a �le, any hanges we make arenot neessarily stored permanently to the entral version stored on the �le server mahineuntil the �le loses. At that point, the Cahe Manager writes our hanges bak to the�le server mahine, where they replae the orresponding parts of the existing �le. If a�le server mahine beomes inaessible, we an ontinue working with the loal, ahedopy of a �le fethed from that mahine, but we annot save our hanges permanentlyuntil the server mahine is again aessible.
3.2 Basi de�nitionsWe now identify ells and volumes in a distributed environmnent that supports multiplelients and �leservers. Files that AFS �leservers o�er are kept on volumes while lient andserver mahines belong to ells. Files that are grouped into volumes an be distributedaross many mahines and yet provide a single, uniform namespae that is independentof the storage loation.3.2.1 CellsA ell is a grouping of lient mahines and server mahines de�ned to belong to thesame organization. An AFS site is a grouping of one or more related ells. Eah ell'sadministrators determine how lient mahines are on�gured and how muh storage spaeis available to eah user. The organization orresponding to a ell an be a ompany, auniversity department, or any de�ned group of users. For example, the ells of the SystemsResearh Group at University of Ioannina form a single site.By onvention, the subdiretories of the /afs diretory are ellular �lespaes, eah ofwhih ontains subdiretories and �les that belong to a single ell. For example, diretoriesand �les relevant to the Systems Researh Group of University of Ioannina ell are storedin the subdiretory /afs/srg.s.uoi.gr While eah ell organizes and maintains its own26

�lespae, it an also onnet with the �lespae of other AFS ells. The result is a huge�lespae that enables �le sharing within and aross ells. The ell to whih a user's lientmahine belongs is alled his loal ell. All other ells in the AFS �lespae are termedforeign ells.3.2.2 VolumesA volume is a unit of disk spae that funtions like a ontainer for a set of related �les,keeping them all together on one partition. AFS groups �les into volumes, making itpossible to distribute �les aross many mahines and yet maintain a uniform namespae.For instane, a volume may ontain all �les belonging to a single user. Volumes an varyin size, but are smaller than a partition.Volumes are important to system administrators and users for several reasons. Theirsmall size makes them easy to move from one partition to another, or even betweenmahines. The system administrator an maintain maximum eÆieny by moving volumesto keep the load balaned evenly. In addition, volumes orrespond to diretories in the�lespae. Most ells store the ontents of eah user home diretory in a separate volume.Thus the omplete ontents of the diretory move together when the volume moves,making it easy for AFS to keep trak of where a �le is at a ertain time. Volume moves arereorded automatially, so users do not have to keep trak of �le loations. Volumes alsoallow �les that are muh larger than a single disk. Read-only volumes an be repliatedon several servers to inrease availability and performane. Finally, eah volume an beindividually baked up and restored.Eah volume has a unique volume identi�er. Additionally, eah �le is identi�ed by a�le identi�er �d, whih onsists of a volume ID, a vnode number and a vnode uniqui�er.Historially, AFS uses the term vnode to mean a Vie inode. Hene, the vnode numberis an index into the inode list of the volume. The uniqui�er is a generation number,inremented eah time the vnode is reused.3.2.3 Uniform NamespaeAFS provides a single uniform namespae that is independent of the storage loation(�gure 3.2). Although the AFS ell that a lient mahine belongs to is administratively27

Figure 3.2: The uniform namespae of Andrew File System.independent, we probably want to organize the loal olletion of �les in a way thatlients from other ells aess the information stored on it. AFS enables ells to ombinetheir loal �lespaes into a global �lespae, and does so in suh a way that �le aess istransparent. Users only need to know the pathname of the �le, whih looks the same inevery ell. Thus every user at every mahine sees the olletion of �les in the same way,meaning that AFS provides a unifore namespae.Eah lient workstation must have a loal disk that ontains a few loal �les, plus adiretory on whih it mounts the shared �le hierarhy. Conventionally, eah workstationmounts the shared tree on the same diretory (usually /afs). The loal �les inlude thesystem �les essential for minimal operation, plus some �les the user may want to keeploal for reasons of seurity or performane. Hene eah lient sees the same shared namespae, plus its own, unique, loal �les. The loal disk also ats as a ahe for reentlyaessed shared �les.
3.3 Major struturesWe now present the basi OpenAFS strutures along with their most signi�ant �elds. Inour prototype implementation, we modi�ed the majority of these strutures in order toimprove overall performane of ahed data.

28

3.3.1 On-disk struturesOpenAFS uses /var/ahe/openafs as its default ahing diretory. CaheItems, CellItemsand VolumeItems are inluded in this diretory. Depending on the total ahe size, anumber of Di subdiretories ontain Vi �les of default size whih are used to store wholeor piees of remote AFS �les. The above �les are stored in the disk of the OpenAFS lientand are updated periodially.CaheItems �leInitially, the Cahe Manager reates the binary-format �le alled CaheItems. This �leis used to store an index of all the ahe �les. It ontains the �d, o�set, and size of eah�le in the ahe, together with some additional information, whih enables the CaheManager to determine whih ahe �le ontains the AFS data that is requested by anappliation. It is strutured as an array, with one entry (about 40 bytes) and storedon the disk. Every entry in the CaheItems �le is a speial struture whih identi�es aspei� ahe �le (�gure 3.3). A remote AFS �le an be saved in one or more �les in thedisk ahe, depending on the �le size. When a �le in the disk ahe is hosen for storinga part of an AFS �le, an entry is added for it in the CaheItems �le reording the �dof the remote AFS �le, the relative hunk number and the inode of the ahe �le. If forexample a remote AFS �le is stored in �ve �les in the disk ahe, the strut fahe entryfor eah ahe �le will ontain the same �d (as they refer to the same �le), but di�erenthunk number(0 to 4).strut fahe {strut VenusFid fid; /* Fid for this file */afs_int32 modTime; /* last time this entry was modified */afs_hyper_t versionNo; /* Assoiated data version number */afs_int32 hunk; /* Relative hunk number */afs_inode_t inode; /* Unix inode for this hunk */afs_int32 hunkBytes; /* Num bytes in this hunk */har states; /* Has this hunk been modified? */
}; Figure 3.3: The fahe struture29

Vn �lesAFS organizes its storage spae into multiple hunk �les. The hunk �le is the datatransfer and store unit. A large number of �xed-side ahe �les (alled Vn �les) areinitially reated in the ahe, whih is loated in the lient's loal �lesystem. Eah ofthem is subsequently used to satisfy requests that are issued from user programs in thelient workspae. Vn �les are the atual data store units in the OpenAFS lient's diskahe. A Vn �le an store a hunk of ahed AFS data on a lient mahine that is using adisk ahe. When the Cahe Manager initializes itself, it veri�es that the loal disk ahediretory houses a number of Vn �les equal to the largest of the following: 100, one anda half times the result of dividing the ahe size by the hunk size (ahesize/hunksize *1.5) or the result of dividing the ahe size by 10 MB (10,240). Vn �les are stored in Disubdiretories of the /var/ahe/openafs diretory.Remote AFS �les are also separated into hunks. Eah remote data hunk is stored inone unique loal ahe �le. If a request for a large remote AFS �le is issued, this �le willbe stored in multiple loal ahe �les. In future read requests for this remote �le, all theloal ahe �les that keep the remote data hunks have to be disovered. We must open,read and lose eah of these ahe �les in order to aquire the desired data.Caheinfo �leAnother �le is used to de�ne on�guration parameters for the Cahe Manager and isloated in /et/openafs/. When OpenAFS lient is initialized, the aheinfo �le is reatedand initialized. The �le ontains a single line of ASCII text. Its format ismount :ahe:sizewhere mount is the loal disk diretory at whih the Cahe Manager mounts the AFSnamespae, ahe is the loal disk diretory to use as a ahe and size is the ahe sizeas a number of 1-kilobyte bloks. Larger ahes generally yield better performane, buta disk ahe must not exeed 95% of the spae available on the ahe partition. CaheManager usually mounts the AFS �lespae at /afs.The default ahe diretory is /var/ahe/openafs. However, we an modify Caheinfo�le to set another loal diretory as the ahe diretory. Ext2 and ext3 an be used asahe partitions unlike Reiserfs, XFS and tmpfs that annot be used. When an openafs-lient is initialized and started for the �rst time, ahe diretory is reated. Every time30

openafs-lient restarts, Cahe Manager only heks to see if some ahe �les are missingand so have to be reated or if some �les must be deleted. The default ahesize is 500001KB-bloks.VolumeItems �leThe VolumeItems �le reords the mapping between volume name and mount point foreah volume that the Cahe Manager has aessed sine its initialization on a lientmahine using a disk ahe. The Cahe Manager uses the mappings to respond orretlyto queries about the urrent working diretory, whih an ome from the operating systemor ommands suh as the UNIX pwd ommand. As it initializes, the Cahe Managerreates the binary-format VolumeItems �le in the loal disk ahe diretory, and it mustalways remain there.strut dahe {strut afs_q lruq; /* Free queue for in-memory images */strut afs_q dirty; /* Queue of dirty entries that need written */afs_rwlok_t lok; /* Protets validPos, some f */afs_rwlok_t tlok; /* Atomizes updates to refCount */afs_rwlok_t mflok; /* Atomizes aesses/updates to mflags */afs_size_t validPos; /* number of valid bytes during feth */afs_int32 index; /* The index in the CaheInfo file */short refCount; /* Assoiated referene ount. */har dflags; /* Data flags */har mflags; /* Meta flags */strut fahe f; /* disk image */
}; Figure 3.4: The dahe struture3.3.2 In-memory struturesDahe entriesTo make ahe �le indexing more eÆient, a portion of Cahe�les entries is kept in memory,in some speial strutures. Rather than keeping all of the Caheinfo data in memory orkeep searhing it on disk, the Cahe Manager keeps a subset of this data in memory, in31

strut vahe {strut vnode *v;strut afs_q vlruq; /* lru q next and prev */strut vahe *hnext; /* Hash next */strut afs_q vhashq; /* Hashed per-volume list */strut VenusFid fid;strut mstat{afs_size_t Length;afs_hyper_t DataVersion;afs_uint32 Date;afs_uint32 Owner;afs_uint32 Group;afs_uint16 Mode;afs_uint16 LinkCount;
} m;strut dahe *dhint;

}; Figure 3.5: The vahe struturedahe entries. The dCaheSize is the number of these entries that are kept in memory.The default dCaheSize is urrently half the number of ahe �les, but not less than 300and not more than 2000.Valid ahe �les are assoiated with dahe entries. A strut dahe is assoiated withan on-disk strut fahe, as it is shown in Figure 3.4. The dCaheSize setting shouldapproximate the size of the workstation's working set of hunks. If the hunk size is large,this is lose to the number of �les whose ontents (not metadata) are in the working set.If the hunk size is very small, then it's probably some multiple of that number.Vahe entriesAnother in-memory struture is used to store metadata about �les in AFS (�gure 3.5).Any time we need to get information about a �le that is not in the vahe, we must makean RPC to the remote �leserver. So, we don't want the vahe to be too small, sine thatwould result in lots of extra RPC's and onsiderable performane loss. The ideal vahesize approximates the size of the workstation's working set of AFS �les, inluding �les32

strut volume {/* One struture per volume, desribing where the volume is loated* and where its mount points are. */strut volume *next; /* Next volume in hash list. */afs_int32 ell; /* the ell in whih the volume resides */afs_int32 volume; /* This volume's ID number. */har *name; /* This volume's name, or 0 if unknown */strut server *serverHost[MAXHOSTS℄; /* servers serving this volume */strut VenusFid dotdot; /* dir to aess as .. */strut VenusFid mtpoint; /* The mount point for this volume. */afs_int32 rootVnode, rootUnique; /* Volume's root fid */
}; Figure 3.6: The volume struturefor whih we only are about metadata. Vahe entries ahe information obtained via�leserver RPC's and an be onsidered as speializations of strut vnodes. A strut vahekeeps a referene to a strut dahe, for the �rst hunk that stores AFS �le's information.We an then �nd subsequent hunks storing the AFS �le using spei� hash tables.Volume entriesThe volume ahe stores ahed information about volumes, inluding name-to-ID map-pings, whih volumes have RO lones, and where they are loated (�gure 3.6). The size ofthe volume ahe should approximate the size of the workstation's working set of volumes.Entries in this ahe are updated periodially every 2 hours.Data ahe hash tablesData ahe hash tables are used to loate the loal ahe �le that keeps a data hunkof a remote AFS �le. When an OpenAFS lient initializes itself, two hash tables arealloated in memory. The afs dhashTbl ontains the indexes of the loal ahe �les thatkeep remote data hunks, while the afs dnextTbl table is used to �nd the ahe �le indexinase of ollisions. When a request for a remote �le o�set is issued, the hunk numberthat the remote o�set belongs to is alulated, as it is shown in �gure 3.7. The remote33

�d and hunk are hashed to aquire an integer (e.g. i) that indiates the appropriateposition in afs dhashTbl. It is then heked whether the table's index (e.g. j) in positioni is the index of the ahe �le that keeps the searhed data. If not, afs dnextTbl must beheked. Therefore, it is heked whether the index in position j of afs dnextTbl (e.g. k)is the appropriate ahe �le index. If not, the index in position k of afs dnextTbl is nowheked an so on. If we annot loate the appropriate ahe �le index after searhing inthis hash hain, the �le has not been stored loally in ahe, so we must �nd a new freeahe �le to map and store the remote data.

Figure 3.7: Hash tables used to loate data at the lient's disk ahe.
3.4 Storage management in AFSIn this setion, we are going to desribe how AFS manages its storage spae. In followinghapters, the modi�ations made to the existing storage management methods will beexamined. These modi�ations led to a general performane improvement by reduingstorage spae fragmentation.When an OpenAFS lient initializes itself, it reates a disk ahe as part of the loal34

ext2/3 �lesystem. Eah ahe �le has maximum size equal to the hunk used for thetransfers from the server (typially 256KB). The total number of ahe �les is on�gurableand depends on the size of the disk ahe. Cahe �les appear as regular �les with namesVi, where the index i takes values between 0 and a maximum on�gurable value.As it has already ben mentioned in the previous setion, for eah loal ahe �le, thereexists a speial fahe struture on the CaheItems �le. These strutures assoiate eah Vi�le with a hunk of a remote �le. The �elds of fahe store metadata, suh as the identi�erof the remote �le, the o�set, the hunk size, and the inode of the loal �le. An array offahe strutures is stored persistently on disk. For improved indexing eÆieny, a subsetof the fahe strutures is also maintained in memory as a olletion of dahe strutures.Periodi updates keep the fahe ontents onsistent with their memory ounterparts. Infat, fahe strutures are the on-disk images of the orresponding dahe entries. Eahdahe entry desribes a Unix �le on the loal disk that is serving as a ahed opy of allor part of a remote AFS �le, as it is shown in �gure 3.8.3.4.1 Cirular queuesDahe entries live in three irular queues:1. freeDSlot2. freeDCList3. DLRUand move between them, depending on their urrent state. Strut dahe entries areinitially kept in a irular queue alled freeDSlot used for free dahe entries. A strutdahe entry is in the freeDSlot queue when not assoiated with a ahe slot (loal ahe�le). Otherwise, it is in the DLRU queue. Cahe entries in the DLRU queue are eitherassoiated with remote AFS �les, or they are in the freeDCList queue and are not as-soiated with any remote �le. Entries are moved from DLRU to freeDCList when theorresponding ahe �les need to be replaed (e.g. when ahe �lls up to 95%), and fromfreeDCList to DLRU when we need to aquire a dahe entry to store some new data inahe. 35

Figure 3.8: Major strutures of Andrew File System and their orrelation.When ahe �les are initially reated, afs InitCaheFile funtion is alled to initializethem. Given a �le name and inode, it sets up that �le to be an ative member in the AFSahe. In order to map disk ahe �les with their in-memory dahe entries, afs GetDSlotfuntion is alled, that takes the �rst entry from freeDSlot queue and adds it in front ofthe DLRU queue. Dahe entries in DLRU queue represent ative ahe �les that are usedto store remote data. Whenever a dahe entry is referened, it is moved in front of theDLRU queue so as to retain most reently used hunks in front of the queue. Furthermore,this dahe entry must be put in the freeDCList as it is not yet used to store any remotedata.
36

3.4.2 Mapping from a remote to a loal �le o�setWhenever we need to aess a remote AFS �le, we must �rst examine whether this �le isalready ahed. There exists an afs GetDCahe funtion that maps a remote byte o�setto the relative o�set in the loal ahe �le that keeps this remote data. This funtion takeas a parameter the pointer to the vahe entry for the remote �le and the byte positionin the �le desired, and returns the o�set within the hunk where the resident byte isloated. We �rst ompute the hunk number of the hunk ontaining the given byte.To examine whether this byte is already ahed, a thorough searh in afs dhashTbl andafs dnextTbl is done. These two hash tables ontain ahe �le indexes. If we know theahe �le index, we an �nd the orresponding dahe entry using afs GetDSlot funtion.We must then examine two �elds of the orresponding dahe struture, �d and hunk.If these �elds have the same value with the �le identi�er in the vahe entry as well asthe already omputed hunk number, we onlude that the given byte id already storedin ahe. We an reah ahe �le through dahe entry and the orresponding on-diskimage fahe entry (strut dahe has one strut fahe �eld).3.4.3 Alloating a new loal ahe �le to store remote dataIf none of the indexes found in hash tables indiates a ahe �le that keeps the searhedremote data, we onlude that the remote hunk is not ahed yet. Thus, we must �nd oneor more free ahe �les to store the �le's data. The queues that were previously desribedare used for this purpose. We must searh for available and free dahe entries, whihmeans that these entries must not be assoiated with any ahe �le or any remote hunkof data. If freeDCList is not empty, we hoose its �rst dahe entry to store remote data.The next step is to �ll in the newly-alloated dahe reord with the orret information(suh as �d or hunk) so as to desribe the remote data that is stored in it. We mustthen add the right information to the two hash hains, in order to be able to loate �lein future requests.To sum up, eah request to the o�set of a remote �le an be mapped quikly to theorresponding o�set of a loal �le at the lient through the afs dhashTbl hash table.The hash funtion translates the identi�er and the o�set of the remote �le to a hash tableposition. A separate auxiliary hash table hains the additional entries required in the ase37

of ollisions. If the requested hunk is not available loally, a new index entry is alloatedalong with a free loal �le to store the data transferred from the remote server.

38

Chapter 4
Arhitetural Definitions

4.1 Design issues4.2 Design goals4.3 Proposed arhiteture4.4 SummaryIn this hapter, we examine the basi design goals of our study and present a high-level desription of our proposed arhiteture. Initially, we introdue the major issues thatdetermine the reation of a suessful and e�etive ahing system. Then, we detet thedesign ineÆienies of existing ahing systems, inluding Andrew File System. We thende�ne the arhitetural deisions that were taken and led to our prototype implementation,emphasizing on storage spae management and �le replaement. Finally, we examinehow our eÆient sheme improves performane of multiple onurrent �le aesses indistributed environments.
4.1 Design issuesCahing has long been used to redue the operation ost of distributed �lesystems overwide-area networks. Some of the basi reasons why ahing proxies are hosen to supportseure data sharing over multiple lients in a wide-area network are desribed below:39

Figure 4.1: The basi arhiteture of a proxy server in a distributed �le system.� Remote �leservers are not able to satisfy a large amount of onurrent requests froma single lient as easily as the intermediate proxy servers an.� Multiple lients share physial storage resoures that leads to a total redution ofthe network bandwidth requirements.� In general, the total ost of aessing data from a remote server may be orders ofmagnitude greater than the orresponding ost of aessing them from an interme-diate proxy server in a loal area network, inluding the ost of leasing networkbandwidth with omparable transfer apaity.In the present study, we introdue a ahing proxy for distributed �lesystems that wishesto sustain seure data sharing in WANs, while it satis�es the above riteria. However,even though ahing proxies generally improve performane of aessing ahed data,intermediate layers in the path from the origin server to the lient may introdue per-formane bottleneks and redued parallelism in the data transfers. Consequently, it isquite probable that the pereived throughput will be lessened while the total time foraessing ahed data may be inreased. Hene, a variety of resoure management issueshad to be thoroughly examined while designing the new ahing proxy server. The basidesign issues that were initially investigated and led to our prototype implementation aredesribed in the following setions
40

4.1.1 Storage alloationIn network �lesystems, retrieving data exatly from a remote �leserver may ause lateniesthat are muh greater than the orresponding time to feth data from the loal �le systemor memory ahe. Furthemore, when developing ost-e�etive �lesystems it is preferableto keep ahed data on hard disks rather than the main memory of the proxy server.Thus, to improve retrieval time of ahed data, one should explore innovative storagemanagement methods in order to e�etively alloate the disk storage spae of the ahe.A variety of di�erent approahes to the storage alloation problem were reently intro-dued by the researh ommunity. The dominant strategy is to map eah remote �le to asingle loal ahe �le. However, early approahes opied entire �les from the remote �leserver to the lient, inreasing transfer lateny as well as the overall resoure requirementsat the lient. Later approahes attempted to overome these restritions by opying andstoring parts of remote �les in ahe, plaing eah �le part into a single loal ahe �le.In more reent prototypes, the system dynamially repliates the diretory and �le nam-ing struture from the origin server to the ahe, while transferring the �le ontents ondemand in pages of on�gurable size. What is more, on web ahing proxy servers �lesand metadata are grouped by size and stored into lusters on onseutive bloks of disk,to redue latenies and improve performane.However, we laim that the proxy server should not be restrited to o�er a onsistentview of the data as they appear at the remote server. A ahing proxy for distributed �lesystems should be free to manage its loal data in ways that serve its design objetivesbetter. Thus, the existing storage management methods should be enhaned in order toahieve� better mapping of remote data to the loal ahe �le, by organizing metadata in amore e�etive way� suessful lustering of remote data to the loal disk of the proxy, in order to improvethe existing performane of aessing ahed data.Experimental measurements to AFSIn order to examine Andrew's ahing eÆieny, we made a variety of experiments withits open-soure variant (OpenAFS v. 1.4.5) over Linux kernel v. 2.6.18. We measure41

Figure 4.2: Time to retrieve one large �le diretly from the loal �le system in omparisonto aessing it through OpenAFS from the loal disk or the remote server.the retrieval time from the disk ahe through OpenAFS as well as the orrespondingretrieval time from the loal �lesystem or the remote �leserver. As we see in Figures 4.2and 4.3, the retrieval time from the disk ahe through OpenAFS is is about 2-3 timesgreater for large �les and 1.3-1.8 times greater for numerous small �les in omparison tothe retrieval time from the loal �le system. On the other hand, fething �les from theremote server (another node on the same gigabit Ethernet swith in our experiments)osts about 150-200% the retrieval time from the OpenAFS disk ahe for large �les and250-550% for numerous small �les. Thus, we onluded that it is essential to explorealternative methods for the mapping of the remote data to loal �les in disk ahe to� redue storage spae and metadata management overhead� enhane the existing performane of retrieving ahed dataHowever, to examine whether Andrew an e�etively support multiple users, we measuredthe total time to satisfy onurrent requests issued by di�erent lients. For example, weissue onurrent requests for �ve di�erent remote �les of 1GB size. We observed that theseonurrent reads of �les stored at the remote server, require time that may be orders ofmagnitude greater than the orresponding time to read the same �les sequentially. Morespei�ally, it takes about 395 seonds to onurrently feth the remote �les and about366 seonds to read them in parallel from the disk ahe. Additionally, the time tosequentially read from disk ahe only one of these �les is about 70 seonds, while theorresponding time to read the same �le (in ase it was sequentially fethed and storedin ahe) is about 40 seonds. We investigated where eah portion of time is wasted and42

Figure 4.3: Time to retrieve numerous small �les diretly from the loal �le system inomparison to aessing them through OpenAFS from the loal disk or the remote server.onluded that inreased lateny ours due to disk spae fragmentation that is ausedby multiple onurrent reads. That was the basi motivation for our proposed methodthat hanges the way ahed data are plaed on proxy's hard disk.With the existing alloation algorithm of AFS, �les that are onurrently fethed fromremote servers may satter over the lient's disk ahe. In order to avoid �le fragmentation,we proposed a method that groups together parts of the same remote �le in onseutivebloks at the lient's disk. Consequently, we ahieved to redue �le retrieval times inall ases. Spei�ally, in the above �le retrieval example we redued feth time from theremote server from 395 seonds to 249 seonds and read time from the disk ahe from 366to 253 seonds while the time to sequentially read one �le was redued from 70 seondsto 40 seonds. Thus, even though the �les were onurrently stored in ahe, the time toread eah of them from the disk ahe remains the same as they had been sequentiallyfethed and stored in ahe.In fat, these are the basi reasons why we modi�ed the storage method that AndrewFile System uses. However, we aim not only at improving the Andrew's ahing eÆieny,but we also planned to o�er a new ahing servie that would support multiple onurrentlients in a distributed environment.
43

4.1.2 Data ReplaementA variety of data replaement methods have been lately introdued in the area of ahingsystems. They intend to remove the most appropriate �les from a full ahe, in orderto satisfy the inoming requests. We onsider data replaement a major issue for thor-ough investigation in proxy servers of distributed �le systems. Reent page replaementpoliies in loal storage hierarhies are able to simultaneously take into onsiderationmultiple aess features suh frequeny and reeny in order to maximize the hit ratioaross di�erent workloads. In spei�, the Adaptive Replaement Cahe (ARC) has beendesigned to automatially keep a balane between reeny and frequeny in an online andselftuning manner [9℄. In addition, a very interesting deterministi online algorithm forreplaing �les of spei� size and retrieval ost in a limited-size ahe has been proposed[19℄. However, in the area of web proxies, the most suessful poliies ombine reenywith �le size, popularity or fething lateny.Hene, the seletion of an e�etive data replaement algorithm to manage data whenthe proxy disk ahe �lls up is essential. In our proposed replaement algorithm we donot only take into aount two major fators, reeny and fething lateny, but we alsotry to maintain loality in the data that are already ahed on the proxy's hard disk.
4.2 Design goalsWith our proposed arhiteture we initially intended to improve the performane of a-essing data from the proxy's disk ahe. We wished to enhane Andrew's storage man-agement and replaement methods in order to support onurrent requests from multiplelients in distributed environments. As we have already mentioned in previous setions,the majority of the published literature on proxy ahing arhitetures typially refersto web environments with predominantly read-only workloads of limited reliability andonsisteny demands. In addittion, web proxies support aess granularity of entire �lesand have limited seurity onstraints due to the publi nature of the transferred data.Furthermore, the disk-based ahing system that is most ommonly used for �le systemshas mainly been developed to run diretly on personal workstations and is not optimizedto support onurrent requests from large numbers of users arriving from di�erent lient44

mahines. Thus, the design of a new proxy that would satisfy all the above riteria isessential. To be more spei�, an eÆient ahing proxy server for distributed �le systemsmust ahieve the below basi goals:� Adopt an innovative way of managing requested data on the proxy ahe to improvethe spatial storage loality.� Create lusters of �les in the proxy ahe that have ommon harateristis, in orderto improve �le aess performane by reduing{ storage spae fragmentation{ metadata management overhead� Relieve lients that issue a burst of onurrent requests in a wide area network, asthe proxy ahe is preferred to a disk-based ahing system to satisfy them.� Use existing standard protools to allow reuse of data available on the proxy serveraross di�erent lients.� Replae �les that have not been used reently with onsideration of their fethinglateny from the origin server.
4.3 Proposed arhitetureIn this setion we present a high-level desription of our ahing proxy server. First, thenew alloation algorithm is depited whih modi�es the way remote data are ahed onproxy's hard disk as well as the orresponding mapping between remote and ahed data.Then, we introdue the replaement algorithm that is used to e�etively manage data inthe proxy ahe when it �lls up. Our basi goal is to replae �les that are not frequentlyused while the time to feth them again from the remote server is relatively low. Atthe same time, we try to maintain loality in the ahed data to avoid fragmentation.Consequently, we prefer to replae some spae from the last ahe �le that has alreadybeen used for replaement.Below we present the blok diagram of the proposed arhiteture that expands AndrewFile System over two diretions: storage management and �le replaement.45

Figure 4.4: Proposed arhiteture4.3.1 Storage managementTo satisfy our basi goals, we must adopt a new loality-aware storage managementmethod that hanges the way remote data are stored in the proxy ahe. As laten-ies our due to fragmentation in the proxy ahe, we modi�ed the way remote �le partsare stored on the proxy's hard disk. The Andrew File System stores eah remote datapart as a separate �le on the disk ahe. Therefore, when multiple lients need to aessdi�erent remote �les, the data parts of eah �le may be sattered over the proxy' s diskahe. Consequently, the overall time to read eah �le from the disk ahe may be muhgreater than the orresponding time to read the same �le, in ase the initial requests wereissued sequentially.Thus, the hunks of a single remote �le must be grouped together in nearby loationsat the proxy ahe. In our system, we investigate the plaement of inoming data intoonseutive loations grouped by the identi�er of the remote �le to whih the data or-responds or the requesting user. More spei�ally, we organize the hunks as ontiguoussegments of a large �le in the proxy server, alled proxy �le. The hunks of the sameremote �le that we feth with a single request from the origin server are stored onse-46

utively at the same loal �le. In addition, we try to keep in nearby loations parts ofthe same �le that are not requested onurrently. We also store on the same loal �lethe data hunks fethed subsequently either from the same remote �le, or from di�erentremote �les by the same user. The proxy �le has size that is only limited by the loal �lesystem.Due to the spatial loality that we enfore at the proxy, we antiipate that �le aesstime will be improved as we manage to plae parts of the same �le in ontiguous loationson the hard disk. Furthermore, we manage to redue �le management overhead as loalahe �les an keep data from di�erent remote �les whereas separate parts of the sameremote �le an be stored on ontiguous loations inside a loal ahe �le. If we onlyknow the loal ahe �le and the oresponding slot where the remote �le's ontents arestored, we an retrieve the requested data. Hene, we do not need to manage metadata forremote �les' ontens. In ontrast, only metadata for loal ahe �les need to be managed.Additionally, data repetitively used by a user an be retrieved from the proxy ahe withlow aess overhead. However, the atual performane seen by the end user also dependson the behavior of the other users onurrently utilizing the same proxy server.Apart from improving spatial storage loality and the orresponding �le aess per-formane, our system also ahieves our third goal beause it no longer assumes that lientmahines are powerful enough to release entralized servers from omputations. Onea �le is fethed and stored in the proxy ahe, future requests that are issued by lientmahines for this �le will be satis�ed from the intermediate proxy. Consequently, thegeneral load at the servers will be signi�antly redued.4.3.2 File ReplaementThe deployment of �le system proxies is mainly motivated by the need to aess dataaross wide-area networks. As a result, di�erent �les requested from the proxy inur fethlatenies that vary aording to the atual loation of the origin server. In our replaementpoliy, we keep trak of the amount of time needed to feth eah hunk to the proxy. Weaim to preserve loality and avoid fragmentation during replaement. Thus, we treat asa single unit, alled hunk run, the group of hunks that are stored onseutively on theproxy and belong to the same remote �le. 47

For eah run, we keep trak of the average feth lateny aross its hunks. We ate-gorize the hunk runs as loal or remote depending on whether their average lateny islower from or exeeds a on�gurable threshold. At the next replaement operation, wepik as vitim the hunk run that is earliest in the LRU list and has the lowest averagelateny. As a result, we �rst favor the loal runs for replaement. If our searh for a loalrun fails in a pass along the LRU list, then we pik for replaement the remote run thathas been least reently used.
4.4 SummaryCahing has long been used to ahieve e�etive �le storage in distributed environments.Espeially in wide area networks, intermediate ahing proxies that ahe data loser tothe lients are frequently used. They intend to redue the total ost of aessing remotedata while they manage to signi�antly redue the load at the remote �leservers. However,to design an e�etive ahing proxy server a variety of resoure management issues haveto be thoroughly examined suh as storage spae management and �le replaement. Datamust be loated in the proxy's disk ahe in suh a way that the performane of aessingahed data is relatively high. Additionally, metadata must be organized in an e�etiveway to ahieve better mapping from remote to loal data. Furthemore, data must bereplaed in suh ways that redue the overall aess ost.AFS is a distributed �le system that has been suessfully used for over two deadesin general �le systems. It is better used in wide area networks where latenies introduedby the metwork enourage the design of a lient-side disk ahe for e�etive storagemanagement. In an e�ort to understand Andrew's ahing eÆieny, we experimentedwith its open-soure variant. We onluded that onurrent �le reads may ause storagespae fragmentation due to the existing �le management methods.In the present thesis, we propose a new ahing proxy server for distributed �lesystems,based on Andrew File System. We present a new �le management method that modi�esthe way remote data are kept in AFS lient's ahe, in order to satisfy onurrent requestsand improve overall performane. However, AFS does not o�er a ahing proxy serveras it limits ahing to the loal �lesystem. In the design we propose, we aim not only48

at improving Andrew's ahing eÆieny but we plan to o�er a new ahing servieto support multiple nurrent lients in a distributed �le system. Finally, we proposeinnovative �le replaement methods that enhane the existing replaement methods ofAndrew File System. Thus, we manage to preserve loality and avoid fragmentationbased on the following idea: we replae �les that have not been used for a long time andan be aessed quikly in future requests.

49

Chapter 5
Implementation of Hades

5.1 Hades proxy server5.2 Cahe Files5.3 Bitmap List5.4 Mapping5.5 Alloation5.6 Hashing5.7 Replaement5.8 A File Retrieval ExampleIn this hapter, we present the basi modi�ations made to the OpenAFS lient in ourimplementation of the Hades proxy server. The new loality-aware alloation algorithmis introdued, that groups together either remote data with the same �le identi�er or �lesrequested by the same user in a distributed environment. As a result, the performane ofaessing data from the proxy's disk ahe is signi�antly improved, espeially in ases ofmultiple onurrent requests from di�erent users. Finally, we display the extensions madeto the existing replaement algorithm that wish to improve performane while preservingloality and avoiding fragmentation in the proxy ahe.50

Figure 5.1: The Hades system ombines a modi�ed OpenAFS lient with a user-level NFSserver5.1 Hades proxy serverWe implemented the Hades proxy server as a ombination of a modi�ed OpenAFS lientand a regular user-level NFS server as shown in Figure 5.1. Regular OpenAFS �le serversexport multiple �les that an be aessed from di�erent onurrent OpenAFS lients.Hene, we modi�ed appropriately OpenAFS lient to allow Hades aess suh remote�les. Hades an initially aess remote �les through a modi�ed OpenAFS lient, andre-export the aessible remote �les through a regular NFS server. Consequently, Hadesats as a lient and a server at the same time. Finally, lient mahines use a normal NFSlient to avoid aessing remote �les from the remote �le server. Users issue requests thatare better and more eÆiently satis�ed from the intermediate Hades proxy server.One of our main design goals was to explore alternative methods for the mappingof the remote data to loal ahe �les, in order to improve the existing �le retrievalperformane. Thus, we proposed and implemented a method that modi�es the existingmapping tehniques as well as the way that remote �les are stored in the loal disk ofthe OpenAFS lient. We keep remote �les in onseutive o�sets in eah loal �le atthe proxy ahe. What is more, we retain di�erent parts of the same remote �le innearby disk loations. Our intention is to redue storage spae fragmentation as well asthe orresponding disk aess overhead. In addition, we redue metadata managementoverhead as for eah remote �le we have to manage only one and not multiple loal ahe�les.To ahieve our design goals we expanded the OpenAFS lient along the following threediretions: 51

1. We prealloate multiple large loal �les and do our own spae management for eahof them.2. We expand the mapping struture of eah loal �le to store multiple hunks thatbelong to di�erent remote �les.3. We keep low the average aess ost by replaing loally ahed hunks aordingto their aess reeny and fething lateny.Below, we explain in more detail our implementation along eah of the above diretions.
5.2 Cahe FilesA number of prealloated �xed-size ahe �les are initially reated in the proxy' s ahe.The maximum size of eah loal �le is only limited by the settings of the loal �le systemat the proxy as well as the needs of the lients' appliations. A small number of largeahe �les is usually needed. We onsider as parameters: the number and the size of theloal ahe �les as well as the number of the di�erent remote AFS �les that an be storedin eah loal ahe �le along with their maximum size. We use a separate bitmap tomanage the storage spae of eah �le and we all aheblok the respetive unit of storagealloation. Caheblok is a parameter of our system that an be on�gured aordingto our needs. The default aheblok size is 4KB. The size of hunks that we transferbetween the proxy and the origin server is typially a multiple of the aheblok size.When a lient issues a request for a part or an entire AFS �le1. a onnetion with the remote �leserver will be established2. the data will be fethed from the remote server to the proxy's kernel memory inparts of default hunksize (usually 256KB)3. a ahe �le will be hosen4. the data will be stored in the loal ahe �le in parts of usually 4KB sizeTo hoose the right loal ahe �le for the remote data, we searh for the requested numberof onseutive ahebloks starting from the loal �le that was used more reently.52

Figure 5.2: The main struture of the modi�ed OpenAFS lient in Hades.5.3 Bitmap ListA list ontaining speial bitmap strutures relative with the loal ahe �les is retained inthe proxy's kernel memory. These strutures are inserted in the bitmap list when initiallyreated. Eah suh bitmap onsists of k bits, representing the k bloks of eah loal ahe�le, where k = Filesize / aheblok. Thus, for eah loal ahe �le we an �nd whihbloks are free to store remote data. We try to store remote �les in onseutive ahe �leo�sets, as appliations request them, to maintain loality and avoid spae fragmentation.To ahieve this, we must searh for onseutive spae in one loal ahe �le to store therequested data as a whole. We must note that bitmap aess is atomi. Two di�erentproesses are not able to searh onurrently for free spae in the same loal ahe �le.For an empty ahe, the data initially requested will be stored in the �rst ahe �le atthe bitmap list that has enough free spae to store the entire request. Proesses anonly aess atomially the bitmap list to reserve bits. We then map remote data to theorresponding loal ahe �le and store the fethed hunks at it.
53

5.4 MappingTo ahieve one of our basi goals and retain parts of the same �le in nearby disk loations,we had to expand the vahe struture. Thus, for eah remote �le ahed at the proxy,we added pointers to the bitmap and respetive dahe strutures of the loal ahe �lesthat keep parts of it. In more details, bmap is the orresponding bitmap pointer used tosearh and alloate free bloks in order to store the requested remote data, while lhunkis the orresponding dahe pointer. If this is the �rst time that a request for this �leis issued, dahe and bitmap pointers are NULL. Eah time remote �le parts are fethedand stored in ahe, the above pointers are updated to point at the right loal ahe �le.Additionally, we added other �elds that inlude the loal �le o�set where the request isstored, the initial hunk number and the total size of the requested data. To be morepreise, StartO�s is the loal ahe �le o�set where the remote data is stored. Aftersearhing in the bitmap list, we ompute StartO�s byte by multiplying the �rst free bit(�rst bit with value 0) in the bitmap with the aheblok parameter. Every remote AFS�le is divided into one or multiple data hunks, eah of whom has a unique hunk numberbetween 0 and a maximum value depending of the �le's size. Similarly, InitChunk is thenumber of the �rst hunk of the requested data, used to ompute the initial loal �le o�setwhere eah remote hunk will be stored. For example, if we issue a request for a remote�le of size 1MB, the remote data will be fethed from the remote server in four hunks of256KB. The initial hunk number is 0 and the initial o�set of eah hunk is omputed bythe maro AFS COMPUTEINITOFFSET as:InitialO�s=AFS COMPUTEINITOFFSET(StartO�s,(hunk - InitChunk));where #de�ne AFS COMPUTEINITOFFSET(A,B) (A + (B* afs OtherCSize)),afs OtherCSize is equal to hunksize, as this is de�ned by the system.Finally, we added the �eld size to represent the initial size of eah �le request. This isessential as we must know beforehand the total number of bits we have to alloate fromthe bitmap to store the requested data.The in-memory dahe strutures as well as their orresponding on-disk images, areusually used to map suessfully remote �le hunks to loal ahe �les. Hene, we ex-panded these strutures to support the Hades implementation beause it is di�erent fromthe OpenAFS implementation in the way remote data is mapped and stored in loal ahe54

�les. Eah loal ahe �le may be used to keep di�erent parts of remote �les in ontraryto the OpenAFS implementation where eah loal ahe �le keeps only a unique hunk ofa remote AFS �le. Consequently, we expanded the dahe struture of eah loal �le tomaintain an array of pointers to fahe strutures of remote �les. The basi �eld we addedto the dahe strutures is strut fahe *R�les, to assoiate a loal ahe �le with allthe remote �les that store hunks there. This is a departure from the original OpenAFSimplementation, where eah loal �le ould only store one hunk of a single remote �leand only needed one fahe pointer. Further more, we expanded the orresponding fahestrutures to assoiate eah on-disk image with the hunks of remote �les that are storedin it. In eah fahe struture that belongs to the above array, we maintain an array ofhunk desriptors alled hunkT, to loate all the hunks of remote �les that have beenstored in the respetive loal ahe �le. In suh desriptors we keep information aboutthe orresponding hunk of remote data, inluding the hunk number, the hunk's totalsize as well as the hunk's starting and ending o�set at the loal ahe �le.
5.5 Alloation5.5.1 Data lustering based on the remote �le's identi�erAs we have already pointed out, our main intention is to maintain the requested data inonseutive byte o�sets. Assuming temporal loality, we argue that if a remote data partis requested one, it is possible enough that a future request for a onseutive part of thesame �le will be issued. Thus, we aim at keeping parts of the same remote �le in nearbyloations in the proxy's disk ahe, in order to minimize the disk aess/fragmentationoverhead that may our when a future read request for this remote �le will be issued. Ifwe reeive a request for part of a remote �le, we must �rst identify if this data is alreadyahed. We an use the dahe and fahe strutures along with the hash tables to mapthe identi�er and the hunk of the remote �le to the loal �le and the orresponding o�setwhere it is stored.If our searh fails, the requested part is not loally ahed and we have to reservethe needed number of hunks at the �rst loal �le (starting from the last used) that has55

enough onseutive spae available. The alloation is done aording to our alloationalgorithm that was previously desribed. We must �rst hek whether another �le's partis already ahed. If so, we examine whether there is enough free spae to store remotedata in this last loal �le so as to keep these two data parts in nearby loations. If thisloal ahe �le does not have enough onseutive free spae, we keep searhing in thesubsequent loal ahe �le. If none of the loal ahe �les satis�es our riteria, we mustfree some spae in the disk ahe aording to our replaement algorithm. On the otherhand, if this is the �rst time we reeive a request for a remote �le, we searh for enoughfree spae starting from the loal ahe �le that was last used. If we have not freed anyspae in the disk ahe, we hoose the �rst loal ahe �le in the bitmap list to store thenew data. Otherwise, we selet the last �le where an existing data part was replaed bya new �le request. In both ases, we searh for a loal ahe �le that has free spae tostore the remote data onseutively and in total.When we have �nally hosen the loal ahe �le to store the remote hunks, we mustproperly update the orresponding bitmap struture along with the dahe and fahestrutures to keep trak of the remote hunks that will be ahed. We must then omputethe starting and ending o�set of eah hunk and update the appropriate �elds in the arrayof hunk desriptors in the orresponding fahe struture. Then, the remote data hunkswill be fethed and stored loally in ahebloks. It must be pointed out that writes tothe same loal �le are implemented atomially.5.5.2 Data lustering based on the user's identi�erIn order to improve read performane of ahed data requested by the same user, weintrodued a new riterion in our alloation algorithm. We keep in mind the id of theuser making the request in addition to the remote �le's id, in order to keep in the proxyahe lustered the data of di�erent �les requested by the same user. We must notie thatin the original OpenAFS implementation, a speial struture is kept for eah ative userin a linked list maintaining all users issuing requests for remote �les. When we reeive arequest for a remote �le, we must �rstly identify the orresponding user. We then hekif this user has already issued another remote �le request. Thus, we added to the abovestruture a pointer bmap to the bitmap of the loal �le where the user ahed data more56

reently. During a request, if the user attempts to ahe data for the �rst time, thebitmap pointer is null and we only luster data based on the identi�er of the remote �le.Otherwise, we examine two ases1. It is the �rst time that a part of this remote �le is requested. In suh ases, we takeinto aount the user's id riterion and searh for free spae in the loal �le wherethe user last ahed data. If we don't �nd suÆiently large spae to �t the requestthere, we ontinue the searh in the subsequent loal �le.2. Data of this �le are already ahed. In suh aes, we searh for free spae aordingto the �rst �le id riterion, as we aim at keeping parts of the same �le in nearbyloations at the proxy's disk ahe.In both ases, when the loal ahe �le to keep remote data is �nally seleted, we updatethe orresponding �elds of the struture kept for the user and the vahe struture, tosatisfy future requests issued by the same user.
5.6 HashingTo map a remote byte o�set to the orresponding loal ahe �le o�set, we must followthe following steps:1. Find the hunk number of the remote AFS �le for the given byte o�set.2. Compute the relative o�set of the given byte o�set into this hunk.3. Disover the loal ahe �le where this hunk is stored. In this ase, mapping isimplemented through searh in the appropriate strutures.4. Find the o�set within the loal ahe �le where the resident byte is loated.5.6.1 Hash listsOur implementation di�ers from the original OpenAFS implementation in the way thesearh is implemented in step 3. In the mehanism that we use to map remote hunksto loal �le o�sets, we use a variation of the hash table used in the original OpenAFS.57

We should note that in our implementation the spae of eah loal �le is partitionedaross the di�erent hunks of multiple remote �les. This was not the ase in the originalimplementation of OpenAFS, where eah loal �le ould only store a unique remote hunk.Therefore, our system hashes di�erent hunks to the same entry of the afs dhashTblhash table. In order to address the need to map di�erent hunks to the same loal�le, we remove the auxiliary afs dnextTbl table that was previously implementing anopen addressing sheme for ollisions. Instead, we implement hashing with haining afterattahing a linked list to eah entry of the hash table, as it is shown in �gure 5.3.

Figure 5.3: Using hash tables and hash lists to loate remote data at the proxy ahe ofHades.We introdued hash lists as in our implementationmultiple remote �les an be stored inone loal ahe �le in ontrary to the original openAFS implementation. If we maintainedhash tables, it ould be possible to fae the following problem: for two di�erent remote�les that are ahed in the same loal ahe �le with index i, the orresponding indexwould appear multiple times in the o�set i of the hash table or in the orrespondinghash hains. Consequently, the searh in the hash tables might not be aomplishedsuessfully. However, using hash lists instead of hash hains means that every loal ahe�le index i would appear only one in eah linked list, even if there exist two di�erent58

remote �les that have been ahed in this �le. Hene, the total size of eah linked listis redued as every index i would only appear one in eah loal ahe �le for all remote�les that are ahed in it.5.6.2 Searhing in hash listsEah element of the original afs dhashTbl is a pointer to a linked list. For example,the pointer in the o�set i of afs dhashTbl struture points to a linked list ontainingstrutures with a ommon harateristi: they maintain indexes of the loal ahe �lesthat keep parts of remote AFS �les for whom the �d and hunk hashing will return thenumber i. In more details, when a new remote �le request arrives we must �rst alloatethe appropriate loal ahe �le to store the remote data. We must then hash the identi�erof the remote �le and the requested hunk number to a hash table entry so as to examinewhether the index of this loal ahe �le exists in the appropriate hash list. We thensearh through the attahed linked list for a dahe struture that ontains pointer to therequested remote �le. The fahe struture that orresponds to the remote �le shouldalso ontain pointer to the requested hunk number. If the searh sueeds, we found thehunk loally ahed and so we move it up in the beginning of the linked list to be ableto �nd it easier in future requests. Otherwise, we add a new node to the linked list of thehash table and make it point to the right dahe struture after the hunk is transferredfrom the remote server.
5.7 ReplaementThe existing replaement method of OpenAFS only onsidered the �les' reeny whenseleting whih �les to replae from the proxy ahe. One LRU algorithm was initiallyused to �nd the �les that have been least reently used. Then, some of these �les wereseleted as vitims for replaement.Instead, we take into onsideration another parameter alled feth lateny, that weadd to eah list node in the LRU list. There, we store the amount of time needed to fetheah hunk from the remote server to Hades. We onsider a hunk as loal if its fethlateny is lower than a preon�gured threshold. During replaement, we prefer as vitims59

Figure 5.4: We prefer as vitims for replaement the least reently used loal �les ratherthan the remote ones.the loal LRU hunks rather than the remote ones (�gure 5.4). We should notie that ourbasi riterion still remains the �le's reeny. However, feth lateny identi�es whih �lesan be fethed in a relatively short time. The main idea of our replaement algorithm isthe following: we want to replae �les that have not only been used for a long time butan be aessed again quikly, in ase users issue future requests for them.It must be pointed out that our replaement method should preserve loality and avoidfragmentation. Consequently, we group together hunks that are stored onseutively inthe disk ahe and are parts of the same �le. We use the term hunk run for these hunks.Aordingly, in alloation algorithm of Hades, the last hunk run that was used to replae�les is pre�ered as the �rst plae in proxy ahe to searh for free spae. To maintainloality and avoid fragmentation, we try to replae onseutive spae from a single hunkrun before we move to another. We treat hunk runs as a single unit, so we assign a fethlateny and reeny value to eah of them. For the feth lateny we ompute the averageof the orresponding values that are assigned to eah hunk of the unit. The hunk run'sreeny is determined aording to the least reently used hunk of the run. Thus, in asewe need to replae some �les in the proxy ahe, we hoose the hunk run that is the leastreently used and has the lowest average lateny. A remote hunk run will not be hosenas a vitim, unless none of the loal �les satis�es our riteria. If we pass the LRU list anddo not �nd a loal hunk run with a desirable feth lateny, then we replae the remotehunk run that has been least reently used.
60

5.8 A File Retrieval ExampleLet's assume that a loal appliation in an openafs lient mahine issues an open anda subsequent read request for a remote AFS �le. The �le open system all is usuallyinterepted and diverted to the kernel. The linux kernel identi�es that this isn't a loal�le but a remote AFS �le. The �le open system all is then interepted by a small 'hook'installed in the workstations's kernel. The user's program is then suspended and theinterepted request is diverted to a speial program, implemented as a user-level proesson the workstation, the Cahe Manager whih will implement the open and read systemalls. The Cahe Manager must �rst hek if we have the permissions to open the remoteAFS �le. It then assoiates this �le with a struture in kernel-memory that is kept forevery remote AFS �le that is requested by the users, the strut vahe. In ase the �leneeds to be opened in O TRUNC mode, the urrent time is kept in one of the �elds of theabove in-memory struture, so as to retain �le onsisteny. Whenever a �le needs to beopened, the kernel must assoiate it with a speial struture kept in kernel's memory, theemphstrut �le. A strut �le is a kernel struture that never appears in user programs.The �le struture represents an open �le. (It is not spei� to devie drivers; every open�le in the system has an assoiated strut �le in kernel spae.) It is reated by the kernelon open and is passed to any funtion that operates on the �le, until the last lose. Afterall instanes of the �le are losed, the kernel releases the data struture. As a result,the remote AFS �le is being opened and assoiated with an appropriate strut vahe andstrut �le, used to handle the operations on this �le.If the remote AFS �le has been suessfully opened, the next step is to hek whetherthe remote AFS �le is already in memory (in the page ahe) so as to read it from there.If not, the Cahe Manager must �nd out if it is already stored in the ahe. The hashtable and the orresponding hash lists are used for this purpose in order to identify theloal �le that stores the requested hunk.However, if the hunk is not loally available, the Cahe Manager piks a loal �le andopens it for aess. We favor the last loal hunk run that was used for replaement, if itexists and has enough spae, or the loal �le where parts of this �le were ahed lately.It then updates aordingly the dahe and fahe strutures to keep trak of the remotedata. 61

Sine it has opened the ahe �le, the Cahe Manager must feth the data from theremote AFS �leserver and store them in the open ahe �le. The �le data is being fethedfrom the remote �leserver using RPC system alls. The server sends RX pakets of sizeequal to hunksize. We must note that if a remote AFS �le needs more than a �le tostore its data, we must make di�erent RPC alls to feth the data. Eah ahe �le is�lled independently, as we feth data by making a separate RPC all to the �leserver.The requested data is transferred from the remote server to the loal kernel bu�ers. TheCahe Manager then reads the data from the kernel spae per 4096 bytes and writes themto the appropriate ahe �le. Subsequently data is opied to the user-level address spaeof the appliation and the loal ahe �le. It must be notied that the Cahe Manager triesto read the remote data per 4096 bytes and repeats the same proess for every individualpage. The Cahe Manager then trunates the ahe �le to keep its orret size and losesit, freeing the strut �le that was previously alloated for the ahe �le. If subsequentrequests are issued for the same �le or parts of it, we take advantage of loally ahed �leontents, and also metadata related to volumes, remote �les and loal hunks. Thus, therequested data is aessed from the proxy ahe in a muh faster manner.In future read requests for the same �le, data is read in pages of 4096 bytes. For eahpage, we repeat the same proess. The remote o�set is mapped into a loal ahe �leo�set, the loal �le is opened, data is read from the appropriate o�set, opied to the userspae and the loal ahe �le is �nally losed.

62

Chapter 6
Experimental Evaluation

6.1 Environment6.2 Retrieval of Cahed Data6.3 Software Compilation6.4 SummaryIn the present setion, we �rst desribe the experimentation environment that we usedto develop and evaluate the Hades prototype. Then, we make an extensive experimentalevaluation on the parallel retrieval of remote �les and the reuse of ahed data arossmultiple lients.
6.1 EnvironmentIn our experiments, we used rak-mounted x86 servers with one quad-ore proessor2.33GHz, 2GB RAM and gigabit ethernet ni. Every server has two SATA disks eah of250GB, 7.5KRPM and 16MB bu�er. We modi�ed the kernel module of the open-sourevariant of Andrew File System (OpenAFS 1.4.5) over the Debian distribution of Linuxkernel version 2.6.18. We use Kerberos version 5 and version 2.2 of user-level NFS server.Unless otherwise spei�ed, we used the default hunk size of 256KB and aheblok size4KB, respetively, for transfer and storage of data at the proxy ahe.63

6.2 Retrieval of Cahed DataOur �rst set of experiments uses a mirobenhmark that we run diretly at the proxyserver. Our purpose is to evaluate the omparative advantage of Hades with respet toOpenAFS, when we read �les stored at the origin server. We measure the lateny toread eah �le blok and the orresponding transfer throughput at the proxy server. Weonsider three �le aess modes that di�er in the onurreny of the transfers and theinvolvement of the origin server during their servie. We refer with Par and Seq to theparallel and sequential transfers, respetively, and we use Cd and Wm for the old andwarm proxy disk ahe. Below we desribe our three aess modes:Par/Cd. The �les are requested with the proxy ahe empty. The proxy server �rstprepares the mapping from the requested �les to the loal �les, then it transfers the �lesfrom the origin server to the loal page ahe in hunk units, and �nally it opies the �lesto the user-level memory of the proxy server in bloks of 4KB.Par/Wm. The �les are requested onurrently after the proxy disk ahe has beenwarmed up. We enfore loal disk aesses by ushing the memory page ahe beforestarting the experiment.Seq/Wm. Depending on the �le size, the previous two ases initiated multiple threadsaross one or two users to request onurrently multiple �les. In this mode, we only haveone user making a sequene of �le aesses from the warm disk ahe of the proxy server.In our experiments we transfer �les of four di�erent sizes:100KB. We have either two users reading in parallel two separate sequenes of 1000�les eah, or one user reading a sequene of 1000 �les.1MB. We have either two users reading in parallel two separate sequenes of 500 �leseah, or one user reading sequentially 500 �les.100MB. In the �rst two modes we have the transfer of �ve �les in parallel, while in thethird mode we only read one �le sequentially.64

1GB. We transfer in parallel �ve �les for the �rst two modes, and do a sequential readof one �le for the third one.

0

5

10

15

20

25

T
hr

ou
gh

pu
t

(M
B

/s
)

Block Read Rate at the Proxy Server

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100KB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1GBFigure 6.1: We measure the �le aess throughput at the proxy server aross di�erent sizesof transferred �les. Consistently, Hades ahieves a substantial throughput improvementwith respet to OpenAFS that gets up to 80%. See text for explanation of the Par/Seqand Wm/Cd abbreviations.In Figure 6.1, we measure the average throughput during the sequential and parallel�le transfers aross the di�erent �le sizes. Eah experiment is run �ve times, in eah modeand for eah �le size. We then alulate the average value of those runs in eah ase. Thedi�erent runs of eah ase give similar values that onverge to the same average value. Itis remarkable that Hades improves the measured throughput aross all ases. The lowestthroughput that we measure is 9.56 MB/s, when the OpenAFS lient reads in parallel twosequenes of 100KB �les from a old proxy ahe. The orresponding Hades throughputis 23% higher at 11.74 MB/s. The highest throughput of OpenAFS is 17.42 MB/s for1000 �les of 100KB read from a warm proxy ahe, while the highest throughput of Hadesis 25.15 MB/s for a single �le of 1GB read from a warm proxy ahe.We attribute the improvement of Hades to di�erent reasons aross the ases that weexamine. In Figure 6.2 we an see the breakdown of the blok read lateny. The readtime of eah blok is spent aross (i) mapping the requested blok to the o�set of the loalahe �le, (ii) fething from the origin server and storage to the loal ahe, (iii) opyingfrom the loal ahe to the user-level memory. In the ategory of fething, we inlude the65

1

2

3
R

ea
d

T
im

e
(m

s)
Block Read Latency at the Proxy Server

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100KB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1GB

Fetch + Other
Mapping
Cache Read

Figure 6.2: At the proxy server, we measure the time to read multiple �les in parallelfrom the origin server (Remote), and in parallel (Parallel) or sequentially (Single) fromthe proxy disk ahe. The lateny to transfer eah �le blok to the proxy server is brokendown into fething from the origin server, mapping to the loal �le, reading of the loal�le. In omparison to OpenAFS, Hades redues substantially the blok aess lateny upto 59%.rest of unaountable transfer delays.We note that the initial read from the old proxy ahe inurs substantial mappingoverhead in OpenAFS. This is the ost to insert into the hash struture the informationto �nd the ahed remote bloks next time we look for them. Hades avoids this overheadby storing together in an array of hunk desriptors the mapping of all the hunks thatorrespond to the same remote �le. We simpli�ed additionally the hashing struture byattahing a linked list to eah entry of the hash table. The length of the lists is short,sine we only use a limited number of large loal �les. Other optimizations that we didinlude adding a hint for the loal �le of eah remote �le, and moving to the front of thelist a found loal �le.When the �les are aessed from a warm proxy ahe (Wm), the omponent feth+otheris negligible. Also, the mapping overhead is insigni�ant after the mapping struture hasbeen reated during the warming up. Thus, the dominant omponent in aessing thewarm ahe of the proxy is to get the data from the loal disk. The redution of the blokread lateny during the parallel transfers (Par/Wm) of Hades an be attributed to the66

spatial loality in the storage of the ahed data. In partiular, we store to the same loal�le the hunks of either the same remote �le or di�erent remote �les retrieved from thesame user. Instead, OpenAFS distributes the retrieved hunks aross an equal number ofseparate �les in the proxy server. The same reason leads to the redued blok read timeof Hades in omparison to OpenAFS when reading one or multiple �les sequentially byone user (Seq/Wm). In omparison to the sequential transfer, parallel transfers share theavailable disk bandwidth and expand orrespondingly the page read lateny. For exam-ple, the bar height of the Seq/Wm measurement is approximately half or one �fth of thePar/Wm measurement depending on whether we have two or �ve parallel transfers.
6.3 Software CompilationAs an appliation to examine the general bene�ts of proxy ahing, we use the building oflinux kernel version 2.6.18. We assume that the soure ode is made ommonly availablefrom an OpenAFS volume (i) diretly to OpenAFS lients (OO), (ii) to NFS lientsthrough a proxy server running unmodifed OpenAFS lient and user-level NFS server(OON), (iii) to NFS lients through the Hades prototype (OHN). We know in advanethat the relative bene�ts of Hades in omparison to the original OpenAFS lient are mostlyevident when we retrieve large �les from a warm ahe. Instead, the present experimentwe retrieve small �les of a few kilobytes from a old ahe. Nevertheless, the softwarebuild is a baseline benhmark typially used in suh types of experimentations [4℄.In Figure 6.3(a) we measure the number of reeived and transmitted bytes at the origin(S) and the proxy (P) server, when we have one lient (1), four lients (4) and four lientswith the proxy at a distane from the origin of 50ms round-trip time (4D). Obviously,when we inrease the number of lients from one to four, there is orresponding inreasein the throughput of the origin server at the OO on�guration. Instead, the interventionof the proxy server keeps onstant the onsumed bandwidth at the origin server, as wesee in ases OON and OHN.On the other hand, even with one lient talking to the proxy, the NFS system on-sumes an exess of four time more network bandwidth than what OpenAFS requires forthe same onnetion. Admittedly, the NFSv3 protool that we use has been previously67

1

2

3

4

T
ot

al
 T

ra
ns

fe
rr

ed
 D

at
a

(G
B

yt
e)

Linux Build

S
1

S
4

S
4D

OO

S P
1

S P
4

S P
4D

OON

S P
1

S P
4

S P
4D

OHN

Server Tx
Server Rx

Proxy Tx
Proxy Rx

(a) 0

1000

2000

3000

C
om

pi
la

ti
on

 T
im

e
(s

)

Linux Build

1 4 4D
OO

1 4 4D
OON

1 4 4D
OHN(b)Figure 6.3: We build the Linux kernel on one (1) lient, four (4) lients, and four lientswith the origin 50ms away (4D). O refers to OpenAFS, N to NFS and H to Hades. Theproxy ahe is old before eah experiment that uses it. (a) We measure the total numberof reeived and transmitted bytes in the origin (S) and the proxy (P) server. (b) Withold proxy ahe, the intervention of the proxy server inreases the ompilation time. Forretrieved �les of only a few kilobytes eah, Hades only ahieves a modest redution from2315 to 2119 s (8.5%) in omparison to the original OpenAFS.desribed as too hatty [4,13℄. In fat, the version 4 of NFS makes more eÆient theommuniation between the lient and the server for example through delegations andompound statements. However, for a simple senario, where multiple lients only readdata from a ommon server without any modi�ations, the ost of NFS seems exessivelyhigh. Therefore, our onsideration of OpenAFS as an alternative protool for buildingproxy servers demonstrates a lot of potential. In Figure 6.3(b), we ompare the om-pilation time aross the di�erent systems on�gurations and numbers of lients. As wesee, the diret onnetion between the OpenAFS lient and server leads to the shortestompilation time. The bene�t of Hades with respet to the unmodi�ed OpenAFS is onlylimited to 8.5%. This behavior is justi�ed from the small �le sizes that typially dominatesoure odes. 68

6.4 SummaryIn summary, we notie that our deision to luster at the proxy server the ahed datarequested from the same remote �le or by the same user ends up to a substantiallyimproved read performane from the warm ahe. Additionally, we improve the readperformane from the old ahe by making more eÆient the mehanism of mappingremote hunks to loal �le o�sets.Overall, we onlude that proxy servers an redue the required network bandwidthfrom the origin server, but they may introdue aess delays during the �rst aess ofthe requested data from a old ahe. Furthermore, OpenAFS requires signi�antly lessbandwidth when ompared to NFS, even though the latter is onsidered defato hoiefor proxy server in the latest related researh.

69

Chapter 7
Conlusions - Future Work

7.1 Conlusions7.2 Future Work
7.1 ConlusionsIn the present thesis, we examined the design of Hades, a loality-aware proxy serverfor distributed �lesystems, based on Andrew File System. We proposed a new storagealloation algorithm that alters the way remote data are kept in the disk ahe of theproxy server. Furthermore, we presented a new �le replaement method that keeps lowthe average ost while it preserves loality by replaing loally ahed hunks aordingto their aess reeny and fething lateny.Hades proxy server improves the eÆieny of storage and metadata management ina distributed �le system, by storing on nearby loations of the same loal ahe �leparts of a unique remote �le or �les requested by the same user. The performane andrelated ost aross di�erent �le sizes and numbers of lients was experimentally evaluated.We observed that Hades improves throuhput aross all di�erent ases of onurrent �lereads. Aordingly, Hades redues the blok read lateny aross parallel transfers orparallel retrievals from the proxy ahe. In fat, it ahieves a substantial throughputimprovement with respet to OpenAFS that gets up to 80%. Furthermore, it redues the70

blok aess lateny up to 59%. Finally, we onluded that Hades proxy server an reduethe required network bandwidth from the origin server.
7.2 Future WorkIn the future, we plan to study more grouping riteria suh as the identi�er of the originserver that keeps the requested data. Furthermore, we wish to experimentally evaluateadditional appliations, suh as aessing biomedial data from a warm ahe rather thana old one. Finally, we intend to investigate alternative data replaement methods usingour prototype.

71

Bibliography[1℄ W. J. Bolosky, J. R. Doueur, D. Ely, and M. Theimer. Feasibility of a serverlessdistributed �le system deployed on an existing set of desktop ps. In ACM Sigmetris,pages 34{43, June 2000.[2℄ A. J. Borr. Seureshare: Safe unix/windows �le sharing through multiprotool lok-ing. In USENIX Windows NT Symposium, pages 13{23, Seattle, WA, Aug. 1998.[3℄ P. Cao and S. Irani. Cost-aware www proxy ahing algorithms. In USENIX Sym-posium on Internet Tehnologies and Systems, pages 193{206, Monterey, CA, 1997.[4℄ A. Gulati, M. Naik, and R. Tewari. Nahe: Design and implementation of a ahingproxy for nfsv4. In USENIX Conferene on File and Storage Tehnologies, pages199{214, San Jose, CA, 2007.[5℄ D. Howells. Fs-ahe: A network �lesystem ahing faility. In Proeedings of theLinux Symposium, Ottawa, Canada, 2006.[6℄ S. Jin and A. Bestavros. Popularity-aware greedydual-size web proxy ahing algo-rithms. In IEEE International Conferene on Distributed Computing Systems, pages254{261, Taipei, Taiwan, 2000.[7℄ E. P. Markatos, M. G. H. Katevenis, D. Pnevmatikatos, and M. Flouris. Seondarystorage management for web proxies. In USENIX Symposium on Internet Tehnolo-gies and Systems, pages 93{114, Boulder, CO, 1999.[8℄ J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T. E. Anderson. Improv-ing the performane of log-strutured �le systems with adaptive methods. In ACMSymposium on Operating Systems Priniples, pages 238{251, Saint Malo, Frane,1997. 72

[9℄ N. Megiddo and D. S. Modha. Ar: A self-tuning, low overhead replaement ahe. InUSENIX Conferene on File and Storage Tehnologies, pages 115{130, San Franiso,CA, 2003.[10℄ D. Muntz and P. Honeyman. Multi-level ahing in distributed �le systems. InUSENIX Winter Tehnial Conferene, pages 305{313, San Franiso, CA, 1992.[11℄ E. Otoo and A. Shoshani. Aurate modeling of ahe replaement poliies in a datagrid. In IEEE/NASA Goddard Conferene on Mass Storage Systems and Tehnolo-gies, pages 10{19, San Diego, CA, Apr. 2003.[12℄ B. Pawlowski, C. Juszzak, P. Staubah, C. Smith, D. Lebel, and D. Hitz. Nfsversion 3 design and implementation. In USENIX Summer Tehnial Conferene,pages 137{152, Boston, MA, June 1994.[13℄ B. Pawlowski, S. Shepler, C. Beame, B. Callagham, M. Eisler, D. Novek, D. Robin-son, and R. Thurlow. The nfs version 4 protool. In SANE Conferene, Maastriht,Netherlands, May 2000.[14℄ M. Satanarayanan. Salable, seure, and highly available distributed �le aess.Computer, 23(5):9{21, May 1990.[15℄ E. Shriver, E. Gabber, L. Huang, and C. A. Stein. Storage management for webproxies. In USENIX Annual Tehnial Conferene, pages 203{216, Berkeley, CA,2002.[16℄ G. Sivanathu and E. Zadok. A versatile persistent ahing framework for �le system.Tehnial Report FSL-05-05, Department of Computer Siene, SUNY Stony Brook,Stony Brook, NY, 2005.[17℄ M. T. Stolarhuk. Faster afs. Tehnial Report TR 92-3, CITI, University of Mihi-gan, Ann Arbor, MI, 1992.[18℄ P. Vongsathorn and S. D. Carson. A system for adaptive disk rearrangement.Software-Pratie and Experiene, 20(3):225{242, 1990.[19℄ N. E. Young. On-line �le ahing. In ACM-SIAM Symposium on Disrete Algorithms,pages 82{86, San Franiso, CA, 1998.73

Author's PubliationsLamprini Konsta, Stergios V. Anastasiadis, Hades: Loality-aware Proxy Cahing forDistributed File Systems, Tehnial Report DCS2009-1, Department of Computer Siene,University of Ioannina, January 2009.Lamprini Konsta, Stergios V. Anastasiadis, Hades-Managing Storage in Cahing Proxiesfor Distributed Filesystems, EuroSys, Glasgow, Sotland, UK, April 2008 (poster).

Short VitaLamprini Konsta was born in Preveza, Greee in 1983. She was admitted at the ComputerSiene Department of the University of Ioannina in 2001. She reeived her BS degreein Computer Siene in 2005 and she is urrently a postgraduate student at the samedepartment. She is a member of the Systems Researh Group of the University of Ioanninasine 2007. Her main researh interests lie in the �eld of ahing and storage systems.

