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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Ιωάννης Κροµµύδας του Ευαγγέλου και της Γεωργίας. MSc, Τµήµα Πληροφορικής, 
Πανεπιστήµιο Ιωαννίνων, Ιούνιος, 2008. Approximate Joins for Relational Data.  
Επιβλέποντας:  Παναγιώτης Βασιλειάδης. 
 
 
Σε µία σχεσιακή βάση δεδοµένων συχνά παρατηρείται η ύπαρξη µεγάλου πλήθους 
εγγραφών, οι οποίες αναφέρονται στην ίδια οντότητα, αλλά αναπαρίστανται µε 
διαφορετικό τρόπο. Το συγκεκριµένο φαινόµενο, µπορεί να οφείλεται σε 
τυπογραφικά λάθη, είτε στη χρήση ποικίλων τρόπων για την καταχώρηση κάποιας 
αλφαριθµητικής τιµής. Συνεπώς, η εύρεση των όµοιων εγγραφών θεωρείται 
επιβεβληµένη, ιδιαίτερα όταν εφαρµόζεται σε µία βάση δεδοµένων που διατηρεί 
µεγάλο όγκο δεδοµένων. 
 
Στη συγκεκριµένη εργασία παρουσιάζουµε µία διαδικασία, η οποία αποτελεί 
επέκταση µίας από τις κυρίαρχες τεχνικές προσεγγιστικής εύρεσης διπλότυπων 
εγγραφών. ∆οθείσης µίας βάσης δεδοµένων που αποτελείται από έγκυρα δεδοµένα, 
µε τη χρήση της συγκεκριµένης τεχνικής, κάθε εισερχόµενη εγγραφή είτε 
αντιστοιχίζεται σε κάποια υπάρχουσα έγκυρη εγγραφή, είτε τη χαρακτηρίζεται ως νέα 
εγγραφή. Η προτεινόµενη τεχνική χρησιµοποιεί έναν αποτελεσµατικό αλγόριθµο 
εύρεσης υποψήφιων εγγραφών, για τις οποίες υπολογίζεται το ποσοστό οµοιότητας 
µε την εισερχόµενη εγγραφή βάσει συγκεκριµένων συναρτήσεων οµοιότητας. Η 
συνολική διαδικασία επιταχύνεται µε τη χρήση δοµών δεδοµένων, οι οποίες 
διατηρούνται στη µνήµη και περιέχουν τις εγγραφές που χαρακτηρίζονται συχνά ως 
υποψήφιες όµοιες εγγραφές. Τέλος, παρατίθενται πειραµατικά αποτελέσµατα από την 
εφαρµογή της προτεινόµενης τεχνικής µας και παρουσιάζεται µία συγκριτική µελέτη 
των αποτελεσµάτων µε υπάρχουσες τεχνικές. 
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ABSTRACT 

Krommydas, Ioannis, Evagelos, Georgia. MSc, Computer Science Department, 
University of Ioannina, Greece. June, 2008. Approximate Joins for Relational Data.  
Thesis Supervisor:  Vassiliadis Panos. 
 
 
Relational databases often contain duplicate data entries. This may occur due to a 
variety of reasons, such as typographical errors, multiple conventions for recording 
database fields or other noise sources. Duplicate detection is a crucial procedure, 
especially for large databases. 
 
In this thesis, we present a method that extends the state-of-the-art method for 
duplicate detection. Given a database holding valid data information, we classify each 
input tuple as a new tuple, or as an existing tuple. The proposed method uses an 
effective algorithm for determining a set of candidate reference tuples. For each 
candidate reference tuple, we use appropriate similarity metrics in order to decide 
whether the input tuple matches a reference tuple. The whole procedure is accelerated 
via trie data structures for caching the frequent input tuples. Finally, we present a 
number of experiments evaluating the effectiveness of our method and state a 
comparative study with the state-of-the-art method. 
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CHAPTER 1. INTRODUCTION 

 

 

The efficiency of every information processing infrastructure is greatly affected by 

the quality of the data residing in its databases. Poor data quality is the result of a 

variety of reasons, including data entry errors (e.g., typing mistakes), poor integrity 

constraints and multiple conventions for recording database fields (e.g., company 

names, addresses). As a result, data cleaning has been at the center of research interest 

in recent years [KoMS04]. 

 

Data cleaning is critical for many industries over a wide variety of applications, 

including marketing communications, commercial householding, customer matching, 

merging information systems, medical records etc. It is often studied in association 

with data warehousing, data mining and database integration. Especially, data 

warehousing requires and provides extensive support for data cleaning. 

 

One of the most important tasks in data cleaning is to de-duplicate records. Duplicate 

detection is the process of identifying different or multiple records that refer to one 

unique real-world entity or object. Given a dirty database, the standard method to 

detect exact duplicates is to sort the database and then check if the neighboring 

records are identical. In order to detect inexact duplicates, the most reliable way is to 

compare every record with every other record, which takes N(N − 1)/2 comparisons, 

where N is the number of records in the database. However, this is infeasible when N 

is large [SuLS02]. 

 

To ensure high data quality, data warehouses must validate and clean incoming data 

records from external sources. All tables that are maintained within such data 
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warehouses and which contain clean records are called reference tables. In many 

situations, clean records must match acceptable records in reference tables. For 

example, product name and description fields in a sales record from a distributor must 

match the pre-recorded name and description fields in a product reference relation. 

 

A significant challenge in such a scenario is to implement an efficient and accurate 

fuzzy match operation that can effectively clean an incoming record if it fails to match 

exactly with any record in the reference relation [CGGM03]. More specifically, it is 

crucial to implement a data cleaning method based on similarities in order to identify 

similar reference records. The similarity between input and reference records can be 

evaluated using a variety of distance functions. As a result, it is critical to choose the 

distance function that best suits the domain and the application.  

 

The problem is straightforward for numerical values, but still remains very hard for 

string values and combinations of them in an attribute, such as names (first-, middle-, 

last- name), addresses, etc. One of the most common sources of mismatches in 

database entries is the typographical variations of string data. For example, 

considering company names, it is common to see “Microsoft”, “Micorsoft”, 

“Microsoft Inc.” and “Microsoft Corporation” being used in different records to 

represent the same entity.  

 

Duplicate detection typically relies on string comparison techniques to deal with 

typographical variations. In such a scenario, a simple equality or even substring 

comparison, for example, on names or addresses will not properly identify them as 

being the same entity, leading to a variety of potential problems. Consequently, 

approximate matching for detecting inexact duplicates presents a challenge between 

accuracy, efficiency and storage overheads as well. 

 

Multiple methods have been developed for this task and each method works well for 

particular types of errors. Those methods define a distance metric (edit distance, 

affine gap distance, qgram distance, jaro distance metric etc.) and an appropriate 

matching threshold in order to match similar records.  
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Therefore, the problem we focus on is to clean a stream of  incoming records, before 

their insertion to a reference table. Our approach is associated with the 

implementation of an effective method for on-line detecting similarity between input 

and reference records. Specifically, we check each attribute of the input record 

separately, using appropriate structures for accomplishing effective cleaning. 

 

We take advantage of a structure called Word Index, which is a table holding 

information about the attribute values stored in the reference table. This structure is 

used for the retrieval of reference tuples that probably match input tuples according to 

qgram similarity. In parallel, we maintain in main memory a trie structure called 

Qgram Trie, which caches the retrieved attribute values. More specifically, this trie 

holds all the candidate attribute values that are similar to the input value. According to 

a matching procedure, matching scores between the input tuple and reference tuples 

are stored in a score table. The set of reference tuples whose similarity with the input 

word is above a similarity threshold is returned.  

 

Additionally, we apply the LRU algorithm as a replacement policy in case the size of 

trie exceeds a specific percentage of main memory. More particularly, updating trie 

by inserting new attribute values to it, leads to the pruning of attribute values that 

were not recently accessed during the matching procedure. Using this replacement 

policy we assure that the size of trie is kept fixed and contains all the recent accessed 

attribute values. 

 

The main contributions of this thesis could be summarized as follows: 

• Introduction of an effective approximate matching method  

• Development of algorithms using appropriate structures for handling streams 

of incoming records 

• Implementation of experiments using variant parameters of the datasets 

 

 

The remaining part of this thesis is organized in five chapters. The second chapter 

contains the related work that is associated with the problem we deal. In the third 

chapter, firstly, we describe in detail the duplicate detection problem. Then, we 
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represent the state-of-the-art method that is employed to the specific problem. In the 

third chapter, we state our approach including a detailed description of the used 

structures, the matching algorithm and replacement policy we adopt when the used 

structures need to be updated. In the fourth chapter, we present a number of 

experiments in order to evaluate the efficiency of our approach and compare it with 

the state-of-the-art method. Finally, we conclude our results and present topics for 

future research in fifth chapter. 
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CHAPTER 2. RELATED WORK 

 

 

2.1. Frequent Itemsets 

2.2. Fault-tolerant Frequent Itemsets 

2.3. Dense Frequent Itemsets 

2.4. Association Rules 

2.5. Maintenance of Association Rules 

2.6. Experimental Methodology of Existing Methods 

 

 

2.1.  Frequent Itemsets 

 

Frequent itemsets play an essential role in many data mining tasks that involve 

techniques associated with the finding of interesting patterns from databases.  

 

The set of that kind of patterns includes association rules, correlations, sequences, 

episodes, classifiers and many others. The problems of (a) mining frequent itemsets or  

(b) association rules are considered as some of the most popular and challenging 

tasks. A great deal of attention is given to both of those problems due to the fact that 

they are encountered in real world problems such as market analysis. 

 

Many algorithms based on different techniques are proposed for the solution of both 

problems. Those algorithms are evaluated according to their performance. In the 

following, we will employ the definitions of frequent itemsets, the notion of closed 
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and maximal frequent itemsets and the definition of  frequent pattern trees (FP-trees). 

Finally, we refer to some of the frequent itemset mining methods. 

2.1.1.  Frequent Itemsets Definition 

 

According to [Goet03], given a set of items I, every subset X of I is called an itemset 

or a k-itemset if it contains k items. A transaction T over I contains a transaction 

identifier tid and an itemset I and is said to support an itemset X ⊆ I, if X ⊆ I. A 

transaction database D over I is a set of transactions over I. 

 

The itemsets can be described by measures such as their cover, support or frequency. 

The cover of an itemset X is a set that includes all the identifiers of transactions in D 

that support X and the measure of support is used for the counting of the transactions 

that belong in the cover of the itemset. Finally, the frequency of an itemset represents 

its probability of occurrence in a transaction existing in D. Given the measure of 

frequency, one itemset is called frequent if its support is greater than a given absolute 

minimal support threshold σabs. 

 

Taking into account the definitions described above, the Itemset Mining problem can 

be clearly defined as follows: 

 

“Given a set of items I, a transaction database D over I and a minimal support 

threshold σ, find the collection of frequent itemsets.”  

 

Considering the following transaction database, which is shown in Fig. 2.1, the total 

number of frequent itemsets that can extracted is depicted in Fig 2.2. 
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Fig. 2.1. An example transaction database D [Goet03]  

 

 

 

 

 

 

 

Fig. 2.2. Frequent Itemsets and their support in D (σabs = 1) [Goet03] 

2.1.2.  Closed and Maximal Frequent Itemsets 

 

In practice, the set of frequent itemsets produced from a transaction database can be 

very large. Consequently, it is necessary to find a way to replace the full set of all 

frequent itemsets with a small representative subset of itemsets from which all other 

frequent itemsets can be produced. Maximal and Closed frequent itemsets are used for 

such a representation. 

 

A maximal frequent itemset is defined as a frequent itemset for which none of its 

immediate supersets is  frequent, whereas an itemset X is called closed frequent 

itemset if none of its immediate supersets has the same support count as X and its 

support is greater or equal to the minimal support threshold.  

 

According to the definitions stated above some of the frequent itemsets in Fig. 2.2 can 

be characterised either as maximal or closed. More specifically, the set of maximal 

frequent itemsets is {{chips, pizza}, {pizza, wine}, {beer, chips, wine}} and the set of 
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closed frequent itemsets is {{chips}, {pizza}, {wine}, {beer, chips}, {chips, pizza}, 

{pizza, wine}, {beer, chips,  wine}}. It is obvious that all maximal frequent itemsets 

are closed as well. 

2.1.3.  Frequent Pattern Tree (FP-tree) 

 

The notion of frequent-pattern trees (FP-trees) is associated with the construction of a 

compact data structure, which is in fact an extended prefix-tree structure used for 

storing compressed, crucial information about frequent patterns. Many frequent 

pattern mining methods are based upon such structures, implementing efficient 

frequent pattern mining techniques. 

 

Observe the transaction database of Fig. 2.3, assuming that the minimal support 

threshold is set to be 3. The following observations can be made: 

 

 

Fig. 2.3. Transaction Database [HPYM01] 

1. Since only the frequent items play a role in the frequent-pattern mining 

procedure, it is necessary to perform one scan of the transaction database in 

order to identify the set of frequent items, in terms of the obtained frequency 

count. 

2. If the set of frequent items of each transaction can be stored in some compact 

structure, it may be possible to avoid repeatedly scanning the original 

transaction database.  



 

 

9

 

3. If multiple transactions share a set of frequent items, it may be possible to 

merge the shared sets with the number of occurrences registered as count. It is 

easy to check whether two sets are identical if the frequent items in all of the 

transactions are listed according to a fixed order. 

4. If two transactions share a common prefix, according to some sorted order of 

frequent items, the shared parts can be merged using one prefix structure as 

long as the count is registered properly. If the frequent items are sorted in their 

frequency descending order, there are better chances that more prefix strings 

can be shared. 

 

An FP-tree can be defined as follows [HPYM01]: 

 

1. An FP-tree consists of one root labeled as “null”, a set of item-prefix subtrees 

as the children of the root, and a frequent-item-header table. 

2. Each node in the item-prefix subtree consists of three fields: (a) item-name, 

(b) count, and (c) node-link, where item-name registers which item this node 

represents, count registers the number of transactions represented by the 

portion of the path reaching this node, and node-link links to the next node in 

the FP-tree carrying the same item-name, or null if there is none. 

 

Each entry in the frequent-item-header table consists of two fields: (a) the item-name 

and (b) the head of node-link, which is a pointer pointing to the first node in the FP-

tree carrying the item-name. 

 

Based on the observations listed previously, the construction of the FP-tree that 

corresponds with the example transaction database (Fig. 2.3) can be implemented as 

follows: 

 

First, a scan of the database derives a list of frequent items, < (f :4), (c:4), (a:3), (b:3), 

(m:3), (p:3) >, where the number after “:” indicates the item support, in which items 

are ordered in frequency descending order. This ordering is important since each path 

of a tree will follow this order. 
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Second, the root of a tree is created and labeled with “null”. The FP-tree is 

constructed as follows by scanning one more time the transaction database: 

1. The scan of the first transaction leads to the construction of the first branch 

of the tree: < (f :1), (c:1), (a:1), (m:1), (p:1) >, in which the frequent items 

are listed according to the their order in the list of frequent items. 

2. For the second transaction, since its ordered frequent item list < f, c, a, b, 

m > shares a common prefix < f, c, a > with the existing path < f, c, a, m, 

p >, the count of each node along the prefix is incremented by 1, and one 

new node (b:1) is created and linked as a child of (a:2) and another new 

node (m:1) is created and linked as the child of (b:1). 

3. For the third transaction, since its frequent item list < f, b > shares only the 

node  < f >  with the f -prefix subtree, f ’s count is incremented by 1, and a 

new node (b:1) is created and linked as a child of (f :3). 

4. The scan of the fourth transaction leads to the construction of the second 

branch of the tree, < (c:1), (b:1), (p:1) >. 

5. For the last transaction, since its frequent item list < f, c, a, m, p > is 

identical to the first one, the path is shared with the count of each node 

along the path incremented by 1. 

 

To facilitate tree traversal, an item header table is built in which each item points to 

its first occurrence in the tree via a node-link. Nodes with the same item-name are 

linked in sequence via such node-links. After scanning all the transactions, the tree, 

together with the associated node-links, is depicted in Fig. 2.4. 

 

Fig. 2.4. FP-tree Structure [HPYM01] 
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2.1.4.  Frequent Itemset Mining Methods 

 

Frequent itemset mining methods can be categorized in two individual categories, 

Apriori-based methods and Frequent-pattern tree based methods. The methods that 

have been developed in both categories are listed in the following sections. 

2.1.4.1. Apriori-based methods 

 

Apriori-based methods take advantage of the anti-monotone Apriori principle which 

can be expressed as follows: 
 

“if any pattern of length k is not frequent in the database, its super-pattern of length 

(k+1) can never be frequent”. [HPYM04] 

 

The essential idea is to iteratively generate the set of candidate patterns of length 

(k+1) from the set of frequent-patterns of length k (for k ≥ 1) and check their 

corresponding occurrence frequencies in the database. 

 

Agrawal et al. in [AgSr94] proposed the Apriori algorithm, which exploits the 

monotonicity property of the support of itemsets. Together with the proposal of the 

Apriori algorithm, Agrawal et al. in [AgSr94] proposed two other algorithms, 

AprioriTid and AprioriHybrid. The AprioriTid algorithm reduces the time needed for 

the support counting procedure by iteratively replacing every transaction in the 

database by the set of candidate itemsets that occur in that transaction. 

 

Shortly after the proposal of the Apriori algorithms described before, Park et al. 

proposed in [PaCY95] another optimization, called DHP (Direct Hashing and 

Pruning) to reduce the number of candidate itemsets. During the kth iteration, when 

the supports of all candidate k-itemsets are counted by scanning the database, DHP 

already gathers information about candidate itemsets of size k + 1 in such a way that 

all (k + 1)-subsets of each transaction after some pruning are hashed to a hash table.  
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The DIC algorithm, proposed by Brin et al. in [BMUT97], tries to reduce the number 

of passes over the database by dividing the database into intervals of a specific size. 

First, all candidate patterns of size 1 are generated. The supports of the candidate sets 

are then counted over the first interval of the database. Based on these supports, a new 

candidate pattern of size 2 is already generated if all of its subsets are already known 

to be frequent, and its support is counted over the database together with the patterns 

of size 1. In general, after every interval, candidate patterns are generated and 

counted. 

2.1.4.2. Frequent-pattern tree based methods 

 

Frequent-pattern tree based methods use the compact data structure of frequent-

pattern trees (FP-tree), which was described previously. The FP-growth algorithm 

proposed by Han et al. in [HPYM04] is the most well known FP-tree based algorithm 

that faces the frequent itemset mining problem. The FP-growth algorithm stores the 

actual transactions from the database within an FP-tree, facilitating the finding 

procedure of all frequent items’ support. 

2.2.  Fault-tolerant Frequent Itemsets 

 

Real-world data tend to be dirty. As a result, the discovery of knowledge over large 

real-world data requires the development of fault-tolerant data mining methods. The 

goal of those methods is the extraction of approximate and more general fault-tolerant 

patterns from database, instead of finding exact patterns.  

 

On the other hand, frequent pattern mining often generates a large number of frequent 

itemsets, which reduces not only the efficiency, but also the effectiveness of mining. 

This happens due to the fact that users have to sift through a large number of mined 

results to find the useful ones. Therefore, the effectiveness of frequent pattern mining 

is improved by fault-tolerant frequent pattern mining. 
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An itemset can be characterized as an approximate frequent itemset if a percentage of 

its items is frequent in the transaction database. As a result, all fault-tolerant frequent 

itemsets can be produced by using this slight relaxation of the frequent itemsets’ 

notion. 

 

Consider the transaction database shown in Fig 2.5, if the minimal support threshold 

is set to 3, there exists no pattern with more than two items, as there are many short 

patterns, with low support counts. However, longer approximate frequent patterns 

with support count equal to 3 or more can be extracted from such a database. For 

example, transactions 10, 30 and 50 contain four out of five items: a, b, c, e and f. 

 

 

 

 

 

 

Fig. 2.5. Transaction Database TDB [Peth01] 

2.2.1.  Fault-tolerant Frequent Itemsets Definition 

 

Given a fault tolerance  ( )0>δδ  and an itemset P such that δ>P , a transaction T = 

(tid, X) is said to FT-contain itemset P if and only if there exists PP ⊆'   such that  

XP ⊆'  and  ( )δ−≥ PP' , which is equivalent to ( )δ−≥∩ PXP . The number of 

transactions in a database FT-containing itemset P is called the FT-support of P, 

denoted as ( )Xsup  . 

 

The set of transactions FT-containing itemset X is called the FT-body and is denoted 

as  ( )XB . Given a frequent-item support threshold min_supitem and an FT-support 

threshold min_supFT, an itemset X is called a fault-tolerant frequent pattern, or an FT-

pattern, if and only if: 
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1. ( ) ≥Xsup  min_supFT and 

2. for each item x ∈  X,   ( )( ) ≥x
XB

sup min_supitem, where ( )( )x
XB

sup   is the 

number of transactions in ( )XB  containing item x. 

 

The frequent-item support threshold is used to filter out infrequent items, whereas FT-

support threshold is used to capture frequent patterns in the sense of allowing at most 

δ  mismatches. 

 

Apart from the two thresholds mentioned above, there also exists the length threshold 

denoted as min_l (min_l > δ ), which is applied for having as an output only FT-

patterns consisting of at least min_l items. 

 

An item x is called a global frequent item if and only if ( ) ≥Xsup  min_supitem, which 

means that it appears in more than min_supitem transactions. It holds that FT-patterns 

contain only global frequent items and ( ) ≥Xsup ( )Xsup ,  for any itemset X. 

 

Considering the definitions listed above, the Fault-Tolerant Itemset Mining Problem 

can be defined as follows: 

“Given a transaction database, a fault tolerance, a frequent-item support threshold, 

an FT-support threshold and a length threshold, the problem of fault-tolerant frequent 

pattern mining is to find the complete set of FT-patterns passing the length 

threshold.” [Peth01] 

 

Returning to the transaction database TDB shown in Fig. 2.5 and setting the frequent-

item support threshold min_supitem  = 2, the FT-support threshold min_supFT = 3 and 

the fault-tolerance δ = 1, which means that only one mismatch is allowed, it holds that 

for itemset X = abcef, )(
~

XB  includes transactions 10, 30 and 50, each of them FT-

contains X. Also, each item in X appears in at least two transactions in )(
~

XB . As a 

result, itemset abcef can be considered as an FT-frequent pattern. 
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A variant of the problem described above is the top-K Fault-Tolerant Itemset Mining 

problem, which requires to find only the top-K FT-frequent itemsets according to 

their fault-tolerant frequency. 

2.2.2.  Fault-tolerant Frequent Itemset Mining Methods 

2.2.2.1. Apriori-based methods 

 

Apriori-based fault-tolerant frequent itemset mining methods extend the Apriori 

heuristic in order to face the fault-tolerant frequent itemset mining problem and are 

based in the heuristic that follows up: 

 

“if X (|X|> δ) is not an FT-pattern, then none of its supersets is an FT-pattern, where δ 

is the fault tolerance” 

  

Pei et al. based on this extended heuristic, implemented in [PeTH01] the FT-Apriori 

algorithm (Fault-Tolerant Apriori algorithm), which tackles efficiently the problem 

mentioned before.  

2.2.2.2. Binary Vector-based methods 

 

Those methods are based on design of binary vectors, called Appearing Vectors that 

are used for indicating the distribution of candidate fault-tolerant frequent itemsets in 

the transaction database. 

 

Koh et al. in [KoYo05] proposed a vector-based algorithm, called VB-FT-Mine 

(Vector-Based Fault–Tolerant frequent pattern Mining), used for speeding up the 

process of mining fault-tolerant frequent patterns. 
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Yang et al., proposed in [YaFB01] the GGA algorithm (Greedy Growing Algorithm), 

which exploits the sparseness of the underlying data to find large itemsets that are 

correlated over database records. They took advantage of the transaction coverage 

notion, which allowed them to extend the algorithm and view it as a fast clustering 

algorithm for discovering segments of similar transactions in binary sparse data. 

2.3.  Dense Frequent Itemsets 

 

If an itemset is found to be frequent, all of its items must co-occur sufficiently often, 

which is rare in real-world data. A generalization of frequent itemsets is given by 

replacing the requirement of perfect co-occurrence by partial co-occurrence, requiring 

that an itemset has at least a proportion 1−ε of items present in at least a proportion f 

of database rows, where f is the ε-approximate frequency and ε represents the 

percentage of fault tolerance. 

 

This generalization, which was described in Section 2.2 leads to two problems. The 

first one has to do with the generation of many approximately frequent itemsets 

without meaningful information, whereas the second one is associated with the fact 

that the usual kind of itemset mining algorithms, like Apriori, are not easily 

generalized to the new task [SeMa04]. 

 

Those problems can be illustrated taking into consideration the two example 

databases (a) and (b) of Fig. 2.6. 

 

 

 

 

 

Fig. 2.6. Two Example Databases [SeMa04] 

 



 

 

17

 

Fig. 2.6 (a) can be used for the description of the first problem. It is obvious that 

itemset ABCDE is frequent. However, a multitude of approximately frequent sets 

exist with ε = 0.5, such as ABCFGH, ABCDFGH, ABCDEFGH etc. and beyond the 

fact that ABCDE is frequent, those sets give us no new information. 

 

Fig. 2.6 (b) is used for the illustration of the second problem. Itemset ABCD has 0.5-

approximate frequency 100%, but the approximate frequencies of its subsets are 

lower. For example, the approximate frequency for A is 50%, for AB is 83% and for 

ABC is 67%. 

 

Thus a set can be approximately frequent having none of its nontrivial subsets 

frequent. This precludes pruning the candidate itemsets in the way that Apriori and 

other algorithms do. 

 

The definition of dense itemsets aids to the avoidance of both problems.  

2.3.1. Dense Itemsets Definition 

 

An itemset X is (σ, δ)-dense, given two parameters σ and δ, if for any subset Y ⊆ X, 

there is a set rY of σ database rows such that in the subdatabase defined by Y and rY at 

least a fraction δ of items are present. 

 

A binary database DB = <R, r> consists of a finite set R of attributes, also known as 

items, and a finite multiset r = {t 1, t2, . . . , tn} of transactions, which are subsets of R. 

The frequency of an itemset X ⊆ R in a database DB = <R, r> is the number of 

transactions that include all the attributes of X, which can be typically defined as     

freq(X) = |{ t ∈ r | t ⊇ X }|. 

 

The weak density of an itemset X ⊆ R, which can noted as wdens(X, r), equals to:   

rX

tX
rXwdens rt

⋅
∩

= ∑ ∈),(  
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and represents the average fraction of items that are present in a set of transactions. 

Given a number σ between zero and the size of the relation, the weak density at 

support σ of X can be defined as well and is equal to:  

wdens(σ, X, r) = ),(max rXwdens
r

′
′

, 

where the maximum is taken over all σ-element submultisets r’ of r. 

 

Taking into account the definitions given above, an itemset can be characterized as 

weakly (σ, δ)-dense, if its weak density at support σ exceeds δ, where σ and δ are 

predefined parameters.  

 

The density dens(σ,X) of an itemset X at support level σ is the minimum of the weak 

densities of all non-empty subsets of X, which can be formally described as follows: 

),(min),( YwdensXdens
XY

σσ
⊂≠∅

=  

Taking advantage of the definition stated above, an itemset X can be characterized as 

(strongly) (σ, δ)-dense, if it holds that dens(σ,X) ≥ δ.  

 

Consider the example database of Fig. 2.7. The supports σ at which the listed sets can 

be characterized as weakly (σ, 0.5)-dense are illustrated in Fig. 2.8. 

 

 

 

 

 

 

 

Fig. 2.7. Example Database [SeMa04] 
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Fig. 2.8. Supports σ (weakly (σ, 0.5)-dense listed sets) [SeMa04] 

2.3.2. Dense Itemsets Mining Methods 

 

Existing algorithms find all dense itemsets from large collections of binary data and 

are based on the familiar A-priori idea:  

 

“for each h ≥ 1, given dense sets of size h, form candidate sets of size h+1, and then 

do a database pass to verify which candidates indeed satisfy the density condition”. 

 

Seppänen et al. in [SeMa04] proposed the Dense-Sets algorithm, which performs a 

levelwise search to find all dense itemsets and can be extended into the variant 

problem of finding the k densest sets, with a given support, or the k best supported 

sets with a given density. 

2.4. Association Rules 

 

Mining of association rules is an important data mining problem. Mining association 

rules from a transaction database involves the finding of rules such as: “A customer 

who buys item X and item Y is also likely to buy item Z in the same transaction”, 

where X, Y and Z are initially unknown. 
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2.4.1. Association Rule Mining Problem 

 

The association rule mining problem can be decomposed into two subproblems: 

1. Find out all frequent itemsets, which are the sets of items that are contained in 

a sufficiently number of transactions, with respect to a minimum support 

threshold 

2. From the set of frequent itemsets found, find out all the association rules that 

have a confidence value exceeding a minimum confidence threshold  

 

From the two problems mentioned above, the second one is straightforward, whereas 

the first one has been a subject of many major research efforts [ChLK97]. 

 

Let I = { i1, i2, ..., im} be the set of items and D the transaction database. For each 

transaction T of the transaction database it holds that T ⊆ I. 

 

An association rule can be characterized as an implication of the form X ⇒ Y, where      

X ⊆ I, Y ⊆ I and X ∩ Y = Ø. 

 

An association rule X ⇒ Y holds in the database D with confidence c%, if no less than 

c% of the transactions in D that contain X, also contain Y. An association rule X ⇒ Y 

has support s% in D, if σX ∪ Y = |D| × s%, where σX ∪ Y is the support count of the 

itemset      X ∪ Y. 

 

If s% is the given support threshold, the association rule mining problem is reduced to 

the problem of finding the set L = {X | X ⊆ I ∧ σX ≥ |D| × s%} or the set Lk, where 

symbol Lk denotes the set of all frequent k-itemsets in L, where each k-itemset 

contains exactly k items. 

 

The corresponding set of association rules that are extracted from the example 

transaction database D  in Section 2.1.1 (Fig. 2.1), according to solution of the 

problem described above, is shown in Fig. 2.9. 
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Fig. 2.9. Association Rules and their Support and Confidence in D [Goet03] 

2.5. Maintenance of Association Rules 

 

Transaction databases are not static databases, because several updates are constantly 

being applied to them. More specifically, new records (transactions) are added to 

record purchase activities. Older records in the database are deleted from the database 

and existing records may be edited or changed, due to corrections of manual 

operational errors or other reasons. 

 

Consequently, new association rules may appear in the database and at the same time, 

some existing association rules would become invalid. The problem that arises 

involves the maintenance of discovered association rules, according to the insertions, 

deletions or modifications of the transactions in the transaction database. 

2.5.1. Update Problem of Association Rules 

 

The update activities take place in a transaction database D include insertions and 

deletions. Also, modification activities can be treated as deletions followed by 

insertions. ∆- denotes the set of deleted transactions, while ∆+ denotes the set of 

newly added transactions. The updated database, which is denoted as D’ equals to                             
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D’  = (D – ∆-) ∪ ∆+. D- denotes the set of unchanged transactions and it is equal to 

D- = D – ∆- = D’ – ∆+. 

 

The definitions of all the symbols described above are include in Table 2.5.1 that 

follows up. 

Table 2.1. Definitions of Several Symbols 

 

 

 

 

 

 

 

 

The new support count of an itemset X in the updated database D’ is defined as σ’
Χ . 

The set of frequent itemsets in D’ is denoted as L’ , whereas L’ k denotes the set of 

frequent k-itemsets in L’ . The support count of an itemset X in the database ∆+ is 

denoted as +Χδ  and −
Χδ  is the corresponding support count in ∆-.  

 

As a result of the previous mining procedure on the old database D, L and σ
Χ ∀ Χ ∈ L 

are known. Consequently, the update problem can be defined as follows: 

 

“Find L’ and σ’
Χ
 ∀ Χ ∈ L’ efficiently, given the knowledge of D, D’, ∆-, D-, ∆+, L 

and σ
Χ ∀ Χ ∈L” . 

 

Fig. 2.10 illustrates the deletion of a transaction belonging to the depicted transaction 

database. 

 

 

+
Χδ

L’k    σ΄Χ D’ = D- ∪ ∆+ 
Lk  σΧ D = ∆- ∪ D- 

-  ∆
- 

- - D- 

-  ∆
+ 

Frequent k-itemsets Support count of itemset 

X 
database 

−
Χδ
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Fig. 2.10. ∆+ = ∅ [ChLK97] 

By observing this transaction database, it is found out that the original database D, 

before the deletion of any transaction, contains 5 transactions. In this state of the 

transaction database, if the support threshold is set to 25% the frequent itemsets that 

are extracted to L are those with support count no less than 5 × 25% = 1.25.  

 

The next state of transaction database D results from the deletion of transaction (1, 

{A, B, E}), which belongs to ∆-. As a result from this deletion, database D consists of 

4 transactions and the frequent itemsets belonging in L’  are those in D’  with support 

count no less than 4 × 25% = 1. 

 

Fig. 2.11 illustrates the insertion of a transaction into the transaction database. 

 

 

Fig. 2.11. |∆+| > 0 [ChLK97] 
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The difference from the previous example is that apart from the deletion of 

transaction (1, {A, B, E}) from database D, an insertion of transaction (6, {C, D}) 

takes also place into database D.  

 

The original transaction database consists of 5 transactions. After inserting transaction 

(6, {C, D}), which belongs to database ∆+ and deleting transaction  (1, {A, B, E}), 

which belongs to ∆-, the resulting updated transaction database consists of 5 

transactions. Consequently, frequent itemsets in L’  are those itemsets in D’  with 

support count no less than 5 × 25% = 1.25. 

2.5.2. Methods for Maintaining Discovered Association Rules 

2.5.2.1. Apriori-based methods 

 

Apriori-based methods use the anti-monotone Apriori principle in order to generate 

smaller number of candidates, meanwhile taking advantage of knowledge acquired 

from a previous mining procedure. Cheung et al. in [CHNW96] proposed the FUP 

algorithm, which handles only the case of transaction insertions in the database. 

Cheung et al. in [ChLK97] proposed the FUP2, which handles insertions, as well as 

deletions and modifications. 

2.5.2.2. Frequent-pattern tree based methods 

 

Frequent-pattern tree based methods are based on the structure of frequent-pattern 

trees. Koh et al. in [KoSh04] proposed the AFPIM algorithm, which handles 

insertions, deletions and modifications and adjusts or reconstructs the structure of the 

FP-tree according to the changes that take place in the transaction database. 
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2.6. Field Matching Techniques 

 

Database entries are usually mismatched due to typographical variations or errors 

within the string data. Multiple techniques have been developed in order to extract the 

similarity of strings, taking into consideration potential typographical variations.  

 

Some of the field matching techniques, which are used for data de-duplication 

purposes, will be presented in the following paragraphs. 

2.6.1. Character-based similarity metrics 

 

Character-based similarity metrics are designed to deal with typographical errors. 

The main character-based similarity metrics are: (i) Edit distance, (ii) Affine gap 

distance, (iii) Smith-Waterman distance, (iv) Jaro distance metric and (v) Q-gram 

distance. 

 

The edit distance between two strings σ1 and σ2 is the minimum number of edit 

operations of single characters needed to transform the string σ1 into σ2. There are 

three types of edit operations: (i) insert a character into the string, (ii) delete a 

character from the string, and (iii) replace one character with a different character. In 

its simplest form, the cost for each edit transformation is equal to 1. This distance is 

also referred to as Levenshtein distance. Needleman and Wunsch [NeWu70] modified 

the original edit distance model, and allowed for variable costs for different edit 

distance operations. 

 

A main string variation includes the truncation or the shortening of a specific string. 

For example, the entity “John A. Smith”  could be written as “Jonathan Abraham 

Smith”. The affine gap distance can handle with this problem introducing two extra 

operations: (i) open gap and (ii) extend gap.  

 

Smith-Waterman distance is an extension of the edit and affine gap distances. This 

metric considers that mismatches at the beginning and the end of strings have lower 
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costs than mismatches in the middle, allowing better substring matching. Therefore, 

the strings “Prof. John A. Smith, University of Illinois” and “John A. Smith, Prof.” 

can match within short distance using the Smith-Waterman distance, since the 

prefixes and suffixes are ignored. 

 

Jaro distance metric was mainly used for comparison of last and first names. The Jaro 

metric for strings σ1 and σ2 is computed following the next steps: 

 

1) Compute the sting lengths | σ1| and | σ2| 

2) Find the “common characters” c in the two strings; common are all the 

characters σ1[j] and σ2[j] for which σ1[j] = σ2[j]  and for which σ1[j] = σ2[j]  

and { }21 ,min
2

1 σσ≤− ji  

3) Find the number of transpositions t; the number of transpositions is computed 

as follows: compare the ith common character in σ1  with the i th common 

character in σ2. Each non-matching character is a transposition. 

 

The Jaro comparison value is: 

 

( ) 








 −++=
c

tccc
Jaro

2/

3

1
,

21
21 σσ

σσ . 

   

The q-gram distance is computed using the q-grams. A q-gram is a short character 

substring of length q of the database strings. The intuition behind the use of q-grams 

as a foundation for approximate string matching is that two strings σ1 and σ2 are 

similar if they share a large number of q-grams in common. Given a string σ, its q-

grams are obtained by “sliding”  a window of length q over the characters of σ. 

 

Letter q-grams, including trigrams, bigrams, and/or unigrams, have been used in a 

variety of ways in text recognition and spelling correction. One natural extension of q-

grams are the positional q-grams, which also record the position of the q-gram in the 

string. Gravano et al. [Grav+01] showed how to use positional q-grams to locate 

efficiently similar strings within a relational database. 
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2.6.2. Token-based similarity metrics 

 

Character-based similarity metrics work well for typographical errors. However, it is 

often the case that typographical conventions lead to rearrangement of words (e.g., 

“John Smith” vs. “Smith, John”). In such cases, character-level metrics fail to capture 

the similarity of the entities. Token-based metrics try to compensate for this problem.  

 

Monge and Elkan [MoEl96] proposed a basic algorithm for matching text fields based 

on atomic strings. An atomic string is a sequence of alphanumeric characters 

delimited by punctuation characters. Two atomic strings match if they are equal, or if 

one is the prefix of the other. Based on this algorithm, the similarity of two fields is 

the number of their matching atomic strings divided by their average number of 

atomic strings.  

 

Cohen [Cohe98] described a system named WHIRL that adopts from the information 

retrieval the cosine similarity combined with the tf.idf weighting scheme to compute 

the similarity of two fields. Cohen separates each string σ into words and each word w 

is assigned a weight 

 

( ) ( ) ( )ww idftfwu log1log ⋅+=σ , 

 

where wtf is the number of times that w appears in the field and widf is 
wn

D
, where wn  

is the number of records in the database D that contain w. The tf.idf weight for a word 

w in a field is high if w appears a large number of times in the field (large wtf ) and w 

is a sufficiently “rare”  term in the database (large widf ). For example, given a set of 

company names, infrequent terms such as “IBM” or “Sun”  will have higher 

widf values than frequent terms such as “Corp” . The cosine similarity of σ1 and σ2 is 

defined as 
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The cosine similarity metric works well for a large variety of entries, and is 

insensitive to the location of words, allowing natural word moves and swaps. For 

example, the cosine similarity metric regards “John, Smith” as equivalent to “Smith, 

John”. Also, introduction of frequent words affects only minimally the similarity of 

the two strings due to the low idf weight of the frequent words. For example, “John 

Smith” and “Mr. John Smith” would have similarity close to one.  

 

Unfortunately, this similarity metric does not capture word spelling errors, especially 

if they are pervasive and affect many of the words in the strings. For example, the 

strings “Compter Science Department” and “Deprtment of Computer Scence” will 

have zero similarity under this metric. Bilenko et al. [Bile03] suggest the SoftTF-IDF 

metric to solve this problem. In the SoftTF-IDF metric, pairs of tokens that are 

“similar”  and not necessarily identical are also considered in the computation of the 

cosine similarity. However, the product of the weights for non-identical token pairs is 

multiplied by the similarity of the token pair, which is less than one.  

 

Gravano et al. [GIKS03] extended the WHIRL system to handle spelling errors by 

using q-grams, instead of words, as tokens. In this setting, a spelling error minimally 

affects the set of common q-grams of two strings, so the two strings “Gteway 

Communications” and “Comunications Gateway” have high similarity under this 

metric, despite the block move and the spelling errors in both words. This metric 

handles the insertion and deletion of words nicely. The string “Gateway 

Communications” matches with high similarity the string “Communications Gateway 

International” since the q-grams of the word “International”  appear often in the 

relation and have low weight. 
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2.6.3. Phonetic similarity metrics 

 

Character-level and token-based similarity metrics focus on the string-based 

representation of the database records. However, strings may be phonetically similar 

even if they are not similar in a character or token level. For example, the word 

“Kageonne” is phonetically similar to “Cajun”  despite the fact that the string 

representations are very different. The phonetic similarity metrics are trying to 

address such issues and match such strings. 

 

Russell invented Soundex, which is the most common phonetic coding scheme. 

Soundex is based on the assignment of identical code digits to phonetically similar 

groups of consonants and is used mainly to match surnames. 

 

The New York State Identification and Intelligence System (NYSIIS) was  proposed by 

Taft [Taft70]. The NYSIIS system differs from Soundex in that it retains information 

about the position of vowels in the encoded word by converting most vowels to the 

letter A. Furthermore, NYSIIS does not use numbers to replace letters; instead it 

replaces consonants with other, phonetically similar letters, thus returning a purely 

alpha code. 

 

Philips suggested the Metaphone algorithm as a better alternative to Soundex. Philips 

suggested using 16 consonant sounds that can describe a large number of sounds used 

in many English and non-English words. Double Metaphone is a better version of 

Metaphone, improving some encoding choices made in the initial Metaphone and 

allowing multiple encodings for names that have various possible pronunciations. For 

such cases, all possible encodings are tested when trying to retrieve similar names. 

The introduction of multiple phonetic encodings greatly enhances the matching 

performance, with rather small overhead.  
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2.6.4. Numeric similarity metrics 

 

While multiple methods exist for detecting similarities of string-based data, the 

methods for capturing similarities in numeric data are rather primitive. Typically, the 

numbers are treated as strings (and compared using the metrics described above) or 

simple range queries, which locate numbers with similar values. Koudas et al. 

[KoMS04] suggest, as direction for future research, consideration of the distribution 

and type of the numeric data, or extending the notion of cosine similarity for numeric 

data to work well for duplicate detection purposes.  

2.7. Duplicate Record Detection 

 

One of the most important tasks in data cleaning is the de-duplication of records, i.e., 

the detection of multiple representation of a single entity. This procedure implies 

matching between records, a procedure which is not straightforward in real world 

problems. For example, duplicate records may be erroneous due to a combination of 

factors such as transcription errors or incomplete information.  

 

Elmagarmid et al. in [ElIV06] describe the methods that deal with the problem of data 

deduplication. The presented methods can be broadly divided into two categories: 

• Approaches that rely on training data to “learn” how to match the records. 

This category includes (some) probabilistic approaches and supervised 

machine learning techniques. 

• Approaches that rely on domain knowledge or on generic distance metrics to 

match records. This category includes approaches that use declarative 

languages for matching, and approaches that devise distance metrics 

appropriate for the duplicate detection task. 

 

Elmagarmid et al. in [ElIV06] classified the data de-duplication methods in five main 

categories, which are described in the following paragraphs. 
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2.7.1. Notation 

 

The tables that need to be matches are denoted as A and B and it is assumed, without 

loss of generality, that A and B have n comparable fields. In the duplicate detection 

problem, each tuple pair <a, b>, (a ∈ A, b ∈  B) is assigned to one of the two classes 

M and U.  

 

The class M contains the record pairs that represent the same entity (“match”) and the 

class U contains the record pairs that represent two different entities (“non-match”). 

 

Each tuple pair <a, b> is represented as a random vector x = [x1,…,xn]
T with n 

components that correspond to the n comparable fields of A and B. Each xi shows the 

level of agreement. of the ith field for the records a and b. Many approaches use 

binary values for the xi’s and set xi = 1 if field i agrees and let xi = 0 if field i 

disagrees. 

2.7.2. Probabilistic Matching Models 

 

Newcombe et al. [NKAJ59] were the first to recognize duplicate detection as a 

Bayesian inference problem. Then, Fellegi and Sunter [FeSu69] formalized the 

intuition of Newcombe et al. introducing the notation described above. 

 

The comparison vector x is the input to a decision rule that assigns x to U or to M. The 

main assumption is that x is a random vector whose density function is different for 

each of the two classes. Then, if the density function for each class is known, the 

duplicate detection problem becomes a Bayesian inference problem. Various 

techniques have been developed for addressing this “general”  decision problem. 

Some of those techniques are: (i) Bayes Decision Rule for Minimum Error, (ii) Bayes 

Decision Rule for Minimum Cost, and (iii) Decision with a Reject Region. Each 

method mentioned above takes advantage of  a decision rule based on probabilities. 

This decision rule is used in order to decide whether x belongs to U or M.  
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2.7.3. Supervised and Semi-Supervised Learning 

 

The development of new classification techniques in the machine learning and 

statistics communities prompted the development of new de-duplication techniques. 

The supervised learning systems rely on the existence of training data in the form of 

record pairs, pre-labeled as matching or not. 

 

One set of supervised learning techniques treat each record pair <a, b> 

independently, similarly to the probabilistic techniques mentioned in the previous 

paragraph. Cochinwala et al. [CKLS01] used the well-known CART algorithm, which 

generates classification and regression trees, a linear discriminant algorithm, which 

generates linear combination of the parameters for separating the data according to 

their classes, and a “vector quantization” approach, which is a generalization of 

nearest neighbor algorithms. The experiments which were conducted indicate that 

CART has the smallest error percentage.  

 

Bilenko et al. [Bil+03] use SVMlight to learn how to merge the matching results for 

the individual fields of the records. Bilenko et al. showed that the SVM approach 

usually outperforms simpler approaches, such as treating the whole record as one 

large field. A typical post-processing step for these techniques is to construct a graph 

for all the records in the database, linking together the matching records. Then, using 

the transitivity assumption, all the records that belong to the same connected 

component are considered identical. However, the transitivity assumption can 

sometimes result in inconsistent decisions. 

 

The supervised clustering techniques described above have records as nodes for the 

graph. Singla and Domingos [SiDo04] observed that by using attribute values as 

nodes, it is possible to propagate information across nodes and improve duplicate 

record detection. For example, if the records <Microsoft, CA> and <MicrosoftCorp., 

California> are deemed equal, then CA and California are also equal, an information 

that can be useful for other record comparisons. 
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Pasula et al. [Pas+02] proposed a semisupervised probabilistic relational model that 

can handle a generic set of transformations. While the model can handle a large 

number of duplicate detection problems, the use of exact inference results in a 

computationally intractable model. They proposed the use of a Markov Chain Monte 

Carlo (MCMC) sampling algorithm to avoid the intractability issue. However, it is 

unclear whether techniques that rely on graph-based probabilistic inference can scale 

well for data sets with hundreds of thousands of records.  

2.7.4. Active-Learning-Based Techniques 

 

One of the problems with the supervised learning techniques is the requirement for a 

large number of training examples. While it is easy to create a large number of 

training pairs that are either clearly non-duplicates or clearly duplicates, it is very 

difficult to generate ambiguous cases that would help create a highly accurate 

classifier. Based on this observation, some duplicate detection systems used active 

learning techniques to automatically locate such ambiguous pairs. Unlike an 

“ordinary”  learner that is trained using a static training set, an “active”  learner 

actively picks subsets of instances from unlabeled data, which, when labeled, will 

provide the highest information gain to the learner.  

 

Sarawagi and Bhamidipaty [SaBh02] designed ALIAS, a learning based duplicate 

detection system, that significantly reduces the size of the training set. The main idea 

behind ALIAS is that most duplicate and non-duplicate pairs are clearly distinct. For 

such pairs, the system can automatically categorize them in U and M without the need 

of manual labeling. ALIAS requires humans to label pairs only for cases where the 

uncertainty is high.  

 

ALIAS starts with small subsets of pairs of records designed for training, which have 

been characterized as either matched or unique. This initial set of labeled data forms 

the training data for a preliminary classifier. In the sequel, the initial classifier is used 

for predicting the status of unlabeled pairs of records. The initial classifier will make 

clear determinations on some unlabeled instances but lack determination on most.  
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The goal is to seek out from the unlabeled data pool those instances which, when 

labeled, will improve the accuracy of the classifier at the fastest possible rate. Pairs 

whose status is difficult to determine serve to strengthen the integrity of the learner. 

Conversely, instances in which the learner can easily predict the status of the pairs do 

not have much effect on the learner. Using this technique, ALIAS can quickly learn 

the peculiarities of a data set and rapidly detect duplicates using only a small number 

of training data.  

 

Tejada et al. [TeKM01], [TeKM02] used a similar strategy and employed decision 

trees to teach rules for matching records with multiple fields. Their method suggested 

that by creating multiple classifiers, trained using slightly different data or parameters, 

it is possible to detect ambiguous cases and then ask the user for feedback. 

2.7.5. Distance-Based Techniques 

 

Active learning techniques require some training data or some human effort to create 

the matching models. In the absence of such training data or ability to get human 

input, supervised and active learning techniques are not appropriate.  

 

One way of avoiding the need for training data is to define a distance metric for 

records. Using the distance metric and an appropriate matching threshold, it is 

possible to match similar records, without the need for training data.  

 

One approach is to treat a record as a long field, and use one of the distance metrics to 

determine which records are similar. Monge and Elkan [MoEl96], [MoEl97] proposed 

a string matching algorithm for detecting highly similar database records. The basic 

idea was to apply a general purpose field matching algorithm, especially one that is 

able to account for gaps in the strings, to play the role of the duplicate detection 

algorithm.  
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Cohen [Cohe00] suggested to use the tf.idf weighting scheme, together with the cosine 

similarity metric to measure the similarity of records. Koudas et al. [KoMS04] 

presented some practical solutions to problems encountered during the deployment of 

such a string-based duplicate detection system at AT&T. 

 

Distance-based approaches that conflate each record in one big field may ignore 

important information that can be used for duplicate detection. A simple approach is 

to measure the distance between individual fields, using the appropriate distance 

metric for each field, and then compute the weighted distance between the records. In 

this case, the problem is the computation of the weights, which is very similar to the 

probabilistic setting described in previous paragraph. 

 

An alternative approach, proposed by Guha et al. [GKMS04] is to create a distance 

metric that is based on ranked list merging. The basic idea is that if only one field is 

compared from the record, the matching algorithm can easily find the best matches 

and rank them according to their similarity, putting the best matches first. By applying 

the same principle for all the fields, each record is associated with n ranked lists of 

records, one for each field. Then, the goal is to create a rank of records that has the 

minimum aggregate rank distance when compared to all the n lists. 

 

Guha et al. map the problem into the minimum cost perfect matching problem, and 

developed efficient solutions for identifying the top-k matching records. The first 

solution was based on the Hungarian Algorithm, a graph-theoretic algorithm that 

solves the minimum cost perfect matching problem. Guha et al. also present the 

Successive Shortest Paths algorithm that works well for smaller values of k and is 

based on the idea that it is not required to examine all potential matches to identify the 

top-k matches. 

 

The distance-based techniques described so far, treat each record as a flat entity, 

ignoring the fact that data is often stored in relational databases, in multiple tables. 

Ananthakrishna et al. [AnCG02] describe a similarity metric that uses not only the 

textual similarity, but the “co-occurrence” similarity of two entries in a database. For 

example, the entries in the state column “CA”  and “California” have small textual 
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similarity; however, the city entries “San Francisco”, “Los Angeles”, “San Diego” 

and so on, often have foreign keys that point both to “CA” and “California” . 

Therefore, it is possible to infer that “CA”  and California”  are equivalent. 

 

Ananthakrishna et al. showed that using “foreign key co-occurrence” information 

substantially improves the quality of duplicate detection in databases that use multiple 

tables to store the entries of a record. 

 

One of the most important problems of the distance-based techniques is the definition 

of an appropriate value for the matching threshold. An appropriate threshold value 

could be computed by supervised techniques. However, the main advantage of 

distance-based techniques lies in their ability to operate without training data.  

2.7.6. Rule-Based Approaches 

 

A special case of distance-based approaches is the use of rules to define whether two 

records are the same or not. Rule-based approaches can be considered as distance-

based techniques, where the distance of two records is either 0 or 1. 

 

Wang and Madnick [WaMa89] proposed a rule-based approach for the duplicate 

detection problem. For cases in which there is no global key, Wang and Madnick 

suggest the use of rules developed by experts to derive a set of attributes that 

collectively serve as a “key”  for each record. For example, an expert could define the 

following rule: 

 

IF   age < 22                         THEN   status = UNDERGRADUATE 

                                              ELSE    status = GRADUATE 

 

By using such rules, Wang and Madnick attempted to generate unique keys that can 

cluster multiple records representing the same real-world entity. Lim et al. [LSPR93] 

also used a  rule-based approach, but with the extra restriction that the result of the 
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rules must always be correct. Therefore, the rules should not be heuristically-defined 

but should reflect absolute truths and serve as functional dependencies.  

 

Hernandez and Stolfo [HeSt98] further developed this idea and derived an equational 

theory that dictates the logic of domain equivalence. This equational theory specifies 

an inference about the similarity of the records. For example, if two persons have 

similar name spellings, and these persons have the same address, we may infer that 

they are the same person. Specifying such an inference in the equational theory 

requires declarative rule language. For example, for an employee database, the 

following rule could be developed: 

 

FORALL   (r1, r2)   in EMPLOYEE 

    IF   r1.name is similar to r2.name    AND 

          r1.address = r2.address 

    THEN r1 matches r2 

 

In such a rule similarity is measured by using a string comparison technique and 

matching implies that both records are meant to be duplicates. 

 

AJAX [Galh01] is a prototype system that provides a declarative language for 

specifying data cleaning programs, consisting of SQL statements enhanced with a set 

of primitive operations to express various cleaning transformations. AJAX provides a 

framework wherein the logic of a data cleaning program is modeled as a directed 

graph of data transformations starting from some input source data.  

 

Four types of data transformations are provided to the user of the system. The 

mapping transformation standardizes data, the matching transformation finds pairs of 

records that probably refer to the same real object, the clustering transformation 

groups together matching pairs with a high similarity value, and finally, the merging 

transformation collapses each individual cluster into a tuple of the resulting data 

source. 
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Typically, rule-based systems operate with high accuracy. However, those systems 

require huge manual efforts from human experts in order to exploit the critical 

generated rules.  

2.8. Experimental Methodology of Existing Methods 

 

This paragraph describes the datasets and the experimental parameters that are used in 

common methods that cope with problems such as the duplicate elimination and off-

line cleaning problem. More specifically, the following paragraphs include a 

description of datasets’ nature for each method and the experimental parameters used 

for the evaluation of the method’s performance. 

2.8.1. Duplicates 

 

Chaudhuri et al. in [CGGM03] used a clean Customer[name, city, state, zip code] 

relation consisting of about 1.7 million tuples from an internal operational data 

warehouse. They created input datasets by introducing errors in randomly selected 

subsets of Customer tuples. All characteristics of real data such as variations in token 

lengths and frequencies of tokens are preserved in the erroneous input tuples. 

 

They considered two types of error injection methods. The type I method introduces 

errors in tokens with equal probability, i.e., all tokens in a column are equally likely to 

become erroneous, whereas Type II method introduces errors in tokens with a 

probability that is directly proportional to their frequency, i.e., tokens with higher 

frequency are more likely to become erroneous. 

 

According to set of signatures they evaluated Normalized Elapsed Time and 

Accuracy, whose description is stated below. 

 

Normalized Elapsed Time refers to the elapsed time for processing the set of input 

tuples using the fuzzy match algorithm divided by the elapsed time to process one 



 

 

39

 

input tuple using the naïve algorithm which compares an input tuple with each 

reference tuple. If the normalized time for a fuzzy match algorithm is less than the 

number of input tuples, then it outperforms the naive algorithm. 

Accuracy describes the percentage of input tuples for which a fuzzy match algorithm 

identifies the seed tuple, from which the erroneous input tuple was generated, as the 

closest reference tuple is its accuracy. 

 

Chaudhuri et al. in [ChGK06] performed all of their experiments by using a customer 

relation from an operational data warehouse. Using variant edit similarity threshold 

values they estimate the time needed for implementing similarity joins on a relation R 

of 25.000 customer addresses with itself.  

 

Yuan et al. in [SuLS02] evaluate the performance of their method by using synthetic 

databases containing records of 13 fields. The errors they introduced in duplicate 

records range from small typographical changes to large changes of some fields. 

 

In order to test the performance of their method, they use variant sliding window sizes 

for finding similarities between records belonging in the same window and variant 

database duplicate ratios and database sizes as well. More specifically, according to 

those variant parameters they evaluated the time required to run each method, the 

number of duplicate pairs found and the number of comparisons. 

2.8.2. Off-line cleaning 

 

Bhattacharya et al. in [BhGe04] used as datasets, cliques of entities containing 

information about authors. Those data were transformed by adding noise using a 

probabilistic model. 

 

They evaluate their algorithm by measuring the quality of the clusters generated using 

different group and clique size . In order to estimate the cluster quality they use  entity 

dispersion and cluster diversity as measures of cluster quality. Entity dispersion 

reflects the number of different clusters that references corresponding to the same 



 

 

40

 

entity are spread over, which means that a perfect de-duplication has dispersion 1, 

whereas cluster diversity quantifies the number of distinct entities that have been put 

in the same cluster.  

 

 Leung in [Leun04] used a transaction database of 100k records with an average 

transaction length of 10 items and a domain of 1000 items. He estimated the run-time 

of algorithms according to variant percentages of frequent itemsets satisfying succint 

constrains processed before tightening or before relaxing the constraint. 

  

Zhu et al. in [ZhWC03] used synthetic data from IBM (IBM Synthetic Data) and real-

world datasets from UCI repository (Blake and Merz, 1998). They introduced class 

noise in some data instances using a probabilistic noise. In order to estimate their 

method’s performance they evaluate the classification accuracy of instances according 

to different levels of noise. 

 

Low et al. in [LoLL01] used two real world datasets, including a company dataset, 

which requires complex matching logic and data manipulation and a patient dataset, 

which is a much larger dataset containing many errors. According to different 

numbers of duplicate identification rules, they evaluated the run-time needed, the 

error percentage and the measure of recall. 
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CHAPTER 3. PROBLEM DESCRIPTION AND 

PROPOSED METHOD 

 

 

3.1.Problem Description 

3.2.Baseline Method (Fuzzy Match Data Cleaning) 

3.3.Improvements: Online Data Cleaning using Qgram tries 

 

 

3.1. Problem Description 

 

In this chapter, we will mainly deal with the approximate match of tuples based on 

string-valued attributes. More specifically, the procedure of approximate matching 

involves the retrieval of clean tuples, whose similarity with the incoming tuple is 

above a threshold value. As shown in Fig. 3.1, if the similarity between an input 

customer tuple and its closest reference tuple is higher than some threshold, then the 

correct reference tuple is loaded. Otherwise, the input is routed for further cleaning 

before considering it as referring to a new customer. A fuzzy match operation that is 

resilient to input errors can effectively prevent the proliferation of fuzzy duplicates in 

a relation, which represent multiple tuples describing the same real world entity. 

 

The critical ingredient of a fuzzy match operation is the similarity function used for 

comparing tuples. In typical application domains, the similarity function must 

definitely handle string-valued attributes and possibly even numeric attributes.  
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Given the similarity function and an input tuple, the goal of the fuzzy match operation 

is to return the reference tuple being closest to the input tuple. An extension is to 

return the closest K reference tuples enabling users, if necessary, to choose one among 

them as the target, rather than the closest. A further extension is to only output K or 

fewer tuples whose similarity to the input tuple exceeds a user-specified minimum 

similarity threshold. 

 

 

Fig. 3.1 Template for Using Fuzzy Match [CGGM03] 

In our problem, the result of a fuzzy match operation applied on an input tuple could 

be one of the following classifications: 

 

• exactly matched, i.e., a reference tuple exactly matched with the input tuple  

• approximately matched, i.e., a reference tuple approximately matched with the 

input tuple 

• not resolved, i.e., a set of K reference tuples enabling users, if necessary, to 

choose one among them 

• new record, i.e., no reference is matched with the input tuple 

 

Every input tuple is classified according to its maximum similarity with reference 

tuples. If this similarity is above a maximum threshold value, then the input is 

classified either as exactly matched, either as approximately matched. If the 

maximum similarity is below a minimum threshold, the input tuple is classified as a 

new record. Otherwise, the input tuple is classified as not resolved. This procedure is 

shown in Fig. 3.2. 
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Fig. 3.2. Classification of Input Tuple According to Maximum Similarity 

3.2. Baseline Method (Fuzzy Match Data Cleaning) 

 

Chaudhuri et al. in [CGGM03] adopt a probabilistic approach where the goal is to 

return the closest K reference tuples with high probability. The author’s method 

preprocesses the reference relation to build an index relation, called the error tolerant 

index (ETI) relation, for retrieving at run time a small set of candidate reference 

tuples, which are compared with the input tuple. Their retrieval algorithm retrieves 

with high probability a superset of the K reference tuples closest to the input tuple. 

The index relation ETI is implemented and maintained as a standard relation. 

 

The authors propose a fuzzy match similarity function that explicitly considers IDF 

token weights and input errors while comparing tuples, an error tolerant index and a 

probabilistic algorithm for retrieving the K reference tuples closest to the input tuple, 

according to the fuzzy match similarity function.  
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3.2.1. Fuzzy Similarity Function (fms) 

 

Informally, the similarity between an input tuple and a reference tuple is the cost of 

transforming the former into the latter. Low transformation costs of input tuples 

denote high similarity. 

 

A transformation operation is applied upon a set of tokens derived from the attributes 

of a tuple. Supposing v is a reference tuple, the set of tokens included in attribute i is 

denoted by tok[v(i)] . For example, if v(i) = “Boeing Company”, then the resulting set 

of tokens coming from the tokenization function on v(i) equals to tok[v(i)]  = {Boeing, 

Company}. 

 

 Each of the following transformation operations: (a) token replacement, (b) token 

insertion and (c) token deletion is associated with a cost that depends on the weight of 

the token being transformed. The weight function for each token can be defined as: 

( )itfreq

R
itIDFitw

,
log),(),( == , 

where freq(t,i) denotes the frequency of a token t in column i and equals to the 

number of tuples v in R such that tok(v[i]) contains t. 

 

More specifically, considering the case where u is an input tuple and v is a reference 

tuple, the cost of operations taking place in order to transform u into v is defined as 

follows: 

 

• Token replacement: The cost of replacing a token t1 in tok(u[i]) by token t2 

from tok(v[i]) is ed(t1, t2) · w(t1 ,i), where tok(u[i]) is the set of tokens held on 

attribute u[i] and ed(t1, t2) is the edit distance between t1 and t2. If t1 and t2 are 

from different columns, the cost is defined to be infinite. 

• Token insertion: The cost of inserting a token t into u[i]  is cins · w(t, i), where 

the token insertion factor cins is a constant between 0 and 1. 

• Token deletion: The cost of deleting a token t from u[i]  is w(t, i). 
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Transforming u into v requires each column u[i]  to be transformed into v[i]  through a 

sequence of transformation operations, whose cost is defined to be the sum of costs of 

all operations in the sequence. The transformation cost tc(u[i], v[i])  is the cost of the 

minimum cost transformation sequence for transforming u[i]  into v[i] . The cost tc(u, 

v) of transforming u into v is the sum over all columns i of the costs tc(u[i], v[i])  of 

transforming u[i]  into v[i]  and equals to: 

[ ] [ ]( )iviutcvutc
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The fuzzy match similarity function fms(u, v) between an input tuple u and a reference 

tuple v in terms of the transformation cost tc(u, v) can be defined as: 
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where w(u) is the sum of weights of all tokens in the token set tok(u). Token set tok(u) 

denotes the multiset union of sets tok(a1),…,tok(an) of tokens from the tuple 

u[a1,…,an] . 

 

Suppose an example reference relation R with attributes (r1, r2) and |R| = 10 and tuples    

u = (“John”, “Ford”) and v = (“Jahn”, “Ford”) . If two reference tuples contain 

attribute values “John”  and “Ford”  in attributes r1 and r2 respectively, the 

transformation cost and the fms function are computed as follows: 

 

tc(u,v)  = tc(“John”, “Jahn”) + tc(“Ford”, “Ford”) 

= ed(“John”, “Jahn”) · w(“John”, r 1) + ed(“Ford”, “Ford”) · w(“Ford”, r 2) 

= 1 · log ( )1,""

||

rJohnfreq

R
 + 0 · log ( )2,""

||

rFordfreq

R
 = log

2

10
 = 0. 699 

 

tok(u) = tok(u1) ∪  tok(u2) = {“John”, “Ford”} 

 

w(u) = w(u1) + w(u2) = w(“John”, r 1) + w(“Ford”, r 2) = log
2

10
 + log

2

10
 =  1.398 

 

fms(u,v) = 1 – min 
( )
( ) 
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,
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 0.1,
398.1

699.0
 =  1 – 0.5 = 0.5 
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3.2.2. Fuzzy Match 

  

Given an input tuple u, the goal of the fuzzy match algorithm is to identify the 

approximate matches, i.e., the K reference tuples closest to u. Particularly, the K-

Fuzzy Match Problem can be defined as follows: 

 

Given a reference relation R, a minimum similarity threshold c (0 < c < 1), the 

similarity function fms, and an input tuple u, find the set FM(u) of fuzzy matches of at 

most K tuples from R such that: 

 

1. fms(u, v) ≥ c, for all v in FM(u) 

2. fms(u, v) ≥ fms(u, v’) for any v in FM(u) and v’ in R−FM(u) 

 

A naïve algorithm scans the reference relation R comparing each tuple with u. A more 

efficient approach is to build an “index” on the reference relation for quickly 

retrieving a superset of the target fuzzy matches. Standard index structures like B+-

tree indexes cannot be employed in this context because they can only be used for 

exact or prefix matches on attribute values. Therefore, during a pre-processing phase, 

additional indexing information can be gathered for efficiently implementing the 

fuzzy match operation. The additional information can be stored as a standard 

database relation and be indexed using standard B+-trees to perform fast exact 

lookups. Chaudhuri et al. in [CGGM03] refer to this indexed relation as the error 

tolerant index (ETI). The authors’ challenge was to identify and effectively use the 

information in the indexed relation. The authors’ solution was based on the insight of 

deriving from fms an easily indexable similarity function fmsapx with the following 

characteristics: 

 

1. fmsapx upper bounds fms with high probability, 

2. The error tolerant index (ETI) relation can be built for retrieving efficiently a 

small candidate set of reference tuples whose similarity with the input tuple u, 

as per fmsapx, is greater than the minimum similarity threshold c.  
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Therefore, with a high probability the similarity as per fms between any tuple in the 

candidate set and u is greater than c. From this candidate set, the K reference tuples 

closest to u can be returned as the fuzzy matches.   

 

The authors used fmsapx as an approximation of fms for which they could build an 

indexed relation. fmsapx is obtained (a) by ignoring differences in ordering among 

tokens in the input and reference tuples, and (b) by allowing each input token to 

match with the “closest” token from the reference tuple. Since disregarding these two 

distinguishing characteristics while comparing tuples can only increase similarity 

between tuples, fmsapx is an upper bound of fms. 

 

For example, the tuples [boeing company, seattle, wa, 98004] and [company boeing, 

seattle, wa, 98004] which differ only in the ordering among tokens in the first field 

are considered identical by fmsapx.  

 

In fmsapx, the authors measured the closeness between two tokens through the 

similarity between sets of substrings of tokens, called qgram sets, instead of edit 

distance between tokens used in fms. Further, this qgram set similarity is estimated 

well by the commonality between small probabilistically chosen subsets of the two 

qgram sets. This property can be exploited in order to build an indexed relation for 

fmsapx, because for each input tuple only the reference tuples whose tokens share a 

number of chosen qgrams with the input tuple must be identified.  

 

Given a string s and a positive integer q, the qgram set denoted by QGq(s) is the set of 

all size q substrings of s. For example, the 3-gram set QG3(“boeing”) is {boe, oei, 

ein, ing}.   

 

In order to estimate fmsapx, it is necessary to compute the token min-hash signature 

and the min-hash similarity between two tokens. Let U denote the universe of strings 

over an alphabet Σ, and hi:U→N, i = 1,…,H be H hash functions mapping elements of 

U uniformly and randomly to the set of natural numbers N. Let S be a set of strings. 



 

 

48

 

The min-hash signature mh(S) of S is the vector [mh1(S), …, mhH(S)] where the i th 

coordinate mhi(S) is defined as ( ) ( )ahSmh i
Sa

i
∈

= minarg . 

 

The intuition behind the hash functions hi is to isolate qgrams in specific coordinates. 

It is obvious that variable H indicates the number of qgrams being isolated. The 

selection is random, but each hash function returns a qgram standing in a specific 

coordinate of the token.  

 

Token similarity can be defined in terms of the min-hash similarity between their 

qgram sets. Let q and H be positive integers. Let I[X] denote an indicator variable 

over boolean X, i.e., I[X] = 1 if X is true, and 0 otherwise. The min-hash similarity 

simmh(t1,t2) between tokens t1 and t2 is: 
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From the above definition, it is obvious that the min-hash similarity computes the 

average number of common qgrams returned from the same hash function. 

 

Suppose tokens t1 = “William” and t2 = “Williams”  and H = 3. A possible min-hash 

signature might be mh(QG(t1)) = [Wil, lli, iam] and mh(QG(t2)) = [Wil, lli, ams] for t1 

and t2 respectively. Two out of three hash functions returned the same qgram for both 

tokens. That means that tokens t1 and t2 have 2 qgrams in common and the min-hash 

similarity simmh(t1, t2) is equal to 2
3

1 ⋅ . 

 

Taking into consideration the previous definition of min-hash similarity, the fms 

approximation fmsapx can be defined as follows: 

 

Let u, v be two tuples dq = (1-1/q) be an adjustment term. 
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Suppose u is the input tuple and v is a reference tuple. From the above definition, it is 

obvious that fmsapx searches for every attribute token of input tuple u the most similar 

corresponding attribute token of tuple v, in terms of min-hash similarity. Maximum 

similarities are computed and multiplied with the weight of the matched input token. 

This means that infrequent tokens play an important role in fmsapx, since their weight 

is greater than a frequent token. fmsapx is computed by dividing this weighted sum 

with the overall weight of the input tuple u.  

3.2.3. The Error Tolerant Index (ETI) 

 

The primary purpose of ETI is to enable, for each input tuple u, the efficient retrieval 

of a candidate set S of reference tuples whose similarity with u is greater than the 

minimum similarity threshold c. 

 

From the definition of fmsapx, fmsapx(u,v) is measured by comparing min-hash 

signatures of tokens in tok(u) and tok(v). Therefore, for determining the candidate set, 

it is essential to efficiently identify for each token t in tok(u), a set of tids 

corresponding to reference tuples sharing min-hash qgrams with that of t. In order to 

identify such sets of tids, ETI holds each qgram s along with the list of all tids of 

reference tuples with tokens whose min-hash signatures contain s. 

 

Suppose R is the reference relation and H the size of the min-hash signature. ETI as 

shown in Fig. 3.3 is a relation with the following schema: [QGram, Coordinate, 

Column, Frequency, Tid-list]. For each tuple e in ETI  it holds that e[Tid-list]  contains 

the list of tids of all reference tuples containing at least one token t in the field 

e[Column] whose e[Coordinate]-th min-hash coordinate is e[QGram]. The number 

of tids included in e[Tid-list] is stored in e[Frequency] attribute. 
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Fig. 3.3. ETI Relation Example [CGGM03] 

3.2.4. Query Processing Algorithm 

 

Chaudhuri et al. in [CGGM03] proposed an algorithm for processing fuzzy match 

queries. Such queries ask for K fuzzy matches of an input tuple u whose similarities as 

per fms with u are above a minimum similarity threshold c. 

 

The authors’ goal was to reduce the number of lookups against the reference relation 

by effectively using the ETI. Their proposed algorithm fetches tid-lists by looking up 

ETI of all qgrams in min-hash signatures of all tokens in u. For efficient lookups, the 

authors assume that the reference relation R is indexed on the Tid attribute, and the 

ETI relation is indexed on the [QGram, Coordinate, Column] attribute combination. 

 

More specifically, the algorithm for processing the fuzzy match query given an input 

tuple u is as follows. For each token t in tok(u), its IDF weight w(t) is computed, 

requiring the frequency of t. Those frequencies can be stored in the ETI and be 

fetched by issuing a SQL query per token. Then the minhash signature mh(t) of each 

token t is determined and each qgram in mh(t) is assigned a weight equal to 

w(t)/|mh(t)|. Using the ETI, it is feasible to generate the candidate set S of reference 

tuple tids whose similarity, as per fmsapx and hence fms, with the input tuple u is 

greater than c. All tuples in S are fetched from the reference relation in order to verify 
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whether or not their similarities with u as per fms are truly above c. Among those 

tuples which passed the verification test, the K tuples with the K highest similarity 

scores are returned. 

 

The candidate set S is computed as the union of sets Sk, one for each qgram qk in the 

min-hash signatures of tokens in tok(u). For a qgram qk, which is the ith coordinate in 

the min-hash signature mh(t) of a token t in the jth column, Sk is the tid-list from the 

tuple [qk, i, j, freq(qk, i, j), Sk]  in ETI. The lookup for [qk, i, j, freq(qk, i, j), Sk]  is 

efficient because of the index on the required attribute combination of ETI.  

 

Each tid in Sk is assigned a score that is proportional to the weight w(t) of the parent 

token t. If a tuple with tid r is very close to the input tuple u, then r is a member of 

several sets Sk and hence gets a high overall score. Otherwise, r has a low overall 

score. The candidate set is constituted by tids that have an overall score greater than 

w(u)·c minus an adjustment term, which represents a correction to approximate the 

edit distance between tokens with the similarity between their qgram sets. 

 

During the process of looking up tid-lists corresponding to qgrams, the scores of tids 

belonging in these tid-lists are maintained in a hash table. The score of a tid equals the 

sum of weights of all qgrams whose tid-lists it belongs to. The weight w(qk) assigned 

to a qgram qk in the min-hash signature mh(ti) of a token ti is w(ti)/|mh(ti)|. If a tid in 

Sk is already present in the hash table, then its score is incremented by w(qk). 

Otherwise, the tid is added to the hash table with an initial score of w(qk). After all 

qgrams in the signatures of input tokens are processed, a tid r is selected and added to 

the candidate set S only if its score is above w(u)·c minus the adjustment term. 

 

The query processing algorithm proposed by Chaudhuri et al. in [CGGM03] is 

summarized in Fig. 3.4. 
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Fig. 3.4. Query Processing Algorithm [CGGM03] 

3.3. Improvements: Online Data Cleaning using Qgram tries 

 

As already mentioned, our goal is to deal with the problem of approximate matching 

between reference and input tuples. More specifically, we face the problem of 

classifying each input tuple as an existing or a new tuple, before its input to the 

reference table. This means that an input tuple might be an erroneous representation 

of a reference tuple. This may occur due to typing errors or others types of noise.  

 

Our goal is to successfully classify input tuples within a short period of time. In cases 

of erroneous input tuples, it is a challenge to determine with a high probability 

whether the tuple can be matched with an existing reference tuple or characterize the 

tuple as a new record. It is also critical to avoid mismatches of input tuples that are 

already stored in the reference table. Due to the fact that the whole procedure must not 

exceed a time threshold, our main target is to choose the appropriate data structures 

that will effectively clean a stream of input tuples.  

 

Specifically, we provide the following extensions to the method proposed by 

Chaudhuri et al. in [CGGM03]:  
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• replacement of ETI index with a similar index that holds more information 

about the reference table 

• use of a data structure held in main memory for the retrieval of frequently 

accessed candidate tuples 

• proposal of an algorithm combining the above structures to effectively classify 

input tuples 

3.3.1. Word Index 

 

The proposed method uses a structure called word index that is quite similar to ETI. 

The word index holds information about the attribute values stored in the reference 

table. Word index structure consists of five fields: (a) qgram, (b) coordinate, (c) 

column, (d) tid-list and (e) frequency being described as follows: 

 

• qgram field corresponds to a sequence of Q characters. 

• coordinate field represents the occurrence position of the corresponding 

qgram within a string value. For example, if this string value s begins with a 

qgram q, then the coordinate value of q for s equals to 1. 

• column field indicates the string-valued attribute that holds the specific value. 

• tid-list field contains a list created from tuple ids that include qgram Q in the 

position which is denoted by the coordinate field.  

• frequency field represents the number of the tuple ids belonging to the tid-list. 

 

The word index structure is used for the retrieval of tuple ids that probably match the 

input tuple. Processing the qgrams within an input attribute value, the tids with 

attributes that share common qgrams in a specific position within the word are 

retrieved.  

 

Before deciding whether the input tuple is clean or not, a candidate set of tuple ids is 

retrieved from the word index. The candidate set includes the tuples that possibly 
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match the input tuple. This candidate set is generated by returning the tid-lists of tids 

with attribute values that share common qgrams in same positions. The attribute 

values correlated with the returned tids are cached in the qgram trie.  

 

Supposing that the word index is indexed on  {qgram, coordinate, column} set of 

fields, the retrieval of the candidate tuple ids can take place efficiently. 

3.3.2. Qgram Trie 

 

As mentioned above, the purpose of a qgram trie is the caching of clean attribute 

values that probably match the input string value. The proposed qgram  trie is defined 

as follows: 

 

1. The trie consists of one root labeled as “null”, a set of word-prefix subtrees 

as the children of the root, and a header table. 

2. Each node in the word-prefix subtree consists of four fields: 

a) qgram, which records the item that this node represents 

b) count that records the number of the tuple ids represented by the 

portion of the path reaching this node 

c) node-link that links to the next node in the trie carrying the same 

qgram, or null if there is none 

d) tid-list, which records the set of tids with attribute values that share this 

node in the trie representation. 

3. Each entry in the header table consists of two fields: (a) the qgram and (b) 

the head of node-link, which is a pointer pointing to the first node in the 

trie carrying the qgram. On the top of the header table are hold the last 

inserted header items. 

 

According to the qgram trie definition, words with same prefixes share a number of 

nodes within a path of the trie. For example, if words “Ric”, “Rica” and “Ricus” , 
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with ids 1, 2 and 3 respectively are retrieved, the resulting qgram trie being built in 

memory is shown in Fig. 3.5. 

 

Fig. 3.5. Qgram Trie Example 

 

Having stored all the candidate words that share common qgrams in same positions 

with the input value, the qgram trie described above is searched according to the 

qgram sequence of the input value. Then the set tuple ids with attribute values whose 

similarity with the input word is above a similarity threshold can be returned. The 

matching procedure, which is discussed in detail in section 3.3.5., is implemented by 

searching paths of the trie that hold qgrams of the input attribute value. 

3.3.3. Qgram Trie Searching Algorithm 

 

The proposed matching algorithm, which is described in section 3.3.5, takes 

advantage of the qgram trie described in the previous section. Taking into 

consideration that the qgram trie contains the qgram sequences of candidate clean 

attribute values that probably match the input attribute value, it is efficient to extract 

from it the most similar clean attribute in terms of qgram set similarity. This means 

that attribute values containing the most common qgrams with the input value are 

very similar to it and can be returned as fuzzy matches of the possibly dirty input 
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value. Given the qgram trie and a suitable searching algorithm, the qgram set 

similarity can be determined efficiently. 

 

Suppose that the input attribute value is “Ricuss” with qgram sequence {Ric, icu, cus, 

uss}. The matching procedure for the specific word searches the paths of trie that hold 

the specific qgram sequence. Starting from nodes with qgrams “Ric”, “icu”, “cus” 

and “uss”, the matching procedure searches the occurrence of the qgram sequence 

{Ric, icu, cus, uss} in paths of the trie.  

 

During the qgram trie searching procedure, a score table maintains the matching 

scores between the input value and the clean words. After every successful matching 

between nodes of trie and qgrams of subsequences, the score table is updated by 

incrementing the scores of the tuple ids that belong to the tid-list of the matched node. 

Ending this searching procedure, it is possible to retrieve a set of tuple ids with 

attribute values very similar to the input value. 

 

Using the qgram trie shown in Fig. 3.5, if the input attribute value is “Ricuss” the 

scores of words “Ric”, “Rica” and “Ricus”  are 1, 1 and 3 respectively, denoting that 

“Ricus”  is the closest clean word to the input value. The searching procedure is 

summarized in Fig. 3.6: 

 

Input: input tuple u 

Output: K closest tuples to u 

1. For each attribute value a of  u 

a. Generate qgram sequence s of input value a 

• Find first qgram q of s in header table 

i. Access all nodes holding q 

ii. Search all possible paths of trie with nodes holding the qgram 

subsequence s beginning with q 

iii. Update score table in case of successful match 

2. Sort score table 

3. Return K tuple ids with most similar attribute values according to their score 

 

Fig. 3.6. Searching Procedure 
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3.3.4. Main Memory Maintenance of Qgram Trie  

 

As already mentioned, a qgram trie is used in order to cache attribute values of 

frequently accessed reference tuples. This means that it must be updated after every 

processing procedure of incoming tuples. 

 

Due to the fact that the qgram trie must not exceed a maximum size, the two update 

operations are (i) the insertion and the (ii) pruning operation. The insertion operation 

adds a branch in the qgram trie and puts the correlated qgrams in the top of the header 

table of the qgram trie. For example, if reference tuple (“John”, “Ford”) with tuple 

id equal to 1 is cached in the qgram trie, then the qgram trie will be constructed as it is 

shown in Fig. 3.7.a.  If the reference tuple (“John”, “Palm”) with tuple id equal to 2 

is about to be inserted to the qgram trie, after the insertion the qgram trie will be 

updated as shown in Fig.3.7.b. 

 

 

Fig. 3.7.a Qgram Trie Before Insertion 

 

Fig. 3.7.b Qgram Trie After Insertion 
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As it is shown in Fig.3.7.b, after the insertion operation, the qgrams included in the 

attributes of the second reference tuple are put on the top of the header table. In other 

words, the frequent qgrams are moved to the top of the header table, indicating their 

recent access. This procedure takes place in order to facilitate the pruning procedure. 

 

The pruning operation takes place when the qgram trie size reaches the maximum 

size. As mentioned above, the elements of the header table are sorted according to the 

last time they were accessed. The pruning of the qgram trie is implemented by using 

the least recently used (LRU) algorithm. More specifically, the less frequent qgrams, 

that lie in the bottom of the header table, are the first to be extracted from the qgram 

trie. Following the path beginning from the bottom header table items, the pruning 

procedure crops a qgram trie branch with a leaf holding the specific qgram. If a 

header table doesn’t point any trie node, then it is removed from the header table. The 

whole procedure is completed when the qgram trie takes up a specific size of main 

memory. 

 

Suppose the pruning procedure must be applied on the qgram trie shown in Fig. 3.7.b. 

If two trie nodes have to be cropped, the cropping algorithm makes the following 

steps: 

 

1. Access the most infrequent header table item (in our example “ord” ) 

2. Follow the path of nodes beginning from the node indicated by this header 

table 

3. For every leaf trie node n in the path 

o delete from the branch the tids held by node n 

o delete leaf trie node 

o delete all nodes holding no tid lists in the branch 

4. If the trie didn’t reach a specific size, execute iteratively step 3 for the next 

less frequent header table items (in our example “For” ) and remove the 

header table items that don’t link to any trie nodes. 

 

The steps described above are shown in Fig. 3.8.a and Fig. 3.8.b.  
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Fig. 3.8.a Pruning Procedure Results – Steps 1-3 

 

 

Fig. 3.8.b Pruning Procedure Results – Step 4 

3.3.5. Matching Procedure 

 

Chaudhuri et al. in [CGGM03] proposed a query processing algorithm in order to 

handle fuzzy match queries. The proposed method instead of the error tolerant index 

uses the word index described in section 3.3.1 and extends their algorithm using the 

qgram trie structure in order to accelerate the fuzzy matching procedure.  

 

The word index is proposed for more accurate matching, since it holds more 

information than the error tolerant index (ETI). ETI holds for each attribute value only 

a subset of qgrams, which is chosen randomly and indicates approximate positions of 

qgrams within the attribute value, such as the prefix or the suffix of the attribute. This 

means that ETI can be constructed faster and requires less hard disk space than the 
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word index. However, this random selection may lead to inaccurate results, since 

input tuples with dirty attribute values have few qgrams in common with valid tuples. 

 

The intuition behind the use of a qgram trie is its suitability for caching purposes, 

since the trie is maintained in main memory. More specifically, the trie will hold at 

any time the most frequent attribute values, avoiding redundant I/O activities that 

might occur when an input value is being repeated and needs to be processed. This 

way the whole procedure can be accelerated in the presence of same input attribute 

values.  

 

More specifically our method is separated in two main parts. In the first part, using 

the qgram trie and the searching procedure described in the section 3.3.3., we examine 

whether the input tuple matches a tuple included in the qgram trie. In this way, if the 

input tuple matches a reference tuple stored in the qgram, we avoid any I/O activities 

and classify it as an existing tuple.  

 

If the procedure fails to match the input tuple in the first step, then it uses the word 

index in order to retrieve candidate tuples. Specifically, for each qgram of the input 

attribute values, we retrieve from the word index all tuple ids sharing the specific 

qgram in the same position. For each tuple id we maintain a score in a hash table 

indicating the common qgrams of reference tuple with the input tuple. After this 

procedure is completed, the set of candidate reference tuples is that with a score above 

a minimum threshold.  

 

For each candidate tuple, we check if there is an exact match with the input tuple. If a 

candidate tuple is found to be exactly similar, then the input tuple is classified as 

existing. Otherwise, we compute the similarity of the two tuples using the fms 

similarity function. If no candidate reference tuples match exactly the input tuple, then 

the reference tuple with the highest similarity value that exceeds a minimum 

similarity threshold, corresponds to the approximate match of the input value. If the 

highest similarity value is below a maximum similarity threshold, the input tuple is 

classified as a new record. Otherwise, the tuple is classified as not resolved.  
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If  the input tuple is matched exactly or approximately with a reference tuple, the 

attributes of the reference tuple are stored in the qgram trie, in order to be retrieved in 

future matches. 

 

The proposed algorithm is summarized in Fig. 3.9. 

 

Input : Stream tuple t 
Output : Classification of t as new or existing tuple 
 

1. ∀  attribute value v of t  
1.1. Check if v exists in qgram trie 

1.1.1. if v exists  

• v is clean 

• retrieve tids contain v 
1.1.2. else not determined 

2. If all attributes values are clean  
2.1. find the retrieved tids containing all input attribute values 

3. Else  
3.1. initialize the hash table with score equal to 0 for all tids 
3.2. retrieve from word eti all tids sharing common qgrams with t in same 

positions 

3.3. ∀  qgram q of v increment the corresponding score of tids containing q in 
same position with t 

3.4. retrieve tids with count(qgrams) > qgram_threshold  
3.5. check if there is exact match with the retrieved tuples 

3.5.1. if there is exact match 

• classify t as existing tuple 
3.5.2. else find the retrieved tuple r with the highest fms value 

• if  fms(t, r) > approx_match_threshold 
� classify t as approximately existing tuple 

• else if fms(t, r) < new_threshold 
� classify t as new tuple 

• else 
� classify t as not resolved 

3.6. if t is classified as existing tuple  

• update qgram trie with the clean attribute values of the existing tuple 

 

Fig. 3.9. Matching Procedure 
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We illustrate the above procedure using the following example: 

 

Suppose the reference table is the table shown in Fig. 3.10 and the current qgram trie 

is that of Fig.3.6.b holding the attribute values of tuple with ids 1 and 2. 

 

tid name surname 

1 John Ford 

2 John Palm 

3 Jack Smith 

Fig. 3.10. Example Reference Table 

Suppose that the first input tuple is the tuple (“John” ,“Palm”) . At first, the algorithm 

will search the qgram trie to check if the input tuple matches exactly a reference tuple 

cached in the trie. The searching procedure in the trie will return the tid list <1, 2> for 

the input attribute “John”  and the tid list <2> respectively for the input attribute 

“Palm” . Both tid lists have in common the tid 1. That means that the input tuple is a 

valid tuple and the procedure classifies it as an existing tuple. 

 

Suppose the second input tuple is (“John”, “Lord”) . The searching procedure in the 

trie will return only the tid list <1, 2> for the attribute “John” . That means that the 

input tuple is not cached in the qgram trie and the algorithm will continue the process 

of the tuple using the word index. If the qgram_threshold is equal to 2, the procedure 

will generate a candidate set including tuple ids 1 and 2, since the number of common 

qgrams are equal to 3 and 2 respectively for reference tuples with ids 1 and 2. 

Reference tuple with tid 1 will be the most similar retrieved candidate tuple having 

the maximum fms value. If the fms value is above the approx_match_threshold value, 

then input tuple will be classified as an approximately existing tuple. If the fms value 

is below  the new_threshold value the input tuple will be classified as a new record. If 

the fms value is between the two thresholds, the input value will be classified as not 

resolved. 
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CHAPTER 4. EXPERIMENTAL METHODOLOGY 

 

4.1.Data generation 

4.2.Alternative methods for cleaning using qgram tries  

4.3.Experimental parameters and measures 

                

4.1. Data generation 

 

We have taken the data from U.S. Census Bureau [USCB07], which embarked on a 

names list project involving a tabulation of names from the 1990 Census. Data are 

divided in 3 files containing only the frequency of a given name, without any specific 

individual information. Specifically, each file contains last names, male first names 

and female first names. 

We have generated a reference relation R(full_name) of 100K and created different 

data sets of streaming data with sizes obtained as a s% of the original reference 

relation. The stream of data signifies transactions that people whose names are 

possibly stored in the reference relation R have done (e.g., we have a Customer 

reference relation and a Sales stream of possibly erroneous data). The values that we 

have used for s are: 0.1, 1 and 10.  

 

For the streaming data, we have intentionally created problems to the data. Given a 

certain percentage p% of noise level (i.e., errors in the names), we have created the 

following anomalies in equal probabilities: 

• character addition 
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• character deletion 

• character update 

• character transposition 

 

The values we have used for the noise level p are 0.1, 0.5, 10 and 20. Moreover, the 

streaming data also contain a percentage r% of repeating tuples. We have generated 

streams with repetition percentage r% equal to 0%, 10% and 20%. 

4.2. Alternative methods for cleaning using qgram tries  

 

The state-of-the-art in the area, and thus our adversary in this work is the [CGGM03] 

paper. We have implemented the ETI method at Berkeley DB v.4.6. 

 

Our method operates on top of the ETI index described in [CGGM03], by using the 

word index described in Chapter 3, in the following way: 

• A trie of qgrams is built at-runtime. In other words, to avoid the huge size of 

the a-priori trie, as soon as we (i) load the reference relation R with data, we 

(ii) populate the word index. Then, as tuples come, we incrementally add the 

clean part of trie. The intuition is that the most popular names will eventually 

be cached in main memory, without having to store all the trie. 

 

The employed algorithm is simple: each incoming tuple is checked against the trie, 

ETI index, reference relation. We will refer to this triad as the reference database. 

Each tuple is classified as one of the following: 

• Clean (originally clean or cleansed in an unambiguous way). A clean tuple in 

the stream can be a detected existing tuple (i.e., a tuple exists in the reference 

relation) or New (a respective tuple did not previously exist in the database) 

• Not-resolved (because there are many candidates and manual attention is 

needed).  

 

To determine whether a full name (i) exists in the reference database exactly, (ii) 

approximately matches an existing tuple, (iii) does not exist, or (iv) possibly exists but 
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there are many candidates for its value, we need a distance metric. The distance 

metric of choice in our examples has been the fms similarity function already 

explained in section 3.2.1. 

 

A second alternative of the problem is to give a restricted memory budget M to our 

algorithm keeping only the interesting parts of the trie. 

4.3. Experimental parameters and measures 

 

The measured measures (y-axis) are: 

• time to complete (from which a throughput can be determined) 

• precision of classification 

• memory used 

• cache hits 

 

The varied parameters are: 

• the stream size 

• the noise level 

• available memory 

• repetition of input tuples 

• reference table size 

Table 4.1. Varied parameters 

Parameter Description Possible values 

Stream Size (s% of |R|) 0.1, 1, 10 

Noise Level (p% of  |R|) 1, 5, 10, 20 

Available memory (q% of |R|) 10, 15, 20 

Repetition of input tuples (r% of |s|) 0, 10, 20 

Reference Table Size |R| 10K, 50K, 100K tuples 
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4.4. Experimental results  

 

We executed a number of experiments in order to evaluate the measures described in 

the previous paragraph. More specifically, we evaluated the execution time, the 

precision of classification and the memory used according to variant parameters such 

as the stream size, the noise level, the size of qgram trie and size of the reference 

table. 

 

In the following paragraphs we will comment the effect of the variant parameters on 

execution time, precision and memory consumed. 

4.5. Execution time 

 

In this paragraph we represent the execution time of both methods. The following 

graphical representations show the effect of the variant parameters described 

previously on execution time. More specifically, we measured the execution time for 

reference tables with size 10000, 50000 and 100000 tuples. In our setting, there are 

three basic scenarios. According to the first scenario, the input stream contains no 

repeating tuples. In the second and third scenario the input stream contains 10% and 

20% duplicate input tuples, respectively. For each reference table size, we examined 

the effect of available memory on execution time. We measured the execution time 

for available memory equal to 10%, 15% and 20% of the reference table size. 
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4.5.1. The effect of noise on execution time 

 

execution time |R| = 10K tuples, 100 input tuples
available memory: 10% x |R|,  rep:10%
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Fig. 4.1. Effect of Noise on Execution time 

From the graphs represented in Fig. 4.1, it is obvious that the proposed method is 

sensitive to noise. Specifically, as the noise level increases, the execution time also 

increases but with a slowly increasing tendency. 
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4.5.2. The effect of repetition on execution time 
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cache hits |R| = 10K tuples, 100 input tuples
available memory: 10% x |R|,  noise:10%

0

2
4

6
8

10
12

14
16

18

0% 10% 20%

repetition r%

ti
m

e 
(s

ec
)

 

execution time |R| = 10K tuples, 1000 input tuples
available memory: 10% x |R|,  noise:10%

0

20

40

60

80

0% 10% 20%

repetition r%

tim
e 

(s
ec

)

 

cache hits |R| = 10K tuples, 1000 input tuples
available memory: 10% x |R|,  noise:10%

0
2
4
6
8

10
12
14
16
18

0% 10% 20%

repetition r%

ti
m

e 
(s

ec
)

 

Fig. 4.2. Effect of Repetition on Execution time 

The repetition of incoming tuples decreases the execution time. As shown in Fig. 4.2, 

repetition leads to more successful cache hits, thus, avoiding I/O activities.  
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4.5.3. The effect of available memory on execution time 
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Fig. 4.3. Effect of Available Memory on Execution Time 

 

We have experimented with three different budgets of memory. From Fig. 4.3, we 

conclude that execution time remains stable for available memory 10%, 15% and 20% 

of reference table size. 
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4.5.4. The effect of reference table size on execution time 
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Fig. 4.4. Effect of Reference Table Size on Execution Time 

As shown in Fig. 4.4, execution time is clearly affected by the reference table size. 

More specifically, as the reference table size increases, the execution time increases 

too. We note that for 50K and 100K reference tuples the execution time is slightly 

different, whereas for 10K reference tuples, execution time is significantly less. 

 

In all cases though, the increase in execution time is sublinear and this is probably due 

to the effect of the trie. 
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4.5.5. Comparison with the state-of-the art method 

 

For reference table size 10000 tuples, variant values for repetition of input tuples, 

available memory, noise level and stream size, the execution time is shown in        

Fig. 4.5 and Fig. 4.6. 
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Fig. 4.5. Execution Time (|R|=10K tuples, variant repetition - available memory) 
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Fig. 4.6. Execution Time (|R|=10K tuples, variant repetition - available memory) 

For reference table size 100000 tuples, variant values for repetition of input tuples, 

available memory, noise level and stream size, the execution time is shown in         

Fig. 4.7. 
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Fig. 4.7. Execution Time (|R|=100K tuples, , variant repetition - available memory) 

We observe that our method is sensitive to the input stream size (Fig. 4.5, Fig. 4.6 and 

Fig. 4.7). More specifically, our method outperforms the state-of-the-art methods 

when the input stream does not exceed a specific size. This occurs due to the time 

needed for maintaining the qgram trie in main memory. For large streams and great 

percentage of repetition, our method works as efficiently as the state-of-the-art 

method. That means that many input tuples are already cached in main memory and 

the whole procedure is accelerated avoiding redundant I/O activities. 

4.6. Precision of classification 

 

In this paragraph we present the precision of classification of both methods, according 

to the three scenarios described in the previous paragraph. The following graphical 

representations show the effect of the variant parameters on the precision of 
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classification. More specifically, for each scenario we measure the number of correct 

matches (category existing), the number of correct classifications for new tuples 

(category new) and the number of not resolved tuples. 

4.6.1. Effect of noise on precision of classification 
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Fig. 4.8. Precision (|R|=10K tuples, repetition 10%, available memory 10%) 

Fig. 4.8 depicts the sensitivity of our method to noise. For 20% noise level, the 

number of not resolved input tuples is increased, whereas the number of matches for 

existing tuples is decreasing. For smallest amounts of noise, the precision of 

classification remains stable. For appropriate values of similarity thresholds, there are 

no misclassifications of input tuples. Specifically, a dirty input tuple is not identified 
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as a new record and a new tuple is not approximately matched with an existing 

reference tuple. The effect of similarity thresholds on classification is described in 

detail in section 4.6.3. 

4.6.2. Effect of repetition on precision of classification 
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Fig. 4.9. Precision (|R|=10K tuples, noise 10%, available memory 10%) 

We observe that repetition of incoming tuples does not affect the precision of 

classification (Fig. 4.9). 
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4.6.3. Effect of similarity thresholds on precision of classification 

 

The precision of classification is greatly affected by the selection of threshold values. 

Changing the threshold value thres_new for determining an input tuple as a new tuple, 

we realize that the classification results change. In Fig. 4.10, we represent the 

classification results for thres_new equal to 0.2 and 0.5. We also represent the true 

classification for the specific input stream. 
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Fig. 4.10. Effect of Threshold Values on Precision 
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We realize that setting threshold thres_new to 0.5, affects the proper classification of 

input tuples. More specifically, dirty input tuples having maximum similarity value 

under this threshold are misclassified, because they are identified as new records. To 

visualize this erroneous classification, we depict the number of misclassified input 

tuples in the Fig. 4.11. 
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Fig. 4.11. Misclassifications of Dirty Input Tuples as New Records 

4.6.4. Comparison with the state-of-the-art method 

 

For reference table size 10000 tuples, variant values for repetition of input tuples, 

available memory, noise level and stream size, the precision of classification is shown 

in Fig. 4.12 and Fig 4.13. 
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Fig. 4.12. Precision (|R|=10K tuples, , variant repetition - available memory) 
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Fig. 4.13. Precision (|R|=10K tuples, , variant repetition - available memory) 

For reference table size 100000 tuples, variant values for repetition of input tuples, 

available memory, noise level and stream size, the precision of classification is shown 

in Fig. 4.14. 
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Fig. 4.14. Precision (|R|=100K tuples, , variant repetition - available memory) 

We observe that our method outperforms the state-of-the-art method in the precision 

of classification for any reference table and input stream size (Fig. 4.12, Fig. 4.13 and 

Fig. 4.14). This occurs due to the fact that Word ETI holds more information about 

the reference tuples leading to more precise classification.  

4.7. Memory Consumption 

 

In this paragraph we present the memory consumption of our method. More 

specifically, we depict the main memory needed for the execution of specific 

experiments.  

 

For reference table 100000 tuples and available memory 10% the maximum memory 

according to different noise levels is shown in Fig. 4.15. 
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Fig. 4.15. Maximum Memory (|R|=100K tuples, repetition 10%, available memory 
10%) 
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From the graphical representations it is obvious that the maximum memory 

consumption remains stable and is independent to noise. This occurs due to the 

pruning operation on qgram trie, which is applied for keeping its size fixed. For a 

better visualization of the memory consumption, we depict the memory amounts 

needed at runtime in Fig. 4.16.   
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Fig. 4.16. Memory at Runtime (|R|=100K tuples, noise 10%, repetition 10%, available 
memory 10%) 
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CHAPTER 5. CONCLUSIONS 

 

5.1. Conclusions – Summary 

5.2.  Future Work 

 

5.1. Conclusions – Summary 

 

The problem we have dealt with was the approximate matching of reference data. Our 

approach is associated with the implementation of an effective method for on-line 

detecting similarity between input and reference records. More specifically, we have 

proposed on a cleaning procedure that classifies a stream of incoming tuples, before 

their insertion to a reference table, as existing or not existing reference tuples.  

 

Our approach is based on a structure called Word Index, which is a table holding 

information about the attribute values stored in the reference table. This structure is 

used for the retrieval of reference tuples that probably match input tuples according to 

qgram similarity.  

 

Moreover, we have proposed a trie structure called Qgram Trie that is maintained in 

main memory and is used for the caching of the frequently retrieved attribute values. 

This way, we avoid redundant I/O activities and accelerated the whole procedure. 

Additionally, we have applied the LRU algorithm as a replacement policy in case the 

size of trie exceeds a specific percentage of main memory. Using this replacement 

policy we assured that the size of trie was kept fixed and contained all the recently 

accessed attribute values. 
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Our experiments have indicated that:  

• Our method outperforms the state-of-the-art method in precision for any noise 

level 

• The precision of classification can be significantly improved using the Word 

ETI 

• The execution time is improved when the streaming data contain frequent 

input tuples 

• Our method slows down in the case of large streams, for main memory 

maintenance tasks 

• The selection of appropriate similarity thresholds is crucial for the precision of 

classification in terms of misclassified tuples. 

5.2. Future Work 

 

As already mentioned in previous chapters, the main target of our method was to 

effectively classify a stream of input tuples before their insertion to a table holding 

valid tuples. We have implemented the qgram trie structure in order to cache frequent 

input tuples and avoid redundant I/O activities. An interesting topic for future work is 

the qgram trie space optimization. Specifically, it would be interesting to develop a 

new procedure for building the trie in main memory, in order to avoid the repetition of 

information and cache more valid tuples. The specific trie described in Section 3.3.2 

encapsulates a set of frequent tid lists. However, since a trie node contains its own tid 

list, it is obvious that nodes belonging to the same branch hold the same information 

about reference tids. Therefore, a compression procedure can be implemented using 

appropriate algorithms for optimization of the overall size of the trie. 
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