
FEATURE-BASED 3D MORPHING

Ç ÌÅÔÁÐÔÕ×ÉÁÊÇ ÅÑÃÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôïí

ÁèáíáóéÜäç Èåüäùñï

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÌÅÔÁÐÔÕ×ÉÁÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÌÅ ÅÎÅÉÄÉÊÅÕÓÇ

ÓÔÏ ËÏÃÉÓÌÉÊÏ

ÉáíïõÜñéïò 2009

Dedication

To my parents, Sotiri and Fotini,

and my sister, Amalia.

Acknowledgements

I would like to thank my supervisor Professor Ioannis Fudos for his valuable help, his
advice and the patience he has shown during the elaboration of this work.

I would also like to thank Professor Christophoros Nikou for his help, suggestions and
advice.

Furthermore, I would like to thank my friends Iraklis Goudas and Vicky Stamati for their
help and valuable advice.

Table of Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Background Material . 2

1.2.1 Mesh Parameterization . 2
1.2.2 Non Linear Optimization . 3
1.2.3 Laplacian Smoothing . 4
1.2.4 Spherical Triangular Area and Angles 5

1.3 Structure of this thesis . 6
1.4 Related Work . 6

2 Spherical Mesh Mapping 9
2.1 Introduction . 9
2.2 Topology Preserving Sphere Mapping . 10

2.2.1 Initial Mapping . 10
2.2.2 Optimizing Mapping for Morphing 14

2.3 Surface Correspondence and Interpolation 16

3 Feature Based Morphing 21
3.1 Introduction . 21
3.2 Feature-based Morphing . 21

3.2.1 Detecting Feature Regions . 21
3.2.2 Region Matching . 25
3.2.3 Feature Point Matching . 25
3.2.4 Feature-based Optimization . 26

3.3 Comparison of Morphing Results . 27

4 Implementation 29
4.1 Overview . 29
4.2 Programming language and tools . 29
4.3 Shaders and special e�ects . 30

4.3.1 GPU Shaders . 30
4.3.2 Normal Mapping . 30

4.4 Optimization software . 30

i

4.5 Additional software . 31
4.6 Application . 31

5 Experiments and Performance Evaluation 35
5.1 Introduction . 35
5.2 Experiments with no Feature Point Matching 35
5.3 Comparison with Feature Point Matching 36
5.4 Performance Evaluation . 41

6 Conclusions 44
6.1 Conclusions and Future Work . 44

ii

List of Figures

1.1 A spherical triangle with angles A,B and C on the unit sphere. 5

2.1 The result of thermal conduction at latitude � applied on the frog. The
bottom leg has temperature 0 (north pole) while the upper part of the head
has temperature � (south pole). 13

2.2 (top left) The result of initial mapping with the thermal conduction method,
(top center) the result of the initial mapping with the Laplacian smooth-
ing technique, (top right) the result of the mapping after optimization and
(bottom) the original frog model. 14

2.3 Close-up of the mapping from the monkey model. The original projection
contains folded and overlapping triangles. 15

2.4 Close-up of the mapping from the monkey model. In the thermal map-
ping, although the mapping is valid it deviates from the original projection.
The Laplacian mapping contains good quality triangles resulting from the
smoothing process but loses some locality. Finally, the optimization bal-
ances between good quality triangles and preserving the mapping close to
the original projected mapping. Note how the mapping is naturally dis-
torted in concave areas around the ear. 16

2.5 Geometric explanation of why Laplacian smoothing works. The original
mesh (left) contains a node with folded elements, all the adjacent elements
will act forces on that node forcing it to move in a balanced position (right).
Consequently, all the folded elements will unfold after a certain number of
iterations. 17

2.6 Laplacian smoothing run. 17
2.7 The �nal result of mapping (right) applied to the monkey with 5600 faces

(left). 18
2.8 (a) Finding Intersections (b) Curve faces visited in clockwise manner (c)

Triangulation . 18
2.9 Calculating the Intersections of an Edge. Light edges are from Ma, Dark

edges are from Mb Bold edges are those inserted in the Candidate List (CL). 19
2.10 Mapping vertex Vb1 of the second model to a face of the �rst model (Va1 ; Va2 ; Va3) 19

3.1 Detecting and matching feature regions in two head meshes (matched re-
gions have similar color). 22

iii

3.2 Original graphs the two head objects. 22
3.3 Reduced graphs of the two head models. 22
3.4 Detecting and matching feature points inside feature regions. 23
3.5 Detecting feature regions in a head and a monkey model. 23
3.6 Reduced graphs of the head and monkey models. 23
3.7 Feature region detection. 26
3.8 Morphing with no alignment. 27
3.9 Morphing with alignment but no feature point matching. 27
3.10 Morphing with alignment and feature point matching. The improvement

is apparent in the details of the characteristics of the intermediate frames. 27
3.11 Close-up of the morphing sequence.The improvement around the ear area

is noticeable. 28

4.1 Normal mapping. 31
4.2 Models from 3D-scanner inside Blender Software [5]. 32
4.3 Application. 33
4.4 Application. 33
4.5 Application. 34

5.1 Morphing of Monkey (5600 faces) to frog (3924 faces), merged topology
has 43794 faces. 36

5.2 Morphing of Stanford bunny (876 faces) to frog (3924 faces) with no feature
matching. The merged topology has 18142 faces. 36

5.3 Feature point matching of Man. Head model and Monkey model. 36
5.4 Morphing with alignment but no feature point matching. 37
5.5 Morphing with alignment and feature point matching. 37
5.6 Feature point matching of Man. Head model and Ceasar model 37
5.7 Another example of Morphing without alignment of Man. Head (11042

faces) to Ceasar model (13530 faces), merged topology has 109849 faces. . 38
5.8 Morphing with alignment, merged topology has 127161 faces. 38
5.9 Feature Mapping . 38
5.10 Morphing with alignment but no feature matching of Fish (4994 faces) to

Duck (1926 faces), merged topology has 28526 faces. 38
5.11 Morphing with alignment and feature matching of Fish (4994 faces) to

Duck (1926 faces), merged topology has 33038 faces. 39
5.12 Feature Point Matching of Duck and Frog models 39
5.13 Metamorphosis with no alignment of Duck (1926 faces) to Frog (3924 faces),

merged topology has 25800 faces. 40
5.14 Metamorphosis with alignment but no feature point matching, merged

topology has 27862 faces. 40
5.15 Metamorphosis with alignment and feature point matching, merged topol-

ogy has 28332 faces. 40

iv

5.16 Morphing with alignment but no feature point matching of the Iniohos
model (11098 faces) to Kykladitiko model (16798 faces), merged topology
142422 faces. 40

5.17 Morphing with alignment and feature point matching, merged topology has
142512 faces . 41

5.18 Comparison of the morphing results. The improvement around the ear area
and the outline of the model is noticeable. 41

v

List of Tables

5.1 Experimental results of mapping with di�erent models of various level of
detail . 42

5.2 Experimental results with the same model with di�erent levels of detail . . 42
5.3 Feature alignment optimization . 43
5.4 Experimental results . 43

vi

List of Algorithms

1 The algorithm used to set up matrix A and the vector b of the system of
linear equations for Latitude . 11

2 Lognitude system of linear equations is structurally identical to that of Lat-
itude . 12

3 The algorithm used to compute the intersections of the merged topology in
O(Ea + I). 20

4 The algorithm for feature based morphing. 24

vii

Glossary

A ·B,A×B dot product of vectors, cross product of vectors
||X|| magnitude of vector X
sin−1,cos−1,tan−1 inverse sine, inverse cosine and inverse tangent functions
XT vector transpose
@P
@u �rst-order partial derivative of P with respect to u component

viii

Abstract

Theodoros Athanasiadis.
MSc, Computer Science Department, University of Ioannina, Greece. January 2009.
Supervisor : Ioannis Fudos.

3D morphing is the technique of smooth transition between two (or more)solid objects.
Animation using deforming objects is frequently used in computer graphics for entertain-
ment. Furthermore, smooth animation of nonrigid objects (e.g. articulated objects) can
be accomplished by 3D morphing on a set of object snapshots.

We present an approach to 3D morphing of arbitrary genus-0 polyhedral objects. The
technique is based on a sphere mapping process that maintains the correspondence among
the initial polygons and the mapped ones and preserves topology and connectivity. The
method works well for all genus-0 objects without any user intervention. Finally, we
present a fully automated feature-based technique that matches surface areas (features)
with similar morphological characteristics between the two morphed objects and performs
morphing according to this feature correspondence list. Alignment is achieved without
user intervention and is based on pattern matching between the feature connectivity
graphs of the two morphed objects. Features points are then detected and matched by
using concavity and convexity extrema on each solid.

ix

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

èåüäùñïò ÁèáíáóéÜäçò ôïõ Óùôçñßïõ êáé ôçò ÖùôåéíÞò.
MSc, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, ÉáíïõÜñéïò 2009.
3Ä Ìåôáó÷çìáôéóìüò Ìïñöþí ÁíôéêåéìÝíùí âáóéóìÝíïò óå ôáßñéáóìá ÷áñáêôçñéóôéêþí.
ÅðéâëÝðïíôáò: ÉùÜííçò Öïýíôïò.

Ï 3Ä Ìåôáó÷çìáôéóìüò Ìïñöþí (Morphing) åßíáé ìßá ôå÷íéêÞ äçìéïõñãßáò ìéáò ïìáëÞò
ìåôÜâáóçò ìåôáîý äýï Þ ðåñéóóïôÝñùí áíôéêåéìÝíùí. Ôï animation ìå ìåôáó÷çìáôéæü-
ìåíá áíôéêåßìåíá ÷ñçóéìïðïéåßôáé óõ÷íÜ óôá ãñáöéêÜ. ÅðéðëÝïí, ï 3Ä Ìåôáó÷çìáôéóìüò
Ìïñöþí ìðïñåß íá ÷ñçóéìïðïéçèåß êáé ãéá ôçí ðáñáãùãÞ animation ìåôáó÷çìáôßæïíôáò
äéÜöïñá óôéãìéüôõðá ôïõ ßäéïõ áíôéêåéìÝíïõ.

Óå áõôÞ ôçí åñãáóßá èá ðáñïõóéÜóïõìå ìßá ìÝèïäï ãéá ôïí 3Ä Ìåôáó÷çìáôéóìü Ìïñ-
öþí áíÜìåóá óå äýï áíôéêåßìåíá genus-0 ìå äéáöïñåôéêÞ ôïðïëïãßá. Ç ôå÷íéêÞ âáóßæåôáé
áñ÷éêÜ óå ìßá äéáäéêáóßá ðñïâïëÞò ðÜíù óôç ìïíáäéáßá óöáßñá ç ïðïßá äéáôçñåß ôçí ôï-
ðïëïãßá êáé ôçí óõíäåóéìüôçôá ôùí áñ÷éêþí ðïëõãþíùí ôùí ìïíôÝëùí, åíþ ðáñÜëëçëá
óôï÷åýåé óôçí åëá÷éóôïðïßçóç ôçò ðáñáìüñöùóçò ôùí ðñïâïëþí. Óôç óõíÝ÷åéá ïé ðñïâï-
ëÝò óõíäõÜæïíôáé ãéá ôçí äçìéïõñãßá ìßáò êïéíÞò ôïðïëïãßáò êáé ôÝëïò ðáñåìâÜëëïíôáé ìå
÷ñÞóç ãñáììéêÞò ðáñåìâïëÞò ìå óôü÷ï ôçí äçìéïõñãßá ìßáò óåéñÜò áðü åíäéÜìåóá ìåôá-
ó÷çìáôéæüìåíá ìïíôÝëá.

Ç ìÝèïäïò äïõëåýåé éêáíïðïéçôéêÜ ãéá üëá ôá genus-0 áíôéêåßìåíá ÷ùñßò ôçí ðáñÝì-
âáóç ôïõ ÷ñÞóôç. Åðßóçò, èá ðáñïõóéÜóïõìå ìßá ðëÞñùò áõôüìáôïðïéçìÝíç ìåèïäïëïãßá
âáóéóìÝíç óôá ÷áñáêôçñéóôéêÜ ôùí ìïíôÝëùí ðïõ áíôéóôïé÷ßæåé ðåñéï÷Ýò ìå ðáñüìïéá ìïñ-
öïëïãéêÜ ÷áñáêôçñéóôéêÜ áíÜìåóá óôá äýï áíôéêåßìåíá.

Áñ÷éêÜ, ãßíåôáé êáôÜôìçóç ôùí ìïíôÝëùí óå ðåñéï÷Ýò óçìáíôéêþí ÷áñáêôçñéóôéêþí
áðü ôéò ïðïßåò êáôáóêåõÜæïíôáé ãñÜöïé óõíäåóéìüôçôáò ôùí ÷áñáêôçñéóôéêþí. Óôç óõ-
íÝ÷åéá, ãßíåôáé åõèõãñÜììéóç ÷ùñßò ôçí ðáñÝìâáóç ôïõ ÷ñÞóôç êáé âáóßæåôáé óôçí áíôé-
óôïß÷çóç ðñïôýðùí ìåôáîý ôùí ãñÜöùí óõíäåóéìüôçôáò ôùí ÷áñáêôçñéóôéêþí ôùí äýï
áíôéêåéìÝíùí. Áðü ôéò ðåñéï÷Ýò ðïõ áíôéóôïé÷Þèçêáí åíôïðßæïíôáé óýíïëá ÷áñáêôçñéóôé-
êþí óçìåßùí êáé áíôéóôïé÷ßæïíôáé ÷ñçóéìïðïéþíôáò ôá ôïðéêÜ áêñüôáôá ìéáò óõíÜñôçóçò
ðïõ âáóßæåôáé óôçí êõñôüôçôá êÜèå áíôéêåéìÝíïõ. Óôü÷ïò ôçò åõèõãñÜììéóçò êáé ôçò
áíôéóôïß÷çóçò ôùí ÷áñáêôçñéóôéêþí åßíáé ç åðéðëÝïí âåëôßùóç ôïõ ôåëéêïý ïðôéêïý áðï-
ôåëÝóìáôïò.

ÔÝëïò, ðåñéãñÜöïõìå êáé óõãêñßíïõìå ôá áðïôåëÝóìáôá ôçò õëïðïßçóçò ôçò ìåèïäïëï-
ãßáò óå Ýíá óýíïëï áðü ìïíôÝëá ìå äéáöïñåôéêÞ ìïñöïëïãßá.

x

Chapter 1

Introduction

1.1 Introduction

1.2 Fundamentals

1.3 Structure of this document

1.4 Related Work

1.1 Introduction

Image morphing is a popular technique for creating a smooth transition between two
images. It is a special e�ect used primarily in motion pictures and animation that trans-
forms (morphs) one image into another through a seamless morph sequence. The simplest
method for changing an image into another is to cross-fade between the two images. Other
approaches use physics based analogs such as the 2D particle system where pixels of one
image are mapped onto pixels of the other [24]. There is a class of methods for image
morphing that involve image warping around regular (e.g. a sphere of a cylinder) or non
regular (e.g. a free-form surface) shapes [22, 24]. More advanced methods include mor-
phing based upon �elds of inuence surrounding two-dimensional control primitives often
called features [4].

Shape morphing is a technique that aims to generate a smooth sequence that trans-
forms a source shape into a target shape. Although we have some quite e�cient and
e�ective methods for 2D morphing, the 3D case remains an open problem both in terms
of feasibility and e�ciency.

Existing methods for 3D morphing can be categorized into two broad classes: volume
based or voxel based [19] and mesh based or structural [14] approaches. The volume-based
approach represents a 3D object as a set of voxels usually leading in computationally
intensive computations. The mesh-based approach exhibits better results in terms of

1

boundary smoothness and rendering since the intermediate morphs are represented as
volumes and techniques such as marching cube [21] are employed to acquire the �nal
polygonal representation used for rendering. Furthermore, most applications in graphics
use mesh-based representations, thus making mesh-based modeling more broadly applica-
ble. However, volume-based methods surpass the mesh based ones in that they can handle
the morphing of very di�erent topologies more easily, since volume to volume morphing
is a lot similar to image morphing by means of treating voxels instead of pixels.

Although mesh morphing is more e�cient as compared to volume-based morphing,
it requires a considerable preprocessing of the two considered objects. Mesh morphing
involves two steps. The �rst step establishes a mapping between the source and the
target object (correspondence problem), which requires that both models are meshed iso-
morphically with a one-to-one correspondence. The second step involves �nding suitable
paths for each vertex connecting the initial position to the �nal position in the merged
mesh (interpolation problem). For performing structural morphing, we can use boundary
representation (Brep) or surface representation in which we represent each object by its
surface description, or volumetric or solid meshes, for instance tetrahedral representa-
tions. In volumetric mesh morphing, it is much easier to maintain robustness and avoid
the folding phenomenon. However, volumetric mesh morphing is computationally expen-
sive as compared to surface mesh morphing since the number of elements in the former
case is much larger in comparison to the latter case.

The method proposed in this work is based on surface mesh morphing. It introduces
a sound and complete approach to morphing between any two genus-0 objects. Recall
that genus-0 objects are by de�nition homeomorphic to the sphere. Our approach builds
on a spherical mapping approach presented in [7] for the purpose of parameterization
of closed surfaces. Our mapping works in two phases. In the �rst phase, we perform
an initial mapping. In the second phase, we optimize the mapping to achieve a better
placement under speci�c geometric criteria and under a set of topological constraints. For
the �rst phase, we present a much faster alternative to [7] based on Laplacian smoothing
and adapt the second phase accordingly to capture morphing related requirements. We
also present an improvement of this approach that takes into consideration 3D features
and derives a feature correspondence set to improve the �nal visual e�ect. This is a
very important characteristic for similar objects, as in the case of morphing between two
articulated human representations. Object alignment, feature detection and feature point
matching is performed automatically without user intervention.

1.2 Background Material

1.2.1 Mesh Parameterization

Given any two surfaces with similar topology it is possible to compute a one-to-one map-
ping between them. If one of these surfaces is represented by a triangular mesh, the prob-

2

lem of computing such a mapping is referred to as mesh parameterization. The surface
that the mesh is mapped to is typically refered to as the parameter domain. The purpose
of mesh parameterization is to obtain a piecewise linear map, associating each triangle of
the original mesh with a triangle of a domain. An important goal of parameterization is to
obtain bijective (invertible) maps, where each point on the domain corresponds to exactly
one point of the mesh. The geometric shape of the domain triangles will typically be dif-
ferent than the shape of the original triangles, resulting in angle and area distortion. The
distortion is an important factor of the parameterization and applications typically try to
minimize the distortion for the whole mesh. Maps that minimize the angular distortion
are called conformal and maps that minimize area distortion are called authalic. Mesh
parameterizations have numerous applications in computer graphics such as in Morphing,
Mesh Completion, Remeshing, Surface �tting and Texture Mapping.

1.2.2 Non Linear Optimization

In mathematics, nonlinear optimization is the process of solving a system of equalities and
inequalities, collectively termed constraints, over a set of unknown real variables, along
with an objective function to be maximized or minimized, where some of the constraints
are nonlinear. More speci�cally in the context of this work we will deal with continuous
nonlinear problems of the following form:

min
x
f(x) (1.1)

s.t. gL ≤ g(x) ≤ gU (1.2)

xL ≤ x ≤ xU (1.3)

where the x ∈ Rn are the optimization variables (possibly with lower and upper
bounds, xL ∈ (R ∪ −∞)n and xU ∈ (R ∪+∞)n). The function f : Rn → R is called
the objective function. A vector x satisfying all the constraints of 1.2 is called a feasible
solution to the problem. The collection of all such points forms the feasible region. The
Non Linear Problem (NLP) is to �nd a feasible point x∗ such that f(x) ≥ f(x∗) for each
feasible point x.

For solving optimization problems like the above there are two categories of algo-
rithms, global and local optimization methods. Local optimization means that the method
attempts to �nd a local minimum, and there is no guarantee that you will get the global
minimum for the problem, while global optimization methods try to �nd the global mini-
mum of the objective function. In some cases the local minimum found is in fact the global
minimum (convex problems).

Local optimization algorithms generally depend on derivatives of the objective function
and constraints (gradients and hessians) to aid in the search. For this reason it is useful
the function to be real-valued and twice continuously di�erentiable. There are ways to
tackle this strict requirement, but then there is no guarantee that the solver will �nd a
solution. Local optimization also depends on the initial values of the variables, the better

3

the initial values are the faster the solver will converge to a solution. Examples of local
optimization methods are the Sequential Quadratic Programming (SQP) method which
is a generalization of Newtons's method for unconstrained optimization, the augmented
Lagrangian method and the Interior Point method.

Global optimization algorithms try to �nd the best set of parameters to minimize
the objective function. In general, there can be many solutions that are locally optimal
but not globally optimal. Consequently, global optimization problems are typically quite
di�cult to solve exactly and most methods incorporate probabilistic (random) elements
in the algorithms (through random parameter values, etc). More modern methods employ
strategies aiming to search the search space in a more intelligent way (Genetic algorithms).
For global optimization there are several algorithms, some known types are Simulated
Annealing, Tabu Search, Genetic Algorithms and Branch and Bound Algorithms.

1.2.3 Laplacian Smoothing

In many applications, like the �nite element method mesh quality a�ects numerical stabil-
ity as well solution accuracy. Therefore, the quality of the mesh triangles is an important
factor. There are various existing mesh improvement methods that can roughly be classi-
�ed into two categories, methods that use topological modi�cations performed by inserting
or removing nodes as well as local reconnection of nodes, and smoothing methods based
on relocating existing nodes.

Amongst the second category, the Laplacian smoothing method, has gained popularity
due to its simplicity and e�ciency. Laplacian smoothing is the most commonly used and
straightforward method for mesh smoothing. It simply moves each node to the centroid
of the polygon formed by its adjacent nodes. It is a local smoothing algorithm because,
in each step, the movement of a node is calculated by using the locations of its adjacent
nodes only. However, Laplacian smoothing sometimes can lead to low quality or invalid
elements as well as deformation and shrinkage in the case of surface meshes.

In Laplacian smoothing, we can consider a mesh as a spring system. Each edge
connecting the central node with its neighboring node can be seen as a linear-spring. Let vi
be the vector from the central node v (x,y) to the i th neighboring node: vi = (xi−x; yi−y).
The sum of the spring forces acting on the central node is: F = K

∑k
i=1 vi where K is

the spring constant, and k is the number of neighboring nodes. When the central node
is located exactly at the geometric center of the polygon, the spring forces are balanced
out and the spring system is in equilibrium. Therefore Laplacian smoothing can be
considered as an iterative way to �nd this force-balancing state. Below we can summarize
the advantages and disadvantages of Laplacian smoothing:

Advantages:

• Computational e�ciency

• Easy implementation

Disadvantages:

4

• Does not always move the node to the optimal position to get the best element
quality

• Generation of inverted elements

• Tends to lose element size uniformity if iterated many times

• Tends to yield lower quality elements if iterated more than a few times

Therefore, modi�ed methods have been proposed to circumvent these problems [29].

1.2.4 Spherical Triangular Area and Angles

Figure 1.1: A spherical triangle with angles A,B and C on the unit sphere.

A spherical triangle is formed on the surface of a sphere by three circular arcs inter-
secting pairwise in three vertices. The spherical triangle is the spherical analog of the
planar triangle. Let a spherical triangle have angles A,B and C (measured in radians at
the vertices along the surface of the sphere) and let the sphere which the spherical triangle
sits have radius R. Then the surface area of the spherical triangle is:

area(f) = R2[(A+B + C)− �] = R2E (1.4)

where E is called the spherical excess. The angles A,B and C are dihedral angles between
two planes, so that the dihedral angle between planes AOB and AOC is denoted A,
the dihedral angle between planes BOC and AOB is denoted B and the dihedral angle
between BOC and AOC is denoted C. The dihedral angle between two planes can be
calculated using the dot product of the normals of the corresponding planes as shown in
equation 1.5 for a spherical triangle with vertices v0,v1 and v2.

A = cos−1((
v2 × v0

||v2 × v0||) · (
v1 × v0

||v1 × v0||))

B = cos−1((
v0 × v1

||v0 × v1||) · (
v2 × v1

||v2 × v1||))

C = cos−1((
v0 × v2

||v0 × v2||) · (
v1 × v2

||v1 × v2||))

(1.5)

5

1.3 Structure of this thesis

The rest of chapter 1 presents related work on 3D morphing. Chapter 2 presents the
mapping step of our approach and briey describes the e�cient computation of the in-
tersections among the polygons on the sphere and the calculation of the interpolation
trajectory. Chapter 3 presents an alternative mapping method that can be applied to one
of the morphed objects based on the mapping of the other object and a feature corre-
spondence list of the two solid representations. Chapter 4 contains implementation details
and explains chalenges faced during the development of the software. Chapter 5 presents
an experimental evaluation of our method and some visual morphing examples which are
part of the video that accompanies this work. Finally, chapter 6 provides conclusions.

1.4 Related Work

Most surface-based mesh morphing techniques employ a merging strategy to obtain the
correspondence between the vertices of the input model. The merging strategy may be
either automatic or user speci�ed. Kent et al. [14] proposed an algorithm for the morphing
of two objects topologically equivalent to the sphere. The algorithm works in two steps,
�rst the two objects are mapped to a sphere and then the two projected topologies are
merged. A common topology suitable for interpolation is created. The mapping presented
is accomplished by a mere projection to the sphere and thus is applicable solely to star
shaped objects.

The main problem with 3D parameterization techniques like [14] is how to �nd an
appropriate mapping over the unit sphere for each of the morphed objects. Several tech-
niques have been proposed to overcome this limitation inspired by physics. In [12] the
authors use a spring system to model the mesh and gradually force the mesh to expand
or shrink on the unit sphere by applying a force �eld. Our method uses a similar tech-
nique for determining an initial mapping over the unit sphere. Methods using springs do
not always produce acceptable mappings especially when handling complex non convex
objects. We overcome this problem successfully in this work.

[2, 3, 36] use a spring-like relaxation process. The relaxation solution may collapse to a
point, or experience foldovers, depending on the initial state. Several heuristics achieving
convergence to a valid solution are used.

[28, 25, 11] describe methods to generate a provably bijective parameterization of a
closed genus-0 mesh to the unit sphere. The projection involves the solution of a large
system of non-linear equations. A set of constraints on the spherical angles is maintained
to achieve a valid spherical triangulation.

[27] uses a polyhedron realization algorithm that can transform any general polyhedron
into a convex one which is isomorphic to the original. The realization consists of two
phases, simpli�cation and re-attachment. During the simpli�cation phase, low valence
vertices are detached from the vertex-neighborhood graph of the polyhedron one by one,

6

and the corresponding graph is re-triangulated. This step is repeated until a 4-clique
results. The second phase starts by �rst creating a tetrahedron and then the vertices are
re-attached to the polyhedron, in the reverse order of their detachment, while maintaining
the polyhedrons convexity.

[23] presents a similar method that �rst simpli�es the surface mesh to a tetrahedron
while creating a progressive mesh favoring triangles with good aspect ratio and then in
similar way reattaches the vertices and simultaneously optimizes positions of the embed-
ded vertices. The positions of the vertices are optimized to minimize a stretch metric.

[26] presents a method that directly create and optimize a continuous map between
the meshes instead of using a simpler intermediate domain to compose parametrizations.
Progressive re�nement is used to robustly create and optimize the inter-surface map. The
re�nement minimizes a distortion metric on both meshes.

[15] also presents a method that relies on mesh re�nement to establish a mapping be-
tween the models. First a mapping between patches over base mesh domains is computed
and then mesh re�nement is used to �nd a bijective parameterization. One advantage of
this approach is that it naturally supports feature correspondence, since feature vertices
are required as user input for the initial patch mapping.

[18] uses reeb-graphs and boolean operations to extend spherical parameterization for
handling models of arbitrary genus. Each genus-n model is represented as a genus-0
positive mesh and n genus-0 negative meshes. Therefore n + 1 spheres are required to
parameterize these n + 1 meshes independently, and thus to accomplish the spherical
parameterization of genus-n models. Once a consistent embedding is computed for each
model the positive meshes and the negative sets are paired. In the case where the number
of negative meshes is not equal in the two models, extra pseudo negative meshes are
generated to have an equal number of paired negative meshes. For each pair of meshes
the morphing sequence is computed independently. Finally, boolean di�erence operation
is applied to subtract each intermediate negative object from an intermediate positive
object to obtain the morphing sequence. Existing methods for producing valid spherical
embeddings of genus-0 models can be integrated into their framework.

Another method that use reeb-graphs for morphing topologically di�erent objects
of arbitrary genus is [13]. The method speci�es the correspondence between the input
models by using graph isomorphic theory. The super Reeb graph, which has the equivalent
topological information to the Reeb graphs of the two input objects, is constructed and
used to conduct the morphing sequence.

[17, 20] provide e�cient techniques for morphing 3D polyhedral objects of genus-0.
The emphasis of the method is on e�ciency and requires de�nition of feature patches
to perform 2D mapping and subsequent merging. Their method does not avoid self
intersection and requires embedding merging and user intervention for mapping. Our
method overcomes these shortcomings in expense of a considerable preprocessing time for
mapping.

An interesting work for volume morphing is based on wavelets is presented in [10].

7

This is a promising approach whose principle could be applied to surface based morphing.
This volume morphing technique yields rather slow algorithm which have time complexity
Ω(n3) where n is the size of the size of the volume representation.

The method presented in this work overcomes these limitations and allows for a totally
automated and appropriate for morphing mapping of an object of genus-0 surface into a
2D space with spherical topology. An initial mapping over the unit sphere is computed and
used as an initial state and the mapping is then improved by nonlinear optimization. For
smoother morphing that takes advantage of object morphology we introduce a feature-
based approach. Feature correspondence is performed automatically without any user
intervention.

8

Chapter 2

Spherical Mesh Mapping

2.1 Introduction

2.2 Topology Preserving Mapping

2.3 Surface Correspondence and Interpolation

2.1 Introduction

The �rst step for Morphing arbitrary genus-0 objects is to �nd a mapping into a common
spherical domain for each object. The aim of the parameterization process is to minimize
the distortion of the mapping for the Morphing purposes. In the context of this work
this problem is solved by nonlinear optimization. More speci�cally, the parametrization
(embedding) of the objects topology in the surface of the unit sphere, can be posed as a
constrained optimization problem.

The variables of the optimization problem are the coordinates of all vertices. In
addition, there are two kinds of constraints on the variables. First, the Euclidean norm
of the coordinates for any vertex must be 1. This implies that every vertex must lie
on the unit sphere during the optimization. Second, the orientation for each facet must
remain the same during the optimization. This second constraint guarantees that the �nal
mapping will not contain folded elements provided that the initial mapping did not contain
any either. Finally, the objective function to be minimized will target on minimizing the
distortion of the mapping or matching features in the two objects as described in later
sections.

The variables in the optimization are the positions on the unit sphere to which the
vertices are mapped. Therefore, the starting values are an initial mapping of the object.
Consequently, it is important for the optimization process that the initial positions to be
a valid solution to the optimization problem. Therefore, the initial mapping should not

9

contain folded elements to satisfy the second constraint. In addition, the initial mapping
is helpful to be close to the optimized solution to achieve faster convergence.

2.2 Topology Preserving Sphere Mapping

2.2.1 Initial Mapping

The initial parameterization in Brechbuhler's algorithm [7], which is actually an initial
mapping of bounding voxels, is performed in polar coordinates. Two polar coordinates �
and � are determined for all vertices in two steps. Two vertices are selected as the poles
(north and south) for this process. The poles must not be too close as this results in a
poor initial parameterization. [7] suggests selecting the poles based on the z coordinate
in object space and which reasonable due to the fact that they deal only with voxel
objects. Instead, we choose as poles the vertex pair with the largest distance between
them (diameter of the solid).

The �rst step of the parameterization involves the calculation of the latitude �. The
latitude should grow smoothly from 0 at the north pole to � at the south pole. The
continuous problem is formulated as Laplace's equation ∇2� = 0 (except the poles),
with Derichlet conditions �north = 0 , �south = �. The Laplacian is approximated by
�nite second di�erences of the available direct neighbors, which in our case implies that
every node's latitude (except the poles) must equal the average of its neighbors latitudes.
These conditions form a sparse set of linear equations, which can be written in the form
A′�′ = b′ where A′ is an nvert × nvert matrix, �′ = (�0; : : : ; �nvert−1)

T and b′ is an nvert
vector of constants. The border conditions �0 = �north and �nvert−1 = �south supply two
equations and results in the reduced n × n system A� = b, where n = nvert − 2, A =

(a1;1; a1;2; : : : ; an;n) is symmetric and � = (�1; : : : ; �n)T . The algorithm that set up the
matrix A and the vector b is summarized in Figure 1.

A physical analogy is heat conduction where the south pole has temperature � and the
north pole has temperature 0. We then seek the stationary temperature distribution on
a heat-conducting surface. The problem is formulated by a sparse set of linear equations.
Figure 2.1 shows an example of the application of the thermal conduction on the frog
model from [1].

The second step of the parameterization involves the calculation of the longitude �.
Unlike latitude, longitude is a cyclic parameter, when we walk around a sphere counter-
clockwise (seen from the north), longitude keeps increasing monotonically all the time,
but there must be a place where longitude leaps back by 2�. Therefore, a discontinuity
spherical path must be established from pole to pole, the choice of the path is immaterial
since it just has to connect the two poles. The path is built incrementally in a greedy
manner with steepest latitude ascent for each of its nodes (see Figure 2). Consequently,
the new system of linear equations is very similar to that of the latitude and the algorithm
used to modify the matrices A and b is illustrated in Figure 2.

10

Input: Polyhedral representation for Model M
Output: Matrix A
for vertex=1. . . n do

avertex;vertex =number of neighbors;
for the direct neighbors of vertex do

if the neighbor is not a pole then
avertex;neighbor = −1;

end
end

end
Output: Constant vector b
Set all entries of b to 0;
for the direct neighbors of south pole do

bneighbor = �;
end

Algorithm 1: The algorithm used to set up matrix A and the vector b of the system
of linear equations for Latitude

11

Input: Matrix A, vector b and Model M
Output: Modi�ed Matrix A
for both poles do

for the direct neighbors of pole do
aneighbor;neighbor = aneighbor;neighbor − 1;

end
end
a0;0 = a0;0 + 2;
Output: Constant vector b
for row=1. . . n do

brow = 0;
end
previous = northpole;
here = 1;
maximum = 0;
while here! = southpole do

for the direct neighbors of here do
if �neighbor > maximun then

maximum = �neighbor;
nextpos = position of neighbor;

end
if neighbor = previous then

prevpos = position of neighbor;
end

end
for the direct neighbors clockwise between prevpos and nextpos do

bneighbor = bneighbor + 2�;
bhere = bhere − 2�;

end
previous = here;
here = neighbor of here indicated by nextpos;

end
Algorithm 2: Lognitude system of linear equations is structurally identical to that
of Latitude

Laplacian smoothing is a simple and e�cient method for mesh smoothing. Every node
is progressively shifted towards the centroid of its adjacent nodes. This is a local operation
since at each step the movement of a vertex is determined only by its neighboring vertices.

A mesh can be thought of as a spring system by considering each edge connecting
two nodes as a linear spring. Laplacian smoothing is then considered for minimizing
the spring forces that are active on each node. Since a balanced spring system over the
sphere can not contain folded elements (see Figure 2.5), it turns out that if Laplacian
smoothing is applied to every vertex and the vertex is projected on the sphere all folded

12

Figure 2.1: The result of thermal conduction at latitude � applied on the frog. The bottom
leg has temperature 0 (north pole) while the upper part of the head has temperature �
(south pole).

elements tend to unfold after a su�cient number of iterations (see Figure 2.6). Since
Laplacian smoothing does not perform any triangle area balancing certain elements may
become degenerate. Besides, the relaxation process may collapse if one or more elements
overgrow [2]. We used a simple variation where we determine the position based on the
weighted sum of the centroids of the direct neighboring triangles of each vertex. We
use as weights the areas of each such triangle. This simple approach yields a smoother
mesh with more balanced element area since larger polygons tend to attract more vertices
while smaller polygons tend to repulse them. Figure 2.2 shows the results of the initial
mapping of the frog from [1] when applying thermal conduction method and Laplacian
smoothing. It is generally desirable to use a mapping with uniform sized polygon areas,
so in this context other variations of Laplacian smoothing or mesh smoothing can also be
considered [29, 33].

The above procedure is expressed concisely by the following two steps: We �rst project
each vertex on the unit sphere:

V =
V0

||V0|| ; ∀V

where V is a vertex of the mesh and V0 its original position on the mesh. Then, while
folded elements still exist,

V =

∑m
i areaiCentroidi

||∑m
i areaiCentroidi||

where areai is the area of the corresponding i-th adjacent triangle of vertex V , Centroidi
is the centroid of the same triangle and vertex V is connected to m triangles.

13

Figure 2.2: (top left) The result of initial mapping with the thermal conduction method,
(top center) the result of the initial mapping with the Laplacian smoothing technique,
(top right) the result of the mapping after optimization and (bottom) the original frog
model.

2.2.2 Optimizing Mapping for Morphing

For the purpose of spherical parameterization [7] uses the following constraints. For each
vertex V (vx; vy; vz):

v2
x + v2

y + v2
z = 1; ∀V (vx; vy; vz) (2.1)

To avoid unequal faces, for each face f the area is constrained to be exactly

area(f) =
4�
n
; ∀f (2.2)

where n is the number of faces. Finally the angles of each face are constrained to be in
[0; �] which is compiled to six inequalities per triangular face. The equations to calculate
the spherical area and angles are described in section 1.2.4. The objective function that
favors short lengths on face edges is:

∑

∀f

3∑
i=1

cos(sfi) (2.3)

where sfi is the angle (length of the arc) formed by the corresponding edge and the center
of the unit sphere. We implemented this method for morphing but found that the results
were not appropriate for our purposes. The method is very slow in converging and may
place some faces very far away from their original position or place neighboring faces in
distant spots on the sphere.

In general, it is desirable the spherical parameterization to preserve some important
characteristics of the original model. Since almost always a mapping to a simpler do-

14

(a) Model (b) Projection

Figure 2.3: Close-up of the mapping from the monkey model. The original projection
contains folded and overlapping triangles.

main like a sphere will introduce distortion, it is important to minimize the distortion in
signi�cant characteristics of the model.

For this reason we use the following set of constraints and objective functions that are
more appropriate for morphing.
Geometric Constraints: For each vertex V (vx; vy; vz):

v2
x + v2

y + v2
z = 1; ∀V (vx; vy; vz) (2.4)

Topological Constraints: For each face with vertices V0, V1, V2 and for each vertex of
this face, each vertex should stay on the same side of the plane de�ned by the other two
vertices and the center of the sphere:

(V1 × V2) · V0 > 0

(V2 × V0) · V1 > 0

(V0 × V1) · V2 > 0

(2.5)

Objective Function: We use as the objective function to be optimized the sum of all inner
products of every mapped vertex V = map(P) with their corresponding original position
P ∑

∀P
P ·map(P) (2.6)

The motivation behind this choice is that a good mapping should preserve locality,
meaning that the projected vertices must not lie far from their original projected (nor-
malized) positions and close vertices in the original model should have close projected
positions. This is an important factor since it implies that in a convex model the op-
timum positions of vertices will be exactly at the projected positions. In non-convex
models it leads in introducing distortion in concave areas but keeping important vertices

15

(a) Thermal (b) Laplacian (c) Optimization

Figure 2.4: Close-up of the mapping from the monkey model. In the thermal mapping,
although the mapping is valid it deviates from the original projection. The Laplacian
mapping contains good quality triangles resulting from the smoothing process but loses
some locality. Finally, the optimization balances between good quality triangles and
preserving the mapping close to the original projected mapping. Note how the mapping
is naturally distorted in concave areas around the ear.

(for example those over the convex hull) in their corresponding projected positions. The
vertices of the convex hull will give a basic skeleton for the model to lead the rest of
the mapping. Finally, to avoid introducing collapsed and thin elements in the mapping
a suitable � > 0 value must be chosen for equation 2.5. Figures 2.3 and 2.4 illustrate a
comparison of various projection methods.

Figure 2.2 illustrates the optimized mapping for the frog, while Figure 2.7 illustrates
the �nal optimized mapping on the sphere for the monkey from [5].

2.3 Surface Correspondence and Interpolation

Following the successful mapping of the boundary of the two objects on the sphere, a
merging process of the two topologies is performed. The purpose of this step is the
creation of a �nal merged topology that is suitable for navigating back and forth to the
original models.

This process requires each projected edge of one model to be intersected with each
projected edge of the other. The search for intersections among edges can be computed
exhaustively by checking all possible pairs of edges, but this brute force technique su�ers
from two problems: time complexity and numerical inaccuracy. More speci�cally, for
two solids a and b the time complexity of this operation is O(EaEb), where Ea and Eb
are the number of edges of each solid. Additionally, small numerical inaccuracies in the

16

Figure 2.5: Geometric explanation of why Laplacian smoothing works. The original mesh
(left) contains a node with folded elements, all the adjacent elements will act forces on
that node forcing it to move in a balanced position (right). Consequently, all the folded
elements will unfold after a certain number of iterations.

(a) Model (b) Pro-
jected

(c) 5 Iters (d) 10 Iters (e) 15 Iters (f) 20 Iters

Figure 2.6: Laplacian smoothing run.

intersection computations may lead to an improper ordering of the intersections lying on
an edge.

A method similar to the method of Kent et al. [14] was used to compute the inter-
sections of the merged topology. The algorithm is based on the idea that starting from
an intersection over an edge we can traverse all the remaining intersections by exploiting
the topological information contained in the models. For each edge of the �rst model
a list of edges of the second model is constructed (candidate list) which could actually
intersect the processed edge. The candidate list is constructed using the mapping of the
vertices of the �rst model over the second one and using neighboring information of the
second model. More speci�cally, we need to �nd the triangle of the second model which
contains one vertex of the starting edge and use it to construct a candidate list which
contains all the edges of that triangle. This is required for only one vertex of the �rst mesh
and can be computed directly in O(n). Since from the candidate list containing edges of
the second model we can traverse all the intersections in constant time by traversing to

17

Figure 2.7: The �nal result of mapping (right) applied to the monkey with 5600 faces
(left).

Start

(a) (b) (c)

Figure 2.8: (a) Finding Intersections (b) Curve faces visited in clockwise manner (c)
Triangulation

adjacent elements as long as intersections exist in the speci�c edge (see Figure 2.8 for an
example) and intersections and edges from the �rst model are visited exactly one time,
the complexity of this algorithm is O(Ea+I) where I is the total number of intersections.
Generally, it is expected that I is much smaller than Ea ∗ Eb therefore this algorithm is
more e�cient than the brute force approach. In addition, this method correctly sorts the
intersections over the edge and avoids improper ordering that could be caused by small
numerical inaccuracies in the calculation of the intersections.

From the intersections found along with the vertices of the two models a set of spher-
ical regions bounded by circular arcs is determined. These regions are always convex,
therefore it is straightforward to triangulate them and compute the �nal triangulated
merged topology. First, for each edge the list of intersections that belong to that edge
is sorted by the distance from each vertex of the edge. Additionally, for each vertex a
list of the edges incident to the vertex in clock-wise order is calculated. Based on the
aforementioned geometrical data we traverse each closed bounded region in a clock wise
order and compute the triangulated merged topology. A new triangular face is created
for every two continuous edges. If there is no edge connecting the endpoints of the two
edges then a new edge is added to the merged topology. This operation continues until
all edge fragments created from splitting the edges at the intersection points are visited
exactly twice, once in clock-wise order and once in counter clock-wise order. Figure 2.8

18

A

B

C

D

Va

Vb

Edge of WL

Edges of CL

Start vertex

Figure 2.9: Calculating the Intersections of an Edge. Light edges are from Ma, Dark
edges are from Mb Bold edges are those inserted in the Candidate List (CL).

(u,v,w)

Vb1

Va1 Va2

Va3

Vb1

Va1

Va3

Va2

Figure 2.10: Mapping vertex Vb1 of the second model to a face of the �rst model
(Va1 ; Va2 ; Va3)

illustrates this process.
The �nal step of the algorithm involves the projection of the merged topology back

to the original models. For each model A the vertices of the other model B along with
the intersection points are projected on A. For intersections, the parametric value of the
intersection over the projected edge is used to determine the position in the original edge.
In the case of interior vertices a similar method is used. In particular the barycentric
coordinates of the vertex in the projected triangles are used to calculate the position in
the original model. This is illustrated in Figure 2.10.

The �rst step involves the search for intersections and is proportional to the number
of intersections O(Ea + I). The traversal of the bounded regions has an O(I log I) time
complexity, since it depends on the number of intersections and the e�ort to sort them.
Finally, the triangulation of the faces of the merged topology has O(N) time complexity.

Following the successful establishment of a correspondence between the source and
target vertices the vertex positions are interpolated to acquire the �nal morphing sequence.
To this end, we use simple linear interpolation. The interpolated vertex positions are
calculated as

Vm = (1− t)Va + tVb; t ∈ [0; 1]

where Va is a vertex of solid A and Vb is a vertex of solid B. The advantage of linear

19

Input: Two polyhedral representations for objects Ma and Mb

v1a ← �rst vertex of Ma;
MapToB[v1a] ← face of (Mb)pthat contains (v1a)p;
Add the edges originating at v1a to Work List (WL);
Mark those edges Used;
while WL is not empty do

ea ← next edge of WL;
v1a; v2a ← endpoints of ea;
fb ←MapToB[v1a];
Add the edges of fb to Candidate List (CL);
while CL is not empty do

eb ← next edge of CL;
Intersect ea and eb;
if Successful then

Add intersection point i, to Model;
Create links from ea and eb to i;
fb ← Face of Mb on other side of eb;
Add the two other edges of fb to CL;

end
end
MapToB[v2a] ← fb;
Add the unused edges originating at v2a to WL;
Mark those edges Used;

end
Algorithm 3: The algorithm used to compute the intersections of the merged
topology in O(Ea + I).

interpolation besides its simplicity is that it can be easily and very e�ciently adapted to
GPU techniques since it can be implemented as a simple morphing shader interpolating
vertices and features (lighting, textures) in real-time. Nevertheless, linear interpolation
may not always be desirable especially in very complex meshes where self-penetrations
may appear during the morphing sequence of the models. More advanced interpolation
techniques are applied in such cases. Some of them are also implemented in shaders but
their performance may vary depending on the limits set by the GPU.

20

Chapter 3

Feature Based Morphing

3.1 Introduction

3.2 Feature-based Morphing

3.2 Comparison of Morphing Results

3.1 Introduction

After the successful mapping of the two models as described in the previous section, we
can directly overlay the spherical embeddings and retrieve a morphing sequence. While
the result is a smooth transformation between the models sometimes it fails to keep basic
characteristics of the models stable in the intermediate frames, see for example Figure 3.8.
It is generally desirable basic characteristics and distinguished features of the models to be
matched during the morphing sequence (ears,head,legs,etc). A way to assure that these
features are preserved during the transformation is to make the corresponding vertices at
(approximately) the same positions on the spherical embeddings. Although these features
can be manually de�ned by the user, the procedure can become tedious and error-prone
in complex models. In general, it is desirable these features to be automatically detected
and matched.

3.2 Feature-based Morphing

3.2.1 Detecting Feature Regions

To detect feature regions in a point cloud we employ an approach [31, 30] developed earlier
for reverse engineering based on discovering features on the point cloud by detecting local
changes in the morphology of the point cloud. We use region growing, detection of rapid

21

Figure 3.1: Detecting and matching feature regions in two head meshes (matched regions
have similar color).

0 (10093)
83.78%

1 (950)
9.64%)

2 (220)
0.64%

3 (1034)
2.05%

4 (190)
0.71%

5 (89)
0.36%

6 (813)
2.0%

7 (130)
0.4%

8 (95)
0.37%

0 (4489)
83.44%

1 (85)
10.24%

2 (359)
1.7%

3 (103)
0.34%

4 (369)
1.8%

5 (147)
0.8%

6 (130)
0.74%

7 (110)
0.58%

8 (86)
0.34%

Figure 3.2: Original graphs the two head objects.

0 (10093)
83.78%

1 (950)
9.64%)

2 (220)
0.64%

4 (190)
0.71%

1.52133

8 (95)
0.37%

1.78105

3 (1034)
2.05%

5 (89)
0.36%

1.68412

6 (813)
2.0%

7 (130)
0.4%

1.89106

0 (4489)
83.44%

1 (85)
10.24%

2 (359)
1.7%

3 (103)
0.34%

7 (110)
0.58%

1.2556

8 (86)
0.34%

1.1311

4 (369)
1.8%

5 (147)
0.8%

2.08218

6 (130)
0.74%

2.22287

Figure 3.3: Reduced graphs of the two head models.

22

Figure 3.4: Detecting and matching feature points inside feature regions.

Figure 3.5: Detecting feature regions in a head and a monkey model.

0 (36)
0.16%

2 (27)
0.14%

0.300857

1 (4495)
83.38%

7 (70)
0.35%

0.109333

3 (43)
0.16%

8 (321)
1.52%

0.103375

4 (85)
10.2%

5 (337)
1.56%

12 (44)
0.14%

0.0410041

6 (130)
0.48%

0.260635

9 (89)
0.37%

0.287946

10 (148)
0.8%

0.483135

11 (126)
0.66%

0.475613

0 (211)
0.84%

9 (809)
6.46%

0.0251634

1 (202)
0.82%

10 (831)
6.81%

0.0249491

2 (1061)
37.1%

3 (344)
16.5%

4 (1166)
11.5%

14 (272)
0.4%

0.0382971

5 (1119)
8.16%

7 (93)
0.26%

0.413425

8 (93)
0.26%

0.416322

11 (615)
7.75%

0.392433

6 (124)
0.22%

15 (339)
0.48%

0.0238265

13 (522)
1.15%

0.0279524

12 (512)
1.17%

0.0371605

Figure 3.6: Reduced graphs of the head and monkey models.

23

variations of the surface normal and the concavity intensity, i.e. the distance from the
convex hull. This results in a number of regions that represent object feature areas (for
example see Figure 5.3). In the context of this work we employ this method to detect
features in models for the purposes of matching and alignment of the two morphed solids.

More speci�cally, morphological features in the point cloud are detected using a char-
acteristic called concavity intensity of a point which represents the smallest distance of a
point from its convex hull.

De�nition 1: Concavity intensity of a vertex V denoted by I(V) is the distance of
V from the convex hull of the solid.

This characteristic is used to detect concave features in the point cloud. Figure 3.7(a)
presents the point cloud of a screwdriver and its convex hull facets, whereas Figure 3.7(b)
displays a greyscale mapping of the concavity intensity value of each point (white color
corresponds to the maximum distance whereas black corresponds to points located on the
convex hull). Feature regions are also detected by rapid variations of the surface normal.
These two characteristics are combined in a region growing method that results in sets of
points corresponding to individual features (Figure 3.7(c)).

Input: Two polyhedral representations for objects S1 and S2

for each vertex V of S1 do
calculate I(V)

end
for each vertex U of S2 do

calculate I(U)

end
for S1 and S2 do

compute the corresponding feature region sets F1 and F2

end
for F1 and F2 do

compute the corresponding connectivity graphs and perform graph reduction on
them

end
Perform a 3D alignment of F1 and F2 up to scaling,rotation and translation;
for each feature point in F2 do

�nd the closest feature point in F1

end
Perform the sphere mapping on F1;
Perform the sphere mapping of F2 under the additional constraint that each
mapped point has to be close to the corresponding point of the �rst object;

Algorithm 4: The algorithm for feature based morphing.

24

3.2.2 Region Matching

The �rst step for Feature based morphing is to establish a correspondence between the
region patches of the two models. Since the region patches detected can di�er in number
and in morphology we need more high level information to �nd a good matching. In
this context, we create the connectivity graph that captures adjacency information as
illustrated in Figure 3.2. For each feature region node we also compute the percentage
of the corresponding area that it covers and the number of points it contains. For every
edge we calculate the geodesic distances between the centroids of the corresponding feature
regions.

The graphs are then simpli�ed by reducing edges that correspond to large geodesic
distances (see Figure 3.3). In addition, small regions that can introduce noise and are not
signi�cant are merged. In general, it is desirable to have a small number of regions each
one covering a signi�cant area of the original model.

Distance(i; j) = ||Centroidi − Centroidj|| ∗
max
i;j

Area

min
i;j

Area
(3.1)

The reduced graphs resulting from the elimination of graph edges with large geodesic
distances can be used to establish a correspondence between the patches. In the case like
in Figure 3.3 the match is trivial, in more complex cases like in 3.6 we match nodes with
equivalent or almost equivalent degree and edges, for example node 9 in the �rst model
and node 5 in the second. We also take into consideration the area covered by each region
patch in the case there are more than one candidates in the �rst model for matching a
single one in the second model. In that case a similarity metric is used 3.1, favoring the
matching of regions covering equal areas. Moreover, many patches of the second model
can be matched with a single one in the �rst model. This is especially true in the case
where a patch of the �rst mesh covers a large area, for example in Figure 3.5 the patch 1

(back of the head covering 83%) is matched with patches 2,3 and 4 of the second model
(covering a total of 65%).

Since some region patches in the second model can be left unmatched when there are
no suitable candidates in the �rst model, the number of unpaired regions can be used as
a metric of quality for the �nal matching.

3.2.3 Feature Point Matching

For each feature area we detect points with certain characteristics that provide a high
level description of speci�c structural characteristics of the solids. For each object we
have:

De�nition 2: A vertex V is called a feature point if and only if I(V) exhibits a local
extremum at V .

We then process the feature point set to eliminate feature points that results from
local noise and feature points that are very close to each other. The resulting point set,

25

Figure 3.7: Feature region detection.

called a feature point set, provides a high-level description of the maximum convexities
and concavities of the object. Note that normally convex hull vertices (distance 0 from the
convex hull) are part of the feature point set. The algorithm for feature-based morphing
is illustrated in Algorithm 4.

Following the establishment of a correspondence between the region patches of the
two models the feature points of the corresponding patches are paired according to the
distance between them. Since the patches may be in di�erent locations in each model the
two regions must �rst be translated so that their corresponding centroids coincide. An
example of a match of the feature points is illustrated in Figure 3.4.

3.2.4 Feature-based Optimization

For the feature based mapping of the second model we use the following set of constraints
and objective functions to obtain a more appropriate mapping based on the feature point
correspondence of the models :
Geometric Constraints: For each vertex V (vx; vy; vz):

v2
x + v2

y + v2
z = 1; ∀V (vx; vy; vz) (3.2)

Topological Constraints: For each edge (circular arc over the sphere) the length must stay
the same during the optimization:

Vi1 · Vi2 = OriginalLength; (Vi1; Vi2 ∈ Ei); ∀E (3.3)

Objective Function: We use as the objective function to be optimized the sum of all
inner products of every mapped feature vertex f(Va) = Vb of the second model with their
corresponding mapped feature vertex of the �rst model Va

∑

∀Va
Va · f(Va) (3.4)

For equation 3.3 an � value must be selected, this value controls the distortion that
it will be introduced in the optimized mapping in order to match the feature points.
Since equation 3.3 compares circular arches over the unit sphere the � value represents

26

the degree of freedom (in degrees) that the mapping can be distorted. A very large � will
lead in a perfect feature point matching at the cost of a very distorted mapping, while
a small � will lead in no distortion but in no good feature point matching. Usually, an �
that allows a change up to 0:5 degree at each edge is su�cient unless the feature points
are too far away.

3.3 Comparison of Morphing Results

Figure 3.8: Morphing with no alignment.

Figure 3.9: Morphing with alignment but no feature point matching.

Figure 3.10: Morphing with alignment and feature point matching. The improvement is
apparent in the details of the characteristics of the intermediate frames.

27

(a) M1 (b) 50% Morph
with alignment
but no feature
point matching

(c) 50% Morph
with alignment
and feature
point matching

(d) M2

Figure 3.11: Close-up of the morphing sequence.The improvement around the ear area is
noticeable.

28

Chapter 4

Implementation

4.1 Overview

4.2 Programming language and tools

4.3 Shaders and special e�ects

4.4 Optimization software

4.5 Additional software

4.5 Application

4.1 Overview

In this chapter we briey describe the various tools and technologies used to implement
the algorithm described in the previous chapters.

4.2 Programming language and tools

C++ was used as the development language of choice since the main requirements for our
application was speed of execution, availability of scienti�c libraries and rapid-prototyping.
C++ has a wide range of well established and tested scienti�c libraries like boost [6] and
LAPACK [16].

Since C++ is not the best language when considering testing algorithms and quick
changes, various scripts in other more high level languages like python were implemented
and used during the development. These scripts were used mainly through applications
that supported scripting like Blender [5]. Although python is an excellent language for
rapid prototyping, it su�ers from slow speed of execution sometimes in the factor of one

29

tenth of the equivalent C++ code. Consequently all the scripts were �nally ported to
C++ for the sake of speed.

4.3 Shaders and special e�ects

4.3.1 GPU Shaders

Modern graphic hardware provides greater control over the rendering process through
a higher and exible hardware abstraction model. The various stages of the rendering
process can be replaced by programs called shaders written by the user in a corresponding
shading language. Although shaders are designed to be executed directly on the GPU on
the proper point in the pipeline, they can be also used successfully in general processing.

Some examples of shading languages are Cg, HLSL and GLSL. These languages usually
are based on the C programming language with the addition of graphic speci�c extensions.
GLSL was used for all the shaders of the application. GLSL is a standardized high level
shading language meant to be used in conjunction with OpenGL.

4.3.2 Normal Mapping

Normal mapping is computer graphics technique where the normal (the way the surface
is facing) of a model is replaced according to a multichannel image(r,g and b channels)
derived from a set of more detailed versions of the objects. The values of each channel
usually represent the xyz coordinates of the normal in the point corresponding to that
texel. The result is a richer, more detailed surface representation that more closely re-
sembles the details inherent in natural world, see �gure 4.1. This technique is used to
enhance the appearance of low poly models. We have used normal mapping to enhance the
�nal resulting morphing sequence. The normal maps of the two models are also blended
through the morphing sequences and interpolated surface normals are calculated on the
y in GPU shaders, see �gures 5.17,5.16.

4.4 Optimization software

IPOPT software was used as a non-linear solver for the optimization problem. IPOPT
is an open source package available from COIN-OR [8], [34] under the CPL (Common
Public Licence) for large-scale nonlinear optimization. This means, it is available free of
charge also for commercial purposes. IPOPT implements an interior point line search
�lter method that aims to �nd local solution of the optimization problem de�ned at 1.2.2.
IPOPT has been designed to be exible for a wide variety of applications and provides
various code interfaces, namely the AMPL modeling language interface, and the C++, C
and Fortran interfaces.

30

+

Texture Normal Map

Figure 4.1: Normal mapping.

4.5 Additional software

During the development of the software for the implementation of the method described
in the previous sections, we used some additional software. The software used was both
in form of libraries for C++ and stand-alone software.

Mathematica software [35] allowed us to calculate analytical derivatives for very com-
plex functions in form suitable for C++ applications. In addition a great part of the
boost library was used extensively, some notable libraries used from boost are BGL for
implementing graph algorithms and uBLAS Linear algebra library that can be used to
easily manipulate matrices and contains many linear algebra algorithms.

We have also performed the experiments for out method on a variety of well-known
models such as the blender monkey and models originating from 3D scanning. Those
models usually required some pre-process in order to be suitable for morphing. The pre-
process is usually cleaning of duplicated faces, �lling of open regions (holes) and �xing
self-penetrating elements, the aforementioned operations are necessary in order to be able
to gain a valid mapping of the model over the parameterization domain. For the meshing
and pre-processing of the all those models blender software [5] was used.

4.6 Application

The application that we created to implement the morphing algorithm was made with
portability in mind. In Figures 4.3,4.4 and 4.5 the application is running under Windows
XP and Windows Vista. All the libraries and tools used are portable across platforms
and consequently the application can run in both Windows and Linux.

31

Figure 4.2: Models from 3D-scanner inside Blender Software [5].

The application can produce the morphing sequence of two models each time. The two
models are given as command line parameters along with the desired number of frames
in the �nal sequence. The application supports some popular �le formats for the input
models, namely Wavefront �le format (OBJ), 3D Studio Graphics format (3DS) from 3D
Studio Max and VRML �le format (WRL). The application apart from the morphing
sequence, can also visualize several stages of the algorithm like the parameterization of
the models over the sphere the convex hull distances and the region clustering of the
de-featuring process described in 3.2.1. In addition, an interface is o�ered to modify the
automatically calculated pairs of feature points in order to improve the �nal result, in the
case the user is not satis�ed with the automatic matching.

32

(a) Normal at shaded view of the
original model

(b) feature point matching

Figure 4.3: Application.

(a) Region Clustering (b) Sphere Projection

Figure 4.4: Application.

33

(a) Convex hull distances and feature
point detection

(b) Morphing View with normal map-
ping and shadows

Figure 4.5: Application.

34

Chapter 5

Experiments and Performance
Evaluation

5.1 Introduction

5.2 Experiments with no Feature Point Matching

5.3 Comparison with Feature Point Matching

5.4 Performance Evaluation

5.1 Introduction

We have developed software for implementing mapping, merging and interpolation as
described in the previous sections. The platform used for development was a Windows XP
Professional based system running on a Intel Pentium Q6600 Core 2 at 2.4GHz, 2GByte
of RAM, with NVIDIA GeForce 8600GT. We have developed the system on Visual Studio
2005, using OpenGL 2.0 (Shader Model 3.0) and GLUT.

We have also implemented tools for visualizing all steps of morphing: map to the
sphere, merging, and interpolation.

5.2 Experiments with no Feature Point Matching

We have tested our algorithm described in previous sections to generate morph sequence
without any feature matching to various standard models like the blender monkey (Suzanne)
and the Stanford bunny. Figures 5.1, 5.2 illustrates the resulting morphing sequence. Al-
though the �nal result is quite satisfactory and the algorithm can be used to produce
morphing sequences in arbitrary models, there is no high level feature correspondence
that would make the �nal result more visual pleasing.

35

Figure 5.1: Morphing of Monkey (5600 faces) to frog (3924 faces), merged topology has
43794 faces.

Figure 5.2: Morphing of Stanford bunny (876 faces) to frog (3924 faces) with no feature
matching. The merged topology has 18142 faces.

5.3 Comparison with Feature Point Matching

Figure 5.3: Feature point matching of Man. Head model and Monkey model.

Figures 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 illustrates the results of our method in a series of
head models. From the �nal morphing sequences it is obvious that the results with fea-
ture point matching has several favorable characteristics. More speci�cally, geometrically
important features of the models are matched and morphed correctly, especially the ears,
mouth and the nose of the head models in the second case.

Figures 5.9, 5.10 and 5.11 illustrates the morphing sequence for two models of very
di�erent topology like the Fish Model and the duck Model from [1]. Again it should be

36

Figure 5.4: Morphing with alignment but no feature point matching.

Figure 5.5: Morphing with alignment and feature point matching.

Figure 5.6: Feature point matching of Man. Head model and Ceasar model

37

Figure 5.7: Another example of Morphing without alignment of Man. Head (11042 faces)
to Ceasar model (13530 faces), merged topology has 109849 faces.

Figure 5.8: Morphing with alignment, merged topology has 127161 faces.

Figure 5.9: Feature Mapping

Figure 5.10: Morphing with alignment but no feature matching of Fish (4994 faces) to
Duck (1926 faces), merged topology has 28526 faces.

38

Figure 5.11: Morphing with alignment and feature matching of Fish (4994 faces) to Duck
(1926 faces), merged topology has 33038 faces.

noticed, that morphing with feature point matching produce a considerably more visual
pleasing sequence compared to the case with no matching. Therefore in the latter case,
many features of the two models are not matched correctly, namely the head and the tail
parts of the models. Nevertheless, the sequence produced is smooth and valid.

Figure 5.12: Feature Point Matching of Duck and Frog models

We also provide in �gures 5.13, 5.14 and 5.15 a comparison of morphing sequences for
the case of not aligned models. We observe that although the sequence with no alignment
5.13 is valid the result is improved considerably after the alignment and feature point
matching in 5.15.

Finally, we have applied the algorithm described in previous sections to generate the
morph sequence for two models obtained from 3D scanner 5.16, 5.17 and 5.18. Since the
original models contained a lot or redundant vertices a level of detail reduction was applied
on the models to reduce the computational cost in Blender application. In addition, the
textures of the model along with their corresponding normal maps were blended to produce
the �nal morphing sequence. The normal maps were generated in Gimp application.

39

Figure 5.13: Metamorphosis with no alignment of Duck (1926 faces) to Frog (3924 faces),
merged topology has 25800 faces.

Figure 5.14: Metamorphosis with alignment but no feature point matching, merged topol-
ogy has 27862 faces.

Figure 5.15: Metamorphosis with alignment and feature point matching, merged topology
has 28332 faces.

Figure 5.16: Morphing with alignment but no feature point matching of the Iniohos model
(11098 faces) to Kykladitiko model (16798 faces), merged topology 142422 faces.

40

Figure 5.17: Morphing with alignment and feature point matching, merged topology has
142512 faces

(a) M1 (b) 50% Morph
with alignment
but no feature
point matching

(c) 50% Morph
with alignment
and feature
point matching

(d) M2

Figure 5.18: Comparison of the morphing results. The improvement around the ear area
and the outline of the model is noticeable.

5.4 Performance Evaluation

Table 5.1 summarizes the results of some of our experiments on mapping for di�erent
models (Stanford bunny, monkey and frog) using both the Thermal and the Laplacian
smoothing initialization. The number of iteration refers to the optimization phase, while
the time refers to the total time for both deriving the initial mapping and for performing
optimization. We observe that the Laplacian smoothing initialization yields a much faster
convergence in the optimization phase (half the number of iterations and 50% faster). Our
extensive experiments indicate that the number of iterations increases quadratically over
the number of faces of the polyhedral representation for triangular models. This is a
considerable overhead but it can be calculated o� line during a preprocessing phase and
stored along with the polyhedral representation. Table 5.2 show the results for the same
set of experiments for the same model with di�erent LODs ranging from 854 faces up to
5610 for the monkey model. This set of experiments con�rms the above observations.

As mentioned in Section 2.2 merging takes in average O(I log I) time, where I is the

41

Table 5.1: Experimental results of mapping with di�erent models of various level of detail

model method # vertices # faces # constraints # iterations time (secs)

Monkey Laplace 429 854 2991 36 10.9
Monkey Thermal 429 854 2991 78 22.6
Bunny(Lod1) Laplace 440 876 3068 94 24.3
Bunny(Lod1) Thermal 440 876 3068 165 52.0
Frog(Lod1) Laplace 1964 3924 13736 70 422.2
Frog(Lod1) Thermal 1964 3924 13736 152 895.8

Table 5.2: Experimental results with the same model with di�erent levels of detail

model method # vertices # faces # constraints # iterations time (secs)

Monkey(Lod1) Laplace 429 854 2991 36 10.9
Monkey(Lod1) Thermal 429 854 2991 78 22.6
Monkey(Lod2) Laplace 703 1402 4909 26 21.3
Monkey(Lod2) Thermal 703 1402 4909 70 54.8
Monkey(Lod3) Laplace 1404 2804 9816 49 151.3
Monkey(Lod3) Thermal 1404 2804 9816 91 271.3
Monkey(Lod4) Laplace 2807 5610 19637 79 934.0
Monkey(Lod4) Thermal 2807 5610 19637 136 1578.6

number of intersections. For all cases in Tables 5.1 and 5.2 this step took less than 2.5
sec. Finally, the interpolation step is implemented in GPU so it is very fast and can
accommodate almost unlimited number of frames.

Figures 5.1, 5.2, 5.5, 5.11, 5.15, 5.8 and 5.17 illustrate di�erent cases of metamorphosis.
We have performed the experiments on well-known models such as the Stanford bunny
[32], the Blender monkey [5] and the Aim@shape frog [1].

42

Table 5.3: Feature alignment optimization

model1 model2 # features # faces1 # faces2 # constraints # iters time (secs)

�sh duck 23 4994 1926 9632 123 14.34
Head Man. Head 26 25990 11040 55202 34 39.9
Man. Head Caesar 60 11040 13530 67652 182 321.1

Table 5.4: Experimental results

model method # vertices # faces # constraints # iterations time (secs)

Duck Laplace 965 1926 6743 19 29.4
Fish Laplace 2499 4994 17481 108 1007.9
Man. Head Laplace 5522 11040 38642 28 1377.9
Kykladitiko Laplace 8401 16798 58795 61 6504.1

43

Chapter 6

Conclusions

6.1 Conclusions and Future Work

6.1 Conclusions and Future Work

We have presented a method that performs morphing between arbitrary genus-0 objects
(homeomorphic to the sphere) without any user intervention. The �nal morphing sequence
blends not only the topologies of the corresponding models but also the textures and
the normal maps resulting in more visual pleasing result. The sphere mapping can be
considered as preprocessing and stored along with the representation of the solid. The
merging is very fast in the average case, and the interpolation is implemented with GPU
shaders. Finally, we have presented a fully automated technique for feature matching and
alignment that greatly improves the visual e�ect by matching geometrically important
features of the models. We have used our method very successfully on object pairs of
similar topology (for examples busts) or of very di�erent topology (�sh and duck). In
addition we have tested successfully our method in real models from 3D scanners.

We are currently exploring the feasibility of parallelization through GPUs of the merg-
ing and the optimization phase. Modern graphic hardware can be used in general process-
ing and several options exists that could improve the computational e�ciency of the im-
plementation. More speci�cally, the initial mapping computation on the sphere can be
moved on the GPU along with the merging process. In addition, the optimization problem
can be simpli�ed by adding more constraints on the vertices. In particular, certain ver-
tices belonging to the convex hull can be �xed in their corresponding normalized positions
and reduce the degrees of freedom for the optimization problem. In the context of opti-
mization e�ciency a tailored solver instead of a general one can be used optimized for the
particular problem that could cut down the times required for optimization drastically.

Finally, concerning the interpolation step more advanced methods can be used for
more visual pleasing results and to avoid the self intersection problem during the morphing

44

sequence. There exist methods inspired from physics that can treat the models as soft
bodies and the movement of the vertices as pressure forces acting on the vertices that can
totally eliminate the problem of self intersections.

45

Bibliography

[1] Aim@shape. AIM@SHAPE Shape Repository v4.0, Department of Gen-
ova, Institute for Applied Mathematics and Information Technologies, CNR,
http://shapes.aimatshape.net, AIM@SHAPE Project.

[2] M. Alexa. Merging polyhedral shapes with scattered features. The Visual Computer,
16(1):26{37, 2000.

[3] M. Alexa. Recent advances in mesh morphing. Computer Graphics Forum, 21(2):173{
197, 2002.

[4] T. Beier and S. Neely. Feature-based image metamorhosis. In Proceedings of SIG-
GRAPH 1992, volume 26(2), pages 35{42. New York, Published as Computer Graph-
ics, July 1992.

[5] Blender. Blender Suite, Open Source Suite, http://www.blender.org, Blender Foun-
dation.

[6] Boost. Boost, www.boost.org.

[7] Ch. Brechbuhler, G. Gierig, and O. Kubler. Parametrization of closed surfaces for
3d shape description. Computer Vision and Image Understanding, 61(2):154{170,
August 1995.

[8] COIN-OR. IPOPT, http://www.coin-or.org.

[9] D. Eberly. Estimating a Tangent Vector for Bump Mapping,
www.geometrictools.com/,2003.

[10] T. He, S. Wang, and A. Kaufman. Wavelet-based volume morphing. In Proceedings
of Vizualization 1994, pages 85{92, Washington D.C., October 1994. ieee.

[11] Ilja Friedel and Peter Schr�oder and Mathieu Desbrun. Unconstrained spherical para-
meterization. In SIGGRAPH '05: ACM SIGGRAPH 2005 Sketches, page 134, New
York, NY, USA, 2005. ACM.

[12] T. Kanai, H. Suzuki, and F. Kimura. 3d geometric metamorhosis based on harmonic
map. In Proceedings of the 5th Paci�c Computer Graphics and Applications. IEEE,
1997.

46

[13] P. Kanonchayos, T. Nishita, S. Yoshihisa, and T. L. Kunii. Topological morphing
using reeb graphs. In CW '02: Proceedings of the First International Symposium on
Cyber Worlds (CW'02), page 0465, Washington, DC, USA, 2002. IEEE Computer
Society.

[14] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation for polyhedral
objects. In Proceedings of SIGGRAPH 1992, volume 26(2), pages 47{54. New York,
Published as Computer Graphics, July 1992.

[15] Vladislav Kraevoy and Alla She�er. Cross-parameterization and compatible remesh-
ing of 3d models. ACM Trans. Graph., 23(3):861{869, 2004.

[16] LAPACK. http://www.netlib.org/lapack/.

[17] T. Y. Lee and P. H. Huang. Fast and intuitive metamorphosis of 3d polyhedral
models using smcc mesh merging scheme. IEEE Transactions of Visualization and
Computer Graphics, 9(1):85{98, 2003.

[18] Tong-Yee Lee, Chih-Yuan Yao, Hung-Kuo Chu, Ming-Jen Tai, and Cheng-Chieh
Chen. Generating genus-n-to-m mesh morphing using spherical parameterization:
Research articles. Comput. Animat. Virtual Worlds, 17(3-4):433{443, 2006.

[19] A. Lerios, C. D. Gar�nkle, and M. Levoy. Feature-based volume metamorhosis. In
Proceedings of SIGGRAPH 1995, pages 449{456. ACM SIGGRAPH, 1995.

[20] C. H. Lin and T. Y. Lee. Metamorphosis of 3d polyhedral models using progressive
connectivity transformations. IEEE Transactions of Visualization and Computer
Graphics, 11(1):2{12, 2005.

[21] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of SIGGRAPH 87, published as Computer
Graphics, pages 163{169. ACM SIGGRAPH, 1987.

[22] M. Oka, K. Tsutsui, O. Akio, K. Yoshitaka, and T. Takashi. Realtime manipulation of
textured mapped surfaces. In Proceedings of SIGGRAPH 83, published as Computer
Graphics, volume 21(4), pages 181{188. ACM SIGGRAPH, Anaheim, 1983.

[23] Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing. In SIG-
GRAPH '03: ACM SIGGRAPH 2003 Papers, pages 340{349, New York, NY, USA,
2003. ACM.

[24] M. Rosenfeld. Special e�ects production with computer graphics and video tech-
niques. In Proc. SIGGRAPH 87, Course Notes #8. ACM SIGGRAPH, July, Ana-
heim 1987.

47

[25] Shadi Saba, Irad Yavneh, Craig Gotsman, and Alla She�er. Practical spherical em-
bedding of manifold triangle meshes. In Proceedings of the International Conference
on Shape Modeling and Applications 2005, pages 258{267, 2005.

[26] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-surface
mapping. ACM Trans. Graph., 23(3):870{877, 2004.

[27] Avner Shapiro and Ayellet Tal. Polyhedron realization for shape transformation.
The Visual Computer, 14(8/9):429{444, 1998.

[28] A. She�er, C. Gotsman, and N. Dyn. Robust spherical parameterization of triangular
meshes. Computing, 72(1-2):185{193, 2004.

[29] T. Shou and K. Shimada. An angle-based approach to two-dimensional mesh smooth-
ing. In Proceedings of the 9th International Meshing Roundtable, pages 373{384, 2000.

[30] V. Stamati. Reconstructing feature based cad models based on point cloud mor-
phology. In PhD Thesis. Department of computer Science, University of Ioannina,
October 2008.

[31] V. Stamati and I. Fudos. A feature-based approach to re-engineering objects of
freeform design by exploiting point cloud morphology. In Proc. SPM 2007. ACM,
Beijing, China 2007.

[32] Stanford. The Stanford 3D Scanning Repository, Stanford University,
http://graphics.stanford.edu/data/3Dscanrep, Stanford Computer Graphics Labo-
ratory.

[33] D. Vartziotis, T. Athanasiadis, I. Goudas, and J. Wipper. Mesh smoothing using the
geometric element transformation method. Computer Methods in Applied Mechanics
and Engineering, 197:3760{3767, 2008.

[34] Andreas Wachter and Lorenz T. Biegler. On the implementation of an interior-point
�lter line-search algorithm for large-scale nonlinear programming. In Mathematical
Programming 106, pages 25{57, 2006.

[35] WolframResearch. Mathematica, http://www.wolfram.com.

[36] M. Zwicker and C. Gotsman. Meshing point clouds using spherical parameterization.
In Proceedings of the Eurographics Symposium on Point-Based Graphics, Zurich, June
2004.

48

Appendix

A. Tangent Vectors for Normal Mapping

This section briey describes the estimation of a tangent vector for normal mapping
based on the analysis in [9]. Consider a triangle with vertices P0, P1 and P2 and with
corresponding texture coordinates (u0,v0),(u1; v1) and (u2,v2). Any point on the triangle
may be represented as P (s; t) = P0+s(P1−P0)+t(P2−P0) where s ≥ 0; t ≥ 0; s+t ≤ 1. The
texture coordinate corresponding to this point is similarly represented as (u(s; t); v(s; t)) =

(u0; v0)+s((u1; v1)− (u0; v0))+ t((u2; v2)− (u0; v0)) = (u0; v0)+s(u1−u0; v1−v0)+ t(u2−
u0; v2 − v0. Consequently, the surface de�ned by P (s; t) is implicitly dependant on the
parameters u and v. The problem is to estimate a tangent vector relative to u or v. To
estimate the tangent with respect to u, we must compute the rate of change of P as u
varies, more speci�cally the derivative @P

@u . Using the chain rule from calculus,

@P
@u

=
@P
@s

@s
@u

+
@P
@t

@t
@u

= (P1 − P0)
@s
@u

+ (P2 − P0)
@t
@u

(6.1)

The equation that relates s to u can be written as a system of two linear equations with
two unknowns [

u1 − u0 u2 − u0

v1 − v0 v2 − v0

][
s
t

]
=

[
u− u0

v − v0

]
(6.2)

Inverting this leads to
[
s
t

]
=

1

(u1 − u0)(v2 − v0)− (u2 − u0)(v1 − v0)

[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

][
u− u0

v − v0

]

(6.3)
Computing the partial derivative with respect to u produces

[
@s
@u
@t
@u

]
=

1

(u1 − u0)(v2 − v0)− (u2 − u0)(v1 − v0)

[
v2 − v0 −(u2 − u0)

−(v1 − v0) u1 − u0

][
1

0

]
=

1

(u1 − u0)(v2 − v0)− (u2 − u0)(v1 − v0)

[
v2 − v0

−(v1 − v0)

] (6.4)

Combining this into the partial derivative for P from 6.1, we �nally have

@P
@u

=
(v2 − v0)(P1 − P0)− (v1 − v0)(P2 − P0)

(u1 − u0)(v2 − v0)− (u2 − u0)(v1 − v0)
=

(v1 − v0)(P2 − P0)− (v2 − v0)(P1 − P0)

(v1 − v0)(u2 − u0)− (v2 − v0)(u1 − u0)
(6.5)

49

B. Layout of the data in the GPU

We use simple linear interpolation to produce the �nal morphing sequence. The advantage
of linear interpolation besides its simplicity is that it can be easily and very e�ciently
adapted to GPU techniques since it can be implemented as a simple morphing shader
interpolating vertices and features (lighting, textures) in real-time. The required inter-
polated attributes are vertices,texture coordinates, normals and tangent vectors and are
calculated as

Vm = Va + t ∗ (Vb − Va) = Va + t ∗ Vba; t ∈ [0; 1]

UVm = UVa + t ∗ (UVb − UVa) = UVa + t ∗ UVba; t ∈ [0; 1]

Nm = Na + t ∗ (Nb −Na) = Na + t ∗Nba; t ∈ [0; 1]

Tm = Ta + t ∗ (Tb − Ta) = Ta + t ∗ Tba; t ∈ [0; 1]

(6.6)

Bi tangent vectors are not required to be stored and can be computed as the cross
product of the normal and the tangent vector. From 6.6 8 vectors (3 oats each) should be
stored for each interpolated vertex of the mesh. To improve the e�ciency of the rendering
process and reduce the memory overhead resulting from continuously feeding the GPU
with data and since our data are static and can be precomputed, we store the data required
in a static Vertex Bu�er Object (VBO). A VBO is an OpenGL extension that provides
methods for uploading data (vertex,normal vector,color, etc) to the video device. VBOs
o�er substantial performance gains over directly rendering the data, mainly because the
data are stored in the video memory rather than the system memory so it can be rendered
directly by the video device. This is especially true for static data like in our case. Since
in OpenGL a lot of standard vertex attributes are already de�ned (normal,color,etc) we
can use that in our advantage by assigning our data in unused attributes. To this end we
store the 8 vectors in a VBO object as follows

Attribute GPU Attribute Description

UVa Texture Unit 0 Texture Coordinates
UVba Texture Unit 1 Texture Coordinates
Ta Texture Unit 2 Tangent Vector
Tba Texture Unit 3 Tangent Vector
Vba Texture Unit 4 Vertex Coordinates
Nba Color Normal Vector
Na Normal Normal Vector
Va Vertex Vertex Coordinates

The use of GPU shaders and modern rendering techniques allowed us to e�ectively
handle and render millions of morphed triangles.

50

C. GPU Shaders Code

Fragment Shader code:

uniform sampler2D texture1;
uniform sampler2D texture2;
uniform sampler2D texture3;
uniform sampler2D texture4;

//Param variable controls the percentage of the morphing (0-1.0)
uniform float Param;
varying vec3 lightDir;
varying vec3 halfVector;

void main()
{

const float overBright = 1.0;

vec3 halfV, lightColor ;
float NdotHV, NdotL;
vec4 tex0 = texture2D(texture1, gl_TexCoord[0].st);
vec4 tex1 = texture2D(texture2, gl_TexCoord[1].st);

//Compute the normal vectors from the normal maps
vec3 n0 = 2.0 * texture2D(texture3, gl_TexCoord[0].st).rgb - 1.0;
vec3 n1 = 2.0 * texture2D(texture4, gl_TexCoord[1].st).rgb - 1.0;

//Calculate the interpolated normal
vec3 n = normalize(mix(n0,n1,Param));

NdotL = max(dot(n,normalize(lightDir)),0.0) * overBright;
lightColor = gl_LightSource[0].ambient.rgb;

if (NdotL > 0.0) {
lightColor += gl_LightSource[0].diffuse.rgb * NdotL;

halfV = normalize(halfVector);
NdotHV = max(dot(n,halfV),0.0);
lightColor += gl_LightSource[0].specular.rgb *
pow(NdotHV, gl_FrontMaterial.shininess);

}

gl_FragColor = mix(tex0,tex1,Param) * vec4(lightColor,1.0);

51

}

Vertex Shader code:

uniform float Param;
varying vec3 lightDir;
varying vec3 halfVector;

void main()
{

gl_TexCoord[0] = gl_MultiTexCoord0; //Material of object 1 coordinates
gl_TexCoord[1] = gl_MultiTexCoord1; //Material of object 2 coordinates

//Calculate new interpolated world pos
vec4 worldPos = gl_Vertex + vec4(gl_MultiTexCoord4.xyz,0.0)*Param;
vec3 aux;

//Calculate the interpolated TBN matrix
vec3 n = gl_NormalMatrix * (gl_Normal + gl_Color.xyz*Param);
vec3 t = gl_NormalMatrix * (gl_MultiTexCoord2.xyz + gl_MultiTexCoord3.xyz * Param);
vec3 b = cross(n,t);

if(gl_LightSource[0].position.w > 0.0) //Point Light
aux = (gl_LightSource[0].position - worldPos).xyz;

else //Directional Light
aux = normalize(gl_LightSource[0].position.xyz);

//Transform light space to tangent space
lightDir.x = dot(aux,t);
lightDir.y = dot(aux,b);
lightDir.z = dot(aux,n);

halfVector = normalize(gl_LightSource[0].halfVector.xyz);

halfVector.x = dot(halfVector,t);
halfVector.y = dot(halfVector,b);
halfVector.z = dot(halfVector,n);

gl_Position = gl_ModelViewProjectionMatrix * worldPos;
}

52

Index

Concavity Intensity, 21

Feature
Points, 22
Region Growing, 18
Regions, 18

Mapping
Bijective, 2
Normal, 27
Sphere, 8

Mesh Parameterization, 2

Optimization
Feature-based, 23
Global, 4
Local, 3
Nonlinear, 3
Software, 27

53

Author's Publications

1. D. Vartziotis, T. Athanasiadis, I. Goudas, and J. Wipper. Mesh smoothing using the
geometric element transformation method. Computer Methods in Applied Mechanics
and Engineering, 197:3760{3767, 2008.

Short Vita

Theodoros Athanasiadis was born on May 14, 1983 in Thessaloniki. He received his BSc
degree from the Department of Computer Science of the University of Ioannina in 2005. He
is currently pursuing his MSc thesis. His reasearch interests include graphics, CAD/CAM
systems, �nite elements analysis and software engineering.

