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ABSTRACT

Vasilakis, Andreas-Alexandros, T., S. MSc,

Computer Science Department, University of Ioannina, Greece. July, 2008.
Thesis Title: Robust Skeletal Animation of Articulated Modular Solid Objects
Thesis Supervisor: Fudos loannis

In video games, crowd simulations, computer generated imagery films and other applica-
tions of 3D computer graphics, skin motion of deformable objects in a realistic-looking
way is of utmost importance. Skeleton-based skinning is widely used for plausible ani-
mation of complex characters defining mesh movement as a function of the underlying
skeleton. A number of approaches have been employed in recent years based on efficient
variations of the linear blend skinning (LBS) method. Such techniques usually require
an appropriate weight selection process which is often based on a training set of example
poses. In this dissertation, we propose a novel robust skeleton-based animation framework
of articulated modular solid objects.

The contribution of this work is twofold. First, we present refinement techniques for
improving the skeletal representation based on local characteristics which are extracted
using centroids and principal axes of the components of the character. Skeleton-based
animation is then performed using forward kinematics and quaternions. The compo-
nents position varies over time, guided by an animation controller. Then, we use rigid
skinning deformations by assigning each skin vertex one driver bone to achieve realistic
skin motion avoiding vertex weights. A novel method eliminates the artifacts caused by
self-intersections, especially in areas near joints, providing sufficiently smooth skin defor-
mation. Finally, we have implemented all the above steps and we perform an extensive
experimental evaluation of our suite of techniques with respect to efficiency, robustness
and quality of the final animation outcome.
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CHAPTER 1

INTRODUCTION

1.1 Definition of the Problem
1.2 Applications
1.3 Related Work

1.4 Structure of Thesis

Animation is derived from the Latin anima and means the act, process, or result of
imparting life, interest, spirit, motion, or activity. Motion is a defining property of life
and much of the true art of animation is about how to tell a story, show emotion, or
even express subtle details of human character through motion. “Animating” is moving
something which can’t move itself. Animation adds to graphics the dimension of time
which vastly increases the amount of information which can be transmitted. In order to
animate something, the animator has to be able to specify, either directly or indirectly,
how the object is to move through time and space. A key issue is to create animation
tools which are expressive enough for the designer to specify what he wants while at the
same time are powerful enough to provide for the automatic reconstruction of motion
details. The appropriateness of a particular animation tool depends on the effect desired
by the animator. An artistic animation clip will require different tools that an animation
intended to simulate reality.

A computer is a secondary tool for achieving these goals, it is a tool which a skilful
animator can use to help get the result he wants faster and without concentrating on
technicalities in which he is not interested. Animation without computers, which is now
often called ”traditional” animation, has a long and rich history of its own which is
continuously being written by hundreds of people still active in this art. As in any
established field, some time-tested rules have been crystallized which give general high-
level guidance to how certain things should be avoided. These principles of “traditional”
animation apply equally to computer animation.



The computer, however, is more than just a tool. In addition to making the animator’s
main task less tedious, computers also add some truly unique abilities that were simply
not available or were extremely difficult to obtain before. Modern modeling tools allow
the relatively easy creation of detailed three-dimensional models, rendering algorithms
can produce an impressive range of appearances, from fully photorealistic to highly styl-
ized, powerful numerical simulation algorithms can help to produce desired physics-based
motion for particularly hard to animate objects and motion capture systems give the
ability to record and use real-life motion. These developments led to an exploding use of
computer animation techniques in motion pictures and commercials, automotive design
and architecture, medicine and scientific research among other areas. Completely new
domains and applications have also appeared including fully computer-animated feature
films 1.1, virtual/augmented reality systems and, of course, computer games [96].

'WF - PIXAR

ToY

STORY

l°‘h ANNIVERSARY
ERITION

2-Dise DYD Wow Availabi

Figure 1.1: Toy Story is a 1995 Pixar Animation Studios [107] film using Computer
Animation.

There are two main categories of computer animation: computer-assisted animation and
computer generated animation. Computer-assisted animation usually refers to 2D and 2
1/2 dimensional systems that computerize the traditional animation process. Interpo-
lation between key shapes is typically the only algorithmic use of the computer in the
production of this type of animation (in addition to the more “non-animation” uses of
the computer such as inking, implementing a virtual camera stand, suffling paper, and
managing data).

On the other hand, motion specification for computer-generated animation is divided
into two categories: Low level techniques (techniques that aid the animator in precisely
specifying motion), and High level techniques (techniques used to describe general motion
behaviour).

Low level techniques consist of techniques, such as shape interpolation algorithms



(in-betweening), which help the animator fill in the details of the motion once enough
information about the motion has been specified by the animator. When using low level
techniques, the animator usually has a fairly specific idea of the exact motion that he or
she wants.

High level techniques are typically algorithms or models used to generate a motion
using a set of rules or constraints. The animator sets up the rules of the model, or
chooses an appropriate algorithm, and selects initial values or boundary values. The
system is then set into motion, so to speak, and the motion of the objects is controlled
by the algorithm or model. The model-based/algorithmic approaches often rely on fairly
sophisticated computation, such as physically based motion control.

In practice, of course, these categories are the extremes which characterize a continuum
of approaches. Any technique requires a certain amount of effort from the animator and a
certain amount of effort from the computer. One of the things which distinguish animation
techniques is whether it’s the animator or the computer which bears most of the burden.
Motion specification aids are those techniques which seem to require more input from
the user and fairly straightforward computation. Model-based approaches, on the other
hand, require less from the animator and more computation. But the categories are
really artificial. Approaches which I call motion specification aids could be discussed as
algorithmic approaches which happen to require more input from the user.

Another way to characterize the difference between techniques is to look at the level
of abstraction at which the animator is working. In one extreme, at a very low level of
abstraction, the animator could color in every pixel individually in every frame. At the
other extreme, at a very high level of abstraction, the animator could tell a computer
to “make a movie about a dog”. Presumably, the computer would whirl away while it
computes such a thing. A high level of abstraction frees the animator from dealing with
all of the details. A low level of abstraction allows the animator to be very precise in
specifying exactly what is displayed when. In reality, animators want to be able to switch
back and forth and work at various levels of abstraction. The challenge to developing
animation tools is designing the tools so that animators are allowed to work at high levels
of abstraction when desired, while providing them the ability to work at low levels when
needed.

1.1 Definition of the Problem

This thesis studies the problem of the skeletal animation of solid articulated figures.
Skeletal animation, sometimes referred to as rigging, is a technique in computer animation,
particularly in the animation of vertebrates, in which the object’s model consists of at
least two main layers. The motion of a highly detailed surface representing the outer
shell or skin of the object is what the viewer will eventually see in the final product.
The skeleton underneath it is a hierarchical structure of joints which provides a kinematic



model of the figure and is used for animation. Skeletal animation technique can be divided
into sub-problems which consist of the following distinct levels:

e Skeletonization

As the name implies, we build a skeleton inside the meshes we wish to animate by
constructing hierarchy bones which is associated with some portion of the object’s

visual representation.

e Keyframing animation

Instead of animating the mesh itself we animate the skeleton within. Skeletal anima-
tion produced from key frames which are built by the animator in modeling software
or digitally recording action movements of moving objects (motion capture). A se-
quence of key frames defines which movement the spectator will see, whereas the
position of the key frames on the animation defines the timing of the movement.
There are two techniques in computer graphics to animate an articulated object:

1. Forward Kinematics

The essential concept of this technique is that the positions of particular parts
of the model at a specified time (framework) are calculated from the position
and orientation of the object, together with any information on the joints of
the articulated model.

2. Inverse Kinematics

This technique refers to a process that calculates the required articulation of
a series of joints, such that the end effectors of specified bones end up in a
particular location. In contrast to forward kinematic animation, where each
movement for each component must be planned, only the starting and ending
locations of the bone are necessary.

e Skin Deformation

A skeleton acts as a special type of deformer transferring its motion to the skin by
assigning each skin vertex one (rigid skinning) or more (linear blending skinning)
joints as drivers. In the former case, a skin vertex is fixed in the local coordinate
space of the corresponding bone following whatever motion this bone is subjected to.
Although simple, this technique suffers from inherent flaws from self-intersections,
especially in areas around joints. In the latter case of linear blending skinning (LBS)
(also known as skeleton subspace deformation (SSD), vertex blending or enveloping),
each skin vertex is assigned multiple influences and blending weights for each joint.
This scheme provides more detailed control over the results. The deformed vertex is



computed by a convex combination of individual vertex transformations. Although
the method is simple and easy to implement in GPUs, the generated meshes exhibit
volume loss as joints are rotated to extreme angles producing non-natural deforma-
tions (also known as “collapsing joint” and “candy wrapper” effects, see Figure 1.2).
Despite these drawbacks, variations of this method are widely used in interactive
computer graphics applications.

In this paper, we present an integrated skeleton-based rigid skinning framework for ani-
mating 3D solid modular articulated models. A visually satisfactory skeleton is extracted
using centroids and principal axes [63] of the components of a segmented object by per-
forming a depth-first traversal of the skeleton hierarchy tree. Furthermore, we refine the
produced skeleton segments with local and neighbor features to derive better skeletal rep-
resentations that are more appropriate for our application. Skeleton based animation is
then performed using the forward kinematics and quaternions. The joints position varies
over time, guided by an animation controller. Then, we use classic rigid skinning by
assigning each skin vertex to an influence bone to achieve mesh animation avoiding thus
vertex weight estimation and training pose set production costs. We introduce a novel
method to eliminate degeneracies and artifacts from self-intersections, especially in areas
near joints, by performing alternative intuitive deformations. Briefly, our approach first
removes the skin vertices of the overlapping component parts and then adds new vertices
to fill in the gap. Finally, for each frame it constructs a blending mesh that produces a
smooth surface using a robust triangulation method.

1.2 Applications

Skeletal animation is the standard way to animate characters or mechanical objects for a
prolonged period of time (usually over 100 frames). It is commonly used by video game
artists and in the movie industry, and can also be applied to mechanical objects and any
other object made up of rigid elements and joints. Motion capture can speed up develop-
ment time of skeletal animation, as well as increasing the level of realism. For motion that
is too dangerous for motion capture, there are computer simulations that automatically
calculate physics of motion and resistance with skeletal frames. Virtual anatomy prop-
erties such as weight of limbs, muscle reaction, bone strength and joint constraints may
be added for realistic bouncing, buckling, fracture and tumbling effects known as virtual
stunts. Virtual stunts are controversial due to its potential to replace stunt performers.
However, there are other applications of virtual anatomy simulations such as military and
emergency response. Virtual soldiers, rescue workers, patients, passengers and pedestri-
ans can be used for training, virtual engineering and virtual testing of equipment. Virtual
anatomy technology may be combined with artificial intelligence for further enhancement
of animation and simulation technology.



1.3 Related Work

There is an abundance of research work in the literature that tackles the skeleton ex-
traction and skinning of 3D objects from different perspectives. Our work lies at the
intersection of two large bodies of literature: Skeletonization and skinning. In this re-

view, we focus on recent developments most closely related to animation.

1.3.1 Skeletonization

Skeletonization algorithms may be classified based on whether they work on the boundary
surface geometric methods) or on the inner volume (volumetric methods).

Geometric methods. Medial Azis Transform (MAT) [18] is a popular topological skele-
tal representation technique which consists of a set of curves which roughly run along the
object’s middle. MAT-based representations suffer from perturbation and noise depen-
dence, high computation cost for 3D [26] (O(n?logn) in worst case [76]), shape complexity
(because in 3D they contain not only lines but also surface elements). All these character-
istics makes them inappropriate for animation applications. Researchers have proposed
approximate MAT using Voronoi diagram [4, 29] or dual Delaunay triangulation [8]. Reeb
graphs are a fundamental 1-D data structure for representing the configuration of critical
points and their relationships in an attempt to capture the intrinsic topological shape of
the object [77, 82, 73, 12]. However, a remeshing technique [9, 44] is usually required to
generate accurate skeletons.

Volumetric methods. Several methods generate skeletons by constructing discrete
field functions by means of the object’s volume. Many functions have been proposed to
solve the problem such as distance tranform [84], repulsive force field [64, 25] and radial
basis [89]. Other volumetric-based techniques make use of a multi-resolution thinning
process applied on the model’s voxelized representation [37, 65]. Although accurate, such
methods are usually very time consuming and they cannot be applied in animation since
the volumetric information needs to be computed since usually it is not being given as
part of the model to be animated.

Mesh-based methods. [75] presents a method for extracting a hierarchical, rigid skele-
ton from a set of example poses. Researchers also generate skeletons based on mesh
contraction [60, 11]. Moreover, [50] extract a skeleton using a hierarchical mesh decom-
position algorithm. [63] proposed an iterative approach that simultaneously generates
hierarchical shape decomposition and a corresponding set of multi-resolution skeletons.
Such method offer adequate accuracy and are quite efficient. We have refined a recent
method [63] that was initially invented for reverse engineering for the purposes of character
animation.



1.3.2 Skinning

Linear blend skinning (LBS) is the most widely used technique for real-time animation
in spite of its limitations [87] (see Figure 1.2) due to its computational efficiency and
straightforward GPU implementation [74, 62]. LBS was initially presented in a game
development magazine [56, 57|. LBS determines the new vertex position by linearly com-
bining the results of the vertex transformed rigidly with each influence bone. Most recent
skinning algorithms are classified based on whether they use one (Geometric methods)
or a training set of poses (Ezample based methods) of input models. In the first case, ver-
tex weighting is usually specified manually. In the latter case, researchers have proposed
automatically approximate authoring skins techniques by training weights with multiple
input meshes [70, 49, 69].

Geometric methods revert to non-linear blending of rigid transformations since de-
formation inherently spherical. Numerous proposed methods have replaced the linear
blending domain with simple quaternion [43, 2] matrix operator [68], log-matrix [24] op-
erator, spherical blending [51] and dual quaternion [52]. Another alternative recently
explore is the use of 3D free-form character articulation using sweep-based [47, 91] or
spline-based techniques [90, 34]. This is a promising research direction but not yet ver-
satile applicable. Our rigid skinning approach falls under this broad class of algorithms
introducing a novel versatile, robust and efficient blending approach based on rational
quadratic Bezier patches.

Example-based methods remove artifacts by correcting LBS errors with storage and
computation cost increase. Initial approaches combined rigid skinning with interpolation
examples using radial basis functions [59, 80]. EigenSkin [53] used principal component
analysis for approximating the original deformation model. Multi-Weight Enveloping
(MWE) [85] and Animation Space [69] are similar methods that add more weights per in-
fluence bone to provide more precise approximations and additional flexibility. [48] found
the Animation Space technique to consistently perform better from LBS and MWE while
MWE suffered from overfitting. In addition, [70] introduced extra bones to capture richer
deformations than the standard LBS model. Finally, resent research work proposed a
replacement of linear with rotational regression when examples are available [86, 88].
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Figure 1.2: Illustration of skeleton subspace deformation algorithm. The deformed po-
sition of a point V lies on the line V1V, defined by the images of that point rigidly
transformed by the neighboring skeletal coordinate frames, resulting in the characteristic
“joint collapsing” problem.

1.4 Structure of Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses fundamentals of com-
puter graphics and computational geometry algorithms and tools that we use throughout
our work. In Chapter 3 we focus on the skeletonization process. We study proposed meth-
ods and present modifications and refinements for more advanced and efficient skeleton
extraction. Chapter 4 proposes an integrated framework for robust skeletal animation
of articulated modular solid objects. Chapter 5 discusses the development of the three-
dimensional skeletal animation framework and discusses the experiment setup that was
used to drive quantitative and qualitative results of the proposed algorithms. Finally,
Chapter 6 concludes with a summary of our contribution and identification of future
research directions.



CHAPTER 2

BACKGROUND MATERIAL

2.1 Vector and Tools
2.2 Transformations
2.3 Computational Geometry Techniques

2.4 Data Structures for geometric objects

In computer graphics, we work with objects defined in 3D. All objects to be drawn, as
well as the cameras used to render them, have shape, position, and orientation. The
two fundamental mathematical disciplines that come to our aid in graphics are vector
tools and transformations. Furthermore, the research in combinatorial Computational
geometry develop efficient algorithms and data structures for solving problems stated in
terms of basic geometrical objects. So, by studying these disciplines in detail, we develop
methods to describe the various geometric objects we will encounter, and we learn how
to convert geometric ideas to numbers.

2.1 Vector and Tools

2.1.1 Vector

Vector arithmetic provides a unified way to express geometric ideas algebraically. In
graphics, we work with vectors of two, three, and four dimensions, but most definitions
in this chapter apply to higher dimensions as well.

From a geometrical viewport, vectors are objects having length and direction. They
represent various physical entities, such as velocity, force, and displacement. A vector is



A

Figure 2.1: A vector going from A to B.

often drawn as an arrow of a certain length pointing in a certain direction. It is valuable
to think a vector geometrically as a displacement from one point to another.

Points and vectors are defined with respect to some coordinate system. Figure 2.2
shows the coordinate systems that are normally used. Each system has an origin called
O and some axes emanating from O. These axes are usually oriented at right angles to
one another. Coodrinates are marked along each axis and a point is assigned coordinates
according to how far along it lays from each axis . Part(a) shows the usual two-dimensional
system and Part(b) shows a left-handed and a right-handed 3D coordinate system.

A

OA4=(x,¥,)

x
x

A\

A
(a) (b)

Figure 2.2: Coordinate systems. Part(a) The two-dimensional coordinate system. Part(b)
The three-dimensional coordinate systems: The left-handed orientation is depicted on the
left, and the right-handed is depicted on the right.

Vector Operations

We may define for vectors most of the usual arithmetic operations that we associate with
real numbers. Two vectors are equal if and only if they have the same length and direction.
Also we define two fundamental operations for vectors: addition and multiplicaton by a
scalar. Two vectors are added according to the parallelogram rule. This rule states that
the sum of two vectors is found by placing the tail of either vector against the head of
the other. The sum vector is the vector that completes the triangle started by the two
vectors. The parallelogram is formed by taking the sum in either order (Figure 2.3).

We can scale a vector by multiplying it by a real number k. This just multiplies the
vector’s length by k£ without changing its direction. Also, in the case of £ = —1, we create
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Figure 2.3: Vector addition: Parallelogram rule.

a unitary minus for a vector: —a. This is just a vector with the same length and opposite
direction (Figure 2.4).

Figure 2.4: Vector scaling.

Subtraction follows easily once adding and scaling have been established: a — ¢ is simple
a + (—c). Figure 2.5 shows the geometric interpretation of this operation, forming the
difference of ¢ and b as the sum of @ and —b. With the parallelogram rule, this sum is
seen to be equal to the vector that emanates from the head of ¢ and terminates at the
head of a.

a-b

Figure 2.5: Vector subtracting.

Linear Combinations of Vectors

With methods in hand for adding and scaling vectors, we can define a linear combination of
vectors. To form a linear combination of two vectors v and w (having the same direction),

11



we scale each of them by some scalars, say, a and b, and add the weighted versions to
form the new vector, av + bw. The more general definition for combining n such vectors
are as follows: A linear combination of the n vectors vy, vs,...,v, is a vector of the form

w = ayvy + asvs + ... + a,v,, where ay, ao, ..., a, are scalars.
The magnitude of a Vector - Unit Vectors

If a vector v is represented by the n-tuple (vq,vs,...,v,), we denote the magnitude by
|v| and define it as the distance from the tail to the head of the vector. Using euclidian
distance, we obtain |v] = \/v? +v3 + ... + v2.

It is often useful to scale a vector so that the result has unity length. This type of

scaling is called normalizing a vector, and the result is known as unit vector. For example,

we form the normalized vector of a, denoted by a, by scaling a with the value ﬁ ca = \TIId'

Clearly, |a| = 1, and a is a unit vector having the same direction as a (Figure 2.6).
Finally, the zero vector is the vector of zero length. The direction of the zero vector is

undefined.

QY

Qo

Figure 2.6: Normalizing a vector.

Product of Vectors

Two other powerful tools that facilitate working with vectors are the dot product and the
cross product. The dot product produces a scalar; the cross product operates only on 3D
vectors and produces a vector.

The simplest way to multiply two vectors is the dot product. The dot product of a
and b is donated a - b and is often called scalar product because returns a scalar. The
definition of the dot product generalizes easily to n dimensions: D = v-w = > v;w;. The
dot product returns a value related to its arguments length and the angle ¢ between them
(Figure 2.7): a-b = |al||b| cos ¢. The most important application of the dot product is the

a-b
lallb]

The dot product can also be used to find the projection of one vector onto another

finding the angle between two vectors or between two intersecting lines: ¢ = arccos

(Figure 2.8). This is the length a — b of a vector a that is projected at right angles onto

avectorb: a— b= |a|cos¢:‘|%l|’.

The sign of the dot product is used in many algorithmic tests. The case in which the
vectors are 90° apart, or perpendicular, is of special importance. Recall that cos ¢ is

12



¢ =arccos(@-b/|a| b))

b
Figure 2.7: The dot product of two vectors.

b

a
b-a

Figure 2.8: Scalar projection of a vector b in the direction of a vector a.

positive if |¢| is less than 90°, zero if |¢| equals 90°, and negative if |¢| exceeds 90°.
Because the dot product is proportional to the cosine of the angle between them, we can
observe immediately that two vectors are

e [ess than 90°ifa-b >0
e Exactly 90°ifa-b=0
e More than 90° if a-b < 0

The cross product of two three dimensional vectors returns a 3D vector that is perpen-
dicular to the two arguments of the cross product (Figure 2.9). Given the 3D vectors
a = (ay, ay,a,) and b = (by, by, b,), their cross product is donated as a x b. It is defined in
terms of the standard unit vectors 4, j, and &k by a x b = (a,b, — a,b,)i + (a,by — azb,)j +
(azby — ayby)k. So, in coordinate form a x b = (ayb, — a,by, a,b, — azb,, azb, — a,b,)

axb

bxa

Figure 2.9: The cross product of two vectors.
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2.1.2 2D Implicit Curves

Intuitively, a curve is a set of points that can be drawn on a piece of paper without lifting
the pen. A common way to describe a curve is using an implicit equation. An implicit
equation in two dimensions has the form f(z,y) = 0. The function f(z,y) returns a value.
Points where this value is zero are on the curve, and points the value is non-zero are not
on the curve. Because we can multiply an implicit equation by any constant k& without
changing the points where it is zero, kf(x,y) = 0 is the same for any non-zero k.

Line

The usual ”slope-intercept” representation of the line is ¥y = mx + b, which can be easily
converted to implicit form: y —max+0b = 0. However this representation does not captures
lines paraller to the y axis such as x = k because the “slope” m would then go to infinity.
For this reason, a more general form is often useful: Az + By + Cz = 0.

y=x/2+1////
e y=x/2-1

e

y=2x+1

Figure 2.10: Three implicit lines.

2.1.3 2D Parametric Curves

A parametric curve is controlled by a single parameter that can be considered a sort
of index that moves continuously along the curve. Such curves have the form (z,y) =
(g(t),h(t)). Here (x,y) is appoint in the curve, and ¢ is the parameter that influences the
curve. For a given ¢, there will be some point determined by the functions ¢ and h. For
continuous g and h, a small change in ¢ will yield a small change in z and y. Thus, as ¢
continuously changes, points are swept out in a continuous curve. This is a nice feature
because we can use the parameter ¢ to explicitly construct points on the curve.
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Line

A parametric line in 2D that passes through points py = (x¢, yo) and p; = (z1,y1) can be
written as p = [z, y] = [zo + t(z1 — o), yo + t(y1 — yo)]. Because the formulas for x and y
have the same structure, we can use the vector form for p = (z,y) : p(t) = po+t(p1 — po)-

A nice feature on this form is that p(0) = pg and p(1) = p;. Since the point changes
linearly with ¢, the value of ¢ between py and p; measures the fractional distance between
the points.

Another parametric formaly for describing lines is: p(t) = o+td, where o is the starting
point and d the direction vector. If the vector d has unit length, the line is arc-length
parameterized. This means ¢ is an exact measure of distance along the line.

One useful application is given two arc-length parameterized lines find the intersec-
tion point between them (Figure 2.11). Let’s describe the technique and algorithm for
determining the intersection point of two lines in 2D. It is obvious that the intersection
point lies on both lines. To determine the point we have to compute the exact distance
of this point from the starting point of one line in the direction of the line.

(x5, 4)

(5, 0)

(2, 7,)

Figure 2.11: Line-Line intersection.

If our equations of the two lines are: p;(t1) = 01 + t1dy and pa(ta) = 09 + tady then to
find the intersection point we have to solve the equation p;(t1) = p2(t2). Solving gives the
following two equations with two unknowns (¢; and t5):

01T + tldl.’L‘ = 02 + thQ.’L‘

01y + t1d1y = 02y + taday
Moreover, solving gives the following expressions for ¢; and ¢s:

(drx(01y — 02y) + dry(o2x — 01))
(dll’dgy — dlydgl’)
(02 — 012 + tadax)

ty =

th =
! dl.'L'
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Finally, by estimating the #; and ¢, we find the exact measure distance of intersection
point along the two lines. That means that the intersection point parametric form is:

((dyx(01y — 02y) + d1y(027 — 017))
(dl.’l?dgy — dlydgﬂf))

InterP = oy + ds
Hermite

Polynomials are functions of the canonical form: f(t) = ag + aity + ... + ant, = > ait;.
The a; are called the coefficients and is called the degree of the polynomial. We generalize
this form to f(t) = > ¢;b;(t) where b;(t) is a polynomial and we call them basis functions.
A very useful form of a cubic polynomial is the Hermite form. Hermite curves are very
easy to calculate but also very powerful. They are used to smoothly interpolate between
key-points (like object movement in keyframing animation or camera control). Hermite
curves are convenient because they provide local control over the shape, and provide C*
continuity. However, since the user must specify both positions and derivatives, a special
interface must be provided.

T2

P2

P1

Figure 2.12: Hermite Curve.

In order to calculate a point on the hermite you have to find first the coefficients of the
curve. To calculate the coefficients of the hermite curve you need the following vectors:
the start point of the curve P;, the tangent to how the curve leaves the start point 77,
the endpoint of the curve P, and the tangent to how the curve meets the endpoint 75
(Figure 2.12). In order to make it easier to understand can be expressed all this stuff
with some vector and matrix algebra. Thus, to estimate the coefficients we construct a
vector C' that contains these 4 parameters vertices and multiply this by the hermite’s
basis matrix H:

C= [PlaTla P27T2]T7

2 =2 1 1
7 — -3 3 -2 -1
o 0 1 0
10 0 0



Finally, the equation for the constructions of points in the hermite curve have the form:
P=T-H-C=T-Coef, where the vector T is the interpolation-point and it’s powers
up to 3 (1" = [t3,#%,t',1]). In order to increase this equation’s performance speed, we can
write it at the following form: P = d + t(c + ¢(b + t(a))). Remember, this assumes that
the parameter ¢ varies from 0 to 1.

Rational Bezier

Bezier curves are widely used in computer graphics to model free-form smooth curves. A
Bezier curve is a polynomial curve that approximates its control points (Figure 2.13). The
curves can be a polynomial of any degree. A quadratic Bezier curve is the path traced by
the function B(t), given the control points Py, P;, and Py:

B(t) = (1 —1)?Py+ 2t(1 — t)P, + 2P, =

B =3 Pb(t)

where the polynomials b;,(t) = (7)t'(1 — "), i = 0,...n are known as Bernstein
polynomials of degree 2.

Figure 2.13: Cubic Bezier Curve.

The Rational Bezier adds adjustable weights to provide closer approximations to arbitrary
shapes. The conic sections can be represented exactly by a ratio of two quadratic polyno-
mials. The numerator is a weighted Bernstein-form Bezier curve and the denominator is
a weighted sum of Bernstein polynomials. Given n control points P;, the rational Bezier

curve can be described by:
Z:’L:o bin(t) Prw;
Z?:[) bi,n (t)wi

B(t) =
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Fudos and Hoffman at [35] described how to construct blending arcs from constraints,
using a unified rational parametric representation that combines the separate cases of
blending parallel and non-parallel edges. Let v, u be the two tangents of the conic arc at
the endpoints. Let C and D be the two endpoints of the conic arc, and let P be the third
point we wish to interpolate. Furthermore, let U = (v, M2—u, M1, v,M2—u,M1), where
M1 = Cyvy — Cyv, and M2 = Dyu, — Dyu,. They prove that the rational parametric
solution has the form:

(1—1t)2C +2t(1 —t)W +t*D
(1—1)2 4+ 2wt(1 —t) + ¢

c(t) =

where

Area(C, P,D)U
Vd(D,7,C)d(P,v,C)d(C, i, D)d(P, i, D)
B Area(C, P, D)(U x i)
Y D, 5,0)d(P,5,0)d(C. @, D)d(P, @, D)
d(S,7, R) = (Sy — Ry)ry — (Sy — Ry)ry
Area(C, P, D) : The signed area of the triangle CPD.

and the formula is valid whatever the vector v and v are linearly dependent or not. An
acceptable solution exists if, and only if|

e d(D,¥,C)A(P,7,C) >0
e d(C,i,D)d(P,i,D) > 0

o w>—1
2.1.4 3D Implicit Surfaces

Implicit equations implicitly define a set of points that are on the same surface f(x,y, z) =
0. Any point (z,y, z) that is on the surface returns zero when given as an argument to f.
Any point not on the surface returns some number other than zero. This is called implicit
rather than explicit because you can check whatever a point is on the surface.

Plane

A plane is a two-dimensional doubly ruled surface spanned by two linearly independent
vectors. The generalization of the plane to higher dimensions is called a hyper-plane.
The equation of a plane with non-zero normal vector n = (a,b,c) through the point
Po = (Z0,%0,20) s n - (p — po) = 0, where p = (x,y,2). Plugging in gives the general
equation of a plane, ax + by + ¢z + d = 0, where d = —axg — byo — cz¢ (Figure 2.14).
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Figure 2.14: Point-plane distance and projection of point P; on the plane.

Given a plane ax + by + cz +d = 0 and a point p; = (x1, 91, 21), then the normal to plane
is given by n = (a,b,c¢) and a vector from the plane to the point is given by w = p; — p,
where p = (z,y,2). Projecting w onto n we find that the signed distance D from the
point to the plane as D = n - p; + d which is positive if p; is on the same side of the plane
as the normal vector n and negative if it is on the opposite side. We can define, moreover,
the projection point of p; on the plane as: Proj, = p1 —n- D (Figure 2.14)

Figure 2.15: The dihedral angle between two planes.

The angle between two intersecting planes is known as the dihedral angle (Figure 2.15).
The dihedral angle between the planes which have normal vectors ny = (a1,b1,¢1) and
ne = (ag, b, ¢2) is simply given via the dot product of the normals, cos@ = ny - ns.

2.1.5 3D Parametric Surfaces

Another way to specify surfaces in 3D space is with two-dimensional parameters. These
surfaces have the form: x = f(u,v),y = g(u,v), z = h(u,v).
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Circle

A circle is one of the basic shapes of Euclidian geometry. It is the locus of all points in
a plane at a constant distance, called the radius, from a fixed point, called the center.
Through any three points not on the same line, there passes one and only one circle
(Figure 2.16).

Figure 2.16: Circle.

If we know the center C' and the radius R of a circle, and three points P, P, and P; on
the circle we can find that the parametric form of the circle equation in three-dimensional
space is: P = C'+ Rcos QU + Rsin V', where N is the unit normal vector of the plane, U
is the unit vector from the center toward a point on the circle and V' is the cross product
of N and U. Or we can write it by x, ¥y, 2 component:

P, =C,+ RcosOU, + RsinfV,
P, =Cy+ RcosU, + RsinfV,
P,=C,+ RcosOU, + RsinfV,

where
W
C =P +
TP - P) x (P Py)?
. W)
2‘<P2—P1)X(P3—P1)|2
W =|P; — Pi|*[(P, — P1) x (P3 — P)] x (P, — Py)+
|Py — PJ*[(Ps — P) x (P, — P)] x (Ps — Py)
Triangle

Triangles in both 2D and 3D are the fundamental modeling primitive in many graphics
programs. A triangle is one of the basic shapes of geometry: a polygon with three vertices
and three sides or edges which are line segments. In Fuclidean geometry any three non-
collinear points determine a unique triangle and a unique plane.
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The normal vector to a triangle can be found by taking the cross product of any two
vectors in the plane of the triangle. It is easiest to use two of the three edges as the
vectors, for example, n = (¢ — b) x (¢ — a) (Figure 2.17). Note that this normal vector is
not necessarily of unit length.

CBxCA

Figure 2.17: Normal of a triangle.

The not signed area of the triangle can be found by taking the length of the cross product:
Area = 3|(b — a) x (c — a)|. This area will have positive sign and the normal obeys the
right-hand rule if the points a, b, ¢ are in counter-clockwise order, and a negative sign,
otherwise.

Often we wish to assign a property at each triangle vertex and smoothly interpolate the
value of that property across the triangle. The simplest way to do this is the barycentric
coordinates. First let us consider a triangle T defined by three vertices A;, Ay and As.
Any point P located on this triangle may then be written as a weighted sum of these
three vertices: P = t1 Ay +t3As +t3A3, where t1, t5 and t3 are the barycentric coordinates
(Figure 2.18). These are subjected to the constraint t; + o + t3 = 1. If we weight all
vertices with the same weight ¢; =ty = t3 = 1/3 then the resulting point is located in the
center of the triangle: (4; + Ay + As)/3.

A

Ay As

Figure 2.18: Barycentric coordinates.

2.2 Transformations

A transformation, or mapping, in elementary terms is any of a variety of different functions
from geometry, such as rotations, translations, and scalings. These can be carried out in
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Euclidean space, particularly in dimensions 2 and 3. They are also operations that can
be performed using linear algebra, and explicitly using matrix and quaternion theory.

An affine transformation or affine map between two vector spaces (strictly speaking,
two affine spaces) consists of a linear transformation followed by a translation: x — Az+b.
In the finite-dimensional case each affine transformation is given by a matrix A and a
vector b, which can be written as the matrix A with an extra column b. In general,
an affine transform is composed of zero or more linear transformations (rotation, scaling
or shear) and translation (shift). Several linear transformations can be combined into a
single matrix, thus the general formula given above is still applicable.

Ordinary vector algebra uses matrix multiplication to represent linear transformations,
and vector addition to represent translations. Using a trick, it is possible to represent
both using matrix multiplication. The trick requires that all vectors are augmented with a
71" at the end, and all matrices are augmented with an extra row of zeros at the bottom,
an extra column - the translation vector - to the right, and a ”1” in the lower right corner.

i A b |z
1 0,...,0 1| |1

is equivalent to the following 7 = Ax + b. Ordinary matrix-vector multiplication always

If A is a matrix,

maps the origin to the origin. Since the set of vectors with 1 in the last entry does
not contain the origin, translations within this subset using linear transformations are
possible. This is the Homogenous coordinates system and the advantage of using it, is
that one can combine any number of affine transformations (rotations, translations, scales,

etc) into one by multiplying the matrices.

2.2.1 3D Matrix Theory

In this section, we describe how we can use matrix multiplications to accomplish changes
in a vector such as scaling, rotation, and translation. We will also discuss how these
transforms operate differently on points (displacement vectors: points are represented as
offset vectors from the origin), and normal vectors.

We use coordinate frames and suppose that we have an origin O and three mutually
perpendicular axes in the direction 4, j, and k. Point P in this frame is given by P =
O + P,i+ P,j + P,k and so has the representation P = (P,, P,, P,,1). Now suppose T is
an affine transformation that transforms point P to point (). Then, T is represented by
a 4 by 4 matrix:

mi1 M2 M1z My

ma1 Moo Moz MM24

M =
mg3y MMg2 MM33 M34

0 0 0 1
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and we can say that the representation of point () is found by multiplying P by M:
() = M - P. We must notice that for an affine transformation, the final row of the matrix
is a string of zeroes followed by a lone 1.

Translation

If we want to move a vector from its current location to somewhere else, in technical

jargon, we call this a translation; we must use matrix form

0 0 0 my
M= 0 0 0 Moy

0 0 0 mgy

000 1

Check that @) = M P is simply a shift in ) by the vector m = (my4, may, ma4).
Rotation

There is a much greater variety of rotations in three than in two dimensions, since we
must specify an axis about which the rotation occurs, rather than just a single point.

The simplest rotation is a rotation around one of the coordinate’s axes. We call a
rotation around x-axis an z-roll, a rotation around the y-axis a y-roll and a rotation
around z-axis a z-roll. We present individually the matrices that produce a x-roll, a y-roll
and a z-roll. In each case, the rotation is through an angle @, around the given axis. (c
stands for cos(f) and s for sin(f))

1 0 0 O c 0 s 0 c —s 0 0
0 ¢ —s O 0O 1 00 s ¢ 00

R,(0) = R, (0) = ,R.(0) =
() 0s ¢ 0 () -5 0 ¢ 0 () 0 0 10
00 0 1 0O 0 0 1 0O 0 0 1

Composing Transformations

The process of applying several transformations in succession to form one overall trans-
formation is called composing the transformations. Not surprisingly, 3D affine transfor-
mations can be composed, and the result is another 3D affine transformation. The matrix
that represents the overall transformation is the product of the individual matrices M;
and M, that perform the two transformations, with M, premultiplying My: M = MyM,.
Notice that the transformations appear in reverse order to that in which the transforma-
tions are applied. By applying the same reasoning, any number of affine transformations
can be computed simply by multiplying their associated matrices. In this way, transfor-
mations based on an arbitrary succession of rotations, scaling, shears and translations can

be formed and captured in a single matrix.
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Euler Angles

According to Euler’s rotation theorem, any rotation (or sequence of rotations) around
a point is equivalent to a single rotation around some axis through that point. This
asserts that any rotation may be obtained by three rolls about the x-, y-, and z-axes
using three angles (6,60s,03). The three angles giving the three rotation matrices are
called Euler angles. There are several conventions for Euler angles (there are 12 possible
ways), depending on the axes about which the rotations are carried out.

Because of its historical popularity, computer animation systems were quick to use
Euler angles as parameters for animating orientation. There are two major draw-backs to
this approach, however. The first is a practical problem often encountered by animators
trying to set up an arbitrary orientation using Euler angles, and the second is a mathe-
matically deep objection to their use when interpolating orientation (Gimbal Lock). Both
of these problems occur because Euler angles ignore the interaction of the rolls about the
separate axes (Figure 2.19). This is and one major reason why we use the quaternion

representation.
z zZ A z A
|r 63
/2
- -
o1 y o1 y y
« N e « e
v X v X
(a) (b) (c)

Figure 2.19: Illustrating the loss of one degree of freedom (Gimbal Lock). Part(a) x-roll
0,. Part(b) x-roll §; followed by y-roll 7/2. x-axis effectively gets rotated to x’-axis.
Part(c) followed by z-roll 5. z-roll 65 same as x-roll —6;.

Examples

e Rotating about an arbitrary point.

So far, all of the rotations we have considered have been about the origin. But suppose
we wish instead to rotate points about some other point in the space. To achieve this
operation, we must relate the rotation about the desired point to an elementary rotation
about origin.

If the desired point is V' = (v,, v,,v,) and the rotation axis and angle are U and 0,
then first of all, we translate all points so that V' coincides with the origin, then a rotation
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about the origin will be appropriate. Once this rotation is done, then the whole scene is
shifted back to restore V' to its original location. The rotation therefore consists of the
following three elementary transformations:

1. Translate point P through vector =V = (—v,, —v,, —v,).
2. Rotate around U vector about the origin through angle 6.
3. Translate P back through vector V.

So, creating a matrix for each elementary transformation and multiplying the matrices
out, products the transformation matrix: M =T(V)R,(6)T(-V)

A

Y

Figure 2.20: Rotating vector P about an arbitrary point V'

o Alignment of vector with a unit vector k which lies on the positive z-azis.

With the help of this example we can coincide any given matrix on space with one of the
basic axes X, Y, Z. So we can exalt the problem of rotating around an arbitrary axis to
the problem of rotating around the x- or y- or z-axis.

In order to find the transformation matrix that aligns one vector at a unit vector
that lies on positive z-axis, we must estimate the two angles 6; and 6, according to the
Figure 2.21. In other words, the following steps are required to find the requested matrix:

1. Rotation of the vector v around x-axis through angle #1 in order the vector v to fall
on the positive side of XZ plane (Figure 2.21b).

2. Rotation of the vector v; around y-axis through angle 62 in order the vector vy to
fall on the positive side of z-axis(Figure 2.21c).

But we have not computed the angles 6; and ;. From Figure 2.21 we observe that
0, can be estimated by the angle which created from v projection on Y Z plane with
z-axis (we assume that the b and ¢ are both not zero). From the triangle OP’B we have:
sinf; = \/ﬁ and cosf; = \/ﬁ Furthermore, for the calculation of the angle 6, from

the triangle O/Q\Q’ we have: sinf, = —%— and cosf, = 2t
& P sy = e 2 = -
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Finally, after finding the angles we can create a matrix for each elementary transfor-
mation and by multiplying these matrices out products: M = R,(f2) R, (1), which leads

at:
A —ab —ac 0
[ Ixa] |
05 30 e
M=\, 2 : ol A= Vb%+
[ 1ol
0 O 0 1
z A zZ A z A
4 v2(0.0.Va> +57 +¢)
. ,,/ 400,06 +c%)
P PObY [ 7
o W(@0b +c*) n o akg
o1\,
. v =(a,bc) P(a,b,c) ; /
0 p > 0 ; > 0 >
o v £ - y 1%

(a) (b) (c)

Figure 2.21: Alignment of vector with a unit vector £ which lies on positive z-axis

Inverse of Matrix

While we can always invert a matrix algebraically, we can use geometry if we know
what the transformation does. For example, the inverse of scale (s;,s,,s,) is scale
(1/s4,1/sy,1/s,). The inverse of a rotation is its transpose. The inverse of a transla-
tion is a translation in the opposite direction.In addition, if we have a series of matrices
M = MM,... M, then M~ = M-'. . My*M;".

Interestingly, we can write the transformation matrix M without scaling in the form
M = RT, where R and T are 4 x 4 matrices. As we described above, the inverse of a
rotation R is its transpose: R’ and the inverse of a translation T is a translation in the
opposite direction: —T. So, from the rules above if follows easily that : M1 = RT(-T).

Transforming Normal Vectors

While most of the 3D vectors we use, represents positions or directions, some vectors
represent surface normals. Surface normal vectors are perpendiculars to the tangent
plane of a surface. These normals do not transform the way we would like when the
underlying surface is transformed. We can derive a transform matrix N which does take
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the normal to a vector perpendicular to the transformed surface. Because the normal is a
direction vector, we don’t want it to get the translation from the matrix, so we only need
to multiply the normal by the upper 3 x 3 portion of the rotation matrix M.

2.2.2 Quaternion Theory

Quaternions are a non-commutative extension of complex numbers [98]. Although they
have been superseded in most applications by vectors and matrices, they still find uses
in both theoretical and applied mathematics; in particular, they provide a convenient
mathematical notation for representing orientations and rotations of objects in three di-
mensions.

Compared to Euler angles they are simpler to compose and avoid the problem of
Gimbal Lock. Moreover, compared to rotation matrices they are more efficient and more
numerically stable and instead of specifying the nine elements of a matrix we define four
real numbers. We begin by studying the angular displacement of a vector rotating a
vector by § about an axis n.

Angular Displacement

We define rotation as an angular displacement given by (6,n) of an amount # about an
axis determined by a normalized vector n. Consider the angular displacement on a vector
r taking it to position Rr as shown in Figure 2.22.

Figure 2.22: Angular displacement (6, n) of r

The problem can be decomposed by resolving r into components parallel to n, which by
definition remains unchanged after rotation, and perpendicular to n in the plane passing
through  and Rr: ry = (n-r)n and r;, = r — (n-r)n, and | is rotated into position
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Rr,. We construct a vector perpendicular to r; and lying in the plane. To compute this
rotation, we use: V =n xr, =n X r,so Rr; =r; cosf + V sinf, hence

Rr=r|+ Rry
=7 +ryrcosf +Vsing
=m-r)n+(r—(n-r)n)cosf+ (n x r)*sinb

= (cosO)r + (1 —cosO)n(n-r)+ (sinf)n x r.
Quaternions and spatial rotation

We will show that rotating the vector r by the angular displacement can be achieved by
a quaternion transformation. We began by notating that the effect such an operation we
will only need four real numbers. We require:

e the change of length of the vector
e the plane of the rotation (which can be defined by two angles from two axes)
e the angle of the rotation

In other words, we need a representation that only possesses the four degrees of freedom
required to Euler’s theorem. For this we will use unit quaternions. As the name implies,
quaternions are ”four vectors” and can be considered as a generalization of complex
numbers with s as the real or scalar part and x, y, 2 the imaginary part:

q=s+aityj+zk=_(s(2,92) = (s0).

A quaternion can specify a point or vector in four-dimensional space. If s = 0, a point
or vector in the three-dimensional space. In this context they used to represent a vector
plus rotation. i, j, k are unit quaternions and are equivalent to unit vectors in a vector
system; however, they obey different combination rules: 2 = j2 = k* = —1 and ij = k,
ji = —k.

Quaternion Operations

Using the above rules we can derive the following rules, each of which yields a quaternion:
1. Addition: ¢; + g2 = (s1 + S2,v1 + v2)
2. Multiplication: qiqo = (8182 — v1 - Vg, 1 X Vg + S10U2 + Sav1)

3. Conjugate: ¢’ = (s, —v)
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4. Magnitude: gq’ = s*> + |[v?| = ¢?, if equals to 1 then q is called a unit quaternion.

5. Rotation:

The set of all unit quaternions forms a unit sphere in four-dimensional space and
unit quaternions play an important part in specifying general rotations. It can be
shown that if we have a quaternion ¢ = (s,v) then exists a v’ and a § € [—m, 7]
such that ¢ = (cosf,v’'sinf) and if ¢ a unit quaternion then ¢ = (cosf,nsinf)
where |n| = 1. We now consider operating on a vector r in Figure 2.22 by using
quaternions. R is defined as the quaternion p = (0,7) and we define the operation
as: Ry(p) = qpq".

That is, it is proposed to rotate the vector r by expressing it as a quaternion,

multiplying it on the left by ¢ and on the right by ¢ !.

This guarantees that the
result will be a quaternion of the form (0,v), in other words a vector. ¢ is defined

to be a unit quaternion (s,v). It is easily shown that:

Ry(p) = (0, (s> —v-v)r +20(v - 1) + 25(v x 1)) =
Rq(p) = (0, (cos §* — sin0*)r + 2sin (v - r) + 2cosfsinf(v x r))
= (0,7 cos26 + (1 — cos20)n(n - r) +sin26(n x r)

Now comparing this with angular displacement equation above, we noticed that
aside from a factor of 2 appearing in the angle they are identical in form. The
act of rotating a vector r by angular displacement (6, n) is the same as taking this
angular displacement, lifting it into quaternion space, by representing it as the unit
quaternion (cos #/2, n sin §/2) and performing the operationg()¢ ™" on the quaternion
(0,7). We could therefore parameterize orientation in terms of the four parameters
cos /2, nysinh/2, n,sin /2, n,sin /2 using quaternion algebra to manipulate the

components.

We conclude rotation section by noting that quaternions are used exclusively to rep-
resent orientation; they can be used to represent translation but combing rotation
and translation into scheme analogous to homogenous coordinates is not straight-
forward.

6. Moving out quaternion space:
The implementation of such a scheme requires us to move into and out of quaternion
space, that is, to go from a general matrix to a quaternion and vice versa. It can be

shown that if we want to rotate a vector with the quaternion g, is exactly equivalent
to applying the following rotation matrix to the vector:
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1—2(y*+2%)  2ay —2sz 2sy + 2xz
2oy 4252z 1—2(a?+2%) —sz+2y2
—2sy + 2x2 st + 2yz 1—2(2? 4+ ¢?)
0 0 0

M =

_ o O O

By these means then, we can move from quaternion space to rotation matrices.

. Decomposition into two same quaternions:

An extra operation we used in this work, is the decomposition of a quaternion
q = (s,v) into the product of two same quaternions: ¢ = ¢'¢/, where ¢’ = (¢,v').
This is very useful when we have a rotation movement and we want to estimate a
sequence of “keyframing” rotation movements that represent our rotation. This can
be accomplished by executing this operation iteratively to the resulting quaternions.
In order to evaluate this decomposition we write:

q s, U) _ q/q/ _ (S,, U/)(S/, v/) _
's' — v 0 v x5+ ) =

(5")? — ((v'z)? + (v'y)* + (v'2)?),25'0) =

, \/s—f—\/ZsQ—vx?—va—sz)

2

(
(
(

. Alignment of vector with a unit vector k which lies on positive z-axis:

Using the same solution process as we described above with matrix structure, we
come to the two following steps which are required to find the requested quaternion:

(a) Rotation of the vector v around x-axis through angle 6; in order the vector v
to fall on the positive side of XZ plane: Q,(6;).

(b) Rotation of the vector vl around y-axis through angle 6, in order the vector
vl to fall on the positive side of z-axis: @), (62).

The two angles can be computed with the same equations discussed previously. So,
after evaluating the angles 6; and 6,, we create a quaternion for each elementary
rotation and multiplying these quaternions out products: Q = Q,(61)Qy(6-).
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2.2.3 Performance Issues

At this section we compare which is the best representation to use for rotations between
the rotation matrix R and the quaternion ¢. Various high level operations are compared
by a count of low level operations including multiplication (M), addition or subtraction
(A), division (D), and expensive math library function evaluations (F). Summary tables
are provided to allow you to quickly compare the performance [104].

Memory Usage

In the memory usage comparison it is obviously clear that the rotation matrix uses more
memory because it requires 9 float numbers than a quaternion which requires 4 floats.

Table 2.1: Comparison of memory usage.
representation ‘ floats

R 9
q 4

Composition Time

The product of two rotation matrices requires 27 multiplications and 18 additions for a
total cost of 184 + 27M. The product of two quaternions requires 16 multiplications and
12 additions for a total cost of 12A + 16, clearly outperforming matrix multiplication.
Moreover, renormalizing a quaternion to adjust for floating point errors is cheaper than

renormalizing a rotation matrix using Gram-Schmidt orthonormalization.

Table 2.2: Comparison of memory usage.
representation ‘ A ‘ M

R 18 | 27
q 12 | 16

Decomposition Time

The decomposition of a rotation matrix requires 27 multiplications and 18 additions for a
total cost of 184 +27M. The decomposition of a quaternion requires 4 multiplications, 5
additions, 4 divisions and 2 math library function (square functions) calls for a total cost
of 5A +4M + 4D + 2F, clearly outperforming matrix splitting.
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Table 2.3: Comparison of operation counts for decomposition.
representation ‘ A ‘ M ‘ D ‘ F

R 18 | 27

q o | 4

4 |2

Transformation Time

The transformation of vector V by a rotation matrix is the product U = RV and requires
9 multiplications and 6 additions for a total of 15 operations. If V = (v0,v1,v2) and if
V = vgi + v1] + vk is the corresponding quaternion with zero s component, then the
rotate vector U = (ug, ur, up) is computed as U = ugi + u1j + usk = qV¢*. Applying
the general formula for quaternion multiplication directly, the product p = qv requires
16 multiplications and 12 additions. The product pg¢* also uses the same number of
operations. The total operation count is 56. However, since V has no s term, p only
requires 12 multiplications and 8 additions-one term is theoretically zero, so no need
to compute it. We also know that U has no s term, so the product pg* only requires 12
multiplications and 9 additions. Using these optimizations, the total operation count is 41.
Observe that conversion from quaternion ¢ to rotation matrix R requires 12 multiplications
and 12 additions. Transforming v by R takes 15 operations. Therefore, the process of
converting to rotation and multiplying uses 39 operations, two less than calculating q‘?q*.
Table 2.4 is a summary of the operation counts for transforming a single vector.

Therefore, the rotational formulation yields the fastest transforming. But keep in
mind that a batch transform of n vectors requires converting the quaternion to a rotation
matrix only once at a cost of 24 operations. The total operations for transforming by
quaternion are 244 15n. Table 2.5 is a summary of the operation counts for transforming
n vectors.

Table 2.4: Comparison of operation counts for transforming one vector.

representation | A | M | comments
R 6|9
q 24 | 32 | using generic quaternion multiplies
q 17 | 24 | using specialized quaternion multiplies
q 18 | 21 | convert to matrix, then multiply

2.3 Computational Geometry Techniques

Computational geometry is a branch in computer science, which deals with the study
of algorithms to solve problems stated in terms of geometry. The primary goal of re-
search in combinatorial computational geometry is to develop efficient algorithms and
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Table 2.5: Comparison of operation counts for transforming n vectors.

representation A M comments
R 6n 9n
q 24n 32n | using generic quaternion multiplies
q 17n 24n | using specialized quaternion multiplies
q 12+6n | 1249n | convert to matrix, then multiply

data structures for solving problems stated in terms of basic geometrical objects: points,
line segments, polygons, polyhedra, etc. The kernel problems in computational geometry
may be classified in different ways, according to various criteria. In the static problems,
some input is given and the corresponding output needs to be constructed or found. We
are interesting of two fundamental problems: Kernel’s Centroid and Minimum Bounding

Volume estimation.

2.3.1 Kernel’s Centroid

The kernel K of a polyhedron P with n vertices is the locus of the points internal to
P from which all vertices of P are visible, assuming that the polyhedron boundary is
not transparent. Each facet of a polyhedron defines an interior half-plane, informally
defined as a half-plane that contains interior points of the polygon in the vicinity of the
edge in question. The kernel of a polyhedron is the intersection of all its interior half-
planes (Figure 2.23). We use the ghalf algorithm, a routine of ghull library [108], which
implements the intersection of the n interior half-planes in optimal ©(nlogn) time [95].

We may compute the kernel’s centroid (CK) using the average of all intersection
points. However, this approach generally works unsatisfactory for kernels whose points
are informally distributed over the model space. It is sufficient to note that centroid
computation of a bounding volume is independent of clustering of object vertices. This
can easily be seen by considering adding (or taking away) extra vertices off-center, inside
or on the boundary, of a bounding volume. These actions do not affect the defining
centroid of the volume and therefore should not affect its calculation. The situation can
be improved by considering just extremal points, using only those points on the convex
hull of the model. This eliminates the internal points, which can no longer mis-compute
the centroid. So, the proposed algorithm is to compute the centroid of the convex hull as
the mean of the triangle centroids weighted by their area [40].

Given n triangles (pg, gk, ), 0 <= k <= n, in the convex hull, the centroid is given

— Zakmk

by mpg = =", where ay = |(qx — pr) X (rx — p&)|/2 is the area, my = (pp + qx +11)/3

" Y
is the centroid of the triangle &k, and Ay = > ay is the total area of the convex hull.
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Figure 2.23: Kernel of a polygon is shown at this figure in red.

2.3.2 Minimum Bounding Volume

A bounding volume for a set of objects is a closed volume that completely contains the
union of the objects in the set [93]. Bounding volumes are used to improve the efficiency
of geometrical operations by using simple volumes to contain more complex objects. Nor-
mally, simpler volumes have simpler ways to test for overlap. Bounding volumes are most
often used to accelerate certain kinds of tests.

In collision detection, when two bounding volumes do not intersect, then the objects
cannot collide, either. Testing against a bounding volume is typically much faster than
testing against the object itself, because of the bounding volume’s simpler geometry. This
is because an object is typically composed of polygons or data structures that are reduced
to polygonal approximations.

The choice of the type of bounding volume for a given application is determined by a
variety of factors: the computational cost of computing a bounding volume for an object,
the cost of updating it in applications in which the objects can move or change shape or
size, the cost of determining intersections, and the desired precision of the intersection
test. It is common to use several types in conjunction, such as a cheap one for a quick but
rough test in conjunction with a more precise but also more expensive type. We choose to
use three fundamental volumes: Bounding Sphere, Oriented Bounding Box and Convex
Hull.

Bounding Sphere

A bounding sphere is a sphere containing the object. In 2D graphics, this is a circle.
Bounding spheres are represented by centre and radius. They are very quick to test for
collision with each other: two spheres intersect when the distance between their centers
does not exceed the sum of their radius. This makes bounding spheres appropriate for
objects that can move in any number of dimensions (Figure 2.24).
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Figure 2.24: In a sphere-sphere intersection, the routine may report that collision has
occurred when it really hasn’t.

Bounding Box

A bounding boz is a cuboid, or in 2-D a rectangle, containing the object. In dynamical
simulation, bounding boxes are preferred to other shapes of bounding volume such as
bounding spheres for objects that are roughly cuboid in shape when the intersection
test needs to be fairly accurate. In many applications the bounding box is aligned with
the axes of the coordinate system, and it is then known as an azis-aligned bounding box
(AABB). Figure 2.25 shows AABBs and objects inside them. To distinguish the general
case from an AABB, an arbitrary bounding box called oriented bounding box (OBB) is
used.

Figure 2.25: Objects and their axis-aligned box boundaries.

” Axis-aligned” refers to the fact that either the box is aligned with the world axes or each
face of the box is perpendicular to one coordinate axis. This basic piece of information
can cut down the number of operations needed to transform such a box. Again, the trade-
off for speed is precision. Because AABBs always have to be axis-aligned, we can’t just
rotate them when the object rotates; they have to be recomputed for each frame. Still,
this computation isn’t difficult and doesn’t slow us down much if we know the extents of
each character model. However, we still face precision issues. For example, let’s assume
that we're spinning a thin, rigid rod in 3D, and we’d like to construct an AABB for each
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frame of the animation. As we can see, the box approximates each frame differently and
the precision varies (Figure 2.26).

A 4

y
time
X

Figure 2.26: Successive AABBs for a spinning rod (as viewed from the side).

So, rather than use AABBs, we may use boxes that are arbitrarily oriented and minimize
the empty space, or error, of the box approximation. This technique is based on what are
called oriented bounding boxes (OBBs) and has been used for ray tracing and interference
detection for quite some time. This technique is not only more accurate, but also more
robust than the AABB technique. However, OBBs are lot more difficult to implement,
slower, and inappropriate for dynamic or procedural models (an object that morphs,
for instance). If we want to figure out fast if two oriented bounding boxes overlap, the
separating axis theorem can be applied. This theorem tells us that one of the tests that
we could perform would be to project the boxes on some axis in space and check whether
the intervals overlap. If they don’t, the given axis is called a separating axis (Figure 2.27).

Seperating Axis A B

Figure 2.27: Separating axis (intervals do not overlap).

If overlap occurs on every single separating axis (there are only 15), the boxes intersect.
Thus, it’s very easy to determine whether or not two boxes intersect.
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Convex Hull

Finding the convez hull (CH) of a set of points is the most elementary interesting problem
in computational geometry. It arises because the hull quickly captures a rough idea of
the shape or extent of a data set. This forms a unique polygon, where its vertices are the
outside members of the set. The convex hull or convex envelope for a set of points X in
a real vector space V' is the minimal convex set containing X.

Figure 2.28: Convex hull of a set of 2D points.

In computational geometry, numerous algorithms are proposed for computing the con-
vex hull of a finite set of points, with various computational complexities. Computing
the convex hull means that a non-ambiguous and efficient representation of the required
convex shape is constructed. The complexity of the corresponding algorithms is usually
estimated in terms of n, the number of input points, and h, the number of points on
the convex hull. In this work, we choose a very popular and efficient algorithm called
qhull [108] to derive us the convex hull.

2.4 Data Structures for geometric objects

One of the most common representations of objects is the polygon/polyhedron mesh. A
polygon/polyhedron mesh or unstructured grid is a collection of vertices, edges and faces
that defines the shape of a polygon/polyhedron object in computer graphics. The faces
usually consist of triangles, quadrilaterals or other simple convex polygons, since this sim-
plifies rendering, but may also be composed of more general concave polygons/polyhedrons,
or polygons/polyhedrons with holes.

Polygon/polyhedron meshes may be represented in a variety of ways, referring to
the how the vertex, edge and face data are stored. The choice of the data structure
is governed by the application, the performance required, size of the data, and the op-
erations to be performed. For example, it’s easier to deal with triangles than general
polygons/polyhedron, especially in computational geometry. For certain operations it is
necessary to have a fast access to topological information such as edges or neighboring
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faces; this requires more complex structures such as the winged-edge representation. For
hardware rendering, compact, simple structure is needed; thus the corner-table (trian-
gle fan) is commonly incorporated into low-level rendering APIs such as DirectX and
OpenGL.

The structure we use for the polygon/polyhedron model’s representation is hierarchi-
cal. Every object is a list of surfaces, every surface is a list of polygons, and every polygon
is a list of vertices.

Figure 2.29: Example of a triangle mesh representing a dolphin.
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CHAPTER 3

SKELETONIZATION

3.1 Skeleton Representation
3.2 Skeleton Extraction

3.3 Skeleton Refinement

In this chapter we focus on how to build a skeleton representing the meshes we wish to
animate. A skeleton is a lower dimension object that represents the shape of the original
object and capture to a certain level human visual perception. Since a skeleton has usually
a simpler structure than the original object, many operations, e.g., shape recognition and
deformation, can be performed more efficiently on the skeleton than on the full object.
The process of generating such a skeleton is called skeleton extraction or skeletonization.

Skeletonization can be applied to arbitrary shape representations, such as polygonal
models or parametric surfaces. In this work, without losing generality, we use triangulated
models to represent 3D objects. Before we discuss about our framework, we will set some
conditions on the input solid object:

e We consider manifold solids of genus 0 (zero cuttings along closed simple curves
without rendering the resultant manifold disconnected).

e An effective shape decomposition method [50, 10, 61, 55| or an experience user
must have partitioned the character mesh into visually meaningful or otherwise
appropriate with regards to the application components.

e The distance between any two adjacent points of the solid model is under a certain
threshold.

Finally, since the triangular representation does not provide us information about compo-
nent connectivity, a description file similar to the BVH file format (without motion data)
is provided with high level skeleton hierarchy information.
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In this chapter, we propose a method that produces a refined skeletonization of a
solid character. For a given polyhedron P, skeleton extraction methods constructs a
visually satisfactory skeleton for the model from local skeletons (bones) extracted from
each component of the character and from centroids of union points (joints) constructed
from each pair of connecting components performing a depth-first traversal of the skeleton
hierarchy tree. We study three interesting approaches, the Opening, the Centroid and the
Principal Axis techniques (see e.g [63] for further information). Then, we modify them
to derive better skeletal representations that are more appropriate for our application.
Moreover, we refine the associated skeleton components by approximately aligning them
with a set of vectors, and we, finally, connect the refined skeleton components to form a
global skeleton of the input model.

Our proposed approach makes following technical contributions.

e The skeletonization method is independent of the character’s module size, it has
no convexity requirements and is invariant under distortion and deformation of the

input model.

e The refined skeleton extraction technique is applicable in animation, shape recogni-
tion, collision detection and automatic navigation.

3.1 Skeleton Representation

Information about the skeleton hierarchy structure tree is provided with a file with format
similar to the BVH format. We do not use the BVH file because this file is a way to provide
skeleton hierarchy information in addition to the motion data. Figure 3.1 provides an
example of skeleton hierarchy file format and the corresponding skeleton hierarchy tree is
shown in Figure 3.2.

The file has one part, a data section which describes the hierarchy of the skeleton and
the constraints of the rotation angles of the skeleton’s joints. The format is nested. Each
segment of the hierarchy contains some data relevant to that segment and it recursively
determines its children. The start of the section the name of the root segment of the
hierarchy to be defined followed by three pairs of rotations angles which define the joint’s
valid rotation range. The order of the rotation angles appears, it goes X rotation range
of angles, followed by the Y rotation range of angles and finally the Z rotation. The line
following the root joint contains a single left curly brace “{”, the brace is lined up with
the joint’s name. On the line of data following the “{”, can be one of two keywords, either
you will find another name of a segment or you will see the ” End Site” keyword. A joint
definition is identical to the root definition we describe above. This is where the recursion
takes place, the rest of the parsing of the joint information proceeds just like a root. The
end site information ends the recursion and indicates that the current segment is an end
effector (has no children). The end of any joint, end site or root definition is denoted by
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a right curly brace “}”. This curly brace is lined up with its corresponding right curly
brace.

component_1 MIN ANGLE_X MAX_ANGLE_X MIN_ANGLE_Y¥ MAX_ANGLE_Y MIN ANGLE_Z MAX ANGLE_Z
s
component 2 MIN ANGLE X MAX INGLE X MIN ANGLE ¥ MAX ANGLE Y MIN ANGLE Z MAX ANGLE Z
{
component_3 MIN_ANGLE_X MAX_ANGLE X MIN_ ANGLE_Y MAX ANGLE_Y MIN_ANGLE Z MAX ANGLE_Z
{
End Site
{
i
i
component_4 NIN_AINGLE ¥ MAX ANGLE_X MIN ANGLE_Y MAX INGLE_Y MIN_ANGLE I MAX INGLE_Z
{
End Site
{
i

Figure 3.1: Skeleton representation file format.

Figure 3.2: The produced skeleton hierarchy for Figure 3.1 example.

3.2 Skeleton Extraction

In this section we study the local skeletonization problem of a component. First, we
examine a simple and fast approach, called here as the Opening Method, which usually
produces inappropriate skeletons. The other two methods have been discussed at [63] and
are the Centroid and Principal Axis methods. The Centroid Method is a simple approach
but sometimes can lead to skeleton morphs that don’t represent the shape of object.
The other method which is based on the principal axis of component, is slightly more
expensive to compute, but results in improved skeletons. We studied and furthermore
modified them to derive better skeletal representations.

3.2.1 Opening Method
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An opening consists of the common (joining) points of two adjacent components. Open-
ings are created when a component is split into sub-components during a decomposition
process. The easiest way to construct a skeleton of a component of a modular object is to
connect the centroids of the openings, called opening centroids, to each other. Figure 3.3
shows the generated opening centroids between connecting neighbor components.

Opening Centroid Opening Centroid

Figure 3.3: The generated opening centroids between P1 and the connecting neighbor
components P2 and P3.

We arbitrarily pick the centroid of the root node of the object’s skeleton tree as root
point. The selected point is also the root point of the global skeleton. Then, we compute
the opening centroids of all its children components and connect each of them with the
centroid. For each child, we perform the same process considering as root point, the
opening centroid where this component connect with its parent. Therefore, we connect
the root point with the opening centroids of all its children components. Finally, this
process ends when we reach the leaves of the skeleton tree.

Child

Root point \

—o—]

Skeleton
line

Root node

Opening
Centroid

Child

o P1

Figure 3.4: (a) A simple example of a skeletal representation using the Opening Method.
(b) An example that illustrates the inappropriate skeleton representation that arises when
skeletonization is based only on opening centroids.

This approach is straight forward and fast but frequently generates inappropriate results.
The major drawback of this approach is that it may produce skeleton segments that
intersect the component (Figure 3.4b) and skeletons that do not capture accurately the
shape of the object.

3.2.2 Centroid Method
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The following method is more advanced method than the first one since it uses an ad-
ditional feature to extract skeleton segments. The aim of this method is to construct
skeleton segment using the center of the mass of the component in addition to the open-
ing centroids. Sometimes, however, the centroid may lie outside the component producing
erroneous skeletons. To overcome this shortcoming we use the centroid of its kernel on
star-shaped components (polyhedra with non-empty kernel). In non star-shaped compo-
nents the center of their mass is used instead. Figure 3.5(a) shows the resulting skeletal
representation of the example of section 3.2.1. Moreover, Figure 3.5(b) illustrates the

centroid method effectiveness in the example of Figure 3.4(b).

Root point

Opening
Centroid |

Child Centroid

Figure 3.5: (a) A simple example of a skeletal representation using the Centroid Method.
(b) The Opening Method problem in 3.4b addressed using the Centroid Method.

Knowing the skeleton hierarchy information, we start from the root node and we compute
the centroid of component’s kernel. The selected point is also the root point of the final
skeleton. Then, we compute the opening centroid of all its children components and
connect each of them with kenrel’s centroid. Likewise, for each child we perform the same
process considering as root point the opening centroid where this component connects
with its parent. Finally, we connect the root point with kernel’s centroid and kernel’s
centroid with opening centroids of all their children components. Finally, this process
ends when we reach the leaves of the skeleton tree.

Although this approach is efficient and produces good results in simple cases, one of
the major drawbacks of this skeletonization method is its inability to represent some types
of shapes. For example, the skeleton of a cross-like model in Figure 3.6 extracted using

its centroids is only a segment instead of two crossing segments.

3.2.3 Principal Axis Method

In [63] proposed to overcome failures of previous methods by extracting a skeleton from
a component by connecting the opening centroids to the principal axis segment that
lies within the convex hull of the component and goes through the center of its mass.
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Figure 3.6: (a) An example that illustrates the problem that arises when skeletonization is
based only on centroids. (b) This problem can be solved using the principal axis. Points b
and d are the centers of the openings and a, ¢ and e the kernel’s centers of the components
P1, P2 and P3, respectively.

We denote this principal axis segment as PAyc(CH). To achieve this, PAyc(CH) is
segmented in &+ 1 line segments of equal length by picking k link points on PAyc(CH),
where k£ depends on the minimum skeleton linkage length. This method maps the opening
centroids on the PAyc(CH) by minimizing the total interconnection length and the
number of link points used. This is reduced to an optimization matching problem. The
final skeleton of the component contains line segments that connect opening centroids to
link points and line segments that interconnect link points.

Our approach adapts this skeleton extraction technique for use in our animation frame-
work (see Algorithm 1). Let OC(C') be the set of the opening centroids oc; of component
C, OC(C) =Aocy,...,oc,} and No¢ the cardinality of OC(C'). First, we select the prin-
cipal axis segment of the component’s convex hull that resides within the interior of the
component. For even better results we have used as major axis an axis parallel to the
principal axis of the convex hull that goes through the kernel centroid of the component
to ensure that skeleton segments have the least possible intersection with the component’s
boundary. We denote this major axis segment as PAxc(C). Moreover, the cardinality of
the set of link points to which the opening centroids connect varies from 1 to Noc. We
subdivide the PAk¢(C) in a number of uneven segments by picking as link points the
projections of the opening centroids on PAgc(C') (see Figure 3.7). Let Ppa,..(oc;) be the
projection of opening centroid o¢; on PAgc(C). If this projection lies outside PAgc(C)
then we use the closest end point of PAg¢(C). We then sort opening centroids according
to their closest points by observing that two centroids are likely to be grouped when their
closest points in PA¢(C) are close.

Our matching algorithm uses a dynamic programming concept, enhanced with new
score functions which aim at minimizing the total length of the mapping and the number
of the mapped points and maximizing the length of the utilized PAgc(C). Details of the
grouping algorithm are discussed in Section 3.2.3.

After grouping has been performed, we create the set of skeleton edges. Beyond the
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standard connections between the opening centroids and the link points, we use extra
skeleton edges based on the mapping result. The connecting algorithm is discussed in
detail in Section 3.2.3.

OC'] /\

Figure 3.7: Difference between PAyc(CH) and PAgc(C). The projection of opening
centroid ocy (p1) lies outside PAgc(C), so it is replaced by the closest end point of
PAkc(C), thisis (p}). pe2 and ps points are the projections of opening centroids ocy and
ocz on PAc(C), respectively.

Further, the covariance-aligned principal directions approximation algorithm will not
derive the optimal orientations but can provide an initial direction which if combined with
qualitative characteristics may improve the initial solution considerably. Our approach
improves the principal axis orientation through slight modifications using two individual
processes, the first is based on local features and the second uses knowledge inherited
from the component hierarchy.

Finally, the basic method depends only on the principal axis ignoring the other two
principal directions of the component. Thus, we propose to add four more joints which
represent the two ends of the other axes segments making the skeletal representation more
topologically expressive. (this is obsolete for character skinning but may be used effec-
tively in subsequent steps of the animation pipeline). Figures 3.8(a) and 3.8(b) illustrate
the difference of skeleton representations using this variation.

The principal axis algorithm is more expensive to compute than the other two methods
due to the principal axis and kernel centroid computation but obtains a higher quality
skeleton by capturing the topology of the character’s shape more accurately.

We start from the root node of the skeleton tree and we calculate the opening centroids of
the component with all its children. In addition, we calculate the segment of principal axis
which resides in the interior of the component. We further sort these opening centroids
with respect to the closest points (projections) in the produced line and we execute the
grouping algorithm. Then, we use the connecting algorithm for creating the skeleton
segments. If the grouping algorithm returns one group (which means that we have one
point on the principal axis) then apparently we choose this point to be the component’s
root point. On the other hand, we choose as root point the point which is the middle of
the returned points. For each child component, we perform the same process considering
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O : Opening Centroid
@ : Skeletal joint
@ : Extra joint

(a) (b)

Figure 3.8: Skeletonization using (a) only PA, (b) all principal axes.

as root point the opening centroid where this component connects with its parent. Finally,
this process ends when we reach the leaves of the skeleton tree.

The principal axis algorithm is obviously more expensive than the other two methods
to compute due to the covariance-principal axis computation but carries out a first-rate
skeleton quality by encoding the topology of the model’s shape efficiently.

Algorithm 1 principal axis(C')
OC' := computeOC(C);
KC := computeKC(CH(C));
PAgec = computePA(C, KC,CH(C));
for each oc;, € OC do
Ppa,..loci| = project(oc;, PAkc);
sort(OC, { Ppa,..|oci]});
group(OC, PAkc);
connect(OC, PAkc);

e EESENA

Principal Axis Approximation

S. Gottschalk in [40] proposed an efficient and accurate algorithm to approximate the
collection of polygons with an oriented bounding box (OBB) of similar dimensions and
orientation using the covariance matrix. For long and thin objects, an OBB axis should
be aligned with the direction of the objects and for a flat object, with the normal of the
flat object. These directions correspond to the principal directions of the objects, and
the principal component analysis method discussed in Appendix C can be used here. So,
we can find the principal axis of a component by computing the OBB axes of its convex
hull. The proposed solution is to use a continuous formulation of covariance, computing
the covariance across the entire face of the primitives. Because the convex hull must be
computed, the algorithm takes O(nlogn). Given n triangles (pg,q,7%), 0 <=k <= n,
in the convex hull, the covariance matrix is given by
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1
oA Z(ak(gmk,imk,j + PhiPhyj  QhiGh + ThiThyj)) — My M
H =0

Cij = (

where ay = [(qx—pr) X (re—pk)|/2 is the area and my = (pr+qx+7rx)/3 is the centroid of the

triangle k. The total area of the convex hull is given by: Ay = > ax, and the centroid of
— Z k k

the convex hull, my = , is computed as the mean of the triangle centroids weighted
by their area.

The three eigenvectors of C' will be mutually orthogonal. After normalization, the
three eigenvectors become axes of OBB. The Singular Value Decomposition method dis-
cussed in Appendix B.1 can be used here to extract these axes, which in turn can then
serve as the OBB’s orientation matrix. The principal axis is the eigenvector of the covari-
ance matrix which corresponds to the largest eigenvalue.

Finally, we must find the maximum and minimum extends of the original triangle set
along each axis in order to size the OBB since as we will discuss later, OBBs is necessary
at the deformation system. This can be done by searching the two maximum distances
my and msy from the centroid to the boundary of the convex hull across each axis and its
negative. Then, we must only set the half length of each axis as the (m; + m2)/2 ,and
finally, re-compute the position of the centroid of the OBB.

Grouping Algorithm

Our approach manages to minimize the total mapping length and the cardinality of the
set of link points, while at the same time maximizes the used PAgc(C) length. Further,
it does not depend on system determined constants, thus being widely applicable. Let
d(p1,p3) be the euclidean distance between point p; and point p3. For a set of opening
centroids of a component C', oc;;(C') = (oc;, ..., 0c;), we compute their link points on
PAkc(C) as the average of their projections by

Do Pragoolock]

Lpy (0ci;(C)) = 3.1
PAgc(C)\OCij |OCij(C)| (3.1)
Y ocy, € oc;j(C'), we evaluate its normalized variation as
V(OCk) d(OCk, LPAKC (OCZ]< ))) dmzn(ock) (3 2)
maxi<j<nNeoc {d(OCk:, OCZ)} dmm(OCk) '

where dpi, (0ck) = d(ock, Ppag,(c)ock)).

Moreover, we define the ratio of the PAg(C) length which is vanished after group-
ing as the PAgc(C) length which is generated among the projections of these opening
centroids divided by the maximum used PAgc(C) length.

Definition 3.1. The normalized merging score function Fy for OC;;(C) group set is
defined as the average of the total distance cost and the ratio of the not used PAgc(C)
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S Vi d(Pp Ao ()06, Pp Ay o (0)locs])
F = |OC5(C)  d(Ppayq(c)loci]sPpa. o) [Nocl) (3 3)
5 .
Definition 3.2. The normalized separating score function F; for groups G, = (oc?, ..., oc})
and Gy = (oc/, 4, ... ,ocg) is defined as the average of the sums of their total distance cost
and the complement of the ratio of PAxc(C) length which is generated between these
groups,
> V(ocg) > Vioc))
+ + (1= gRpa,a(c))
G G
where A Prageiloct] Pragetoloclu)
PAkc(C) 0] s Pragc(o)loc
GRP A (C) = ke (C)19G xc(C) 19041 (3'5)

d(Ppagc(c)loc], Ppage(c)[Noc))

In algorithm 2, we use G[i, j| and G; U G; to denote the optimal solution for the sub-
problem (oc;, ..., oc;) and the joint of two groups G; and G; without merging them to
one group, respectively.

Algorithm 2 group(OC, PAkc¢)

1. for each oc; € OC do G[i,i| = oc;;

2. for [ =2 to Npc do

3. fori:=1to Noc — 1+ 1do
j=itl—1

4

5 Gli,j] = (oci, ..., 0c));

6. s1 = F1(G[i, j], PAkc);

7. for k=1toj—1do

] s = Fy(Gi, k], Gk + 1, j], PAkc);
9. if s5 < s; then

10. Gli,j] = Gli, (] U Gk + 1, ji;
11. §1 = S2;

12.return G[0, No¢l;

Connecting Algorithm

Once we know the optimal mapping, we connect the opening centroids to the matched
link points. Opening centroid grouping often generates skeletons that do not capture
important topological information. Therefore, the connection algorithm works with the
following rules:

1. If all opening centroids are grouped to one link point and this point is close to:
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o PAkc(C)’s centroid, we connect it with the PAgo(C)’s end points on both
sides of its centroid.

e one of PAkc(C)’s end points, we connect it with the PAxc(C)s end point on
the other side of PAgc(C)’s centroid.

2. If opening centroids are connecting to more than one link point and these points
are close to:

o PAkc(C)’s centroid, we connect the first and the last link points with the
PAgc(C)’s end points on both sides of PAgc(C)’s centroid, respectively.

e one of PAgc(C)’s end points, we connect the first or the last link point with
the PAkc(C)’s end point on the other side of PAxc(C)’s centroid.

Convex Hull

(O : Opening Centroid
@ : Skeletal joint
@ : Extra joint

Principal axis of
Convex hull

Figure 3.9: If all opening centroids connect to one point which is close to one end of
the PAxc then we connect this point with the PAgxc end point on the other side of the
component.

3.3 Skeleton Refinement

As covariance-aligned OBBs are not optimal due to the approximation computation pro-
cess, it is reasonable to suspect that could be improved through slight modifications.
There are two major problems of the PA covariance-computation. There is high possibil-
ity that either the eigenvector of the covariance matrix which corresponds to the largest
eigenvalue is not the principal axis or the selected principal axis has not the accurate
orientation we wanted. Certainly, the covariance-aligned OBBs algorithm will not derive
the perfect principal axis orientation but can provide basic information that if it is com-
bined with local and parent features that define a qualitative orientation, may improve
the initial solution efficiently. Our approach perfects the axes of the oriented bounding
boxes orientation using two individual processes, the first one uses local features and the
second one uses knowledge given from its parent node. Figure 3.13 illustrates the qual-
itative superiority of our refined skeletons and aligned OBBs over the original principal
axis algorithm.
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3.3.1 Local Refinement Method

To achieve optimal or satisfactory orientation results we use Local Refinement to approx-
imately align principal directions along some qualitative features through slight modifica-
tion. We define these features as the extracted skeletons segments from Centroid method;
vectors created by connecting opening centroids with kernel’s centroid. The maximum
rotation angle is user determined parameter and we set it less than 20° degrees based
on our own experience. Changes that demand rotations by large angles are rejected.
The proposed algorithm performs weighted vector alignment for each opening centroid so
that each execution will not undo previous improvements. If the component has more
than one opening centroids, we align with regards to the closest principal direction by

angle = weg} —, where A is the angle between the given vector and its closest axis and
weight = ———— except from the opening centroid which lies at the root. Considering
Noco+1

that this has more importance to the overall refinement, we weighted by 2 % weight, such
that Zfiolc weight; = 1. Closest is the principal direction which has the minimum angle
between itself and the given vector. When component has only one opening centroid, we
fit its corresponding vector with its closest principal direction. If the closest principal di-
rection is different from principal axis then the latter will be the selected axis. Figures 3.10
and 3.11 illustrate local refinements of a root and not-root components, respectively.

}
1

=| Alignment
i vector

i

@
Rotation| |
angle | |

O : Opening Centroid
@ : Component Centroid
@ : Extra Joint

Convex Hull

Principal axis of

Convex hull

Y
Figure 3.10: This example shows a rotation refinement on a component with one opening
centroid. (Left) shows the initial principal axis orientation and (right) is illustrated the
produced skeleton after alignment execution.

Let symbol £(pi,p3) be the angle between p; and p5 vectors. In algorithm 3, we use
PD = (PDy, PDy, PDy) and PDj to denote component’s principal directions and princi-
pal axis, respectively. The maximum rotation angle and the component’s root are denoted
respectively as mazAngle and Ciyps.
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Algorithm 3 local refine(C, OC, KC, PD, Root)
1. w= NOC’ + 1;

2: if C' # Root then align(C,.,; — KC, 2w, PD);
3: For each oc; € OC do align(oc; — KC,w, PD);

Function align(Vector, Weight, PD)

: for i =0 to 2 do A; = L(PD;, Vector);

Ag = maxo<;<2{A;}; K ={PDy| Ay = Ax};
Ag = Ag/Weight;

if Ax > maxzAngle then return;

rotate(PD, Ay);

if PD; # K then PD} = K;

3.3.2 Parent Refinement Method

We extend the orientation improvements performed individually on each component by
performing optimal fitting of the local principal directions of neighbor components. The
algorithm starts from the children of the root node of the skeleton tree performing the same
process to their children until it reaches the tree leaves. Its limitation is the dependence
on root component principal directions orientations result. For each component, the
Parent Refinement process first aligns with regards to the parent’s principal direction
which is closer to the child’s principal axis. Subsequently, from the rest of the child’s and
parent’s principal directions we detect those that are closer and aligns them. Note that
fitting two principal directions from different components, results in rotating the other
principal directions too. In Figure 3.12 we can notice the topological quality improvement
of skeleton using this method.

In algorithm 4, we use PD¢ = (PD§, PD{, PD§) and PDY = (PD{, PDF, PDY)
to denote respectively child’s and parent’s principal directions. Finally, PD]Q’* defines the
child’s principal axis.

Algorithm 4 parent_refine(PD¢, PDT)

1: for i =0 to 2 do A; = £(PDF, PD{™*);

Ag = maxo<;<o{A;}; KP' ={PD'| Ay = Ax};

rotate(PD?, Ag);

A = ming<;<o{£(PDS,PDF) | PD¢ # PDS*
and PD! # K"},

5: rotate(PDC, A);
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Figure 3.11: (a) The covariance-computed principal axes of the component. (b) The first
refinement execution: The yellow axis is closer to the given vector, so it will be the new

principal axis. (¢) The second refinement execution: Again, the yellow axis is closer to
the given vector. (d) The last refinement execution: The pink axis is closer to the given
vector, so it will be the new principal axis (The initial and the new principal axes is now
the same). (e) The difference of the extracted skeletons, before and after the refinement.
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@ : Skeletal joint
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Figure 3.12: Skeleton extraction without (a) and with (b) using the Parent Refinement

Algorithm.
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CHAPTER 4

ARTICULATED ANIMATION

4.1 Representing Articulated Figures
4.2 Keyframing Animation System
4.2 Forward Kinematics Skinning System

4.2 Gap Reconstruction Process

In the simplest form of computer animation we use a standard renderer to produce con-
secutive frames, wherein the animation consists of relative movement between rigid (ar-
ticulated) bodies and possibly movement of the view point or virtual camera.

In this work, we propose an integrated framework for robust skeletal animation of
articulated modular solid objects which is illustrated in Figure 4.1. First, a keyframing
animation system evaluates the rotational joint angles of the extracted skeleton for every
frame. Then, these values are used to examine if this motion should be rejected by
ensuring that they are consistent with the joint’s angle constraints and detecting collision
between the moving and the static object’s modules. If the motion is satisfactory under
these constraints then the forward kinematics rigid skinning system performs the specified
animation using the skeleton representation model. Finally, although it is simple, rigid
skinning makes it difficult to obtain sufficiently smooth skin deformation in areas near
the joints, so we introduce a new system which aims to solve this appearance problem
efficiently.

This chapter begins by examing the representation alternatives of an articulated an-
imation. In the following sections, the sub-systems of our skeletal animation framework,
the keyframing animation system, the forward kinematics skinning system, and the gap
construction system are described analytically.
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Figure 4.1: A framework for skeletal animation of articulated figures.
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4.1 Representing Articulated Figures

The first problem in articulated animation is how to represent an articulated figure.

The DH notation [30] is an economical relative system, where each coordinate frame is
specified with respect to the previous. However, Sims and Zeltzer [79] point out that this
notation is only really suitable for manipulators that consist of a single chain with one
end fixed, and cannot incorporate branching joints and skeletal components. Moreover,
they introduce a less economical but more intuitive system called azis-position (AP) joint

representation storing:

1. The position of the joint

2. The orientation of the axis of the joint

3. Pointers to the skeletal components that each joint is attached to

This notation requires seven parameters (three for position, three for axis orientation and

one for joint angle) compared with the four values in the DH notation.

4.2 Keyframing Animation System

35



This section refers to the various techniques in which the animator is responsible for
specifying most of the information. That is, the animator is working at a fairly low
level of abstraction. These techniques differ from model-based techniques in that there
is a more direct relationship between the information provided by the animator and the
resulting motion. In contrast, in model-based animation, the animator works at a high
level of animation and, as a result, gives up more control of the specific motion, but less
information is required from the animator.

Natural motion rarely happens along straight lines, so this should generally be avoided
in animation and arcs should be used instead. Similarly, no real-world motion can in-
stantly change its speed; this would require an infinite amount of force to be applied to
an object. It is desirable to avoid such situations, in animations as well. In particular, the
motion should start and end gradually (slow in and out). While hand-drawn animation
is sometimes done via straight-ahead action with an animator starting at the first frame
and drawing one frame after another in sequence until the end, pose-to-pose action, also
known as keyframing, is much more suitable for computer animation. In this technique,
animation is carefully planned through a series of relatively sparsely spaced key frames
with the rest of the animation (in-between frames) filled in only after the keys are set.
This allows more precise timing and allows the computer to take over the most tedious
part of the process using algorithms presented in the next section.

The term keyframing can be misleading when applied to 3D computer animation
since no actual completed frames are typically involved. At any given moment, a 3D
scene being animated is specified by a set of numbers: the positions of joints, their RGB
colors, modeling transformations, camera and light position and orientation, etc. These
independent variables which are necessary to specify the state of a scene called degrees of
freedom (DOF) of the scene. Changing the DOF values over time results in the animation
of the figure. Lastly, it’s useful to mark down that it will be nice to be able to limit a DOF
to some range to prevent infeasible motions. Usually, in a realistic character, all DOFs
will be limited except the ones controlling the root (for example, the elbow component of
a human model could be limited from 0° to 150° degrees).

The vector space of all possible configurations of an articulated figure forms the basis
of the pose space of the figure as the set of DOF defining the position, orientation and
rotations of all joints constituting the figure. We can say more formally that the figure
in a particular configuration is described be the pose vector: @ = (¢1, @2, ...,pn). The
dimension of the pose space in general is equal to the DOF of the articulated structure.
For example, any unconstrained rigid body has six DOF, three translational and three
rotational. Thus its pose vector is: & = (x,y,2,7,,7,,7,). But in our case, the pose
vector reduces to three rotational angles since the joint is Ball and Socket type as shown
in Figure 4.2. However, when we want an interactive figure to move around through a
complex environment, we need something to be responsible for the overall placement of
the figure. We can solve this by using an additional extra channel data (3 translations,
3 rotations) called character mover. An animation can be thought of as a point moving

26



through pose space, or alternately as a fixed curve in pose space: ¢ = ®(t). Generally, we
think of an individual animation as being a continuous curve, but there’s no strict reason
why we couldn’t have discontinuities (cuts). In these terms finding an animation reduces
to finding an N-dimensional path in its pose space.

4

Figure 4.2: Ball and Socket joint.

Since the entire animation is an N-dimensional curve in pose space, we can separate that
into N-dimensional curves, one for each DOF calling them channels: ¢; = p;(t). A channel
stores the value of a scalar function over some 1D domain (either finite or infinite) and will
refer to pre-recorded or pre-animated data for a DOF, and not to the more general case of
a DOF changing over time which includes physics, procedural animation, etc. A channel
can be stored as a sequence of key frames. Key frames ¢, are some number of important
moments in time for each of the DOF which are selected to set values of this DOF (key
values fi). Of course, we can directly set these values at every frame, but this will not
be particularly efficient. Furthermore, the closer key frames are to each other, the more
control the animator has over the result; however the cost of doing more work of setting
the keys has to be assessed. It is logical, therefore, typical to have large spacing between
keys in parts of the animation which are relatively simple, concentrating them in intervals
where complex action occurs. Once the animator sets the keys (¢, fx), the system has
to compute dynamically values of f for every possible key frame ¢. This process is called
curve fitting, as it involves finding curves that fit the data reasonably well. Since we are
not ultimately interested only in a discrete set of values, it is convenient to treat this as a
classical 1-D interpolation problem which fits a continuous animation curve f(¢) through
a provided set of data points (Figure 4.3).

Since the animator provides only the keys and not the derivative (tangent), method which
compute all necessary information directly from keys are preferable for animation. The
speed of parameter change along the curve is given by the derivative of the curve with
respect to time 0f/0t. Therefore, to avoid sudden jumps in velocity, C* continuity is
typically necessary. Key frames are usually drawn so that the incoming tangent points
to the left (earlier in time) as shown in Figure 4.3. The arrow drawn is just for visual
representation and it should be remembered that if the two arrows are exactly opposite,
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Figure 4.3: A continuous curve is fit through the keys provided by the animator.

that actually means the tangents are the same. A higher degree of continuity is typically
not required from animation curves, since the second derivative, which corresponds to
acceleration or applied force, can experience very sudden changes in real-world situations,
and higher derivatives do not directly correspond to any parameters of physical motion.
One of the best choices for defining the curves of the individual spans between the keys
is by 1-D interpolation usually piecewise cubic Hermite curves.

As we discussed above, rather than store explicit numbers for tangents, it is often
more convenient to store a rule and re-compute the actual tangent as necessary. Usually,
separate rules are stored for the incoming and outgoing tangents. Common rules for
Hermite tangents are shown in Figure 4.4 and include:

Flat : equals to zero and is particularly useful for making “slow in” and “slow out”
motions (acceleration from a stop and deceleration to a stop)

Linear : points to next/last key and is particularly used on the first or last tangent
respectively.

Smooth : automatically adjust tangent for smooth results and is particularly used on
all keys except the first and last tangents.

The two main setup computations a keyframe channel needs to perform are:
e Compute the tangents values from the stored rules (Figure 4.4).

e Compute the Hermite cubic curves coefficients from the key values and the computed
tangents (see Hermite at subsection 2.1.3).
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Figure 4.4: Form and evaluation of (a) flat, (b) linear, and (c¢) smooth Hermite tangents
rules.

Finally, keyframe channels often specify extrapolation modes to determine how the curve is
extrapolated before the first and after the last key frames. Usually, separate extrapolation
modes can be set for before and after the actual data. We have to note that extrapolation
applies to the entire channel and not to individual keys frames. Common extrapolation
choices are shown in Figure 4.5 and include:

Constant value : hold first/last key value
Linear : use tangent at first/last key
Cyclic : repeat the entire channel

Cyclic Offset : repeat with value offset

Bounce : repeat alternating backwards and forwards
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Figure 4.5: (a) Constant value, (b) linear, and (c) cyclic channel extrapolation modes.

Once we have defined the setup computation functions of the keyframe channels, we will
discuss now how the evaluation process must be implemented. The evaluation function
needs to be very efficient, as it called many times while playing animations. The procedure

consists of two main components:
e Find the proper span on the curve.

e Compute the key value from the cubic equation for the chosen span.

As the key frames are irregularly spaced, we have to select the ones that are more appro-
priate for our application. If the key frames are stored as a linked list, we should walk
through the entire list looking for the appropriate span. If we maintain the keys in an
array, we can use a binary search. This requires O(log N) access time with no additional
storage cost. For even faster access, one could use hashing algorithms, but that is proba-
bly not necessary, as they require additional storage and most real channel accesses can
take advantage of coherence. But, since the access to the channel data is sequential then
doing a binary search for each channel evaluation for each frame is not efficient. The high
performance evaluation solution is to loop through the keys from the beginning and look
for the proper span by keeping track of the most recently accessed key for each channel
because it is extremely likely that the next access will require either the same key or the
very next one.

Once we firstly find the proper span of the channel then we can evaluate the channel’s
equation at some arbitrary time ¢. The main runtime function has to consider four cases

for an input time ¢, if frame time:

e is before the first key then we use the channel’s extrapolation mode.
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e is after the last key then we use the channel’s extrapolation mode.
e falls exactly on some frame key then we return its key value.

e falls between two keys then we evaluate span’s cubic equation.

Finally, we provide the file format of our keyframe animation information (Figure 4.6).
The file always starts with the keyword “animation” following by a single left curly brace
“{”. On the next line, we find the keyword “range” following by two numbers which
describe the start and the finish of the animation time. We further find the keyword
'numChannels’ on the next line following by the number of the scene’s DOFs. A keyframe
information section follows for every channel. The form of this section starts with the
keyword "channel’ following by the DOF identification number and a single left curly brace
“{”. On the following line, we find the keyword “extrapolate’ following by two numbers
which specify how the curve will be extrapolated before the first and after the last key
frames respectively. Moreover, one line below, we find the keyword “keys” following by
the number of the key frames and a single left curly brace “{”. The following lines are
the descriptions for all possible key frames. We describe each keyframe by defining its
time, its value and the incoming and outgoing tangent rules. Finally, the end of any key,
channel or animation definition is denoted by a right curly brace “}”.

animation {
[time_start] [time_end]
numchannels [num]
channel [id] {
extrapolate [extrap_in] [extrap_ouf]
[numkeys] {
[time] [value] [tangent in] [tangent ouf]

}
}

channel ...

Figure 4.6: Keyframming animation file format.

4.3 Forward Kinematics Skinning System

In this animation style we use a model to control motion. The animator is responsible for
setting up the rules of the model and animation is done by developing motion according
to the rules of the model. Complex motion can be attained, but detailed control of the
motion is removed from the hands of the animator. Much model-based animation is based
on physical principles since these are what give rise to what people recognized as realistic
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motion. However, other models can be used. Physically-based modeling is a special case
of the more general constraint modeling. Arbitrary constraints can be specified by the
user to enforce certain geometric relationships or relationships appropriate for a specific
application area. Mental models can also produce animation based on action-reaction
scenarios, problem solving and similar “intelligent behavior”.

As we mention earlier, the figure model intended for animation typically consists of
at least two main layers. The motion of a highly detailed surface representing the outer
shell or skin of the character is what the viewer will eventually see in the final product.
The skeleton underneath it is a hierarchical structure of joints which provides a kinematic
model of the figure and is used exclusively for animation. Thus, figure global motion
(translation and rotation) and pose (joint angles) is applied to the skeleton and the skin
follows the skeleton motion. Each of the skeleton’s joints acts as a parent for the hierarchy
below it. The root represents the whole character and is positioned directly in the world
coordinate system. We have proved in previous section that the quaternion outperform-
ing the rotation matrix structure at most all cases, except of the vector transformation
occasion and it will be our choice for representing joint’s orientation. So, instead of using
a transformation matrix, we can use a quaternion ) and a translation vector T (QT pair).
If a local transformation Q)7 which relates a joint to its parent in the hierarchy is available,
one can obtain a transformation which relates local space of any joint to the world system
(i.e., the system of the root) by simply concatenating transformations along the path from
the root to the joint. To evaluate the whole skeleton (i.e., find position and orientation
for all joints), a depth-first traversal of the complete tree of joints is performed. Each
joint first computes its new local transformation QT L(L,, L;) based on the previous L
state and the values of its DOF's:

L(LQ7 Lt) * = Tjoint(gola P2, §03>; where Tjoz’nt((pl) P2, (103) = (Tq7 Tt) =
L(Lq, Lt) - (Lq + Lt)Tq —|‘ ,_Tt == LqTq + Lth + Tt =
L(Lq, L) = (LqTq, LT, + T;)

We can evaluate the transformation QT Tjeins by rotating with (g, quaternion so the
parent azis, a vector going from joint position (J,.s) to parent’s kernel centroid aligns
with a unit vector k£ which lies on positive z-axis, rotate then along the x-, y-, and z- axes
through 1,09, and @3 respectively (quaternions Q(X, ¢1), Q(Y, ¢2), and Q(Z, ¢3)) and
finally re-position parent axis to the initial location by multiplying with the negative of
Quaiign quaternion (for more explanation see Quaternions operations at subsection 2.2.2
and Figure 4.7):
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eroint = (Tq; CFt) =
Tq = (_Qalign)QrotQalign
T = (_Jpos)Tq + Jpos

where Qrot - Q(Xa Qpl)Q(Yv? QpQ)Q(Zi (PS)

parent

Parent axis

1

[ chig

Figure 4.7: Parent axis vector.

Then, the world QT W (W,, W;) is computed for each joint by concatenating its local QT
L with the world QT of the parent joint: World QT W (W,, W;) = Woarent - L. However,
since our models consist of a huge number of vectors which transforming in time, it is
proper after evaluating the world quaternion to convert it to matrix form and then use
the matrix to transform the vectors. Although this general and simple technique for
evaluating hierarchies is used throughout computer graphics, in animation it is given the
name Forward Kinematics (FK). To animate with this technique, rotational parameters
for all joints involved in the motion must be set explicitly by the user, using the pre-
specified scripting animation language (Figure 4.8).

We can see that no account is taken of any physical laws that might be in effect on
the figure. So, it will be proper to include natural constraints for real looking animation
results. What makes it possible for things to be built in the real world is that fact
that things are solid and objects can’t pass through one another. Incorporating collision
detection is one of the more realistic aspects of physically based modeling. However,
time in computer graphics is discrete and most collision detection takes place at discrete
intervals. This means that it is possible to miss a collision altogether and certainly
probable that it won’t be detected at the instant of contact. In this work, a motion of
a joint is acceptable if the new joint angle is inside the joint’s angle range given by the
user at our BVH file and if all its sub-tree components do not collide with any other
component. If any of two comes true then the motion is cancelled. A costly but efficient
way of specifying if a collision occurs between two components is checking if their BBs
collide (see Bounding Box at subsection 2.3.1).
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Figure 4.8: Forward kinematics example.

However, the number of the BB collision function calls equals to the product of the num-
ber of the sub-tree nodes and the remaining nodes, making this solution very slow. Since
this number is huge, we propose to make a first collision approximation by finding which
components probably collide using bounding spheres (see Bounding Sphere at subsec-
tion 2.3.1) and then check if there is actually a collision between each pair using the BB
collision function. Although, we have reduced the possible collision component pairs a
lot, we can speed our method by saving a weight at any pair which specifies the collision
possibility. We evaluate this weight as w = (I/r)? where [ is the distance between their
sphere centers and r is the sum of their radius (Figure 4.9). So, if we order these pairs
by their weights then we will find or not a collision with the less tries. Finally, it’s smart
and will speed up our method if, for each component, have pre-computed the components
which are not at its sub-tree.

P1

..
..

Figure 4.9: Bounding sphere collision example.

Every successful motion is transferred to the figure’s surface by assigning each skin vertex
one joint as driver (rigid skinning). A skin vertex is simply frozen into the local space of
the corresponding joint, which is the one chosen directly by the skeletonization procedure.
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The vertex then repeats whatever motion this joint experiences, and its position in world
coordinated is determined by standard FK procedure, namely is transformed by the joint’s
world matrix: v = Ww. Similarly, the normal of each vertex is transformed by only
rotating with the world matrix: n’ = Rn, W = RT. Although it is simple, rigid skinning
makes it difficult to obtain sufficiently smooth skin deformation in areas near the joints
(Figure 1.2) or also for more subtle effects resembling breathing or muscle action. At the
next section, we will propose a method for solving the collapsing problem in areas near
the joints.

In this section we discussed that the geometric defects of vertex animation can be
overcome by using skeleton animation. Skeleton animation, as the name implies means
using an articulated structure as the framework that admits the animation control; then
attaching a mesh to the skeleton which provides the material to be rendered. We further
include natural constraints to our system for making more real looking animation results
using collision detection and joint limitation subsystems. Finally, Figure 4.10 shows a

diagram of our forward kinematics skinning system.

J T

DOF next keyframe
values
h 4
L yes
DOF limitation
no update ™
orientation
' 4
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Collision detection
restore
orientation
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A 74
Rigid Skinning
A 4
render

Figure 4.10: The forward kinematics skinning framework.

4.4 Gap Reconstruction Process
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The basic skinning approach has many flaws and shortcomings. The major one is the
difficultly to obtain sufficiently smooth skin deformation in areas around the joints. When
a motion of a component occurs, a part of this component collides with its parent resulting
in triangles of each component to be inside each other. Also, one may notice that a gap
is created at the other side of the collision location. This serious discontinuity between
segments results in unacceptable skin deformations. This has led to the emergence of
more specialized techniques that improve the final shape result. We have developed a
technique to obtain sufficiently smooth skin in areas near the joints after the influence of
the skinning procedure. This technique can be divided into four sub-problems:

1. Remove skin vertices of overlapping components.
2. Add new vertices in this area to fill the gap.

3. Construct a blending mesh that produce a derive smooth skin mesh by using a
robust triangulation method.

4. Compute and adjust surface normal vectors.

In the experimental evaluation, the results are promising and the proposed technique
exhibits efficient and robust behavior. Our main concern of this method is to limit the
high computation time of the skin construction in the area near the joints which is due
to the triangulation level. Algorithm 5 summarizes the entrire process.

4.4.1 Remove Vertices

The first step of this technique is to detect which points from each of the collided com-
ponents are located inside the other one. The most accurate method is to check whether
each point of one component is inside the other one or its convex hull. However, since
both component and its convex hull consist of a large number of triangles, this process
may require a lot of CPU resources. The oriented bounding box collision test is not
very precise on complicated objects, since it has a box-shape, but despite of all this it
is extremely fast, and easy to use. A point is inside an oriented bounding box if all 6
plane-point tests results have the same sign. Since that the OBB collision test is not so
accurate, we know that a large set of points that is outside the component will be not
sent for rendering.

However, we can improve our result by testing each point with one extra plane (Fig-
ure 4.11). It’s the plane which fits best to the common (opening) points of these com-
ponents and can be computed by the principal component analysis method discussed in
Appendix C. We can calculate the covariance matrix for the set of points and then de-
termine the eigenvectors corresponding to the two largest eigenvalues. These two vectors
are parallel to the best-fit plane. Then, take either their cross product or the eigenvector

66



Father P2

® : common point
@ :joint point
@ © @ :father point

X 2
w4 P 4 )
=x2 by 15, Normal P1s,
E B &
® P D A
- A
o’ ' . "
L o °, ®_e.——> Opening plane P2
‘o" e o® T e Y
-
.
L

AN

v
Normal P2 .

Opening plane P1

“..| Child P1

Figure 4.11: This is an example which shows the difference of testing with and without
opening plane (red lines). If we are testing the parent points with the child’s OBB without
the opening plane, then it will result to remove the green and orange points. On the other
hand, the cut is more accurate since the removed points are only the green ones.

corresponding to smallest eigenvalue to evaluate the plane’s normal. Finally, we adjust
the plane so that it passes through the centroid of point set.

From all component points only a small percentage of them have probability to be
removed. So, we propose to start from the opening points which have the highest pos-
sibility to be inside to the other component’s oriented bounding box and move through
their 1-ring of neighbors until we find the points which are outside the OBB (Figure 4.12).
Point’s 1-ring of neighbors are the points which belong to the same facet. We will speed
up our method if, for each point, we have pre-computed its 1-ring of neighbors. So, this
method provides the perfect cut of the component executing the fewer tests. Moreover, we
store the outside (end) points because they are necessary for calculating the patch which
will fill the gap. As we will discuss below, there are two categories of end points which
have different patch construction methods, the points that belong to the component’s
opening ( Circle points) and the others that have been found through the iterative method
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Figure 4.12: This is an example which shows the point removing process. We start from
the opening points (yellow) and continue with their adjacents until we find an outside
point. When we have found all end points (orange) then we maintain their neighbor
information (purple) for use in the triangulation method.

(Bezier points). The created patch many have discontinuities (holes generation) in one
or both components because the triangulation process did not use one or more of the
given end points. Therefore, we must extend the triangulation by adding the neighbors of
the end points (Eztra points) to ensure the robustness of the constructed patch. Finally,
we group the component’s opening points which have been removed (Removed points)
(Figure 4.13).

4.4.2 Add New Vertices

Once we have classified the end points from both components, we should patch the gen-
erated holes. The objective is to estimate the points which provide sufficiently smooth
skin deformation in this area. To do so, carry out this process into two steps:

e estimate new points by using the child’s Circle points (denoted by Sy)
e estimate new points by using both child’s and parent’s Bezier points (denoted by

Ss)

The observation behind S; is that when we rotate a component about an arbitrary axis,
movement of every Circle point v will describe a circular arc (Figure 4.14). The task is
to find new points by interpolating from the point’s position before the rotation ¢ (v =
qovq; ') to the point’s position after rotation ¢, (v) = qvg;") (see Figure 4.14). We
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Figure 4.13: This is an example which shows the point classification. Group 1 is the
Circle end point set, Group 2 is the Bezier end point set, Group 3 is the Extra point set,
and finally the Group 4 is the Removed point set.

use fast linear interpolation of quaternions (QLERP) since the interpolation along the
shortest segment hardly causes any observable skin defect [51]. QLERP is computed as

/

q
¢t g0, 1) = —.¢ = (1 —t)go + taa (4.1)

I |l

where t is the interpolation step and depends on the proper distance which must be
assigned to constructed points. We evaluate it as the average of the median edge distances
of the two components. To avoid quaternion’s normalization sqrt operation, we convert ¢’
to a homogeneous rotation matrix ()’ and then normalize subsequently by dividing with
¢'q’ to provide @. In order to change the center of rotation from the joint position (jyos)

to origin, we define a homogeneous matrix

—

T = [6[T _jf’“] (4.2)

where [ is a 3 X 3 identity matrix. Finally, a new point can be constructed using the

following formula:
V' =TQuyT™* (4.3)

We have to fill in the gap in the area where we have removed points from both components.
The major issue of Sy is that we only have the Bezier points from each component without
any correspondence between them. So, we propose to use as extra point set, the Middle
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points. Middle is the point set which consists of the average of the initial and final
positions of the Removed points.

A grouping function is developed to create triplets from each Middle point and one
point from child’s and father’s Bezier sets. The feature of each triplet is that the plane
defined by its points, has the minimum dihedral angle with the plane defined by the
joint position and the kernel centroids of the participating components (plane PL). If
we use to fill the gap with points created from circle equation using the triplets, artifacts
will arise due to the discontinuities at the end points of the two components. To avoid
these shortcomings, we construct blending arcs given the triplet as control points using a
Rational Bezier representation (see subsection 2.1.3).

The tangent vectors at Bezier points defined as the projections on PL of the vectors
going from the joint position to child’s (child azis) and parent’s (parent azis) kernel
centroids, respectively. To prevent the generated meshes from exhibiting volume loss as
joints rotate to extreme angles we replace Middle point. We propose to use the average of
the Middle point and the intersection of their tangents and then evaluate the tangents to
the vectors going from the Bezier points to the Middle point (see Figure 4.14). Finally, we
ensure that the constructed points are uniformly sampled by adjusting the interpolation
step.

Oi‘\m(ial

S

Figure 4.14: Introducing additional points and blending curves.

4.4.3 Triangulate Vertices
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The points derived through the process of the above routines constitute the scattered 3D
data which will be triangulated. To ensure the robustness of the constructed patch we
extend this set by adding the 1-ring neighbors of the Bezier points of the components.

In this work, we use the Tight Cocone algorithm [28] that constructs water-tight sur-
faces. The algorithm works on an initial mesh generated by the popular surface recon-
struction algorithm Cocone [5] and fills up all holes to output a water-tight surface. In
doing so, it does not introduce any extra points and produces a triangulated surface inter-
polating the input sample points. Since we need only two parts of the generated spheroid
to fill the holes, we must eliminate a number of unnecessary facets to derive optimal
lighting results. First, we approximately correct the normal vectors orientation and then
we remove the facets that belong exclusive to either the child or the parent component
and whose normal vector is not nearly parallel with all normal vectors of its defining
points (Figure 4.15).

4.4.4 Compute Normal Vectors

Finally, we need to calculate the normal vectors of the output surface and correct the
normal values of the components end points (Figure 4.15). The evaluation of the con-
structed point normals is achieved by averaging the normals to the output surface facets
that contain the point. The normal vectors of the components end points are calculated
by averaging the normals of the output surface facets that share the point and the nor-
mals of the preexistant component facets that contain the point. However, we should
be cautious not to exclude component facets that have been removed during the second
process. Finally, the normal vectors of the Extra point set remain unaffected since the
above adjustment is not necessary.

Normal 1

Facet Normal

: Deleted point

: Constructed point

: End point

@ e e

: Extra point

Normal 3

Normal 2

Figure 4.15: (Left) A rejected facet. (Right) The normal evaluation of all possible point
cases. Component facets are shown in green color, deleted facets are shown in grey and
constructed facets are shown in pink color.
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Algorithm 5 advanced rigid_skinning()

V = B¢ = BP = R® = R = {0};
. QY ={OPF,...,0PF }; remove(V,QY, BY, R%);
QF ={OP{,...,0PF}; remove(V,QF, BF , RF);
. for each BZ-C € B¢ do
V U={v,(Bf,q0,q1,T) : eq(4.1), eq(4.3)};
. for each O; € OPY — B€ do InB; = M,
. for each InB; € InB do
(RS, Ry) = triplet(InB;, R, R, PL.N);
Ip = intersection(Ppy, (axis®), Ppy (azxis?));
10. Vin =({Ip + InB;)/2;
11. TC:InBi—RjC; TP = InB; — RT;
12. VU= {ct(InB;, RS, RE, T, TT) : eq(??)};
13. B=BYUBP; R=R“UR?P; VU= NR}(R);
14. F =triangulate(V);
15. for each F; € F do correct(F;.N);
16. F —{F; | Yo<r<2 ((Vi(F3).N 4 F;.N) and

Vi(F;) € (BYNRY) or (B NRP))};
17. for each V; € V do

{ TV NRY (Vi).Ny, \Vi¢ BAR

Vi.N =

© PN s w N

n
SV NRY (Vi) Np+¥ 1% NR}(Vi).Ny,
ny +nx

19. normalize(V;.N);

Function remove(V, Q, B, R)
1. while (¢ = Pop(Q))! = NULL do

2. if Collision_Test(q) then QU = NR3(q);
3. else V U = g;
4. if g€ @ then BU=g¢;else RU=g;

Function triplet(InB;, R, R, PLy)
1. for each ric € R® do

2. for each TJP € R? do

3. Aij = L(A(InBj, e, rf).N,PLy);

7

4. (RY,RE) ={(r{ v} | Ay < {Arh1<hi<n ponpp )

In algorithm 5, we use C and P for child and parent components. Let BY, R® and
InB be Circle(C), Bezier(C) and Middle sets. Moreover, Q° is a queue containing child’s
opening points (OPY). Pp(axis®) is the projection of chils’s azis on plane PL. We define
NR;(X)and NRY (X) as the 1-ring neighbors of X set on components and blending mesh,
respectively. Let cardinalities of NR}(X) and NRY (X) be n, and ny. In addition, the
normal vector of a point or a facet is denoted by “.N”. A(V,, V4, V,) is the triangle defined

. ¥ .
by V,, V, and V, points and V, = Vj, symbolize when vectors V, and V} are close to
parallel. We also define the same for the parent component. Finally, we denote the patch

points and facets as V and F.
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CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1 Implementation Details

5.2 Experiment Results

In this section we discuss the implementation details of the system we have developed
that performs skeletonization and animation of three-dimensional solid modular models.
We will demonstrate the feasibility of the effort and the the efficiency and robustness of
our approach.

5.1 Implementation Details

The programming language and the supporting libraries for the develop of the system
was key issue worthy of careful consideration. The main requirements were fast object
code production, an effective graphical user interface development tool to enable us to
interact efficiently with the user and last but not least support for accurate mathematical
computations.

Our language choice for this particular project was OpenGL API tied to C++. Note
that for GUI development and scientific libraries, there are usually several available
choices. There is a variety of available GUI toolkits for OpenGL API such as Qt, OpenGL
Utility ToolKit (GLUT) [105], Fast Light ToolKit (FLTK) and others. We selected the
GLUT graphical interface toolkit since it can support efficient user interaction. Similarly,
the availability of scientific libraries for C++ is good but much clattered. There are several
libraries that do different or the same things, some better than the others, and it is quite
hard to find the best solution. WE decide to use LAPACK library [106] as it provides
sufficient support for the majority of linear algebra problems that we faced in this thesis.
Moreover, through the development of our system we employed additional stand-alone
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software, the gHull library [108] and the Tight cocone [28] program for computing the
convex hull and the triangulation of a set of points as we discussed in subsection 2.3.2
and section 4.4.3. Finally, this software form allows us to make the application portable
across platforms. This means that the application can run in a variety of platforms, from
Windows to many UNIX clones with X-Windows based graphical environments.

Figure 5.1: The main graphical user interface: We see a horse model rendered by its
vertices that facilitate the view of its skeleton representation.

In Figure 5.1 we can see how the main graphical user interface looks while running on
Windows XP. As we can see the GUI is very easy to use and aim to visualize the extracted
skeletal results and the produced animated models. The user can load and work on one
model at a time, but may use a set of animation moves by resetting the model to the initial
position. This project requires a 3D Studio Max [99] file format model, its associated BVH
file format with the structure discussed at section 3.1, a set of available animation moves
(CLIP file format) and the skeletonization method. We have three skeleton extraction
methods: opening, centroid and principal axis. The necessary inputs for the program
execution are the model, the components hierarchy tree and the parameter that defines
the skeletonization method. The animation file can be loaded at a later time after the
model has been loaded. When the main graphical user interface of the application has
opened, we can see a colorful coordinate system (x-axis: red, y-axis: green, z-axis: blue)
and a grid floor where the model is placed on. Our program provides users with a number
of actions to select from by using the keyboard and the mouse. Some of these interaction
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actions are:

e Move or rotate the camera position.
e Print model’s geometry information on command window.
e Select a model’s component (which results to see its OBB).

e Change the model’s geometry rendering (which results to see the skeleton represen-
tation).

e [oad the animation file.

e Reset model’s components positions to their initial positions (if any animation has

came true).

e Exit from the program.

5.2 Experiment Results

In this section we present the experiment results of our work. The experiments are used
to demonstrate the performance of the proposed methods. All experiments are performed
on an Intel Core Quad 2.4 GHz CPU where only one core was in use with 2048 Mb
RAM using an ATI Radeon 3870 graphics card. A summary of the studied models, which
includes several articulated game characters and animals [109], is shown in Table 5.1. Size
is measured as the number of vertices and the triangles of each model.

First, we will present and analyze the extracted skeletal results using the three afore-
mentioned methods. Then, the extracted skeletons can be used for animation. Finally,
we present sequences of images obtained from our principal-axis skeleton-based animation

approach of several objects using hand-made motion data.

5.2.1 Skeletonization results

As we discussed above, these experiments are used to demonstrate the performance of the
proposed skeletonization methods. We see that the executive time of the Opening method
depends only on the number of their components, which practically means constant com-
plexity. So, Opening method is independent from the vertices and triangles cardinalities,
making it the same fast for any model. Moreover, it appears that the processing time
of the other two skeletonization methods depends on the number and the size of their
components. Centroid method takes %  O(n;logn;) + O(r;logr;) due to the kernel’s
centroids computation (where & is number of components, n; and r; are vertices and ker-
nel vertices respectively of ¢ component), which makes it more expensive to find than the
first method.
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Table 5.1: Experimental models.

Model | Parts | Vertices | Triangles | Figure
Cow 16 3825 7646
!

E')
Homer 9 4930 9856
Dilo 16 5524 11044

4
Camel 27 6013 12022
Horse 17 8964 17924
Dino 21 9731 19458

Furthermore, we derive skeletons using our Principal Axis method in Zf:o O(n;logn;)
time due to principal axis estimation (where £ is number of components and n; are vertices
of i component) plus the kernel’s centroid computation time which we estimated above.
We observe from measures that skeleton extraction complexity appear to be nearly linear
on the number of triangles. Examples show that the expensive part of this method is the
kernel’s centroid computation since the principal axis estimation has high performance.
Moreover, the time cost of grouping opening centroids using four or less extra points and
executing the proposed local and parent refinement methods is negligible compared to the
overall performance (Table 5.2).

Our method generates refined skeletons in less than half a minute for dense models.
Thus, if our method is used in conjunction with a fast decomposition method, it will
result in a very efficient overall process. Finally, Table 5.2 summarize the cumulative
time performance (measured in seconds) of the methods discussed. We observe that
the first method is the fastest one, the second method is more expensive (due to kernel
computation), and finally, the last technique costs slightly more than the not refined
techniques.

We provide the skeletonization results using the three alternative methods for every
model. Figures (5.2, 5.5, 5.8, 5.11, 5.14, 5.17) illustrates the results of the Opening
and Centroid methods. Moreover, skeletons extracted with Principal Axis method are
illustrated in figures (5.3, 5.6, 5.9, 5.12, 5.15, 5.18) using only the principal axis (Left)
and Local Refinement (Right) and in figures (5.4, 5.7, 5.10, 5.13, 5.16, 5.19) using all
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principal directions (Left) and Parent refinement (Right). Although there are no well

criteria to measure the skeletal quality quantitatively, it is obvious from all produced

skeletons the superiority of our Principal axis method over the other methods.

Table 5.2: Time performance of skeletonization methods.

Columns from left to right

represent time performance using Opening method, Centroid method, Principal Axis

method using only the covariance-computed PA and our Principal Axis method.

Model | Opening | Centroid | Principal Axis - Only PA | Principal Axis - Our Method
Cow 0.00223 | 4.86503 4.92670 5.08260
Homer | 0.00106 | 4.40853 4.30518 4.55921
Dilo 0.00164 | 5.64114 5.77643 5.91370
Camel | 0.00342 | 8.63889 8.66312 8.93177
Horse | 0.00193 | 7.94017 8.21302 8.44414
Dino 0.00256 | 9.21676 9.27403 9.92523
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Cow Model

e Opening - Centroid Methods

Figure 5.2: Cow model skeleton representation using (left) Opening and (right) Centroid
methods.

e Principal Axis Method

Figure 5.3: Cow model skeleton representation using only principal axis (left) without
and (right) with Local Refinement (12 degrees)
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Figure 5.4: Cow model skeleton representation using all principal directions (left) without
and (right) with Parent Refinement
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Homer Model

e Opening - Centroid Methods

l

Figure 5.5: Homer model skeleton representation using (left) Opening and (right) Centroid
methods.

e Principal Axis Method

Figure 5.6: Homer model skeleton representation using only principal axis (left) without
and (right) with Local Refinement (18 degrees)
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Figure 5.7: Homer model skeleton representation using all principal directions (left) with-
out and (right) with Parent Refinement
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Dilo Model

e Opening - Centroid Methods

Figure 5.8: Dilo model skeleton representation using (up) Opening and (down) Centroid
methods.

e Principal Axis Method

Figure 5.9: Dilo model skeleton representation using only principal axis (up) without and
(down) with Local Refinement (10 degrees)

Figure 5.10: Dilo model skeleton representation using all principal directions (left) without
and (right) with Parent Refinement
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Camel Model

e Opening - Centroid Methods

Figure 5.11: Camel model skeleton representation using (left) Opening and (right) Cen-
troid methods.

e Principal Axis Method

Figure 5.12: Camel model skeleton representation using only principal axis (left) without
and (right) with Local Refinement (22 degrees)
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Figure 5.13: Camel model skeleton representation using all principal directions (left)
without and (right) with Parent Refinement
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Horse Model

e Opening - Centroid Methods

Figure 5.14: Horse model skeleton representation using (up) Opening and (down) Centroid
methods.

e Principal Axis Method

Figure 5.15: Horse model skeleton representation using only principal axis (up) without
and (down) with Local Refinement (20 degrees)
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Figure 5.16: Horse model skeleton representation using all principal directions (left) with-

out and (right) with Parent Refinement
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Dino Model

e Opening - Centroid Methods

Figure 5.17: Dino model skeleton representation using (left) Opening and (right) Centroid
methods.

e Principal Axis Method

Figure 5.18: Dino model skeleton representation using only principal axis (left) without
and (right) with Local Refinement (18 degrees)
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Figure 5.19: Dino model skeleton representation using all principal directions (left) with-
out and (right) with Parent Refinement
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5.2.2 Animation results

The extracted skeletons can be readily used to create animations. We demonstrate this
advantage by re-targeting hand-made motion data to the skeletons extracted from the
original mesh using our Principal axis method. The motions, i.e., joint angles, are used
as motion data of the skeletal joints. Incoming and outgoing tangent rules are set to
Flat for creating “slow in” and “slow out” motions. Moreover, the Linear rule is used
on the first and last tangent and, lastly, Smooth is particularly used on all key frames to
automatically adjust tangent for smooth results. We specify Constant value extrapolation
mode to define how the curve will be extrapolated before the first and after the last key
frames.

In Figures (5.20, 5.21, 5.22, 5.23, 5.24) we demonstrate a sequence of snapshots ob-
tained from applying a combination of elementary motions to some of the extracted skele-
ton morphs. We also provide instances depicting a closer view of a human knee mesh
to demonstrate the robustness of the skinning process. These visual results confirm that
our method eliminates all the artifacts exhibited by previous LBS methods. However,
sometimes defects arize on surfaces with data points that are not uniformly sampled.

As we can see from Tables (5.4, 5.5, 5.6, 5.7), the overall processing time of our
animation method is very high for a real-time process due to the computation of new
points which takes O(ny - ny - n3) time to complete(n; is the number of End points of
moving component, ny is the number of End points of its father and ns is the cardinality
of Middle points set) and the triangulation process O(n?) complexity, where n is the
number of constructed points. Moreover, increasing the rotation angles results in an
increase of the new construction points since the gap splays. Also, as we have mentioned
earlier, the vertices construction process depends on the median of the median lengths
of the connecting components, since it defines their between distance. We will avoid to
post the performance of Keyframing animation and Forward kinematics rigid skinning
systems since the time measurements are negligible compared to overall performsnce.
We provide, contrariwise, full performance report of the Gap reconstruction process at
following tables, giving processing times of the 4 processes (Remove vertices, Add new
vertices, Triangulate vertices, Compute normal vectors) at a number of key frames for
each model. These key frames presents moves which impress median and worse processing
times for each model. Finally, Table 5.3 shows the pre-processing time (is measured in
seconds) of several processes which are essential for our animation framework. A summary
of these processes for each component is the computation of its median lenght, model’s
components which are not at its sub-tree and points neighborhood.
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Table 5.3: Time performance of pre-processing functions.

Columns from left to right

represent time performance computing median length, components which did not belong

to checking node’s sub-tree and neighbors for all vertices.

Model | Median length | Others nodes | Vertex neighborhood
Cow 0.00805 0.00521 1.54492
Homer 0.01023 0.00176 1.99712
Dilo 0.01141 0.00475 2.24194
Camel 0.01247 0.00139 2.40833
Horse 0.01839 0.00595 3.63812
Dino 0.01988 0.00871 3.94615

Time performance of Gap construction system animating a number of components on

our model database (measured in seconds). Columns from left to right represent time

performance of “removing vertices”, “adding new vertices”, “triangulating vertices” and

“computing normal vectors” processes.

o Cow:

Table 5.4: Time performance of Gap construction system animating 4 components of Cow

model.

P%ifnes Remove Vertices | Add Vertices | Triangulate Vertices | Find Normals | Total Time
1 0.04341 0.35256 1.48982 0.03518 1.92097
2 0.04060 0.37861 1.37159 0.03237 1.82317
3 0.04310 0.40203 1.49757 0.03520 1.97790
4 0.03706 0.34560 1.27299 0.02887 1.68452

Mean 0.0410425 0.36970 1.4079925 0.032905 1.85164
e Homer:

Table 5.5: Time performance of Gap construction system animating 4 components of

Homer model.

Frames | Remove points | Add points | Triangulate points | Find normals | Total Time
1 0.05949 1.6076 1.98946 0.04805 3.25776
2 0.06120 1.18995 1.94005 0.04551 3.23671
3 0.05424 0,72978 1.83591 0.04293 2.66286
4 0.05394 0.73009 1.84912 0.04351 2.67666
Mean 0.0572175 0.952645 1.903635 0.045 2.9584975
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e Dilo:

Table 5.6: Time performance of Gap construction system animating 4 components of Dilo

model.

Frames | Remove points | Add points | Triangulate points | Find normals | Total Time
1 0.03873 0.20612 0.98307 0.02103 1.24895
2 0.03523 0.18782 1.00787 0.02187 1.25279
3 0.03230 0.16074 1.02027 0.02023 1.23354
4 0.03497 0.18017 0.99503 0.01994 1.23011

Mean 0.0353075 0.1837125 1.00156 0.00207675 1.2413475
e Camel:

Table 5.7: Time performance of Gap construction system animating 4 components of

Camel model.

Frames | Remove points | Add points | Triangulate points | Find normals | Total Time
1 0.03568 0.16972 1.09308 0.02285 1.32133
2 0.03199 0.15799 0.93559 0.01964 1.04521
3 0.03144 0.15324 0.96094 0.02075 1.16637
4 0.03017 0.13707 0.91590 0.01869 1.10183
Mean 0.003232 0.154505 0.9763775 0.0204825 1.158685
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Cow Model

Cow

iety of motions on

of images obtained from applying a var

Figure 5.20: A sequence

model.
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Homer Model

Figure 5.21: A sequence of images obtained from applying a variety of motions on Homer
model.
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Dilo Model

e Movement 1

Figure 5.22: First sequence of images obtained from applying a variety of motions on Dilo
model.
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o Movement 2
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Figure 5.23: Second sequence of images obtained from applying a variety of motions on
Dilo model.
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Skinning Example

Figure 5.25: A sequence of images describing the steps of the gap reconstruction process.
The first picture shows the starting pose of a man’s knee. The second one shows the
knee’s orientation after the use of FK skinning system. The third picture shows how the
components are after removing the skin vertices. The forth picture shows the computed
patch vertices (Blue: Circle(down) and Bezier(up) group, Red: End points, Green: Extra
group ) which reconstruct the gap. Final result (after the triangulation and computation
of normals processes completed) is illustrated at the final picture.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have studied the problem of skeletal animation of articulated
modular solid objects. In this context we have identified the following key issues: the
development of efficient multi-resolution skeletonization techinques, the animation of ar-
ticulation figures through a combination of keyframing and specialized deformation tech-
niques and finally the efficiency and robustness of triangulation methods used for blending
solid modules.

All key components of these problems have been studied and various state-of-the-art
approaches have been employed to provide effective solutions. We have proposed a robust
skeleton-based animation framework for 3D characters. Refined extracted skeletons are
used for articulated body animation. We have studied and improved three local skele-
tonization methods. In addition, we have presented approximate refinement algorithms to
improve skeleton’s orientation. To avoid vertex weights approximation and sample pose
generation cost, we have developed a novel rigid skinning method. This method eliminates
the potential shortcomings from self-intersections, providing plausible mesh deformations.

Considering completeness there are many subtasks that could be performed regarding
our improved Principal Axis skeletonization technique. There is need for further inves-
tigating in a more quantitative manner the grouping functions. Further, one could try
replacing the angle-weighted algorithm with an optimization method which will compute
the principal axis orientation more accurately.

Also, considering completeness there are some tasks that need to be carried on in
our rigid skinning approach. Performing a surface smoothing algorithm in a global way
over the triangular patch mesh, could produce better skin results with a slightly in-
creased estimation cost. Finally, to achieve real-time animation an alternative triangula-
tion method (for example CGAL [102] implementation) should be employed and its GPU
realization should be investigated.
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APPENDIX

Linear Algebra

A. Linear Systems Solutions

A system of linear equations is a collection of linear equations involving the same set of
variables. A solution to a linear system is an assignment of numbers to the variables such
that all the equations are simultaneously satisfied. A general system of m linear equations
with n unknowns can be written as

a;1ry + ayppry + -+ A1pTy — bl

as1r1 + agry + -+ + Aonly = bg

Um1T1 + Ama%2 + 0+ AT, = by
Here x1, %9, ..., 2, are the unknowns, a1, aio, ..., a,,, are the coefficients of the system,
and by,bo,...,b, are the constant terms. This equation is equivalent to a matrix form

equation Ax = b, where A is an m X n matrix, x is a column vector with n entries, and b

is a column vector with m entries,

aix a2 - Qip X1 b1

21 G22 -+  QA2p X2 by
A= 0 0 T  x=|] b=,

Am1 Q2 Amn T bm

There are several algorithms for solving a system of linear equations. We choose to use
the Gauss Elimination method.
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A.1 Gauss Elimination method

The process of Gaussian elimination has two parts. The first part (Forward Elimination)
reduces a given system to triangular form Uz = y, where U upper triangle matrix or
results in a degenerate equation with no solution, indicating the system has no solution.
This is accomplished through the use of elementary row operations (multiplying rows,
switching rows, and adding multiples of rows to other rows). Now, the linear system has

the form:
U1T1 + U2Ze + - - -+ ULy = Y1

U12%2 + -+ - + U1 Ty, = Y2

UmnTn = Ym
which can be easily solved by back substitution. Firstly, we solve the last equation for z,,
replace x, on the penultimate equation and solve this for x,_1, etc, and finally replace
To,x3,...,T, on the first equation, solving for x;.

B. Calculating Eigenvalues/Eigenvectors

Given a linear transformation A, a non-zero vector x is defined to be an eigenvector of the
transformation if it satisfies the eigenvalue equation Az = Az for some scalar A\. Namely,
the eigenvectors are those non-zero vectors whose directions do not change when multiplied
by the matrix. In this situation, the scalar X is called an eigenvalue of A corresponding to
the eigenvector x. There are several algorithms for calculating eigenvalues and eigenvectors
of linear transformation. We choose to use the Singular Value Decomposition method.

B.1 Singular Value Decomposition method

Suppose M is an m X n matrix whose entries come from the field K, which is either the
field of real numbers or the field of complex numbers. Then there exists a factorization
of the form M = UXV™* where U is an m X m unitary matrix over K, the matrix X' is
m X n with non-negative numbers on the diagonal (as defined for a rectangular matrix)
and zeros off the diagonal, and V* denotes the conjugate transpose of V', an n X n unitary
matrix over K. Such a factorization is called a singular-value decomposition of M.

e The matrix V' thus contains a set of orthonormal ”input” or "analyzing” basis vector
directions for M

e The matrix U contains a set of orthonormal ”output” basis vector directions for M
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e The matrix X' contains the singular values, which can be thought of as scalar ”gain
controls” by which each corresponding input is multiplied to give a corresponding
output.

The singular value decomposition is very general in the sense that it can be applied to
any m X n matrix. The eigenvalue decomposition, on the other hand, can only be applied
to certain classes of square matrices. Nevertheless, the two decompositions are related.
Given an SVD of M, as described above, the following two relations hold:

M*M = VS U USV* = V(Z*S)V*
MM* = USV*VE'U* = U(S*S)U*

The right hand sides of these relations describe the eigenvalue decompositions of the left
hand sides. Consequently, the squares of the non-zero singular values of M are equal to
the non-zero eigenvalues of either M*M or M M*. Furthermore, the columns of U (left
singular vectors) are eigenvectors of M M* and the columns of V' (right singular vectors)
are eigenvectors of M*M.

C. Principal Component Analysis

Principal component analysis (PCA) is mathematically defined as an orthogonal linear
transformation technique that used to reduce multidimensional data sets to lower dimen-
sions such that the greatest variance by any projection of the data comes to lie on the
first coordinate (called the first principal component), the second greatest variance on the
second coordinate, and so on. PCA can be used for dimensionality reduction in a data set
by retaining those characteristics of the data set that contribute most to its variance, by
keeping lower-order principal components and ignoring higher-order ones. Such low-order
components often contain the "most important” aspects of the data. However, depending
on the application this may not always be the case. PCA involves the calculation of the
eigenvalue decomposition of a data covariance matrix or singular value decomposition of
a data matrix, usually after mean centering the data for each attribute. Following is a
detailed description of PCA using the covariance method. The goal is to transform a given
data set X of dimension M to an alternative data set Y of smaller dimension L.

e Organize the data set

Suppose you have data comprising a set of observations of M variables, and you
want to reduce the data so that each observation can be described with only L
variables, L < M. Suppose further, that the data are arranged as a set of N data
vectors Xi,..., X, with each X; representing a single grouped observation of the
M variables. Write X1,...,X,, as column vectors, each of which has M rows and
place them into a single matrix X of dimensions M x N.

110



e Calculate the empirical mean

Firstly, we have to find the empirical mean along each dimension m = 1,..., M.
This can be done by placing the calculated mean values into an empirical mean
vector u of dimensions M x 1.

e Calculate the deviations from the mean

Then, we subtract the empirical mean vector u from each column of the data matrix
X and store the mean-subtracted data in the M x N matrix B.

B=X—-u-h,
where h is a 1 x N row vector of all I’s: h[i] =1 fori=1,...,n.

e Find the covariance matrix

In this step, we must find the M x M empirical covariance matrix C' from the outer
product of matrix B with itself:

1
C=E[C®C|=E[C - C]=C-C",

e Find the eigenvectors and eigenvalues of the covariance matrix

In order to calculate eigenvalues and eigenvectors of the covariance matrix, we choose
to use the Singular value decomposition method as mention above. After the SVD
procedure produce the solution we notice that the eigenvalues and eigenvectors are
ordered and paired (The mth eigenvalue corresponds to the mth eigenvector) but
not sorted.

e Rearrange the eigenvectors and eigenvalues

Finally, we have to sort the columns of the eigenvector matrix V' and eigenvalue
matrix D in order of decreasing eigenvalue.
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