Context in Databases

Evaggelia Pitoura Kostas Stefanidis
Department of Computer Science
University of Ioannina
GR 45110 Ioannina, Greece
{pitoura, kstef}Qcs.uoi.gr

Arkady K. Zavlavsky
School of Computer Science and Software Engineering
Faculty of Information Technology
Monash University
Melbourne, Australia
arkady.zaslavsky@cse.monash.edu.au

Abstract

A context-aware system is a system that uses context to provide rele-
vant information or services to its users. While, there has been a variety
of context middleware infrastructures and context-aware applications, lit-
tle work has been done in integrating context into database management
systems. In this paper, we first exploit the various parameters of context
and provide a characterization of context quality. Then, we present a clas-
sification of context-aware applications and their characteristics. Finally,
we propose various ways of integrating context into a database system.

1 Introduction

Context is any information than can be used to characterize the situation of
an entity. An entity is a person, place or object that is considered relevant to
the interaction between a user and an application, including the user and the
applications themselves [17]. There are various types of context such as time,
location, computing devices and users’ profiles. A system is context-aware, if it
uses context to provide relevant information and/or services to the user, where
relevancy depends on the user’s task. Although, there has been a lot of work
on developing variety of context infrastructures and context-aware applications,
there has been only little work integrating context into databases. The goal of
this paper is to exploit the various ways of making a database system context-
aware.

Context is a general term. We present a classification of the most common
types of context used in building software systems as well as an overview of

the basic characteristics of context information. We put special emphasis on
context quality as an indication of the extend to which the values of context
correspond to the real world.

We discuss context-awareness and the various ways context can be used to
make an application context-aware. These include the presentation of informa-
tion to the user, contextual information and automatic reconfiguration. Then,
we exploit the various ways context can be used to make database management
systems context-aware. These include context-aware query processing, consis-
tency management and information integration.

We survey the various conceptual models that have been proposed for con-
text as well as relevant models for storing context. Updating context is also
a central issue and we present some direction of how context updates can be
supported efficiently.

The remainder of this paper is structured as follows. Section 2 presents con-
text and its parameters and proposes models for its quality. Section 3 introduces
context-awareness, the characteristics pf context-aware systems and context in-
frastructures. Section 4 focuses on the management of context in Database
Management Systems (DBMS), while Section 5 discuss context management
issues, such as modeling and storage, in more detail. Section 7 concludes the

paper.

2 Context

In this section, we introduce the general concept of context and the various
types of context information. Then, we discuss the issue of context quality.

2.1 Context Parameters

Context is any information than can be used to characterize the situation of
an entity. An entity is a person, place or object that is considered relevant to
the interaction between a user and an application, including the user and the
applications themselves [17].

There are various types of context that are related to data engineering tasks.
Next, we discuss them using the taxonomy introduced in [9]:

e Computing context. Computing context includes (i) network connectiv-
ity, communication costs, and communication bandwidth, (ii) nearby re-
sources such as printers, displays, and workstations and (iii) local re-
sources, such as cpu, energy and type of display. Such parameters affect
data engineering since to improve performance data engineering mecha-
nisms (such as query processing algorithms and concurrency control pro-
tocols) must take into account the underlying resources.

o User context. User context includes the user’s profile, location, people
nearby, even the current social situation. This type of context parameters

directly affect the type of information relevant to a user. Thus, the user
context affects the results of query processing.

e Physical context. Physical context refers to the environment surrounding
the user such as lighting, noise levels, traffic conditions, and temperature.
Such type of context indirectly affects the type of information that is
relevant for or interesting to the user.

e Time context. Time context refers to the typical characterizations of time
such as time of a day, week, month, and season of the year. Time may
affect the result of a query, since relevance may also be dependent on the
time.

There are dependencies among the various types of context parameters. For
instance time context may affect the computing context, for example, network
traffic at weekends is less than during weekdays.

Besides this notion of context, context is also used in information modeling
as a higher-level conceptual entity that describes a group of conceptual entities
from a particular standpoint.

2.2 Quality of Context

The characteristics of context parameters make handling them an intricate task.
Such characteristics include the following [25].

e Context exhibits a range of temporal characteristics. Some types of con-
text (such as the user profiles) are relatively static whereas other types of
context (such as location) are dynamic. Furthermore, storing the context
history is important for predicting future values of context and developing
appropriate models for context evolution.

e Context information is imperfect. There are various reasons for that. One
reason stems for the fact that context information is often dynamic, thus it
gets quickly out-dated. Then, some forms of context information is often
produced by crude sensor inputs which may result in faulty information.
Furthermore, due to disconnections (e.g., wireless connections becoming
unavailable) or failures (e.g., sensors running out of battery power), the
available information may be imprecise. Finally, there is often the need
for time-consuming transformations for producing usable values of context.
Often the overhead of such transformations may be avoided or reduced on
the cost of producing rougher estimations.

e There are many alternative presentations of context offering varying de-
tails and depth.

e Finally, context parameters are highly interrelated. There are complex
dependencies among them, that are sometimes difficult to deduce. Such
dependencies may lead to conflicting and sometimes inconsistent results.

The above characteristics of context necessitate the introduction of appropri-
ate metrics for assessing the quality of context information. Context information
often involves real world entities. Thus, it makes sense to measure the quality of
context information (Qol), or the extent to which the data corresponds to the
real world. The quality of context information can vary, perhaps substantially,
depending on the context source and the type of context.

There are many issues regarding the quality of context information. First,
one must identify what are the parameters that characterize quality. Then, how
are these parameters measured, that is, what is an appropriate metric for each
one of the quality parameters. Furthermore, an important issue is the estimation
of quality provided and more importantly how is quality guaranteed. There has
not been research addressing all the above issues. Most comprehensive research
regarding handling the quality of context focuses on a particular type of context,
that of location. Various models have been developed for predicting the location
of moving objects. A survey on location management can be found in [37].

In [46], a model is proposed for predicting the location of objects moving
on a trajectory. Instead of storing the exact current location of the object in a
location database, information (such as the speed of movement and the trajec-
tory) is stored. This information is used to estimate the current location. The
motivation is dual: to avoid the cost of continuously updating the location in the
database and to be able to answer queries about the future location of the object.
In this case, a quality of metric is the accuracy of the estimated information, that
is the difference between the actual and the estimated position. Similarly, [44]
handles uncertainty regarding the position of moving objects but by introducing
various spatiotemporal predicates (such as always definitely-inside, sometimes
definitely-inside and possible always inside). Accuracy and confidence in the
prediction are the quality measures used for the location attribute also in [7].

Regarding the type of context quality for general types of context, [22] pro-
pose six quality attributes:

e coverage: the amount of the potentially sensed context about which infor-
mation is delivered

e resolution: smallest perceivable element

e accuracy: range in terms of a measure of the property

e repeatability: stability of measure over time

e frequency (sample rate): the temporal equivalent of resolution

e timeliness (range of the measure in time): the range of error in terms of
the time of some phenomena; the temporal equivalent of accuracy used
only for requirements analysis and the exploration of design issues

These attributes are used only for requirements analysis and the exploration
of design issues. There is no exploitation about how such measures may be
attained and used.

In [40], it is proposed to associate with each context value an uncertain
measure that captures the likelihood that the value accurately reflects reality.
This measure is pertinent to data produced by sensors. Similarly, [25] proposes
tagging attributes with quality indicators. The type of quality indicator depends
on the type of context.

Resolving ambiguous information from sensing or the interpretation of sensed
information through a mediation process involving the user is proposed in [18].
Smooth correction of those errors must occur over some time frame and over
some physical space. The quality issues in [19] are freshness and confidence.
Since the quality of context information is reported by context sources, the
issue of trust is raised and the need for independent monitoring is highlighted.

In general, we identify the following Quality of Service (QoS) parameters as
relevant to context information and data management:

e accuracy: the deviation of the estimated value of a context parameter
from the actual value of the parameter

e level of detail: this refers to the granularity of the presented information,
for instance, in the case of time, this can be measured e.g., in years, hours
or seconds

e conflict-free: this measure is application-dependent and refers to the re-
quirement of having consistent and non-contradicting values

e timeliness: the deviation of the value of the context parameter in time
(how up-to-date a value is kept)

3 Context-Awareness

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.
3.1 Context-Aware Applications
Each context-aware application may support one the following features [17]:
e presentation of information and services to a user;
e automatic execution of a service for a user; and
e tagging of context to information to support later retrieval.

There are various types of context-aware applications depending on the way
context is used. A nice classification is provided in [39] which identifies the
following categories of context-aware applications:

e Proximate selection is a user-interface technique where the objects located
nearby are emphasized or otherwise made easier to choose.

o Automatic contextual reconfiguration is the process of adding new compo-
nents, removing existing components, or altering the connections between
components due to context changes. Typical components and connections
are servers and their communication channels to clients. However recon-
figurable components may also include loadable device drivers, program
modules and hardware elements.

o Contextual information and commands can produce different results ac-
cording to the context in which they are issued.

o Context-triggered actions are simple IF-THEN rules used to specify how
context-aware systems should adapt. There are similar to contextual in-
formation and commands, except that context-triggered action commands
are invoked automatically

The situation abstraction is a description of the states of relevant entities.

3.2 Infrastructures for Context

Infrastructures for context are middleware systems that address issues common
to all applications that want to take advantage of context. Such issues include
capturing, accessing and storing context. Efficient distribution and support for
independent execution from applications are desirable features for such archi-
tectures. Some popular context infrastructures include the following.

Context Toolkit The Context Toolkit [16] is a distributed architecture that
supports It is based on three abstractions: context widgets, context interpreters
and context aggregators. A context widget acquires a certain type of context
information and makes this information available to applications. A context
interpreter accepts one or more types of context and produces a single piece of
context. A context aggregator aggregates or collects context. It is responsible
for all the context for a single entity. Applications can subscribe to pre-defined
aggregators and supply appropriate filters.

Solar The Solar system [11, 10] advocates a graph-based abstraction for context
aggregation and dissemination. Context information is modeled through events
which are produced by sources. Events flow through a directed acyclic graph
of events-processing operators and are delivered to subscribing applications.
Applications subscribe by describing their desired event stream as a tree of
operators that aggregate low-level context information published by existing
sources into the high-level context information needed by the application.

Cooltown The Cooltown project [28] proposed a web-based model of context in
which each entity (person, place or thing) has a corresponding description that
can be retrieved via a URL. Using URLs for addressing, physical URL beacon-
ing and sensing of URLs for discovery, and localized web servers for directories,

they create a location-aware but ubiquitous system to support nomadic users.
On top of this infrastructure, the Internet connectivity is used to support com-
munications services.

CoolAgent CoolAgent [12] is a context-aware multi-agent system. Ontology
sharing, sensing and reasoning is supported through the use of the Resource
Description Framework (RDF) and a Prolog-based system.

4 Context-aware DBMS

In this section, we consider how context can be integrated into a Database Man-

agement System. Context information related to a DBMS includes user-related

information (such as information provided through a user profile), computational-
related (such supporting small device, limited energy, quality of network con-

nection (e.g., in terms of reliability, frequent disconnections, intermittent con-

nectivity an low bandwidth) and environmental conditions (weather, location,

time of the day).

4.1 Context-aware Query Processing

Context-aware query processing has many aspects. We consider how context
affects (i) the results returned by a query, (ii) query optimization and (iii) the
way the results are presented to the users.

Although, there is some research on location-aware query processing, inte-
grating other forms of context in query processing is a new issue. The only re-
lated work that we are aware of is the context-aware querying processing frame-
work of [20]. In this framework, context-aware query processing is divided into
three-phases: query pre-processing, query execution and query post-processing,.
Query pre-processing is performed in two steps: a query refinement and a con-
text binding step. The goal of the query refinement step is to further constraint
the query condition by means of different contextual information. Context bind-
ing instantiates with exact values the contextual attributes involved in the re-
fined query. After query execution, at the query post-processing phase, the
results are sorted. External services may then be invoked for the delivering of
results to the users. Five context-aware strategies are defined. Strategy 1 refers
to queries that consider the current value of context as their reference point, for
example such queries include looking for the closest restaurant, the next flight,
the shortest route. To implement them, the contextual attributes are bound
to their current values. Strategy 2 includes queries that access facts about the
past (i.e., history data) which are recalled based on the relevant context. In this
case, archived data are linked based on their common contextual attributes.
Strategy 3 considers context as an additional constraint to the query. A given
query is refined to include relevant constraint rules. Strategy 4 reduces the
result set by ordering the produced results based on the user profile. This is

achieved by using an associated sorting rule. Strategy 5 considers the delivery
and presentation of results to the user by observing related delivery rules.

In the following, we shall use as a simple running example a database of
information about restaurants. The type of the record entries for restaurants
are tuples of a relation schema Restaurant(id, type-of-food, address, outdoors,
opening-hours, price). The context parameters are weather, location, time and
the user profile.

4.1.1 Context-Aware Results

Context may affect the results produced by a query. In this case, the same query
may produce different results depending on the context in which it is executed.
Context-aware query processing may be seen as a two-step process. In the first
phase, the context relevant to a specific query is initially identified and then
acquired. During the second phase, the relevant context is integrated within
the query.

Querying Context Parameters. One way to involve context within queries
is by allowing explicit access to context parameters within a query. Context
parameters are treated as attributes of a virtual relation; let us call this rela-
tion Context. The attributes of Context are bounded to the current value of
context when the query is executed. In the following example, we assume that
the attribute time of Context is bound to the current time when the query is
executed. The query returns all restaurants that are currently open.

select Restaurant.id
from restaurants, Context
where Context.time in Restaurant.opening-hours

Context as a Predicate. Another way to achieve context-awareness is to
augment the query with appropriate predicates. In particular, a given query is
transformed to a different one by adding additional constraints to it. One way
this may be achieved is by adding constraints using the contextual attributes.
Another way is by associating rules with specific attributes or relations and
adding these rules to the query. For example assume that a user specifies that
when the weather is good, the user likes to eat outdoors. The following example
returns all restaurant with an outdoor facility when the weather is good and
any restaurant otherwise.
An initial query submitted by the user:

select Restaurant.id
from Restaurants

is transformed to

select Restaurant.id
from Restaurants, Context

)

where (Context.weather = “sunny” and Restaurant.outdoors = “available”) or

Context.weather = “rainy”

Context as Preference. Context can be used to confine database querying
by selecting as results the best matching tuples. This can be achieved by defin-
ing preferences based on context, so that under a specific context a tuple is
preferred over another. The research literature on preferences is extensive. In
particular, in the context of database queries, there are two different approaches
for expressing preferences: a quantitative and a qualitative one.

With the quantitative approach, preferences are expressed indirectly by using
scoring functions that associate a numeric score with every tuple of the query
answer. Such a general quantitative framework for expressing and combining
preferences is proposed in [1]. In this framework, a preference is expressed by the
user for an entity. Entities are described by record types which are sets of named
fields, where each field can take values from a certain type. The * symbol is used
to match any elements of that type. Preferences are expressed as functions that
map entities of a given record type to a numerical score. A set of preferences
can be combined using a generic combine operator which is instantiated with
a value function. For example, the preference of a user for restaurants can
be expressed as preference(type-of-food), with values preference(chinese) = 0.1,
preference(greek) = 0.8 and preference(other) = 0.1.

In the quantitative framework of [30], user preferences are stored as degrees
of interests in atomic query elements (such as individual selection or join con-
ditions). The degree of interest expresses the interest of a person to include
the associated condition into the qualification of a given query. Specific rules
are specified for deriving preference of complex queries by building on stored
atomic ones. The results of a query are ranked based on the estimated degree
of interest in the combination of preferences they satisfy.

Both quantitative frameworks can be readily extended to include context.
One way this can be achieved is by defining preference functions based on con-
text. Then, based on the current values of context, the associated preference
functions can be selected, combined and used to rank the results of any given
query. Similarly, we may either include contextual parameters in the atomic
query elements or make the degree of interest for each atomic query element to
depend on context.

In the qualitative approach, the preferences between the tuples in the answer
to a query are specified directly, typically using binary preference relations. For
example, one may express that restaurantl is preferred from restaurant2 if their
opening hours are the same and its price is lower. This framework can also
be readily extended to include context. For instance, one may express that
restaurantl is preferred from restaurant2 if their opening hours are the same,
its price is lower and it is closest to the current user’s location.

A logical qualitative framework is presented in [14] for formulating prefer-
ences as preference formulas. The preference formula is a first-order formula
defining a preference relation between two tuples.

Both the quantitative and the qualitative approached can be integrated with
query processing. Relevant in this respect is research on top-k matching results
and on skylines. In top-k queries [8], users specify target values for certain
attributes, without requiring exact matches to these values in return. Instead,
the result to such queries is typically a rank of the “top-k” tuples that best
match the given attribute values. The skyline [5] is defined as those tuples
of a relation that are not dominated by any other tuple. A tuple dominates
another tuple if it is as good or better in all dimensions and better in at least
one dimension.

Context for Associative Recall. Finally, context can be used for associative
recall of past events. For example, in a “memory” database, context (such as
time or location) can be used to retrieve the associated facts. For instance, it
may be easier to retrieve facts (such as who was the prime minister of Greece) or
objects (such as for example photographs or favorite music albums) by referring
to the particular time period of one’s life (e.g., when user “John” was dating
“Mary”) or a geographic location (e.g., during once vacation in Hawaii) closely
associated with the facts or objects. To achieve such retrieval, storage of facts
or objects in a database must include information about the context parameters
when they occurred.

4.1.2 Context-aware Query Optimization

Besides affecting the results of a query, context information may be used in
query optimization to achieve more cost-effective plans. Computing context is
very relevant in this case. Instead of optimizing disk access, query plans may
be derived to optimize other performance metrics such as energy (when energy
power is an issue). Furthermore, the user context can also be exploited. For
instance, query processing may be such that the most relevant results (based
on the user’s profile) are returned first.

4.1.3 Context-aware Query Presentation

The way the results are presented to a user directly depends on the device
currently used by the user. In addition, energy and networking considerations
may affect the way query results are delivered to the user.

4.2 Context-Aware Consistency

Besides query processing, context can be used in other data engineering tasks.
These tasks include context-aware caching and replication. Context has been
used in a very limited way to direct the management of caches. Only two
parameters of context have been considered: (i) location of the user and (ii)
user preferences expressed in a user profile.

Location and Caching. Exploiting location information in caching has been

10

Awareness Module (AM)

Figure 1: Connecting Context and Databases

taking into account in the case of location-dependent services. A service is
location dependent, if its result depends on the location of the user who re-
quested the service. Examples include nearest neighbor searching (e.g., finding
the nearest restaurant) and local information access (e.g., local traffic news or
area attractions).

In semantic caching, the semantic description of data and the previous
queries are kept in the cache along with data. In [38], the idea of seman-
tic caching is applied for the case of location dependent queries. In [48, 47],
caching is considered for location-dependent services. The cache refreshment
policies proposed take into account the valid scope of a data value that is de-
fined as the geographical area within which the data value is valid.

User Context and Caching. User profiles have been used both for determin-
ing the cache content [13, 31] and for selecting an appropriate cache refreshment
policy (that is a policy that specifies when and how to update the cache). User
profiles are used to manage the contents of caches. Profiles are expressed in a
profile language that permits a high-level expression of user’s data needs for the
purpose of expressing the desirable contents of a cache. Advanced techniques
are presented for prefetching a cache on the basis of profiles, both for basic and
preemptive prefetching, the latter referring to the case where staging a cache
can be interrupted at any point without prior warning.

Early work in relating user preferences and cache refreshment is quasi caching
[2]. In quasi-caching, the specification of user requirements in terms of data
quality are used to reduce the amount of data sent from servers to clients to
update client caches.

More recent work in this context includes [3] and [6]. In [3], a cache main-
tenance technique is presented that focus on cache consistency guarantees. The
technique is based on latency-recency profiles that allow clients to express target
values for the desired latency and recency of objects. A scoring function uses
the target values to determine when to download an object from the server or
when to use a cached copy. The function can be tuned to meet the target values
and can provide guarantees with respect to the maximum latency or recency of
requested objects. User profiles are used in [6] to achieve more efficient cache

11

refreshment policies.

Context and Replication. There is not much current research on context-
aware replication schemes. Most previous research takes into account the net-
work connectivity between the various replication sites.

Consistency models in terms of distributed file systems (DFSs) are consid-
ered in [15]. Most DFSs implement a single consistency model to maintain
one-copy equivalence. The functionality of the proposed consistency model,
GLOMAR, is based on a balance between environmental constraints and the
targeted level of consistency. GLOMAR is a DFS middleware layer that allows
application developers to map their specific consistency models to environmen-
tal constraints. As a result, multiple consistency models can be created, with
each scoped for a particular application and environmental scenario.

An adaptive replication schema based on the quality of network connection
among the replication sites was proposed in [35, 36]. The proposed schema,
termed weak consistency, is based on two new high level update and read op-
erations (weak and strong). Weak reads return any available copy (even an
out-of-date one). Weak updates are only tentatively committed. Weak opera-
tions are used in the case of disconnections.

In [21], a two-tier schema is proposed that allows disconnected applications
to propose tentative update transactions that are later applied to a master copy.

4.3 Context in Information Systems and Multidatabases

Besides the use of context in context-aware systems, context has been used in
the area of multidatabase systems to resolve semantic differences. An important
issue in multidatabase systems is interoperability that is identifying objects in
different databases that are semantically related and then resolving differences
among these objects. Here the notion of context is that of information context.
Context refers to the implicit assumptions underlying the manner in which data
are represented and interpreted at each database.

In this respect, a context as information context may be identified or repre-
sented using the following [26].

e by association with a database or a group of databases
e as the relationship in which an entity participates

e from a schema architecture, a context can be specified in terms of an
export schema (a context that is closer to the database) or an external
schema (a context that is closer to the application)

e at a very elementary level, as a named collection of domains of objects

The degree of semantic similarity between a pair of objects is characterized in
[27] by using the concept of semantic proximity. It is based on the premise that
it is essential to associate the mappings between the objects to be compared with

12

the context of comparison. Context is represented as a collection of contextual
coordinates and their values. The meaning of the contextual coordinates and
their values are informally explained by expressing the context using description
logic expressions.

In a similar spirit, context is defined in [34] as the knowledge that is needed
to reason about another system, for the purpose of answering a query. It is
specified as a set of assertions identifying the correspondences between various
schema elements.

In [41], context is defined as the meaning, content, organization and prop-
erties of data. It is modeled using meta-data associated with the data. When
using a well-defined ontology, such as Cyc [23], a well-defined partition (called
Microtheory) of the ontology is assigned a context.

Context in [33] is used as a general mechanism for partitioning information
bases. Analogous is the use of context in [43] where context is used to disam-
biguate the meaning of names. Context is considered as a pair (cid, 1) where cid
is the context identifier and 1 is a lexicon (a binding of names to objects). Nest-
ing of contexts is possible by allowing a context to belong to the objects of the
lexicon of one or more other context. Operations are defined for manipulating
context.

4.4 Architecture of Context-Aware DBMS

A overview of how context can be integrated within a Database Management
System (DBMS) is depicted in Figure 1. The Awareness Modules communi-
cate with the sources that produce data (for instance, temperature sensors)
and propagate any updates to the Context Manager. The Context Manager
is responsible for managing (modeling, storing, updating) any context related
information. The Context Repository is the module where context is stored.
There are two ways of integrating context in a DBMS: (a) the context man-
ager may be part of the DBMS or (b) the context manager may be seen as an
intermediate middleware layer.

5 Context Management
There are many types of context information thus providing a unifying model

for modeling and a general approach for storing context variables are challenging
issues. We provide next a survey of various approaches to both problems.

5.1 Model of Context

A variety of models have been introduced for context. Discussions of the dif-
ferent models can be found in [9, 42]. Such models fall in one of the categories
described next.

Models for Location. Location is a context parameter that has attracted

13

a lot of attention. Models for location are different than other values of con-
text mainly because the location of moving objects is a parameter whose value
changes continuously with time. There are basically two different way to rep-
resent location: a symbolic and a geometric model. With the symbolic model,
location is represented using abstract symbols, while with the geometric model,
location is represented using coordinates. A nice overview of current research
on the topic can be found in [29)].

Key-Value Models. The simplest model is to represent contextual informa-
tion in the form of (context-variable, value) pairs. Key-value pairs can be used
for efficient exact match queries for example for automatic contextual reconfig-
uration. Such models are general and easy to manage but lack in expressibility
of semantic information.

Markup Schemes. Context is modeled using “contextual” tags. Common to
such schemes is a hierarchical data structure that is express through the nesting
of tags.

An example of such representation is a CC/PP profile [45]. A CC/PP profile
is a description of device capabilities and user preferences that can be used to
guide the adaptation of content presented to that device. CC/PP is based on
RDF, the Resource Description Framework, which was designed by the W3C
as a general purpose metadata description language. The Resource Description
Framework (RDF) is used to create profiles that describe user agent capabili-
ties and preferences. A CC/PP profile contains a number of CC/PP attribute
names and associated values that are used by a server to determine the most
appropriate form of a resource to deliver to a client. It is structured to allow
a client to describe its capabilities by reference to a standard profile, accessi-
ble to an origin server or other sender of resource data, and a smaller set of
features that are in addition to or different than the standard profile. A set of
CC/PP attribute names, permissible values and associated meanings constitute
a CC/PP vocabulary.

An example of using a markup scheme is “stick-e” notes [4] which are the
electronic equivalents of post-it notes. Context information is modeled as tags
and corresponding fields. The stick-e fields can recursively contain other tags
and corresponding fields. The note of the <body> tag is automatically triggered
when the contextual constraints in the <require> tag are met. This model
has evolved into the ConteXtML model which is an XML-based protocol for
exchanging contextual information.

Graphical Models. A variety of general models (such as the E/R model and
UML) are graphical. Such models are very expressive and are mainly used as
conceptual models. However, they convey little information at the instance level
or on implementation issues.

Object-Oriented Models. Important features of object-oriented models are

14

encapsulation and re-usability.

Logic-Based Models. A large number of proposals to represent context are
based on logic. Important in this respect is the formalization proposed in [32].
Contexts are considered as first class objects. The basic relation is ist(c,p). It
asserts that the proposition p is true in the context c. The most important
formulas relate the propositions true in different contexts. Introducing contexts
as formal objects permits axiomatizations in limited contexts to be expanded
to transcend the original limitations. This seems necessary to provide AI pro-
grams using logic with certain capabilities that human fact representation and
human reasoning possess. Fully implementing transcendence seems to require
further extensions to mathematical logic, i.e. beyond the nonmonotonic infer-
ence methods.

Ontology-Based Models. Ontologies have currently attracted much atten-
tion for specifying concepts and interrelations.

5.2 Storing Context

An important issue is what is an appropriate model for storing context. Besides
storing the current context for building context-aware systems and applications,
there is growing effort to extract interesting knowledge (such rules, regularities,
constraints, patterns) from large collections of context data.

Storing context data using data cubes, called context cubes [24], is proposed
for developing context-aware applications that use archive sensor data. The
context cube provides a multidimensional model of context data where each
dimension presents a context dimension of interest. The context cube also pro-
vides a number of tools for accessing, interpreting and aggregating context data
by using concept relationships defined within the real context of the applica-
tion. The basic cube operations are slice, dice, roll-up and drill-down. A slice is
a selection of one dimension of an n-dimensional cube. The dice is a selection
applied to all dimensions of the cube. Roll-up generates a new cube by applying
an aggregate function on one dimension. Drill-down is the inverse of roll-up; it
generates a context cube with finer granularity on one of the n dimensions. A
cube can be used to create new context from analysis of the existing data.

5.3 Updating Context

Since context parameters change with time, deriving a model of how they change
is important. This enables the prediction of future values of context. Further-
more, such information can be used to fine-tune various system-related parame-
ters as well as a variety of protocols. Finally, having a model for context updates
allow building systems that are more cost-effective. There are in general two
ways for communicating updates: a push and a pull model. In the push model,
the source of the context update push the new value of the associated context

15

parameter to the context-aware system. In the pull model, the context-aware
system polls the source to learn about any updates. In both models, there is
cost associated with update propagation. A model of context would reduce such
cost, since it will eliminate the cost of communication between the source and
the context-aware system. It will also reduce the computation cost at both ends.

Deriving general models for context updates is a formidable task, because of
the great variety of context information. Models have been advanced for location
updates, since it is possible to predict future locations when the moving objects
follow some pattern of movement or are moving in trajectories (for example,
cars in highways).

Another important issue relevant to data engineering is how to communicate
the change of context to the result of querying processing. We distinguish the
following three different approaches regarding how to update the query so that
it takes into account context context:

e each query answer includes the valid time of the answer

e the previous results is cached and used them to prune the search for the
new results

e the result is precomputed by using some model to predict the values of
the context parameters.

6 Summary

In this paper, we exploit the various parameters of context and provide a charac-
terization of context quality. Then, we present a classification of context-aware
applications and their characteristics. Finally, we propose various ways of inte-
grating context into a database system.

References

[1] R. Agrawal and E. L. Wimmers. A Framework for Expressing and Com-
bining Preferences. In Proc. of SIGMOD, 2000.

[2] R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an
Information Retrieval System. ACM TODS, 15(3), 1990.

[3] L. Bright and L. Raschid. Using Latency-Recency Profiles for Data Delivery
on the Web. In Proc. of VLDB, 2002.

[4] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware Applications: from
the Laboratory to the Marketplace. IEEE Personal Communications, 4(5),
1998.

[5] S. Brzsnyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proc.
of ICDE, 2001.

16

[6] D. Carney, S. Lee, and S. Zdonik. Scalable Application Aware-Data Fresh-
ening. In Proc. of ICDE, 2003.

[7] P. Castro, P. Chiu, T. Kremenek, and R. R. Muntz. A Probabilistic Room
Location Service for Wireless Networked Environments. In Proc. of Ubi-
Comp, 2001.

[8] S. Chaudhuri and L. Gravano. Evaluating Top-k Selection Queries. In
Proc. of VLDB, 1999.

[9] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing
Research. Dartmouth Computer Science Technical Report TR2000-381,
2000.

[10] G. Chen and D. Kotz. Context Aggregation and Dissemination in Ubiqui-
tous Computing Systems. In Proc. of the jth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA02), 2002.

[11] G. Chen and D. Kotz. Solar: An Open Platform for Context-Aware Mobile
Applications. In Proc. of the 1st International Conference on Pervasive
Computing, 2002.

[12] H. Chen, S. Tolia, C. Sayers, T. Finin, and A. Joshi. Creating Context-
Aware Software Agents. In Proc. of the First GSFC/JPL Workshop on
Radical Agent Concepts, 2002.

[13] M. Cherniack and M. J. Franklin. Expressing User Profiles for Data
Recharging. IEEE Personal Communications, 2001.

[14] J. Chomicki. Preference Formulas in Relational Queries. TODS, 28(4), Dec
2003.

[15] S. Cuce and A. Zaslavsky. Supporting Multiple Consistency Models for
a Mobility Enabled File System using a Component Based Framework.
MONET, 8(4), 2003.

[16] A. K. Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD Thesis, College of Computing, Georgia Institute of
Technology, December 2000, 2000.

[17] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous
Computing, 5(1), 2001.

[18] A. K. Dey, J. Mankoff, and G. D. Abowd. Distributed Mediation of Im-
perfectly Sensed Context in Aware Environments. GVU Technical report
GIT-GVU-00-14, 2000.

[19] M. Ebling, G. Hunt, and H. Lei. Issues for Context Services for Pervasive
Computing. In Proc. of Middleware’01 Advanced Workshop on Middleware
for Mobile Computing, 2001.

17

[20] L. Feng, P.M.G. Apers, and W. Jonker. Towards Context-Aware Data
Management for Ambient Intelligence. In Proc. of the 15th Intl. Conf. on
Database and Expert Systems Applications (DEXA), 2004.

[21] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The Dangers of Replica-
tion and a Solution. In Proc. of SIGMOD, 1996.

[22] P.D. Gray and D. Salber. Modelling and Using Sensed Context Information
in the Design of Interactive Applications. In Proc. of the 8th IFIP Interna-
tional Conference on Engineering for Human-Computer Interaction, 2001.

[23] R. V. Guha. Micro-theories and Contexts in Cyc. Basic Issues. Techni-
cal Report ACT-CYC-129-90 Microelectronics and Computer Technology
Corporation, Austin, 1990.

[24] L. Harvel, L. Liu, G. D. Abowd, Y-X. Lim, C. Scheibe, and C. Chathamr.
Flexible and Effective Manipulation of Sensed Contex. In Proc. of the 2nd
Intl. Conf. on Pervasive Computing, 2004.

[25] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context Infor-
mation in Pervasive Computing Systems. In Proc. of the 1st International
Conference on Pervasive, pages 167180, 2002.

[26] V. Kashyap and A. Sheth. So Far (Schematically) yet So Near (Semanti-
cally). In Proc. of IFIP WG 2.6 Database Semantics Conference on Inter-
operable Database Systems (DS-5), 1992.

[27] V. Kashyap and A. Sheth. Semantic and Schematic Similarities between
Database Objects: a Context-based Approach. VLDB Journal, 5(4), 1996.

[28] T. Kindberg, J. Barton, and J. Morgan et al. People, Places, Things: Web
Presence for the Real World. MONET, 7(5), 2002.

[29] M. Koubarakis, T. K. Sellis, and A. U. Frank et. al. Spatio- Temporal
Databases: The CHOROCHRONOS Approach. Lecture Notes in Computer
Science 2520 Springer, 2003.

[30] G. Koutrika and Y. Ioannidis. Personalization of Queries in Database Sys-
tems. In Proc. of ICDE, 2004.

[31] E. F. Galvez M. Cherniack, M. J. Franklin, and S. Zdonik. Profile-Driven
Cache Management. In Proc. of ICDE, 2003.

[32] J. McCarthy. Notes in Formalizing Context. In Proc. of the 13th Interna-
tional Joint Conference in Artificial Intelligence, 1993.

[33] J. Mylopoulos and R. Motschnig-Pitrik. Partitioning Information Bases
with Contexts. In Proc. of CooplS, 1995.

[34] A. Ouksel and C. Naiman. Coordimnating Context Building in Heteroge-
neous Information Systems. J. Intell Inf Systems, 3, 1993.

18

[35] E. Pitoura and B. Bhargava. Maintaining Consistency of Data in Mobile
Distributed Environments. In Proc. of ICDCS, 1995.

[36] E. Pitoura and B. Bhargava. Data Consistency in Intermittently Connected
Distributed Systems. IEEE TKDE, 11(6), 1999.

[37] E. Pitoura and G. Samaras. Locating Objects in Mobile Computing. IEEE
TKDE, 13(4), 2001.

[38] Q. Ren and M. H. Dunham. Using Semantic Caching to Manage Location
Dependent Data in Mobile Computing. In Proc. of MOBICOM, 2000.

[39] B. N. Schilit, N. I. Adams, and R. Want. Context-Aware Computing Ap-
plications. In Proc. of the Workshop on Mobile Computing Systems and
Application, 1994.

[40] A. Schmidt, K. A. Aidoo, and A. Takaluoma et al. Advanced Interaction
in Context. In Proc. of the International Symposium on Handheld and
Ubiquitous Computing (HUC99), 1999.

[41] E. Sciore, M. Siegel, and A. Rosenthal. Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Information Systems. ACM TODS,
1994.

[42] T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. In Proc.
of the Workshop on Advanced Context Modelling, Reasoning and Manage-
ment associated with the Sizth International Conference o n Ubiquitous
Computing (UbiComp 2004), 2004.

[43] M. Theodorakis, A. Analyti, P. Constantopoulos, and N. Spyratos. A The-
ory of Contexts in Information Bases. Information Systems, 27(3), 2002.

[44] G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing
Uncertainty in Moving Objects Databases. ACM TODS, Sept. 2004.

[45] W3C. Composite Capabilities/Preferencs Profile (CC/PP).
http://www.w3.org/ TR /2004 /REC-CCPP-struct-vocab-20040115/,
2004.

[46] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Updating and Query-
ing Databases that Track Mobile Units. Distributed and Parallel Databases
Journal, 7(3), 1999.

[47] J.Xu, X. Tang, and D. L. Lee. Performance Analysis of Location-dependent
Cache Invalidation Schemes for Mobile Environments. JEEE TKDE, 15(2),
2003.

[48] B. Zheng, J. Xu, and D. L. Lee. Cache Invalidation and Replacement
Strategies for Location-Dependent Data in Mobile Environments. IEEE
Transactions on Computers, 51(10), 2002.

19

