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EKTENHX IIEPIAHYH XTA EAAHNIKA

Iodvvng Kpoupddog tov Evayyéhov kot te F'ewpyiag. MSc, Tuqua TTAnpogopikig,
[Mavemomuio Iooavviveov, Todviog, 2008. Approximate Joins for Relational Data.
Empiénovtag: [ovayidtg Bacileliddng.

e plo oyxeolokn Pacn dedopévov ouyvd mapatnpeiton 1 dmapén peydiov mAnbovg
EYYPOY®Y, Ol ONOIEG OVAPEPOVTIOL OTNV 1010 OVIOTNTO, OAAG OVOTOPICTOVIOL UE
SpopeTikd Tpdémo. To GUYKEKPYEVO  QOIVOUEVO, UTOPEL Vo o@eiletol o€
TUTOYPAPIKA AN, €lte oTn ¥pMon MOWIA®V TPOT®V Y10 TNV KATAXDPNON KATOHG
oAopOUNTIKAG TIUAG. XUVERMG, M €0PecT TV OHOlwV  gyypaemv Beswpeiton
emPefAnuévn, Wwitepa O6tav gpapudletar oe pio Pdon dedopévav mov Oratnpel
peydlo dyko dedoUEV@V.

X ovykekpuévn epyocio mapovoidlovpe pio dwadikacio, 1 omoio. omoTEAEl
eméxTaon piog amd TG KLPIUPYES TEXVIKEG TPOCGEYYIOTIKNG E€VPECTG SMAOTLT®V
gyypapmv. AoBgiong piog faong dedopévev mov amoteleital amd Eykvpo dedopéva,
HE TN XPNOM TNG OLYKEKPIUEVNG TEYVIKNG, KAOe €10epyOLeEVT] €yypaon E&ite
avtiotoyileton o€ KAmolo vVIapYovca £YKupn £Yypoen, eite tn yopaktnpiletol og véa
gyypoon. H mpotewvduevn teyvikn YPMOILOTOlEl Evov OmOTEAESUATIKO adyopiOpo
€0PECNC VIIOYNPLBY EYYPAPDV, Y10 TIC 0Toieg VITOAOYILETOL TO TOGOGTO OUOLOTNTOG
HE TNV €16epyOUeEV] €YYpapr] PACEL GUYKEKPWEVOV GUVOPTNCEDV opototnToc. H
GUVOMKT Ol d1KOGI0L EMTOYVVETOL HE TN YPNON OOU®V OedOUEVOV, Ol OTOiEg
STNPOVVTIOL OTN UVALN Kol TEPIEXOVV TIC EYYPOUOES TOV YopakTNpilovial cuyva wg
VIOYNQLEG OLOLEG EYYPOQPEC. TEAOG, TapatiBevTol TEWPANATIKA OTOTEAECUATO, OO TNV
EPAPLOYN TNG TPOTEWVOUEVIG TEXVIKNG MOG KOl TAPOLGLALETOL Uio GUYKPLTIKT UEAETT
TOV ATOTELEGUATOV LE VIIAPYOVGES TEYVIKEC.
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ABSTRACT

Krommydas, loannis, Evagelos, Georgia. MSc, Comp8eience Department,
University of loannina, Greece. June, 2008. Apprate Joins for Relational Data.
Thesis Supervisor: Vassiliadis Panos.

Relational databases often contain duplicate dataes. This may occur due to a
variety of reasons, such as typographical errordtipte conventions for recording
database fields or other noise sources. Duplicatecton is a crucial procedure,
especially for large databases.

In this thesis, we present a method that extendsstate-of-the-art method for

duplicate detection. Given a database holding \@diz information, we classify each
input tuple as a new tuple, or as an existing tuplee proposed method uses an
effective algorithm for determining a set of carad& reference tuples. For each
candidate reference tuple, we use appropriate agityilmetrics in order to decide

whether the input tuple matches a reference tdjle.whole procedure is accelerated
via trie data structures for caching the frequemmtut tuples. Finally, we present a
number of experiments evaluating the effectivenesour method and state a
comparative study with the state-of-the-art method.
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CHAPTER 1. INTRODUCTION

The efficiency of every information processing adtructure is greatly affected by
the quality of the data residing in its databas®sr data quality is the result of a
variety of reasons, including data entry errorg.(elyping mistakes), poor integrity
constraints and multiple conventions for recorddajabase fields (e.g., company
names, addresses). As a result, data cleaninggessab the center of research interest
in recent years [KoMS04].

Data cleaning is critical for many industries owerwide variety of applications,
including marketing communications, commercial lehedding, customer matching,
merging information systems, medical records dtcs bften studied in association
with data warehousing, data mining and databasegiation. Especially, data

warehousing requires and provides extensive supmodata cleaning.

One of the most important tasks in data cleanirtg de-duplicate records. Duplicate
detection is the process of identifying differemtnaultiple records that refer to one
unique real-world entity or object. Given a dirtatdbase, the standard method to
detect exact duplicates is to sort the databasetl@en check if the neighboring
records are identical. In order to detect inexagdlidates, the most reliable way is to
compare every record with every other record, whakes N(N — 1)/2 comparisons,
where N is the number of records in the databaseeder, this is infeasible when N
is large [SuLS02].

To ensure high data quality, data warehouses nalgtate and clean incoming data

records from external sources. All tables that araintained within such data



warehouses and which contain clean records aredcadference tablesin many
situations, clean records must match acceptablerdscin reference tables. For
example, product name and description fields ialassrecord from a distributor must

match the pre-recorded name and description fialdsproduct reference relation.

A significant challenge in such a scenario is t@lement an efficient and accurate
fuzzy match operation that can effectively clearnrnmoming record if it fails to match
exactly with any record in the reference relati@GGMO03]. More specifically, it is
crucial to implement a data cleaning method basesimilarities in order to identify
similar reference records. The similarity betweaput and reference records can be
evaluated using a variety of distance functionsaAssult, it is critical to choose the

distance function that best suits the domain aadplication.

The problem is straightforward for numerical valulest still remains very hard for
string values and combinations of them in an attapsuch as names (first-, middle-,
last- name), addresses, etc. One of the most consoarces of mismatches in
database entries is the typographical variationsswing data. For example,
considering company names, it is common to see rddwmft’, “Micorsoft”,

“Microsoft Inc.” and “Microsoft Corporation” beingised in different records to

represent the same entity.

Duplicate detection typically relies on string campon techniques to deal with
typographical variations. In such a scenario, aptmequality or even substring
comparison, for example, on names or addressesuilproperly identify them as
being the same entity, leading to a variety of pt#é¢ problems. Consequently,
approximate matching for detecting inexact dupésgpresents a challenge between

accuracy, efficiency and storage overheads as well.

Multiple methods have been developed for this tastk each method works well for
particular types of errors. Those methods defindistance metric (edit distance,
affine gap distance, qgram distance, jaro distanegric etc.) and an appropriate

matching threshold in order to match similar resord



Therefore, the problem we focus on is to clearreast of incoming records, before
their insertion to a reference table. Our approash associated with the
implementation of an effective method for on-liretetting similarity between input
and reference records. Specifically, we check eattfibute of the input record

separately, using appropriate structures for actishipg effective cleaning.

We take advantage of a structure calMbrd Index,which is a table holding
information about the attribute values stored ia teference table. This structure is
used for the retrieval of reference tuples thabpbly match input tuples according to
ggram similarity. In parallel, we maintain in mamemory a trie structure called
Qgram Trie which caches the retrieved attribute values. Mgprecifically, this trie
holds all the candidate attribute values that enda to the input value. According to
a matching procedure, matching scores betweemthé tuple and reference tuples
are stored in a score table. The set of referared whose similarity with the input

word is above a similarity threshold is returned.

Additionally, we apply the LRU algorithm as a reg@anent policy in case the size of
trie exceeds a specific percentage of main memdoyre particularly, updating trie
by inserting new attribute values to it, leads tie pruning of attribute values that
were not recently accessed during the matchingegoure. Using this replacement
policy we assure that the size of trie is keptdixad contains all the recent accessed

attribute values.

The main contributions of this thesis could be swamped as follows:
* Introduction of an effective approximate matchingthod
» Development of algorithms using appropriate steguor handling streams
of incoming records

* Implementation of experiments using variant paramsetf the datasets

The remaining part of this thesis is organizedive fchapters. The second chapter
contains the related work that is associated with groblem we deal. In the third

chapter, firstly, we describe in detail the dupicaletection problem. Then, we



represent the state-of-the-art method that is eyepldo the specific problem. In the
third chapter, we state our approach including taitkel description of the used
structures, the matching algorithm and replacerpelity we adopt when the used
structures need to be updated. In the fourth chapte present a number of
experiments in order to evaluate the efficiencyof approach and compare it with
the state-of-the-art method. Finally, we conclude kesults and present topics for
future research in fifth chapter.



CHAPTER 2. RELATED WORK

2.1. Frequent Itemsets

2.2. Fault-tolerant Frequent ltemsets
2.3. Dense Frequent Itemsets

2.4. Association Rules

2.5. Maintenance of Association Rules

2.6. Experimental Methodology of Existing Methods

2.1. Frequent Itemsets

Frequent itemsets play an essential role in martg daining tasks that involve

techniques associated with the finding of intergspatterns from databases.

The set of that kind of patterns includes assamiatules, correlations, sequences,
episodes, classifiers and many others. The probtértes mining frequent itemsets or
(b) association rules are considered as some ofntb& popular and challenging
tasks. A great deal of attention is given to bdtthose problems due to the fact that

they are encountered in real world problems suaghaket analysis.

Many algorithms based on different techniques aopg@sed for the solution of both
problems. Those algorithms are evaluated accorthntheir performance. In the

following, we will employ the definitions of frequé itemsets, the notion of closed



and maximal frequent itemsets and the definitiorfrelquent pattern trees (FP-trees).

Finally, we refer to some of the frequent itemseting methods.

2.1.1. Frequent Itemsets Definition

According to [Goet03], given a setivémsJ, every subseX of I is called aritemset
or ak-itemsetif it contains k items. AtransactionT over | contains dransaction

identifier tid and an itemset | and is saiddopportan itemset XO 7, if X O I. A

transaction databasé over ] is a set of transactions over

The itemsets can be described by measures subkiasaver, supportor frequency
Thecoverof an itemset X is a set that includes all thentdiers of transactions it
that support X and the measuresapportis used for the counting of the transactions
that belong in the cover of the itemset. Finalig frequencyof an itemset represents
its probability of occurrence in a transaction &rig in D. Given the measure of

frequency, one itemset is calléquentif its support is greater than a given absolute

minimal support thresholel,ps

Taking into account the definitions described abhakieltemset Mining problensan

be clearly defined as follows:

“Given a set of items/, a transaction database” over Zand a minimal support

thresholdg, find the collection of frequent itemsets.”

Considering the following transaction databasecWwh$ shown in Fig. 2.1, the total

number of frequent itemsets that can extracteépsoted in Fig 2.2.



T = {beer, chips, pizza, wine}

tid X

100 | {beer, chips, wine}
200 {beer, chips}
300 {pizza, wine}
400 {chips, pizza}

Fig. 2.1. An example transaction databBs&0et03]

Ttemset Cover Support | Frequency
! 7100, 200, 300, 400] | 4 100%
{beer} {100,200} 2 50%
{chips} {100,200,400} 3 75%
{pizza} {300,400} 2 50%
{wine} {100,300} 2 50%
{beer, chips} {100,200} 2 50%
{beer, wine} {100} 1 25%
{chips, pizza} {400} 1 25%
{chips, wine} {100} 1 25%
{pizza, wine} {300} 1 25%
{beer, chips, wine} | {100} 1 25%

Fig. 2.2. Frequent Itemsets and their suppoR {©aps= 1) [Goet03]

2.1.2. Closed and Maximal Frequent Itemsets

In practice, the set of frequent itemsets produoech a transaction database can be
very large. Consequently, it is necessary to finday to replace the full set of all
frequent itemsets with a small representative suliseemsets from which all other
frequent itemsets can be produced. Maximal andgdlfrequent itemsets are used for

such a representation.

A maximal frequent itemseé$ defined as a frequent itemset for which nonetof
immediate supersets is frequent, whereas an iteiise called closed frequent
itemsetif none of its immediate supersets has the sampostupount as< and its

support is greater or equal to the minimal supgoeshold.

According to the definitions stated above soméhefftequent itemsets in Fig. 2.2 can
be characterised either as maximal or closed. Mpeifically, theset of maximal

frequent itemsets {{chips, pizza}, {pizza, wine}, {beer, chips, we}} and theset of



closed frequent itemseis {{chips}, {pizza}, {wine}, {beer, chips}, {chips pizza},
{pizza, wine}, {beer, chips, wine}}. It is obviouthat all maximal frequent itemsets

are closed as well.

2.1.3. Frequent Pattern Tree (FP-tree)

The notion of frequent-pattern trees (FP-treegs®ociated with the construction of a
compact data structure, which is in fact an extdngesfix-tree structure used for
storing compressed, crucial information about fesgupatterns. Many frequent
pattern mining methods are based upon such stasstumplementing efficient

frequent pattern mining techniques.

Observe the transaction database of Fig. 2.3, asguthat the minimal support

threshold is set to be 3. The following observatioan be made:

TID Items bought (Ordered) frequent items
100 fia,c.d g.i,m, p fic,a,m,p

200 a,b,c,f.l,mo fie.ab,m

300 b, f h j.o b

400 b,e ks, p c, b, p

500 a, f.c,el,pmn fic,a,m, p

Fig. 2.3. Transaction Database [HPYMO01]

1. Since only the frequent items play a role in frequent-pattern mining
procedure, it is necessary to perform one scametransaction database in
order to identify the set of frequent items, imterof the obtained frequency
count.

2. If the set of frequent items of each transactian be stored in some compact
structure, it may be possible to avoid repeatedigneing the original

transaction database.



3. If multiple transactions share a set of frequérns, it may be possible to
merge the shared sets with the number of occurserzpstered as count. It is
easy to check whether two sets are identical ifftbguent items in all of the
transactions are listed according to a fixed order.

4. If two transactions share a common prefix, agiogy to some sorted order of
frequent items, the shared parts can be merged wsia prefix structure as
long as the count is registered properly. If thegérent items are sorted in their
frequency descending order, there are better ceaiheg more prefix strings

can be shared.

An FP-tree can be defined as follows [HPYMO1]:

1. An FP-tree consists of one root labeled as "nalket of item-prefix subtrees
as the children of the root, and a frequent-iteraelee table.

2. Each node in the item-prefix subtree consistthode fields: (a) item-name,
(b) count, and (c) node-link, where item-name rtegswhich item this node
represents, count registers the number of tramsectiepresented by the
portion of the path reaching this node, and nodk4inks to the next node in

the FP-tree carrying the same item-name, or ntitigfe is none.

Each entry in the frequent-item-header table ctsmsistwo fields: (a) the item-name
and (b) the head of node-link, which is a pointeinpng to the first node in the FP-

tree carrying the item-name.

Based on the observations listed previously, thesttaction of the FP-tree that
corresponds with the example transaction datalfége 2.3) can be implemented as

follows:

First, a scan of the database derives a list guieat items< (f :4), (c:4), (a:3), (b:3),
(m:3), (p:3) > where the number after “:” indicates the itemsup, in which items
are ordered in frequency descending order. Thisrorg is important since each path

of a tree will follow this order.
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Second, the root of a tree is created and labelgd ‘mull”. The FP-tree is

constructed as follows by scanning one more tiredrdnsaction database:

1.

The scan of the first transaction leads to tivestruction of the first branch
of the treex (f :1), (c:1), (a:1), (m:1), (p:1) >in which the frequent items
are listed according to the their order in thedistrequent items.

For the second transaction, since its ordereguint item lisk f, c, a, b,
m > shares a common prefif, ¢, a > with the existing patk f, c, a, m,
p >, the count of each node along the prefix is in@etad by 1, and one
new node(b:1) is created and linked as a child(af2) and another new
node(m:1)is created and linked as the child(bfl).

For the third transaction, since its frequestnitist< f, b > shares only the
node < f > with the f -prefix subtree, f's count is increnteth by 1, and a
new nodgb:1) is created and linked as a child(bf3).

The scan of the fourth transaction leads tocthrestruction of the second
branch of the trees (c:1), (b:1), (p:1) >

For the last transaction, since its frequennifest < f, ¢, a, m, p >is
identical to the first one, the path is shared witd count of each node

along the path incremented by 1.

To facilitate tree traversal, an item header tableuilt in which each item points to

its first occurrence in the tree via a node-linkodds with the same item-name are

linked in sequence via such node-links. After saagall the transactions, the tree,

together with the associated node-links, is degicierig. 2.4.

Header table

head of
iterm node-links

'UE(TUO"*:
i
t
'
1

Fig. 2.4. FP-tree Structure [HPYMO1]
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2.1.4. Frequent Itemset Mining Methods
Frequent itemset mining methods can be categoiizegdo individual categories,

Apriori-based methods and Frequent-pattern treedasethods. The methods that

have been developed in both categories are listduki following sections.

2.1.4.1. Apriori-based methods

Apriori-based methods take advantage of the antiatame Apriori principle which

can be expressed as follows:

“if any pattern of length k is not frequent in tbatabase, itsuper-pattern of length
(k+1) can never be frequentfHPYMO04]

The essential idea is to iteratively generate #teo$ candidate patterns of length
(k+1) from the set of frequent-patterns of lengthfer k > 1) and check their

corresponding occurrence frequencies in the da¢abas

Agrawal et al. in [AgSr94] proposed the Apriori atithm, which exploits the
monotonicity property of the support of itemsetsgé&ther with the proposal of the
Apriori algorithm, Agrawal et al. in [AgSr94] proped two other algorithms,
AprioriTid and AprioriHybrid. The AprioriTid algothm reduces the time needed for
the support counting procedure by iteratively replg every transaction in the

database by the set of candidate itemsets that otthat transaction.

Shortly after the proposal of the Apriori algorittndescribed before, Park et al.
proposed in [PaCY95] another optimization, calledHFD (Direct Hashing and
Pruning) to reduce the number of candidate item$xaising the kth iteration, when
the supports of all candidate k-itemsets are caubtescanning the database, DHP
already gathers information about candidate itesnegsize k + 1 in such a way that

all (k + 1)-subsets of each transaction after sproaing are hashed to a hash table.



12

The DIC algorithm, proposed by Brin et al. in [BM®1)], tries to reduce the number
of passes over the database by dividing the dagabés intervals of a specific size.
First, all candidate patterns of size 1 are gerdrathe supports of the candidate sets
are then counted over the first interval of thealase. Based on these supports, a new
candidate pattern of size 2 is already generatatl df its subsets are already known
to be frequent, and its support is counted ovedtdtabase together with the patterns
of size 1. In general, after every interval, caatkd patterns are generated and
counted.

2.1.4.2. Frequent-pattern tree based methods

Frequent-pattern tree based methods use the comdpéatstructure of frequent-
pattern trees (FP-tree), which was described pusiyo The FP-growth algorithm
proposed by Han et al. in [HPYMO04] is the most vkelbwn FP-tree based algorithm
that faces the frequent itemset mining problem. FRegrowth algorithm stores the
actual transactions from the database within antré&®- facilitating the finding

procedure of all frequent items’ support.

2.2. Fault-tolerant Frequent Itemsets

Real-world data tend to be dirty. As a result, discovery of knowledge over large
real-world data requires the development of fanlkfant data mining methods. The
goal of those methods is the extraction of apprexémand more general fault-tolerant

patterns from database, instead of finding exattépss.

On the other hand, frequent pattern mining oftemegates a large number of frequent
itemsets, which reduces not only the efficiency, ddao the effectiveness of mining.

This happens due to the fact that users have ttéhsifugh a large number of mined

results to find the useful ones. Therefore, theai¥eness of frequent pattern mining
is improved by fault-tolerant frequent pattern muni
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An itemset can be characterized aspproximate frequent itemsié& percentage of
its items is frequent in the transaction databasea result, all fault-tolerant frequent
itemsets can be produced by using this slight edlar of the frequent itemsets’

notion.

Consider the transaction database shown in Figif2ls¢ minimal support threshold

is set to 3, there exists no pattern with more thwamitems, as there are many short
patterns, with low support counts. However, longpproximate frequent patterns
with support count equal to 3 or more can be et¢chérom such a database. For

example, transactions 10, 30 and 50 contain fotiobfive items: a, b, ¢, e and f.

Transaction 1D Ilems
10 boee, f
20 d.e g
30 a, b, o, e
40 a,d, f
50 a,b e, [

Fig. 2.5. Transaction Database TDB [Peth01]

2.2.1. Fault-tolerant Frequent Itemsets Definition

Given a fault toleranced(d > 0) and an itemset P such tﬁ@b J, a transactioi =
(tid, X) is said toFT-containitemset P if and only if there exisB [ P such that
P'OX and |P|=(P|-6), which is equivalent t&P n X| = (|P|-3). The number of
transactions in a database FT-containing itemset €alled theFT-supportof P,

denoted asupX) .

The set of transactions FT-containing itemses called the=T-bodyand is denoted
as B(X). Given a frequent-item support threshahih_sufi®™ and an FT-support

thresholdmin_sup’, an itemseK is called &ault-tolerant frequent pattefror anFT-

pattern if and only if:
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1. suX)2 min_sup" and

2. for each itemx 0 X,  supy,,(x)=min_suf*", where sup;,,(x) is the

number of transactions iB(X ) containing itenx.

The frequent-item support threshold is used terfitiut infrequent items, whereas FT-
support threshold is used to capture frequent ppeti@ the sense of allowing at most

® mismatches.

Apart from the two thresholds mentioned above dlaso exists theength threshold
denoted asnin_| (min_| > &), which is applied for having as an output only FT-

patterns consisting of at leastn_|litems.

An item x is called @lobal frequent itenif and only if sugX )= min_suf®™, which
means that it appears in more than min"&upansactions. It holds that FT-patterns

contain only global frequent items asddX )= suX), for any itemseX.

Considering the definitions listed above, theult-Tolerant ltemset Mining Problem
can be defined as follows:

“Given a transaction database, a fault tolerancefrequent-item support threshold,
an FT-support threshold and a length threshold,gheblem of fault-tolerant frequent
pattern mining is to find the complete set of FTigras passing the length
threshold.” [Peth01]

Returning to the transaction database TDB show#ign2.5 and setting the frequent-
item support thresholthin_sufi®™ = 2, the FT-support threshotdin_sup’ = 3 and

the fault-tolerancé = 1, which means that only one mismatch is allgvitetablds that
for itemsetX = abcef B(X) includes transactions 10, 30 and 50, each of th&m

containsX. Also, each item irX appears in at least two transactionsBigX). As a

result, itemseabcefcan be considered as an FT-frequent pattern.
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A variant of the problem described above isthe K Fault-Tolerant ltemset Mining
problem which requires to find only the top-K FT-frequdtemsets according to

their fault-tolerant frequency.

2.2.2. Fault-tolerant Frequent Iltemset Mining Madl

2.2.2.1. Aprioribasednethods

Apriori-based fault-tolerant frequent itemset mmimethods extend the Apriori
heuristic in order to face the fault-tolerant frequitemset mining problem and are

based in the heuristic that follows up:

“if X (|X|> d) is not an FT-pattern, then none of its supergets FT-pattern, wheré

is the fault tolerance”
Pei et al. based on this extended heuristic, impfeed in [PeTHO1] the FT-Apriori

algorithm (Fault-Tolerant Apriori algorithm), whictackles efficiently the problem

mentioned before.

2.2.2.2. Binary Vectobasednethods

Those methods are based on design of binary vedaltsd Appearing Vectorshat
are used for indicating the distribution of candédtault-tolerant frequent itemsets in
the transaction database.

Koh et al. in [KoYo05] proposed a vector-based atgm, called VB-FT-Mine
(Vector-Based Fault-Tolerant frequent pattern Mipinused for speeding up the

process of mining fault-tolerant frequent patterns.
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Yang et al., proposed in [YaFBO01] the GGA algoritf@reedy Growing Algorithm),

which exploits the sparseness of the underlying datfind large itemsets that are
correlated over database records. They took adganté the transaction coverage
notion, which allowed them to extend the algoritand view it as a fast clustering

algorithm for discovering segments of similar traetgons in binary sparse data.

2.3. Dense Frequent ltemsets

If an itemset is found to be frequent, all of isms must co-occur sufficiently often,
which is rare in real-world data. A generalizatiohfrequent itemsets is given by
replacing the requirement of perfect co-occurrdmeceartial co-occurrence, requiring
that an itemset has at least a proportion diHtems present in at least a proportfon
of database rows, wherkeis the ¢-approximate frequencynd ¢ represents the

percentage of fault tolerance

This generalization, which was described in Secfidhleads to two problems. The
first one has to do with the generation of manyrapimnately frequent itemsets
without meaningful information, whereas the seconé is associated with the fact
that the usual kind of itemset mining algorithmiel Apriori, are not easily

generalized to the new task [SeMa04].

Those problems can be illustrated taking into aiersition the two example
databases (a) and (b) of Fig. 2.6.

..\
a]

B C D

0o o0 0 1 0 0
0o o0 0 0 1 0
0o 0 0 o 0 1
o 0o 0 a 1 1 0
o o0 0 a 1 0 1
o o 0 a o 1 1

S
[
s}
el W e

R .

(a) (b)

Fig. 2.6. Two Example Databases [SeMa04]
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Fig. 2.6 (a) can be used for the description of firet problem. It is obvious that
itemset ABCDE is frequent. However, a multitude of approximatélgquent sets
exist withe = 0.5, such a8 BCFGH ABCDFGH ABCDEFGHetc. and beyond the

fact thatABCDEis frequent, those sets give us no new information

Fig. 2.6 (b) is used for the illustration of theesed problem. Items&BCD has 0.5-
approximate frequency 100%, but the approximatguieaecies of its subsets are
lower. For example, the approximate frequencyXas 50%, forAB is 83% and for
ABCis 67%.

Thus a set can be approximately frequent havingenoiits nontrivial subsets
frequent. This precludes pruning the candidate setmin the way that Apriori and

other algorithms do.

The definition of dense itemsets aids to the avwideof both problems.

2.3.1. DensdtemsetsDefinition

An itemsetX is (o, d)-dense given two parameters andd, if for any subset [ X,
there is a sat, of ¢ database rows such that in the subdatabase ddfynédndr, at

least a fractiod of items are present.

A binary database DB- <R, r> consists of a finite s& of attributes also known as

items and a finite multiset= {t1, to, . . ., k} of transactionswhich are subsets &

The frequencyof an itemsetX 0 R in a databas®B = <R, r> is the number of
transactions that include all the attributesXpfwhich can be typically defined as
freq(X) = |{tr |t IX}.

Theweak densitpf an itemseX O R, which can noted asdens(X, r)equals to:

wdengX,r) ~2olXng

[X|
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and represents the average fraction of items tlegpr@sent in a set of transactions.
Given a numbew between zero and the size of the relation, ileak density at

supports of X can be defined as well and is equal to:

wdensg, X, r) = maxwdengX,r'),

where the maximum is taken over @élement submultisets of r.

Taking into account the definitions given above,it@mset can be characterized as
weakly ¢, d)-dense if its weak density at suppo#t exceeds’, wheres and o are
predefined parameters.

The density deng(X) of an itemseK at support levet is the minimum of the weak

densities of all non-empty subsetsXpfwhich can be formally described as follows:
dengo, X) = min wdengo,Y)

Taking advantage of the definition stated aboveif@nsetX can be characterized as

(strongly) ¢, 0)-denseif it holds thatdensg,X) > 6.

Consider the example database of Fig. 2.7. Theastgpat which the listed sets can

be characterized ageakly ¢, 0.5)-densere illustrated in Fig. 2.8.

0
0
0
0

0
0
0
1]
1]
0 0
0

==l =R =E= = A
co—=r~rrRroorRoo|>
= e = R R R |

SO oo o~~~ =&

Fig. 2.7. Example Database [SeMa04]
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set  support

A 10

B i

AB

BC
ABC
BCD
ABCD
ABCDE
BCDEF
ABCDEF

(v

=] OO0 00 QO O

2 I = JTEN

Fig. 2.8. Supports (weakly ©, 0.5)-dense listed sets) [SeMa04]

2.3.2. Dense Itemsets Mining Methods

Existing algorithms find all dense itemsets fromg&collections of binary data and

are based on the familiar A-priori idea:

“for each h> 1, given dense sets of size h, form candidateo$etize h+1, and then

do a database pass to verify which candidates indedisfy the density condition”.

Seppanen et al. in [SeMa04] proposed the Denseehgsithm, which performs a
levelwise search to find all dense itemsets and lmarextended into the variant
problem of finding thek densest setsvith a given support, or thie best supported

setswith a given density.

2.4. Association Rules

Mining of association ruless an important data mining problem. Mining asation
rules from a transaction database involves therfqmof rules such asA customer
who buys item X and item Y is also likely to beynitZ in the same transaction”,

whereX, Y andZ are initially unknown.
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2.4.1. Association Rule Mining Problem

The association rule mining problem can be decoegho#o two subproblems:
1. Find out all frequent itemsets, which are the sétisems that are contained in
a sufficiently number of transactions, with respézta minimum support
threshold
2. From the set of frequent itemsets found, find diuha association rules that

have a confidence value exceeding a minimum cordethreshold

From the two problems mentioned above, the secomdsstraightforward, whereas

the first one has been a subject of many majoarebesfforts [ChLK97].

Let | = {i, i, ...,i} be the set of items anD the transaction database. For each

transactionT of the transaction database it holds thatI.

An association rulecan be characterized as an implication of the f&rm Y, where

XOlLYOland Xn'Y =@.

An association rulX = Y holds in the databaggwith confidence c%if no less than
c% of the transactions iD that containX, also contairlY. An association rulX = Y

hassupport s%in D, if o, ;= |D| x s%,whereo,  , is the support count of the

itemset XOY.

If s%is the given support threshold, thgsociation rule mining probleis reduced to

the problem of finding the sét= {X | XO | g, > |D| x s% or the setly, where
symbol L, denotes the set of all frequektitemsetsin L, where each k-itemset

contains exactly k items.

The corresponding set of association rules that eteacted from the example
transaction databas#’ in Section 2.1.1 (Fig. 2.1), according to solatiof the

problem described above, is shown in Fig. 2.9.



21

Rule Support | Frequency | Confidence
{beer} = {chips} 2 50% 100%
{beer} = {wine} 1 25% 50%
{chips} = {beer} 2 50% 66%
{pizza} = {chips} 1 25%, 50%
{pizza} = {wine} 1 25% 50%
{wine} = {beer} 1 25% 50%
{wine} = {chips} 1 25% 50%
{wine} = {pizza} 1 25% 50%
{beer, chips} = {wine} 1 25% 50%
{beer, wine} = {chips} 1 25% 100%
{chips, wine} = {beer} 1 25% 100%
{beer} = {chips, wine} 1 25%, 50%
{wine} = {beer, chips} 1 25% 50%

Fig. 2.9. Association Rules and their Support andffdence inrD [Goet03]

2.5. Maintenance of Association Rules

Transaction databases are not static databasesjdgeseveral updates are constantly
being applied to them. More specifically, new relo(transactions) are added to
record purchase activities. Older records in thalukse are deleted from the database
and existing records may be edited or changed, tdueorrections of manual

operational errors or other reasons.

Consequently, new association rules may appe#eidatabase and at the same time,
some existing association rules would become idvalihe problem that arises
involves themaintenance of discovered association rueording to thénsertions

deletionsor modificationsof the transactions in the transaction database.

2.5.1. Update Problem of Association Rules

The update activitiesake place in a transaction datab&séncludeinsertionsand

deletions Also, modification activitiescan be treated as deletions followed by

insertions.A~ denotes theset of deleted transactions/hile AT denotes the set of

newly added transaction3 he updated databasewhich is denoted aB’ equals to
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D' = (D —A") O A*. D™ denotes the set afnchanged transactiorasnd it is equal to

D-=D-A=D'-A*.

The definitions of all the symbols described abave include in Table 2.5.1 that

follows up.
Table 2.1. Definitions of Several Symbols
database Support count of itemse Frequent k-itemsets
\'
A" Oy -
D - -
A Oy -
D=A0D ox Lk
D'=DOA" c'x L'k

The new support count of an itemsein the updated databagg is defined ag’ .

The set of frequent itemsets B is denoted as’, wheread.’, denotes the set of

frequent k-itemsets ih’. The support count of an itemsktin the databasat is

denoted ay anddy is the corresponding support counin

As a result of the previous mining procedure ondliedatabas®, L ands, 0 X 0 L

are known. Consequently, thpdate problentan be defined as follows:

“Find L’ and ¢, 0 X O L’ efficiently, given the knowledge of D, X7, D", AT, L

ands, O X 0OL".

Fig. 2.10 illustrates the deletion of a transactielonging to the depicted transaction

database.
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Transactions: (I = {A4,8,C,D,£})

A {[A B €]
A BC
DS A D '
D 5 5 D
& L

Frequent itemsets (support threshold s = 25%)
inD=A"UD™:

Itemsets(X) |
oy | 3 l 3 ]2

A|B|c|D|AB
[3] 2

Fig. 2.10.A+ =00 [ChLK97]

By observing this transaction database, it is foantithat the original databage
before the deletion of any transaction, containgsafsactions. In this state of the
transaction database, if the support threshol@tisas25% the frequent itemsets that

are extracted tb are those with support count no less thanZb% = 1.25.

The next state of transaction databBseesults from the deletion of transaction (1,

{A, B, E}), which belongs toA-. As a result from this deletion, datab&seonsists of
4 transactions and the frequent itemsets belongithg are those iD’ with support

count no less than425% = 1.

Fig. 2.11 illustrates the insertion of a transatiitto the transaction database.

Transactions: ({ = {4,B,C,D,£})

A {[A B £
A B C
A

D D-

B
c

A C

SIS
S

Frequent itemsets {support threshold s = 25%)
in DY = D™ U At

Itemsets(X) | A| B{C | D |CD
oy [ 227314} 2

Fig. 2.11.A+|> 0 [ChLK97]
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The difference from the previous example is thaaragrom the deletion of
transaction (1, {A, B, E}) from databad® an insertion of transaction (6, {C, D})

takes also place into databdxe

The original transaction database consists ofris@retions. After inserting transaction
(6, {C, D}), which belongs to databage" and deleting transaction (1, {A, B, E}),

which belongs toA-, the resulting updated transaction database densis 5
transactions. Consequently, frequent itemsetd’irare those itemsets D’ with

support count no less thanx®25% = 1.25.

2.5.2. Methods for Maintaining Discovered AssooiatRules

2.5.2.1. Apriori-based methods

Apriori-based methods use the anti-monotone Apipoifciple in order to generate
smaller number of candidates, meanwhile taking athge of knowledge acquired
from a previous mining procedure. Cheung et alGRINW96] proposed the FUP
algorithm, which handles only the case of transacinsertions in the database.
Cheung et al. in [ChLK97] proposed the FURhich handles insertions, as well as

deletions and modifications.

2.5.2.2. Frequent-pattern tree based methods

Frequent-pattern tree based methods are basedeostrtitture of frequent-pattern
trees. Koh et al. in [KoSh04] proposed the AFPIMyoaithm, which handles
insertions, deletions and modifications and adjosteconstructs the structure of the

FP-tree according to the changes that take platteeitransaction database.
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2.6. Field Matching Techniques

Database entries are usually mismatched due togtgphbical variations or errors
within the string data. Multiple techniques havemeeveloped in order to extract the

similarity of strings, taking into considerationtpntial typographical variations.

Some of the field matching techniques, which aredufor data de-duplication

purposes, will be presented in the following paapis.

2.6.1. Character-based similarity metrics

Character-basedsimilarity metrics are designed to deal with tymggrical errors.
The main character-based similarity metrics argp:E@it distance (ii) Affine gap
distance (iii) Smith-Waterman distanc€iv) Jaro distance metriand (v) Q-gram

distance.

The edit distancebetween two stringg; and o, is the minimum number of edit
operations of single characters needed to transtbarstringo; into c,. There are
three types of edit operations: (sert a character into the string, (igeletea
character from the string, and (ilgplaceone character with a different character. In
its simplest form, the cost for each edit transfation is equal to 1. This distance is
also referred to asevenshtein distancéleedleman and Wunsch [NeWu70] modified
the original edit distance model, and allowed fariable costs for different edit

distance operations.

A main string variation includes the truncationtlee shortening of a specific string.
For example, the entitydohn A. Smith” could be written aS8Jonathan Abraham
Smith”. Theaffine gap distancean handle with this problem introducing two extra

operations: (ippen gapand (ii)extend gap

Smith-Waterman distande an extension of the edit and affine gap distandhis

metric considers that mismatches at the beginnimpthe end of strings have lower
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costs than mismatches in the middle, allowing bedtdstring matching. Therefore,
the strings‘Prof. John A. Smith, University of lllincisand“John A. Smith, Prof.”
can match within short distance using the Smith@fkfaain distance, since the

prefixes and suffixes are ignored.

Jaro distancemetric was mainly used for comparison of last arst hames. The Jaro

metric for stringsr; ando, is computed following the next steps:

1) Compute the sting lengths;| and |o|
2) Find the“common characters” cin the two strings; common are all the

charactersn[j] andoy[j] for whichoy[j] = o2[j] and for whichoq[j] = o2[]]
and|i - j| s%minﬂal|,|az|}

3) Find the number of transpositions t; the nunmddegranspositions is computed
as follows: compare thg, common character ia; with the iy, common

character irr,. Each non-matching character is a transposition.

The Jaro comparison value is:

_1f c c  c-t/2
sl )4 o |

The g-gram distances computed using thg@-grams A g-gram is a short character
substring of lengtly of the database strings. The intuition behindube of g-grams
as a foundation for approximate string matchinghast two stringss; and o, are
similar if they share a large number of g-gramgammon. Given a string, its g-

grams are obtained Bgliding” a window of lengtty over the characters of

Letter g-grams, including trigrams, bigrams, andiaigrams, have been used in a
variety of ways in text recognition and spellingrection. One natural extension of g-
grams are the positional g-grams, which also rettoedposition of the g-gram in the
string. Gravano et al. [Grav+01] showed how to pssitional g-grams to locate

efficiently similar strings within a relational ddtase.
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2.6.2. Token-based similarity metrics

Character-based similarity metrics work well fopagraphical errors. However, it is
often the case that typographical conventions leadcarrangement of words (e.g.,
“John Smith” vs.“Smith, John”). In such cases, character-level metrics faikptare

the similarity of the entities. Token-based mettigsto compensate for this problem.

Monge and Elkan [MoEI96] proposed a basic algoritbmmatching text fields based
on atomic strings. An atomic string is a sequen€ealphanumeric characters
delimited by punctuation characters. Two atomimgs match if they are equal, or if
one is the prefix of the other. Based on this alyor, the similarity of two fields is

the number of their matching atomic strings dividad their average number of

atomic strings.

Cohen [Cohe98] described a system naMédiRL that adopts from the information
retrieval the cosine similarity combined with ttigdf weighting scheme to compute
the similarity of two fields. Cohen separates esttings into words and each word

is assigned a weight
u, (w) = log(tf,, +1)llog(idf,, ),

Dl

wheretf , is the number of times thatappears in the field andf is —, wheren,,

w

is the number of records in the databBgat contairw. Thetf.idf weight for a word
w in a field is high ifw appears a large number of times in the field (l&fgg andw
is a sufficiently“rare” term in the database (largdf,). For example, given a set of

company names, infrequent terms such“E@M” or “Sun” will have higher
idf,, values than frequent terms such'‘@srp” . Thecosine similarityof o1 andoy is

defined as
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° u () ,(3)

e G,

sim(o,,0,) =

2

The cosine similarity metric works well for a large varieof entries, and is
insensitive to the location of words, allowing natural word moves savaps. For
example, the cosine similarity metric regatdshn, Smith” as equivalent t6Smith,
John”. Also, introduction of frequent words affects only minimally geilarity of
the two strings due to the lomf weight of the frequent words. For exampléhn

Smith” and“Mr. John Smith” would have similarity close to one.

Unfortunately, this similarity metric does not capture waquelling errors, especially
if they are pervasive and affect many of the words in the strifgsexample, the
strings“Compter Science Departmentind “Deprtment of Computer Scencefill
have zero similarity under this metric. Bilenko et al. [B8¢suggest th&oftTF-IDF
metric to solve this problem. In th®oftTF-IDF metric, pairs of tokens that are
“similar” and not necessarily identical are also considered in the camputé the
cosine similarity. However, the product of the weights for non-idehtoken pairs is

multiplied by the similarity of the token pair, which is lelsart one.

Gravano et al. [GIKS03] extended the¢HIRL system to handle spelling errors by
using g-grams, instead of words, as tokens. In this settimgling error minimally
affects the set of common g-grams of two strings, so the trvings “Gteway
Communications”and “Comunications Gateway’have high similarity under this
metric, despite the block move and the spelling errors in both wdtds. metric
handles the insertion and deletion of words nicely. The stfiGateway
Communications’matches with high similarity the strii@ommunications Gateway
International” since the g-grams of the wofthternational” appear often in the

relation and have low weight.
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2.6.3. Phonetic similarity metrics

Character-level and token-based similarity metrics foous the string-based
representation of the database records. However, strings mahohetically similar
even if they are not similar in a character or token lelel. example, the word
“Kageonne” is phonetically similar to‘Cajun” despite the fact that the string
representations are very different. The phonetic similarigtriocs are trying to

address such issues and match such strings.

Russell inventedSoundex which is the most common phonetic coding scheme.
Soundex is based on the assignment of identical code digits to pladpetimilar

groups of consonants and is used mainly to match surnames.

The New York State Identification and Intelligence System (NY8#S)proposed by
Taft [Taft70]. The NYSIIS system differs from Soundex in thaetains information
about the position of vowels in the encoded word by converting most viawtis

letter A. Furthermore, NYSIIS does not use numbers to replatesteinstead it
replaces consonants with other, phonetically similar letteus, taturning a purely

alpha code.

Philips suggested thdetaphonealgorithm as a better alternative to Soundex. Philips
suggested using 16 consonant sounds that can describe a large nusobedsfused

in many English and non-English words. Double Metaphone is a betsorveaf
Metaphone, improving some encoding choices made in the initialphiete and
allowing multiple encodings for names that have various possible prations. For
such cases, all possible encodings are tested when tryingieveetimilar names.
The introduction of multiple phonetic encodings greatly enhances #tehing

performance, with rather small overhead.
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2.6.4. Numeric similarity metrics

While multiple methods exist for detecting similarities ofingi-based data, the
methods for capturing similarities in numeric data are ratheritive. Typically, the
numbers are treated as strings (and compared using the mesichek® above) or
simple range queries, which locate numbers with similar valdesidas et al.
[KoMS04] suggest, as direction for future research, consideratitmedistribution
and type of the numeric data, or extending the notion of cosine siynia numeric

data to work well for duplicate detection purposes.

2.7. Duplicate Record Detection

One of the most important tasks in data cleaning is the de-digtic records, i.e.,
the detection of multiple representation of a single entitys fnocedure implies
matching between records, a procedure which is not straightforwamreai world
problems. For example, duplicate records may be erroneous due tdmation of

factors such as transcription errors or incomplete information.

Elmagarmid et al. in [EIIV06] describe the methods that dethl thie problem of data
deduplication. The presented methods can be broadly divided int@tagocies:

» Approaches that rely otraining data to “learn” how to match the records.
This category includes (some) probabilistic approaches and suggervis
machine learning techniques.

» Approaches that rely oglomain knowledger ongeneric distance metrid®

match records. This category includes approaches that use atigelar

languages for matching, and approaches that devise distance metrics

appropriate for the duplicate detection task.

Elmagarmid et al. in [EIIVO6] classified the data de-dupiaramethods in five main

categories, which are described in the following paragraphs.
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2.7.1. Notation

The tables that need to be matches are denotddaadB and it is assumed, without
loss of generality, thad andB have n comparable fields. In the duplicate detection
problem, each tuple paia, b>, (a O A, b B)is assigned to one of the two classes
M andU.

The clasdM contains the record pairs that represent the same €ntaych”) and the

classU contains the record pairs that represent two different extitien-match”).

components that correspond to theomparable fields oA andB. Eachx shows the
level of agreement. of thigh field for the recordsa andb. Many approaches use
binary values for theg’s and setx, = 1 if field i agrees and let; = O if field i

disagrees.

2.7.2. Probabilistic Matching Models

Newcombe et al. [NKAJ59] were the first to recognize dupdicdetection as a
Bayesian inference problem. Then, Fellegi and Sunter [FeSu68jaliaed the

intuition of Newcombe et al. introducing the notation described above.

The comparison vectoris the input to a decision rule that assigns U or toM. The
main assumption is thatis a random vector whose density function is different for
each of the two classes. Then, if the density function for elasls ¢s known, the
duplicate detection problem becomes Bayesian inference problemvarious
techniques have been developed for addressing“dleiseral” decision problem.
Some of those techniques are:Rgyes Decision Rule for Minimum Errdii) Bayes
Decision Rule for Minimum Cosgnd (iii) Decision with a Reject Regioach
method mentioned above takes advantage of a decision rule basedainilies.

This decision rule is used in order to decide whettimlongs tdJ or M.
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2.7.3. Supervised and Semi-Supervised Learning

The development of new classification techniques in the machimaingaand
statistics communities prompted the development of new de-duplicattbnitues.
The supervised learning systems rely on the existence of trairiagndgne form of

record pairs, pre-labeled as matching or not.

One set of supervised learning techniques treat each record <pairb>
independently, similarly to the probabilistic techniques mentionethé previous
paragraph. Cochinwala et al. [CKLS01] used the well-kn@&RTalgorithm, which
generates classification and regression trees, a lineamdisant algorithm, which
generates linear combination of the parameters for separatirdatheaccording to
their classes, and ‘&ector quantization” approach, which is a generalization of
nearest neighbor algorithms. The experiments which were conductedténdiat

CART has the smallest error percentage.

Bilenko et al. [Bil+03] use&sVMlightto learn how to merge the matching results for
the individual fields of the records. Bilenko et al. showed that$VM approach
usually outperforms simpler approaches, such as treating tbke wécord as one
large field. A typical post-processing step for these technigu@sconstruct a graph
for all the records in the database, linking together the matceauyds. Then, using
the transitivity assumption, all the records that belong to thee sammnected
component are considered identical. However, the transitivisunagtion can

sometimes result in inconsistent decisions.

The supervised clustering techniques described above have recomdeasfor the
graph. Singla and Domingos [SiDo04] observed that by using attributesvals
nodes, it is possible to propagate information across nodes and imprdi@tdup
record detection. For example, if the recotdlicrosoft, CA>and<MicrosoftCorp.,
California> are deemed equal, th€&A andCalifornia are also equal, an information

that can be useful for other record comparisons.
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Pasula et al. [Pas+02] proposed a semisupervised probabgistiomal model that
can handle a generic set of transformations. While the model catieha large
number of duplicate detection problems, the use of exact inferesaéisrén a
computationally intractable model. They proposed the use of a M&hkain Monte
Carlo (MCMC) sampling algorithm to avoid the intractabiligsue. However, it is
unclear whether techniques that rely on graph-based probabiligremce can scale

well for data sets with hundreds of thousands of records.

2.7.4. Active-Learning-Based Techniques

One of the problems with the supervised learning techniques isghgement for a
large number of training examples. While it is easy to creatarge number of
training pairs that are either clearly non-duplicates oarbleduplicates, it is very
difficult to generate ambiguous cases that would help create hdy hagcurate
classifier. Based on this observation, some duplicate detegtsbenss used active
learning techniques to automatically locate such ambiguous pairskeUah
“ordinary” learner that is trained using a static training set,'sative” learner
actively picks subsets of instances from unlabeled data, whichn labeled, will

provide the highest information gain to the learner.

Sarawagi and Bhamidipaty [SaBh02] desigrldAS a learning based duplicate
detection system, that significantly reduces the size ofrélimrtg set. The main idea
behindALIASIis that most duplicate and non-duplicate pairs are clearlypclisEor
such pairs, the system can automatically categorize théhamdM without the need
of manual labeling. ALIAS requires humans to label pairs onlycéses where the

uncertainty is high.

ALIAS starts with small subsets of pairs of records desidgoettaining, which have
been characterized as either matched or unique. This initiaf tsteled data forms
the training data for a preliminary classifier. In the sedhel,nitial classifier is used
for predicting the status of unlabeled pairs of records. Thalinlassifier will make

clear determinations on some unlabeled instances but lack detésmimraimost.
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The goal is to seek out from the unlabeled data pool those instahcds when
labeled, will improve the accuracy of the classifier atfdstest possible rate. Pairs
whose status is difficult to determine serve to strengthemtbgrity of the learner.
Conversely, instances in which the learner can easily prédicitatus of the pairs do
not have much effect on the learner. Using this technique, ALEXSqaickly learn
the peculiarities of a data set and rapidly detect duplicabeg asly a small number

of training data.

Tejada et al. [TeKMO01], [TeKM02] used a similar strategyl @mployed decision
trees to teach rules for matching records with multiple fieltdieir method suggested
that by creating multiple classifiers, trained using sligtifferent data or parameters,

it is possible to detect ambiguous cases and then ask the ussrdioack.

2.7.5. Distance-Based Techniques

Active learning techniques require some training data or some heiffieeinto create
the matching models. In the absence of such training data dy abilget human

input, supervised and active learning techniques are not appropriate.

One way of avoiding the need for training data is to define a destaretric for
records. Using the distance metric and an appropriate matchieghatd, it is

possible to match similar records, without the need for trainitay da

One approach is to treat a record &sng field and use one of thaistance metricso
determine which records are similar. Monge and Elkan [MoEI96pHIMI7] proposed
a string matching algorithm for detecting highly similar dasebeecords. The basic
idea was to apply a general purpose field matching algorithmciefipeone that is
able to account for gaps in the strings, to play the role of theacdtgldetection

algorithm.
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Cohen [Cohe00] suggested to usetthdf weighting scheme, together with tbesine
similarity metric to measure the similarity of records. Koudas et[kdMS04]
presented some practical solutions to problems encountered duringliynuent of

such a string-based duplicate detection system at AT&T.

Distance-based approaches that conflate each record in one Higngl ignore
important information that can be used for duplicate detectionmplsiapproach is
to measure the distance between individual fields, using the appeopisaance
metric for each field, and then compute the weighted distance dretive records. In
this case, the problem is the computation of the weights, vidiebry similar to the

probabilistic setting described in previous paragraph.

An alternative approach, proposed by Guha et al. [GKMSO04] is tdecee distance
metric that is based on ranked list merging. The basic idéatisftonly one field is
compared from the record, the matching algorithm can easiytiie best matches
and rank them according to their similarity, putting the bestestfirst. By applying
the same principle for all the fields, each record is assatiaith n ranked lists of
records, one for each field. Then, the goal is to creatalaafarecords that has the

minimum aggregate rank distance when compared to atl libts.

Guha et al. map the problem into theenimum cost perfect matching probleamd
developed efficient solutions for identifying thep-k matching recordsThe first
solution was based on theungarian Algorithm a graph-theoretic algorithm that
solves the minimum cost perfect matching problem. Guha et s. mksent the
Successive Shortest Paths algorittimt works well for smaller values &fand is
based on the idea that it is not required to examine all potentiehesato identify the

topk matches.

The distance-based techniques described so far, treat each ascardat entity,
ignoring the fact that data is often stored in relational dagshas multiple tables.
Ananthakrishna et al. [AnCG02] describe a similarity metric tlss not only the
textual similarity, but the “co-occurrence” similarity ofdventries in a database. For

example, the entries in the state coluf@A” and“California” have small textual
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similarity; however, the city entrie¢'San Francisco”, “Los Angeles’, “San Diego”
and so on, often have foreign keys that point botHGA” and “California” .

Therefore, it is possible to infer tH&@A” andCalifornia” are equivalent.

Ananthakrishna et al. showed that usigreign key co-occurrence’information
substantially improves the quality of duplicate detection in datalblaaesse multiple

tables to store the entries of a record.

One of the most important problems of the distance-based technidbhesiifinition
of an appropriate value for the matching threshold. An approprisgshibld value
could be computed by supervised techniques. However, the main advanitag

distance-based techniques lies in their ability to operate witreining data.

2.7.6. Rule-Based Approaches

A special case of distance-based approaches is the udestb define whether two
records are the same or not. Rule-based approaches can be considdistdnae-

based techniques, where the distance of two records is eithér 0 or

Wang and Madnick [WaMa89] proposed a rule-based approach for the duplicate
detection problem. For cases in which there is no global key, Wang/addick
suggest the use of rules developed by experts to derive a setiloiites that
collectively serve as ‘&ey” for each record. For example, an expert could define the

following rule:

IF age< 22 THENstatus =UNDERGRADUATE
ELSEtatus= GRADUATE

By using such rules, Wang and Madnick attempted to generate uniquth&egsn
cluster multiple records representing the same real-world/ebiih et al. [LSPR93]

also used a rule-based approach, but with the extra restrictiothéheesult of the
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rules must always be correct. Therefore, the rules should noubistivally-defined

but should reflect absolute truths and serve as functional depeesienci

Hernandez and Stolfo [HeSt98] further developed this idea and derveglational
theory that dictates the logic of domain equivalence. This ematiheory specifies
an inference about the similarity of the records. For examplsyafpersons have
similar name spellings, and these persons have the same addrasay infer that
they are the same person. Specifying such an inference in theoregluaheory
requires declarative rule language. For example, for an esgloatabase, the

following rule could be developed:

FORALL (r, ) in EMPLOYEE
IF r.name is similar toomame AND
f.address =raddress

THEN r matchesy

In such a rule similarity is measured by using a string cosgarechnique and

matching implies that both records are meant to be duplicates.

AJAX [Galh01] is a prototype system that provides a dedlaratanguage for
specifying data cleaning programs, consisting of SQL statsnesfianced with a set
of primitive operations to express various cleaning transformatfah®sX provides a
framework wherein the logic of a data cleaning program is reddas a directed

graph of data transformations starting from some input source data.

Four types of data transformations are provided to the user ofygtens The
mappingtransformation standardizes data, thatchingtransformation finds pairs of
records that probably refer to the same real objectchimgtering transformation
groups together matching pairs with a high similarity value, fnally, themerging
transformation collapses each individual cluster into a tuple of @kelting data

source.
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Typically, rule-based systems operate with high accuracy. Hewéhose systems
require huge manual efforts from human experts in order to expleitctitical

generated rules.

2.8. Experimental Methodology of Existing Methods

This paragraph describes the datasets and the experimental pasahegtare used in
common methods that cope with problems such as the duplicate ¢limiaad off-
line cleaning problem. More specifically, the following paragraphslude a
description of datasets’ nature for each method and the experirpardaieters used

for the evaluation of the method’s performance.

2.8.1. Duplicates

Chaudhuri et al. in [CGGMO03] used a cle@nstomer[name, city, state, zip code]
relation consisting of about 1.7 million tuples from an internalratmmal data
warehouse. They created input datasets by introducing erroesmdomly selected
subsets of Customer tuples. All characteristics of realslath as variations in token

lengths and frequencies of tokens are preserved in the erroneousipiesit t

They considered two types of error injection methods. The typeHaaenbtroduces
errors in tokens with equal probability, i.e., all tokens in a colarerequally likely to
become erroneous, whereas Type Il method introduces errors in tokins w
probability that is directly proportional to their frequency,,itekens with higher

frequency are more likely to become erroneous.

According to set of signatures they evaluatddrmalized Elapsed Timend

Accuracy whose description is stated below.

Normalized Elapsed Timeefers to the elapsed time for processing the set of input

tuples using the fuzzy match algorithm divided by the elapseel tinprocess one
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input tuple using the naive algorithm which compares an input tujle each
reference tuple. If the normalized time for a fuzzy matgforithm is less than the
number of input tuples, then it outperforms the naive algorithm.
Accuracydescribes the percentage of input tuples for which a fuzzy migcttlam
identifies the seed tuple, from which the erroneous input tuplegeserated, as the

closest reference tuple is its accuracy.

Chaudhuri et al. in [ChGKO06] performed all of their experimentsdigguacustomer
relation from an operational data warehouse. Using variant edit singildmieshold
values they estimathe time needed for implementing similarity joomsa relatiorR

of 25.000 customer addresses with itself.

Yuan et al. in [SuLS02] evaluate the performance of their methagibng synthetic
databases containing records of 13 fields. The errors they intbducguplicate

records range from small typographical changes to large changasefiglds.

In order to test the performance of their method, they use validimg window sizes
for finding similarities between records belonging in the sanmglow and variant
database duplicate ratios and database sizes as well. Morkcafgcaccording to
those variant parameters they evaluatedtitne required to run each methotthe

number of duplicate pairs fourahd thenumber of comparisons.

2.8.2. Off-line cleaning

Bhattacharya et al. in [BhGe04] used as datasets, cliques itEémontaining
information about authors. Those data were transformed by adding usiigge a

probabilistic model.

They evaluate their algorithm by measuring the quality of the ctugenerated using
different group and clique size . In order to estimate the clgstdity they useentity
dispersionand cluster diversityas measures of cluster qualigntity dispersion

reflects the number of different clusters that referenceegonding to the same
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entity are spread over, which means that a perfect de-dupfidaas dispersion 1,
whereastluster diversityquantifies the number of distinct entities that have been put

in the same cluster.

Leung in [Leun04] used a transaction database of 100k records mittveaage
transaction length of 10 items and a domain of 1000 items. He &ttt run-time
of algorithms according to variant percentages of frequensétasatisfying succint

constrains processed before tightening or before relaxing theaiohstr

Zhu et al. in [ZhWCO03] used synthetic data from IBM (IBM SynithBtata) and real-
world datasets from UCI repository (Blake and Merz, 1998). Thepduced class
noise in some data instances using a probabilistic noise. In ordstitoate their
method’s performance they evaluate the classification accafaegtances according
to different levels of noise.

Low et al. in [LOLLO1] used two real world datasets, includingopenpany dataset,
which requires complex matching logic and data manipulation and enpdttaset,
which is a much larger dataset containing many errors. Accortdindifferent

numbers of duplicate identification rules, they evaluated theimm-heeded, the

error percentage and the measure of recall.
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CHAPTER 3. PROBLEM DESCRIPTION AND
PROPOSED METHOD

3.1.Problem Description
3.2.Baseline Method (Fuzzy Match Data Cleaning)

3.3.Improvements: Online Data Cleaning using Qgram tries

3.1. Problem Description

In this chapter, we will mainly deal with the approximate mai€ tuples based on
string-valued attributes. More specifically, the proceduremroximate matching
involves the retrieval of clean tuples, whose similarityhwthe incoming tuple is
above a threshold value. As shown in Fig. 3.1, if the similarityden an input
customer tuple and its closest reference tuple is higher thanteoeseold, then the
correct reference tuple is loaded. Otherwise, the input isddatefurther cleaning
before considering it as referring to a new customer. A fuzztgimoperation that is
resilient to input errors can effectively prevent the peodifion of fuzzy duplicates in

a relation, which represent multiple tuples describing thees&al world entity.

The critical ingredient of a fuzzy match operation is theilanty function used for
comparing tuples. In typical application domains, the similafitgction must

definitely handle string-valued attributes and possibly even nuratrlbutes.
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Given the similarity function and an input tuple, the goal offtizey match operation
is to return the reference tuple being closest to the input tApleextension is to
return the closes( reference tuples enabling users, if necessary, to choosenong a
them as the target, rather than the closest. A further éseissto only outpuK or
fewer tuples whose similarity to the input tuple exceeds agpmaified minimum

similarity threshold.

Input Tuple :éeference Tabl_e/.f‘-

o~
AT

_~Tookup™_ N iy No  Further
Exact Match < Ceadedr ™ Fuzzy Match —< Similarity > 0.8 >—m- 0

I l Yes
Yes
Load

Fig. 3.1 Template for Using Fuzzy Match [CGGMO03]

In our problem, the result of a fuzzy match operation applied on antuydetcould

be one of the following classifications:

» exactly matched.e., a reference tuple exactly matched with the input tuple

» approximately matched.e., a reference tuple approximately matched with the
input tuple

* not resolvedi.e., a set oK reference tuples enabling users, if necessary, to
choose one among them

* new recordi.e., no reference is matched with the input tuple

Every input tuple is classified according to its maximum sintylavith reference
tuples. If this similarity is above a maximum threshold valinen the input is
classified either as exactly matched, either as approximateliched. If the
maximum similarity is below a minimum threshold, the input tuplelassified as a
new record. Otherwise, the input tuple is classified as notvexs This procedure is

shown in Fig. 3.2.
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similarity
maximum
threshold

not resolved

minimum
threshold

!

Fig. 3.2. Classification of Input Tuple According to Maximum anity

3.2. Baseline Method (Fuzzy Match Data Cleaning)

Chaudhuri et al. in [CGGMO03] adopt a probabilistic approach where tHeiggtm
return the closesk reference tuples with high probability. The author's method
preprocesses the reference relation to build an index relatidex] ta¢ error tolerant
index (ETI) relation, for retrieving at run time a smadt ©f candidate reference
tuples, which are compared with the input tuple. Their retriaigdrithm retrieves
with high probability a superset of the reference tuples closest to the input tuple.
The index relation ETI is implemented and maintained as a sthrelation.

The authors propose a fuzzy match similarity function that eXpliciinsiders IDF
token weights and input errors while comparing tuples, an erroamlendex and a
probabilistic algorithm for retrieving thi€ reference tuples closest to the input tuple,

according to the fuzzy match similarity function.
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3.2.1. Fuzzy Similarity Function (fms)

Informally, the similarity between an input tuple and a refereéanpke is the cost of
transforming the former into the latter. Low transformation cadté$nput tuples

denote high similarity.

A transformation operation is applied upon a set of tokens derivedtiattributes
of a tuple. Supposingis a reference tuple, the set of tokens included in attribiste
denoted bytok[v(i)] . For example, if/(i) = “Boeing Company’ then the resulting set
of tokens coming from the tokenization functionwdi) equals tdok[v(i)] ={Boeing,

Company}

Each of the following transformation operations: {@en replacementb) token
insertionand (c)token deletions associated with a cost that depends on the weight of

the token being transformed. The weight function for each token carfibeddas:

w(t,i) = IDF (t,i) = log fre|§(|t i),

where freq(t,i) denotes thdrequencyof a tokent in columni and equals to the

number of tuples in R such thatok(v[i]) containg.

More specifically, considering the case whars an input tuple andis a reference
tuple, the cost of operations taking place in order to transiomo v is defined as

follows:

» Token replacemeniThe cost of replacing a tokeh in tok(u[i]) by tokent2
from tok(v[i]) is ed(t, to) - w(t ,i), wheretok(u[i]) is the set of tokens held on
attributeu[i] anded(t, t) is the edit distance betwearandt,. If t; andt, are
from different columns, the cost is defined to be infinite.

» Token insertionThe cost of inserting a tokennto u[i] is cins - W(t, i} where
thetoken insertion factorig is a constant between 0 and 1.

» Tokendeletion The cost of deleting a tokerirom u[i] isw(t, i).
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Transforming u into v requires each colunji} to be transformed intgfi] through a
sequence of transformation operations, whose cost is defined to ienitef costs of
all operations in the sequence. Thensformation costc(u[i], v[i]) is the cost of the
minimum cost transformation sequence for transformiilginto v[i] . The costc(u,
v) of transformingu into v is the sum over all columnsof the costsc(uli], v[i]) of

transformingul[i] intov[i] and equals to:
tc(u,v) = Ztc(u[i],v[i )

The fuzzy match similarity functiofms(u, vbetween an input tupleand a reference

tuplev in terms of the transformation cdstu, v)can be defined as:

fmgu,v)=1- min(tf’&t\)/) ,1.0j ,

wherew(u) is the sum ofveightsof all tokens in the token sttk(u) Token setok(u)

denotes the multiset union of setisk(a),...,tok(a) of tokens from the tuple

ufas,...,a).

Suppose an example reference relaRamith attributeqrs, ro) and R = 10 and tuples
u = (“John”, “Ford”) andv = (“Jahn”, “Ford”) . If two reference tuples contain
attribute values“John” and “Ford” in attributesr; and r, respectively, the

transformation cost and tlsfunction are computed as follows:

tc(u,v) =tc(“John”, “Jahn”) + tc(“Ford”, “Ford”)
= ed(“John”, “Jahn”) - w(“John”, r,) + ed(“Ford”, “Ford”) - w(“Ford”, r ;)

=1-log IR +0-log R 3 =IogE)=0.699
freq"John",r, freq(" Ford ",rz) 2

tok(u) = tok(y) I tok(w) = {*John”, “Ford"}

w(u) = w(w) + w(uz) = w(*John”, rq) + w(*Ford”, r 2) = Iog12o + Ioglz0 = 1.398

fms(u,v) =1 —min tc(u,v), 10| =1 -min @ 10/=1-05=05
w(u) 1.398
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3.2.2. Fuzzy Match

Given an input tuple u, the goal of the fuzzy match algorithno igdéntify the
approximate matches, i.e., tiereference tuples closest to u. Particularly, ikie

Fuzzy Match Probleroan be defined as follows:

Given a reference relatioR, a minimum similarity threshold¢ (0 < ¢ < 1) the
similarity functionfms and an input tuple, find the seFEM(u) of fuzzy matchesf at
mostK tuples fromR such that:

1. fms(u, vk c, for allvin FM(u)

2. fms(u, vk fms(u, v’)for anyvin FM(u) andv’ in R-FM(u)

A naive algorithm scans the reference relaRaomparing each tuple witlh A more
efficient approach is to build an “index” on the reference relatmm duickly
retrieving a superset of the target fuzzy matches. Standdex structures like B+-
tree indexes cannot be employed in this context because they cabeounged for
exact or prefix matches on attribute values. Therefore, dunorg-arocessing phase,
additional indexing information can be gathered for efficiently impleting the
fuzzy match operation. The additional information can be stored stmralard
database relation and be indexed using standard B+-trees to pddsirmexact
lookups. Chaudhuri et al. in [CGGMO03] refer to this indexed relatioth@&rror
tolerant index (ETL) The authors’ challenge was to identify and effectively use the
information in the indexed relation. The authors’ solution was bassdde insight of
deriving fromfms an easily indexable similarity functidmg® with the following

characteristics:

1. fm$™ upper boundfmswith high probability,
2. Theerror tolerant index (ETI) relatiorwan be built for retrieving efficiently a
small candidate set of reference tuples whose similarity tive input tuple.,

as pefms$® is greater than th@inimum similarity threshold.
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Therefore, with a high probability the similarity as fs between any tuple in the
candidate set andlis greater tham. From this candidate set, thereference tuples

closest tau can be returned as the fuzzy matches.

The authors usetind®™ asan approximation ofms for which they could build an
indexed relationfm€® is obtained (a) by ignoring differences in ordering among
tokens in the input and reference tuples, and (b) by allowing each toimn to
match with the “closest” token from the reference tuple. Siimegarding these two
distinguishing characteristics while comparing tuples can onlge@se similarity

between tuplesm$®*is an upper bound dfns

For example, the tupldboeing company, seattle, wa, 980G#d[company boeing,
seattle, wa, 98004yvhich differ only in the ordering among tokens in the first field

are considered identical g

In fm$™ the authors measured the closeness between two tokens through the
similarity between sets of substrings of tokens, catlgothm sets instead of edit
distance between tokens usedfnms Further, thisggram set similarityis estimated
well by the commonality between small probabilistically chos#rssts of the two
ggram sets. This property can be exploited in order to build an iddelaion for
fm<® because for each input tuple only the reference tuples whose tdieaasas

number of chosen ggrams with the input tuple must be identified.

Given a strings and a positive integey, theqgram setlenoted byQGq(s) is the set of
all sizeq substrings ofs. For example, th&-gram set Q&“boeing”) is {boe, oei,

ein, ing.

In order to estimatéms$®* it is necessary to compute tteken min-hash signature
and themin-hash similaritypbetween two tokens. L&t denote the universe of strings
over an alphabef, andh;;:U—N, i = 1,...,HbeH hash functions mapping elements of

U uniformly and randomly to the set of natural numhbérdet She a set of strings.
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The min-hash signature mh(®f Sis the vectofmhy(S), ..., mh(S)] where thei™

coordinatemh(S)is defined asmh(S)=argminh (a).
als

The intuition behind the hash functionds to isolate ggrams in specific coordinates.
It is obvious that variabléd indicates the number of ggrams being isolated. The
selection is random, but each hash function returns a qgram standangpecific

coordinate of the token.

Token similaritycan be defined in terms of thmin-hash similaritybetween their
ggram sets. Let] andH be positive integers. LéfX] denote arindicator variable
over boolear¥, i.e.,I[X] = 1 if X is true, and O otherwise. Tmin-hash similarity

simyi(ty,ty) between tokendl andt2 is:

sim (1, 1)= 2 11mn(QG{,)) = mh (Qa. )]

From the above definition, it is obvious that the min-hash siityilaomputes the

average number of common ggrams returned from the same hash function.

Suppose tokeng = “William” andt, = “Williams” andH = 3. A possible min-hash
signature might benh(QG(t)) = [Wil, lli, iam] andmh(QG(%)) = [Wil, lli, ams] for t;
andt, respectively. Two out of three hash functions returned the saramdgr both

tokens. That means that tokensndt, have 2 ggrams in common and the min-hash

similarity simyi(ta, to) is equal to% (2.

Taking into consideration the previous definition mfn-hash similarity the fms

approximatiorfms$®* can be defined as follows:

Letu, v be two tuplesl, = (1-1/g) be an adjustment term.

meP(uv)=— 3 W(t)wax(gsimm(qe(t),qe(r))qu

U) T totok(uli]) rCaok{v[i])
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Supposeu is the input tuple andis a reference tuple. From the above definitibis
obvious thafms$™ searches for every attribute token of input tuptbe most similar
corresponding attribute token of tuplein terms of min-hash similarity. Maximum
similarities are computed and multiplied with the weight ofrttegched input token.
This means that infrequent tokens play an important rolem&¥”, since their weight
is greater than a frequent tokéms$®™ is computed by dividing this weighted sum

with the overall weight of the input tuple

3.2.3. The Error Tolerant Index (ETI)

The primary purpose of ETI is to enable, for each input tuptbe efficient retrieval
of a candidate se$ of reference tuples whose similarity withis greater than the

minimum similarity threshold.

From the definition offm$®™ fm$™{(u,v) is measured by comparing min-hash
signatures of tokens tok(u) andtok(v) Therefore, for determining the candidate set,
it is essential to efficiently identify for each tokdnin tok(u) a set oftids
corresponding to reference tuples sharing min-hash ggrams witbfthah order to
identify such sets ofids, ETI holds each ggrars along with the list of altids of

reference tuples with tokens whose min-hash signatures centain

SupposeRr is the reference relation amtithe size of the min-hash signatued.|l as
shown in Fig. 3.3is a relation with the following schemfQGram, Coordinate,
Column, Frequency, Tid-listFor each tuple in ETI it holds thae[Tid-list] contains
the list of tids of all reference tuples containing at least tokent in the field
e[Column] whosee[Coordinate]-thmin-hash coordinate isS[QGram]. The number

of tids included ire[Tid-list] is stored ire[Frequency]attribute.
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Fig. 3.3. ETI Relation Example [CGGMO03]

3.2.4. Query Processing Algorithm
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Chaudhuri et al. in [CGGMO03] proposed an algorithm for processing fuztghm

gueries. Such queries ask #fuzzy matches of an input tuplevhose similarities as

per fms withu are above a minimum similarity threshaeld

The authors’ goal was to reduce the number of lookups against thenmfaelation

by effectively using the ETI. Their proposed algorithm fetciaeéists by looking up

ETI of all ggrams in min-hash signatures of all tokena. iRor efficient lookups, the

authors assume that the reference reldds indexed on thdid attribute, and the

ETI relation is indexed on tHGram, Coordinate, Columnattribute combination.

More specifically, the algorithm for processing the fuzzyanajuery given an input

tuple u is as follows. For each tokenin tok(u), its IDF weightw(t) is computed,

requiring the frequency of. Those frequencies can be stored in the ETI and be

fetched by issuing a SQL query per token. Then the minhash signatef each

token t is determined and each ggram nmh(t) is assigned a weight equal to

w(t)/|mh(t)] Using the ETI, it is feasible to generate the candidat& eétreference

tuple tids whose similarity, as p&ms$®™ and hencdms, with the input tupleu is

greater tham. All tuples inSare fetched from the reference relation in order to verify
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whether or not their similarities with as perfms are truly abovec. Among those
tuples which passed the verification test, Khéuples with theK highest similarity

scores are returned.

The candidate set S is computed as the union of get®&for each ggramy in the
min-hash signatures of tokenstak(u) For a ggrant, which is thei™ coordinate in
the min-hash signatumah(t) of a tokent in thej™ column,S is the tid-list from the

tuple [q, i, |, freq(a i, ), §] in ETI. The lookup forlqw, i, j, freq(a, i, j), S is
efficient because of the index on the required attribute combinatigflof

Each tid inS, is assigned a score that is proportional to the weiugt)tof the parent
tokent. If a tuple with tidr is very close to the input tuple thenr is a member of
several set§ and hence gets a high overall score. Otherwidegs a low overall
score. The candidate set is constituted by tids that have anl @eera greater than
w(u}c minus an adjustment term, which represents a correction to apptexinea

edit distance between tokens with the similarity between djgeam sets.

During the process of looking up tid-lists corresponding to qgramsctires of tids
belonging in these tid-lists are maintained in a hash t@hke score of a tid equals the
sum of weights of all ggrams whose tid-lists it belonggte weightw(g) assigned
to a gqgrang in the min-hash signaturah(t) of a tokent; is w(t)/[mh(t)|. If a tid in

S is already present in the hash table, then its score is iantech byw(q).
Otherwise, the tid is added to the hash table with an init@kesof w(g). After all
ggrams in the signatures of input tokens are processed; & telected and added to

the candidate s&only if its score is abovwe(u)c minus the adjustment term.

The query processing algorithm proposed by Chaudhuri et al. in [CGGMO03]
summarized in Fig. 3.4.
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FuzzyMatchiinput tuple u, H. ETL R, ¢}
1. Initialize hash table TidScores; AdjustmentTerm = 0
2. Tokenize u and compute min-hash signatures Q of all tokens
3. Assign token weights; RemWt = sum of all token weights
4. threshold = c-RemWt
3. Foreach g-gram s in Q s.t. s = mhy(t) of token tin column col
6 if (mhyt) is the first g-gram of mh(t) to be looked up)
7 AdjustmentTerm += w(t)-(1-1/q)
8. Fetch tid-list(s) by looking up (s. 1. col) against ETI
9. Update TidScores
4. Increment scores of existing tids by wit)/Imh(t)l
b. If RemWt = threshold, insert new tids with score w(t)y/Imh(t)l.
10.  RemWt —=w(s)
11, Fetch tuples from R for TIDs with score = c—AdjustmentTerm
12. Compare, using f. each of these tuples with u
13. Return K (or less) most similar tuples with similarity above w(u)-c

Fig. 3.4. Query Processing Algorithm [CGGMO03]

3.3. Improvements: Online Data Cleaning using Qgrantries

As already mentioned, our goal is to deal with the problem of appat&imatching
between reference and input tuples. More specifically, we theeproblem of
classifying each input tuple as an existing or a new tuple, befonaput to the
reference table. This means that an input tuple might berameeus representation

of a reference tuple. This may occur due to typing errors or dipes of noise.

Our goal is to successfully classify input tuples within a speriod of time. In cases
of erroneous input tuples, it is a challenge to determine withgla probability
whether the tuple can be matched with an existing referenceauplaracterize the
tuple as a new record. It is also critical to avoid misheegcof input tuples that are
already stored in the reference table. Due to the facttitbathole procedure must not
exceed a time threshold, our main target is to choose the appeaaia structures

that will effectively clean a stream of input tuples.

Specifically, we provide the following extensions to the method propdsed
Chaudhuri et al. in [CGGMO3]:
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* replacement of ETI index with a similar index that holds morerimétion

about the reference table

» use of a data structure held in main memory for the retrievélequently

accessed candidate tuples

» proposal of an algorithm combining the above structures to effectiadsify

input tuples

3.3.1. Word Index

The proposed method uses a structure called indexthat is quite similar to ETI.
The word indexholds information about the attribute values stored in the reference
table. Word indexstructureconsists of five fields{a) ggram, (b) coordinate, (c)

column, (d) tid-listand(e) frequencyeing described as follows:

» ggramfield corresponds to a sequenc&xtharacters.

» coordinate field represents the occurrence position of the corresponding
ggramwithin a string value. For example, if this string vatieegins with a
ggramgq, then the coordinate value gfor s equals to 1.

» columnfield indicates the string-valued attribute that holds the Bpeilue.

» tid-list field contains a list created from tuple ids that inclggeam Qin the
position which is denoted by tle@ordinatefield.

» frequencyfield represents the number of the tuple ids belonging to thestid-|

The word index structure is used for the retrieval of tuple idspitedoably match the
input tuple. Processing the ggrams within an input attribute vahee tids with
attributes that share common ggrams in a specific position wikl@nword are

retrieved.

Before deciding whether the input tuple is clean or not, a candietaté giple ids is

retrieved from the word index. The candidate set includes the ttiégossibly
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match the input tuple. This candidate set is generated by retuhairigl-lists of tids
with attribute values that share common ggrams in same positibesafiribute

values correlated with the returned tids are cached in the dgeam

Supposing that the word index is indexed ¢ggram, coordinate, columndet of

fields, the retrieval of the candidate tuple ids can take @tazently.

3.3.2. Qgram Trie

As mentioned above, the purpose ofigram trieis the caching of clean attribute
values that probably match the input string value. The proppgean trieis defined

as follows:

1. The trie consists of one root labeled as “null”, a set of ypoetix subtrees
as the children of the root, and a header table.
2. Each node in the word-prefix subtree consists of four fields:

a) qgram which records the item that this node represents

b) count that records the number of the tuple ids represented by the

portion of the path reaching this node

c) node-link that links to the next node in the trie carrying the same

ggram, or null if there is none

d) tid-list, which records the set of tids with attribute values that share

node in the trie representation.

3. Each entry in the header table consists of two fieldshéajgramand (b)
the head of node-linkwhich is a pointer pointing to the first node in the
trie carrying the ggram. On the top of the header table arethelthst

inserted header items.

According to theggram triedefinition, words with same prefixes share a number of

nodes within a path of the trie. For example, if wolidg”, “Rica” and“Ricus”,
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with ids 1, 2 and 3 respectively are retrieved, the resuifgrgm trie being built in

memory is shown in Fig. 3.5.

cus

Fig. 3.5. Qgram Trie Example

Having stored all the candidate words that share common ggmnasasne positions
with the input value, the gqgram trie described above is seardweddang to the
ggram sequencef the input value. Then the set tuple ids with attribute saigose
similarity with the input word is above a similarity thresholh be returned. The
matching procedure, which is discussed in detail in section 3.3iBpiesmented by

searching paths of the trie that hold qgrams of the input atniaitie.

3.3.3. Qgram Trie Searching Algorithm

The proposed matching algorithm, which is described in section 3.3.5 take
advantage of the qgram trie described in the previous sectionngrakio
consideration that the ggram trie contains diggam sequencesf candidate clean
attribute values that probably match the input attribute valu® eificient to extract
from it the most similar clean attribute in termsggfram set similarity This means
that attribute values containing the most common ggrams with the walue are

very similar to it and can be returned as fuzzy matches opdhsibly dirty input
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value. Given the qggram trie and a suitable searching algorithen,ggram set

similarity can be determined efficiently.

Suppose that the input attribute valuéR&cuss” with qgram sequence {Ric, icu, cus,
uss} The matching procedure for the specific word searches the patiestbit hold

” oo

the specificqgram sequenceéstarting from nodes with ggraniRic”, “icu”, “cus”

and ‘uss”, the matching procedure searches the occurrence of the qgrammceeque

{Ric, icu, cus, ussn paths of the trie.

During the qgram trie searching procedurescare tablemaintains the matching
scores between the input value and the clean words. After swecgssful matching
between nodes of trie and ggrams of subsequencesctie tableis updated by
incrementing the scores of the tuple ids that belong todHist of the matched node.
Ending this searching procedure, it is possible to retrieve afsktple ids with

attribute values very similar to the input value.

Using the qgram trie shown in Fig. 3.5, if the input attributeievas “Ricuss” the
scores of word$Ric”, “Rica” and“Ricus” are 1, 1 and 3 respectively, denoting that
“Ricus” is the closest clean word to the input value. The searchingguce is

summarized in Fig. 3.6:

Input: input tuple u
Output:K closest tuples to u
1. For each attribute valwzeof u
a. Generate qgram sequesad input valuea
« Find first ggrang of sin header table
i. Access all nodes holding
ii. Search all possible paths of trie with nodesdimy the ggram
subsequencgbeginning withq
iii. Update score table in case of successful match
2. Sort score table

3. ReturnK tuple ids with most similar attribute values aatog to their score

Fig. 3.6. Searching Procedure
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3.3.4. Main Memory Maintenance of Qgram Trie

As already mentioned, a qgram trie is used in order to cactieutd values of
frequently accessed reference tuples. This means thaisttlme updated after every

processing procedure of incoming tuples.

Due to the fact that the ggram trie must not exceed a maxsimeanthe two update
operations are (i) thmsertionand the (ii)pruning operation. The insertion operation
adds a branch in the qgram trie and puts the correlated qgramgap tifehe header
table of the ggram trie. For example, if reference t{f@lehn”, “Ford”) with tuple

id equal to 1 is cached in the ggram trie, then the qgramwittibe constructed as it is
shown in Fig. 3.7.a. If the reference tugléohn”, “Palm”) with tuple id equal to 2
is about to be inserted to the ggram trie, after the insetierggram trie will be
updated as shown in Fig.3.7.b.

Joh

ohn

For

ord

Joh

ohn

Pal

alm

For

ord

Fig. 3.7.b Qgram Trie After Insertion
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As it is shown in Fig.3.7.b, after the insertion operation,gip@ms included in the
attributes of the second reference tuple are put on the top of the tedzldeln other
words, the frequent ggrams are moved to the top of the headeritaldating their

recent access. This procedure takes place in order to facili@apruning procedure.

The pruning operation takes place when the ggram trie size seHshenaximum
size. As mentioned above, the elements of the header taldertad according to the
last time they were accessed. The pruning of the ggranstimepiemented by using
the least recently used (LRU) algorithm. More specifiicdhe less frequent ggrams,
that lie in the bottom of the header table, are the first toctvacted from the ggram
trie. Following the path beginning from the bottom header tablesjtéine pruning
procedure crops a ggram trie branch with a leaf holding the spegfam. If a
header table doesn’t point any trie node, then it is removed frotretider table. The
whole procedure is completed when the qgram trie takes up a speediof main

memory.

Suppose the pruning procedure must be applied on the ggram trie shogn3ry .
If two trie nodes have to be cropped, the cropping algorithm make®ltbeing

steps:

1. Access the most infrequent header table item (in our exdorgle)
2. Follow the path of nodes beginning from the node indicated by thikehe
table
3. For every leaf trie nodein the path
o0 delete from the branch the tids held by nade
0 delete leaf trie node
o delete all nodes holding no tid lists in the branch
4. |If the trie didn’t reach a specific size, execute iteeat step 3 for the next
less frequent header table items (in our exarfipte” ) and remove the

header table items that don't link to any trie nodes.

The steps described above are shown in Fig. 3.8.a and Fig. 3.8.b.
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Fig. 3.8.a Pruning Procedure Results — Steps 1-3
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Fig. 3.8.b Pruning Procedure Results — Step 4

3.3.5. Matching Procedure

Chaudhuri et al. in [CGGMO03] proposed a query processing algorithm im wrde
handle fuzzy match queries. The proposed method instead of theotgrant index
uses the word index described in section 3.3.1 and extends theithatgosing the

ggram trie structure in order to accelerate the fuzzy matgnowgedure.

The word index is proposed for more accurate matching, since it hotde
information than the error tolerant index (ETI). ETI holds forheattribute value only
a subset of qgrams, which is chosen randomly and indicates approximétsnpad
ggrams within the attribute value, such as the prefix or thexsaffthe attribute. This

means that ETI can be constructed faster and requires lesdislaispbace than the
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word index. However, this random selection may lead to inaccuestdts, since

input tuples with dirty attribute values have few gqgrams in comwitinvalid tuples.

The intuition behind the use of a ggram trie is its suitabilityciching purposes,
since the trie is maintained in main memory. More specificiie trie will hold at
any time the most frequent attribute values, avoiding redundanadfi@ties that
might occur when an input value is being repeated and needs to be @doddss
way the whole procedure can be accelerated in the presenceefirgaut attribute

values.

More specifically our method is separated in two main partghdrfirst part, using
the ggram trie and the searching procedure described in the se8t&inv8e examine
whether the input tuple matches a tuple included in the ggranintiileis way, if the
input tuple matches a reference tuple stored in the ggram,aigk awy 1/O activities

and classify it as an existing tuple.

If the procedure fails to match the input tuple in the fitapsthen it uses the word
index in order to retrieve candidate tuples. Specifically, &mheggram of the input
attribute values, we retrieve from the word index all tugke sharing the specific
ggram in the same position. For each tuple id we maintain a stardiash table
indicating the common qgrams of reference tuple with the input.tdgter this

procedure is completed, the set of candidate reference tupihes vgith a score above

a minimum threshold.

For each candidate tuple, we check if there is an exact matchheiinput tuple. If a
candidate tuple is found to be exactly similar, then the input tgptassified as
existing. Otherwise, we compute the similarity of the two @splising the fms
similarity function. If no candidate reference tuples match gxtwt input tuple, then
the reference tuple with the highest similarity value that edsea minimum
similarity threshold, corresponds to the approximate match ohthe value. If the
highest similarity value is below a maximum similarity 8ireld, the input tuple is

classified as a new record. Otherwise, the tuple is diedsif not resolved.
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If the input tuple is matched exactly or approximately with faremce tuple, the

attributes of the reference tuple are stored in the qgranmirtroeder to be retrieved in

future matches.

The proposed algorithm is summarized in Fig. 3.9.

Input: Stream tuple
Output: Classification ot as new or existing tuple

1.

[ attribute values of t
1.1 Check ifv exists in ggram trie
1.1.1. ifvexists
e visclean
» retrieve tids contain
1.1.2. else not determined
If all attributes values are clean
2.1.  find the retrieved tids containing all inptiriaute values
Else

3.1. initialize the hash table with score equd for all tids
3.2. retrieve from word eti all tids sharing commqggrams witht in same
positions

3.3. [1 ggramq of v increment the corresponding score of tids contginijfin
same position with
3.4. retrieve tids witltount(ggrams) > qgram_threshold
3.5. check if there is exact match with the reggbtples
3.5.1. ifthere is exact match
» classifyt as existing tuple
3.5.2. else find the retrieved tuplevith the highestmsvalue
« if fms(t, r)> approx_match_threshold
» classifyt as approximately existing tuple
+ else iffms(t, r)< new_threshold
» classifyt as new tuple
+ else
= classifyt as not resolved
3.6. iftis classified as existing tuple
* update ggram trie with the clean attribute valuiethe existing tuple

Fig. 3.9. Matching Procedure
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We illustrate the above procedure using the following example:

Suppose the reference table is the table shown in Fig. 3.1Ge@wdrrent ggram trie
is that of Fig.3.6.b holding the attribute values of tuple with idsdlL2a

tid name surname
1 John Ford
2 John Palm
3 Jack Smith

Fig. 3.10. Example Reference Table

Suppose that the first input tuple is the tupdehn” ,“Palm”) . At first, the algorithm
will search the qgram trie to check if the input tuple matclastly a reference tuple
cached in the trie. The searching procedure in the trie wilinre¢he tid list 4, 2> for
the input attribute’John” and the tid list 2> respectively for the input attribute
“Palm” . Both tid lists have in common the tld That means that the input tuple is a

valid tuple and the procedure classifies it as an existing tuple.

Suppose the second input tupl€‘i®ohn”, “Lord”) . The searching procedure in the
trie will return only the tid list &, 2> for the attributé'John”. That means that the
input tuple is not cached in the ggram trie and the algorithncaiitinue the process
of the tuple using the word index. If tagram_thresholds equal to 2, the procedure
will generate a candidate set including tuplelidsd2, since the number of common
ggrams are equal to 3 and 2 respectively for reference tuptbsidgil and 2.
Reference tuple with tid will be the most similar retrieved candidate tuple having
the maximumfmsvalue. If thefmsvalue is above thapprox_match_thresholalue,
then input tuple will be classified as an approximately engstiiple. If thefmsvalue

is below thenew_thresholdialue the input tuple will be classified as a new record. If
the fmsvalue is between the two thresholds, the input value will beif¢asss not

resolved.
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CHAPTER 4. EXPERIMENTAL METHODOLOGY

4.1.Data generation
4.2 Alternative methods for cleaning using ggram tries

4.3.Experimental parameters and measures

4.1. Data generation

We have taken the data from U.S. Census Bureau [USCBO07], whibarked on a
names list project involving a tabulation of names from the 1990uSelxata are
divided in 3 files containing only the frequency of a given nanithouwt any specific
individual information. Specifically, each file contains last napmaale first names

and female first names.

We have generated raferencerelation R(full_name)of 100K and created different
data sets of streaming data with sizes obtained s% af the original reference
relation. The stream of data signifies transactions that pesbtesse names are
possibly stored in the reference relatiBnhave done (e.g., we haveGustomer
reference relation and3alesstream of possibly erroneous data). The values that we

have used fosare: 0.1, 1 and 10.

For the streaming data, we have intentionally created problernie tdata. Given a
certain percentagp% of noise level (i.e., errors in the names), we havetexlethe
following anomalies in equal probabilities:

» character addition



64

* character deletion
» character update

» character transposition

The values we have used for the noise Igvate 0.1, 0.5, 10 and 20. Moreover, the
streaming data also contain a percent&gef repeating tuples. We have generated
streams with repetition percentagé equal to 0%, 10% and 20%.

4.2. Alternative methods for cleaning using qgramrtes

The state-of-the-art in the area, and thus our adversansiwthk is the [CGGMO03]
paper. We have implemented the ETI method at Berkeley DB v.4.6.

Our method operates on top of the ETI index described in [CGGMO03], by trsd
word index described in Chapter 3, in the following way:
» A trie of ggrams is builat-runtime In other words, to avoid the huge size of
the a-priori trie, as soon as we (i) load the referencearlR with data, we
(ii) populate the word index. Then, as tuples come, we increrheatid the
clean part of trie. The intuition is that the most popular namiégventually

be cached in main memory, without having to store all the trie.

The employed algorithm is simple: each incoming tuple is chealgadhst the trie,
ETI index, reference relation. We will refer to this triasl the reference database.
Each tuple is classified as one of the following:
* Clean(originally clean or cleansed in an unambiguous way). A clgale to
the stream can be a detected existing tuple (i.e., aexts in the reference
relation) orNew(a respective tuple did not previously exist in the database)
* Not-resolved(because there are many candidates and manual attention is

needed).

To determine whether a full name (i) exists in the referentabdsae exactly, (ii)

approximately matches an existing tuple, (iii) does not existy)opgssibly exists but



65

there are many candidates for its value, we need a distaptr&c. The distance
metric of choice in our examples has been the fms similaritytibtmalready
explained in section 3.2.1.

A second alternative of the problem is to giveeatricted memory budget & our

algorithm keeping only thmterestingparts of the trie.

4.3. Experimental parameters and measures

The measured measures (y-axis) are:
» time to complete (from which a throughput can be determined)
» precision of classification
* memory used

+ cache hits

The varied parameters are:
* the stream size
» the noise level
* available memory
* repetition of input tuples

« reference table size

Table 4.1. Varied parameters

Parameter Description Possible values
Stream Size (s% of |R)) 0.1,1,10
Noise Level (p% of |R]) 1,5, 10, 20
Available memory (g% of |R]) 10, 15, 20
Repetition of input tuples (r% of |s]) 0, 10, 20
Reference Table Size IR| 10K, 50K, 100K tuples
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4.4. Experimental results

We executed a number of experiments in order to evaluate the egdsscribed in
the previous paragraph. More specifically, we evaluated theutsectime, the
precision of classification and the memory used according to va@aimeters such
as the stream size, the noise level, the size of qgranamd size of the reference

table.

In the following paragraphs we will comment the effect of theawa parameters on

execution time, precision and memory consumed.

4.5. Execution time

In this paragraph we represent the execution time of both methoddolldveing
graphical representations show the effect of the variant p&eneescribed
previously on execution time. More specifically, we measure@xieeution time for
reference tables with size 10000, 50000 and 100000 tuples. In our dbireyare
three basic scenarios. According to the first scenario,npet istream contains no
repeating tuples. In the second and third scenario the input stadains 10% and
20% duplicate input tuples, respectively. For each reference dalelewe examined
the effect of available memory on execution time. We measueeéxecution time

for available memory equal to 10%, 15% and 20% of the referencestable
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4.5.1. The effect of noise on execution time

execution time |R| = 10K tuples, 100 input tuples
available memory: 10% x |R|, rep:10%

time (sec)

o B N W A~ O

1 5 10 20
noise level p%

execution time |R| = 10K tuples, 1000 input tuples
available memory: 10% x |R|, rep:10%

time (sec)

1 5 10 20
noise level p%

Fig. 4.1. Effect of Noise on Execution time

From the graphs represented in Fig. 4.1, it is obvious that the gg@puethod is
sensitive to noise. Specifically, as the noise level ineeahe execution time also

increases but with a slowly increasing tendency.
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4.5.2. The effect of repetition on execution time

execution time |R| = 10K tuples, 100 input tuples cache hits |R| = 10K tuples, 100 input tuples
available memory: 10% x |R|, noise:10% available memory: 10% x |R|, noise:10%

N w1 o

time (sec)
time (sec)

i

o

0% 10% 20% 0% 10%

repetition r% repetition r%

execution time |R| = 10K tuples, 1000 input tuples cache hits |R| = 10K tuples, 1000 input tuples
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Fig. 4.2. Effect of Repetition on Execution time

The repetition of incoming tuples decreases the execution timghdyen in Fig. 4.2,

repetition leads to more successful cache hits, thus, avoi@rartivities.
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4.5.3. The effect of available memory on execution time

execution time |R| = 100K tuples, 100 input tuples cache hits |R| = 100K tuples, 100 input tuples
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Fig. 4.3. Effect of Available Memory on Execution Time

We have experimented with three different budgets of memory. Figm4.3, we
conclude that execution time remains stable for available memory1B8¥oand 20%
of reference table size.
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4.5.4. The effect of reference table size on execution time

execution time - stream size: 100 tuples
available memory:10 %, noise: 10%, rep:10%

time (sec)
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execution time - stream size: 1000 tuples
available memory:10 %, noise: 10%, rep:10%
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Fig. 4.4. Effect of Reference Table Size on Execution Time

As shown in Fig. 4.4, execution time is clearly affected byréierence table size.
More specifically, as the reference table size increasesexecution time increases
too. We note that for 50K and 100K reference tuples the executiongisightly
different, whereas for 10K reference tuples, execution tireggisficantly less.

In all cases though, the increase in execution time is sublneathis is probably due
to the effect of the trie.
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For reference table size 10000 tuples, variant values for tiepetif input tuples,

available memory, noise level and stream size, the executan is shown in

Fig. 4.5 and Fig. 4.6.
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Fig. 4.5. Execution Time (JR|=10K tuples, variant repetitiorailallle memory)
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Fig. 4.6. Execution Time (JR|=10K tuples, variant repetition Havi@ memory)

For reference table size 100000 tuples, variant values fortiepedf input tuples,

available memory, noise level and stream size, the exectitra is shown in

Fig. 4.7.
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Fig. 4.7. Execution Time (JR|=100K tuples, , variant repetitioraa@ble memory)

We observe that our method is sensitive to the input streantFaigel.5, Fig. 4.6 and

Fig. 4.7). More specifically, our method outperforms the stathefart methods

when the input stream does not exceed a specific size. Thissabeeirto the time

needed for maintaining the ggram trie in main memory. For lsiigams and great

percentage of repetition, our method works as efficiently as tdite-af-the-art
method. That means that many input tuples are already cachedninm@ory and

the whole procedure is accelerated avoiding redundant 1/O activities.

4.6. Precision of classification

In this paragraph we present the precision of classification bfrhethods, according

to the three scenarios described in the previous paragraph. Theirigligraphical

representations show the effect of the variant parameters ormpréuogsion of
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classification. More specifically, for each scenario we sneaithe number of correct
matches (categorexisting, the number of correct classifications for new tuples

(categorynew) and the number of not resolved tuples.

4.6.1. Effect of noise on precision of classification

precision |R| = 10K tuples, 100 input tuples
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Fig. 4.8. Precision (|R|=10K tuples, repetition 10%, availabi@ong 10%)

Fig. 4.8 depicts the sensitivity of our method to noise. For 20% nheved, the
number of not resolved input tuples is increased, whereas the nunthatabies for
existing tuples is decreasing. For smallest amounts of ndige,ptecision of
classification remains stable. For appropriate values ofagityitthresholds, there are

no misclassifications of input tuples. Specifically, a dirty injyie is not identified
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as a new record and a new tuple is not approximately matched witkisiimge
reference tuple. The effect of similarity thresholds onsifigation is described in
detail in section 4.6.3.

4.6.2. Effect of repetition on precision of classification

precision |R| = 10K tuples, 100 input tuples
ggram trie size: 10% x |R|, noise:10%
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Fig. 4.9. Precision (|R|=10K tuples, noise 10%, available mehQs)

We observe that repetition of incoming tuples does not affect thesipremf
classification (Fig. 4.9).
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4.6.3. Effect of similarity thresholds on precision of classifcat

The precision of classification is greatly affected by #lecion of threshold values.
Changing the threshold valtieres _newfor determining an input tuple as a new tuple,
we realize that the classification results change. In Ei$0, we represent the
classification results fothres_newequal to 0.2 and 0.5. We also represent the true

classification for the specific input stream.
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Fig. 4.10. Effect of Threshold Values on Precision
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We realize that setting threshdlttes_newto 0.5, affects the proper classification of
input tuples. More specifically, dirty input tuples having maximsimilarity value
under this threshold are misclassified, because they are iddrdasinew records. To
visualize this erroneous classification, we depict the numberisiflassified input

tuples in the Fig. 4.11.

precision |R| = 10K tuples, 1000 input tuples
ggram trie size: 10%x |R|, noise:10%, thres_new =0.5

100

80

60

# tuples

40 -

20

0% 10% 20%

repetition r%

Fig. 4.11. Misclassifications of Dirty Input Tuples as NeacBrds

4.6.4. Comparison with the state-of-the-art method

For reference table size 10000 tuples, variant values for iepetit input tuples,
available memory, noise level and stream size, the poaaidiclassification is shown
in Fig. 4.12 and Fig 4.13.
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Fig. 4.12. Precision (|R|=10K tuples, , variant repetitiorailavle memory)
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Fig. 4.13. Precision (|R|=10K tuples, , variant repetitiorailalvle memory)

For reference table size 100000 tuples, variant values foitrepedf input tuples,

available memory, noise level and stream size, the poaaidiclassification is shown

in Fig. 4.14.
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Fig. 4.14. Precision (|R|=100K tuples, , variant repetition {aa memory)

We observe that our method outperforms the state-of-the-art miettioel precision

of classification for any reference table and input stream(§iig. 4.12, Fig. 4.13 and
Fig. 4.14). This occurs due to the fact that Word ETI holds morenmafiton about

the reference tuples leading to more precise classification.

4.7. Memory Consumption

In this paragraph we present the memory consumption of our method. More

specifically, we depict the main memory needed for the execuifospecific

experiments.

For reference table 100000 tuples and available memory 10% the maxn@onory

according to different noise levels is shown in Fig. 4.15.
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Fig. 4.15. Maximum Memory (|R|=100K tuples, repetition 10%, avalai#mory
10%)
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From the graphical representations it is obvious that the maxim@mony
consumption remains stable and is independent to noise. This occure the t
pruning operation on gqgram trie, which is applied for keeping its feied. For a
better visualization of the memory consumption, we depict the memmounts
needed at runtime in Fig. 4.16.
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Fig. 4.16. Memory at Runtime (|R|=100K tuples, noise 10%, repefio%, available
memory 10%)
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CHAPTER 5. CONCLUSIONS

5.1. Conclusions — Summary
5.2. Future Work

5.1. Conclusions — Summary

The problem we have dealt with was the approximate matchinfeoénee data. Our
approach is associated with the implementation of an effectettau for on-line
detecting similarity between input and reference records. Meeifically, we have
proposed on a cleaning procedure that classifies a stream of inctupleg, before

their insertion to a reference table, as existing or not egiséiference tuples.

Our approach is based on a structure calléatd Index,which is a table holding
information about the attribute values stored in the reference fHfik structure is
used for the retrieval of reference tuples that probably match tuplets according to

ggram similarity.

Moreover, we have proposed a trie structure calgcam Triethat is maintained in
main memory and is used for the caching of the frequently retrestoute values.
This way, we avoid redundant I/O activities and accelerdtedwthole procedure.
Additionally, we have applied the LRU algorithm as a replacgrpelicy in case the
size of trie exceeds a specific percentage of main merhsing this replacement
policy we assured that the size of trie was kept fixed and omatall the recently

accessed attribute values.
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Our experiments have indicated that:

* Our method outperforms the state-of-the-art method in precision farasgy
level

» The precision of classification can be significantly impbusing the Word
ETI

» The execution time is improved when the streaming data cofregquent
input tuples

* Our method slows down in the case of large streams, for mamorye
maintenance tasks

* The selection of appropriate similarity thresholds is crdoralhe precision of

classification in terms of misclassified tuples.

5.2. Future Work

As already mentioned in previous chapters, the main target of etimothwas to
effectively classify a stream of input tuples before theierisn to a table holding
valid tuples. We have implemented the ggram trie structuoeder to cache frequent
input tuples and avoid redundant 1/O activities. An interesting tiopituture work is
the ggram trie space optimization. Specifically, it would fteresting to develop a
new procedure for building the trie in main memory, in order tudckthe repetition of
information and cache more valid tuples. The specific trie destin Section 3.3.2
encapsulates a set of frequent tid lists. However, singe adde contains its own tid
list, it is obvious that nodes belonging to the same branch holdthe imformation
about reference tids. Therefore, a compression procedure can beménfgd using

appropriate algorithms for optimization of the overall size efttfe.
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