
An Efficient Test Set Embedding Scheme with Reduced Test Data Storage and

Test Sequence Length Requirements for Scan-based Testing∗

D. Kaseridis1, E. Kalligeros1, X. Kavousianos2 and D. Nikolos1
1Computer Engineering & Informatics Dept., University of Patras, 26500, Greece

2Computer Science Dept., University of Ioannina, 45110, Greece

kaserid@ceid.upatras.gr, kalliger@ceid.upatras.gr, kabousia@cs.uoi.gr, nikolosd@cti.gr

∗ This research was co-funded by the European Union in the framework of the program “Pythagoras IΙ” of the “Op-
erational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the
Hellenic Ministry of Education, funded by 25% from national sources and by 75% from the European Social Fund
(ESF).

Abstract

In this paper we present an efficient seed-selection algorithm for reducing the test data storage re-

quirements of scan-based, test set embedding schemes with reseeding. Moreover, a technique for reducing

the length of the generated test sequences is introduced. This technique achieves significant savings with

minor overhead (one extra bit per seed plus a small counter in the scheme’s control logic). Experimental

results demonstrate the advantages of the proposed algorithm and the test sequence reduction technique.

1. Introduction

The ever-increasing size and density of contemporary Systems-on-a-Chip (SoCs) are placing a severe

burden on the traditional testing approaches based on external Automatic Test Equipment (ATE). The

prevalent, core-oriented design style, although reducing the time-to-market and the complexity of the de-

signers' task, leads to circuits with reduced accessibility and increased test data storage and test sequence

length requirements. Consequently, the introduction of new, embedded testing solutions that overcome

these problems is of great importance.

From the perspective of testing, the cores integrated in a SoC can be classified into two categories:

those that are of known structure and those that are IP-protected and practically constitute a black box. For

the former, fault simulation and/or test pattern generation can be performed, while the latter are just ac-

companied by a pre-computed set T of test patterns that should be applied to their inputs so as to be tested.

Various very successful embedded testing techniques for cores of known structure have been recently pre-

sented in the literature, some of which have been incorporated in industrial and commercial CAD-tool

suites [1], [2].

Three different approaches can be followed in order to reproduce a test set T that comes with a core of

unknown structure: deterministic test set generation, test-pattern compression/decompression and test set

embedding. In the first approach, an on-chip ROM or a deterministic Test Pattern Generator (TPG) [3] is

used for precisely reproducing the test set of the Circuit (or Core) Under Test (CUT). In the second one,

compressed versions of the test patterns of T are stored in the tester and decompressed on-chip by means

of a built-in circuit [4]-[6]. Contrary to the two aforementioned approaches, test set embedding [7]-[9] en-

codes the test patterns of T in a longer TPG sequence, thus allowing the exploitation of the test data vol-

ume–test sequence length trade-off. Consequently, compared to the other two, the test set embedding ap-

proach can achieve smaller hardware overhead and test-data storage results. However, this advantage is

often exchanged with excessively long test sequences. Therefore, test set embedding techniques that com-

bine both reduced hardware and test data storage requirements with short test sequences are desirable.

An LFSR-based test set embedding approach with reseeding, featuring the two aforementioned charac-

teristics is proposed in this paper. For minimizing the number of required seeds, a seed-selection algo-

rithm, which makes use of a heuristic criterion similar to that presented in [10] along with two new ones,

is proposed. The two new criteria significantly refine the selection process and fairly reduce the selected-

seed volumes. Moreover, a technique for reducing the length of the generated test sequences is introduced.

The proposed technique partitions the set of vectors generated from each seed into segments and then re-

orders the seeds according to the number of useful segments they include. The test sequence length sav-

ings it achieves are significant, while the imposed overhead is confined to one extra bit per stored LFSR

seed plus one very small counter in the scheme's control logic. We note that the proposed test set embed-

ding approach can be implemented either as a full BIST solution or it can be combined with an external

tester in a test resource partitioning scenario.

2. Seed-selection algorithm

For presenting the seed-selection algorithm, we consider the classical LFSR-based reseeding scheme,

consisting basically of an LFSR, a Bit and a Vector Counter. The LFSR is loaded with a new seed and is

let generate states in order to produce L test vectors. That is, each seed is expanded to a window of L vec-

tors, which are serially shifted in the scan chains (through a phase shifter) and applied to the CUT. The

corresponding responses are captured by the Test Response Compactor (TRC). The same process is re-

peated until all the test cubes accompanying the CUT have been covered.

The proposed seed-selection algorithm receives as inputs the user-defined parameter L, which repre-

sents the size of the window (number of test vectors) that each seed is expanded to and a test cube set T.

Its goal is to select a number of LFSR seeds so as each test cube of T to be compatible with at least one of

the vectors generated when the selected seeds are expanded to the corresponding vector-windows. The set

of chosen seeds should be as small as possible.

The search space of the seed-selection algorithm is shown in Figure 1. It is (initially) comprised of L

symbolic vectors (sv0, sv1, ..., svL-1). Symbolic vector svi is the ith vector that would have been shifted in

the scan chains of the CUT, if each bit of the initial state of the LFSR were equal to a binary variable ai. In

other words, if the maximum scan chain length is equal to n, symbolic vector svi is the union of the sets of

linear expressions of variables ai contained in the scan chains of the CUT after i n-tuplets of clock cycles

from the initialization of the LFSR with a new seed (we do not consider the capture cycle).

sv0

svL-1

sv1

.

search-space
traversing for
each test cube

Figure 1. The search space of the seed-selection algorithm

For determining a new seed, the seed-selection algorithm makes use of the well-known concept of solv-

ing systems of linear equations [11]. At first, for each window the seed-selection algorithm generates the

above described search space by simulating the function of the LFSR and the phase shifter symbolically.

Then, for each test cube t of the set T, it traverses the search space row by row and, by solving the corre-

sponding linear systems svi=t, tries to verify if a vector compatible to t can be generated at each position.

If the corresponding system is solvable, then such a vector exists. In order to be generated, the initial

LFSR state should be updated according to the solution of the system (i.e. assuming Gauss-Jordan elimi-

nation, all the variables belonging in the pivot columns of the system should be replaced by linear expres-

sions of the free variables). We then say that test cube t has been covered at the ith window position.

The seed-selection algorithm examines, at each step, all possible linear systems for all test cubes and

chooses one in order to be solved. After variable replacement, the selected test vector is removed from T

and the search space is regenerated using the new initial LFSR state. We note that the replaced variables

are not contained in the symbolic vectors of the regenerated search space. The above-described procedure

is repeated by selecting a new test cube to be covered at some window position at each step of the algo-

rithm, until no system is solvable for any of the remaining test cubes of T. At this point a new seed has

been determined. The seed-selection algorithm continues to generate seeds this way until all the test cubes

of T have been covered.

Since at each step of the algorithm, linear systems corresponding to more than one test cubes will be

solvable at more than one positions of the examined window, a set of heuristics should be defined for se-

lecting the system that will be actually solved. The proposed seed-selection algorithm utilizes three basic

criteria for this purpose. The first one is similar to the one proposed in [10] but since this criterion is not

elaborate enough, we refine the selection process with two additional ones. These two new criteria signifi-

cantly improve the encoding ability of the proposed algorithm and thus lead to better results in terms of

the required seed volumes and the resulting test-sequence lengths.

According to the first criterion, after traversing the search space for all test cubes, the algorithm selects

the solvable system that corresponds to the “hardest” among the test cubes of T at each step. As “hardest”,

we consider the test cube containing the maximum number of defined bits. Such cubes are always more

difficult to be encoded along with others in the same seed, since, due to the increased number of defined

bits they contain, fewer variables remain free after solving a system for them. Therefore, we avoid letting

such “hard” test cubes to be covered at the last stages of the encoding procedure, since it is difficult to en-

code, in the same seed, another “hard” test cube (many seeds would be needed in order to cover them -

there may be cases in which only one cube would be encoded in one seed).

Since at each step there are more than one linear systems that correspond to test cubes with the same

maximum number of defined bits, a second criterion is needed in order to select one of them. According to

that, among the systems selected by the first criterion, we choose the one that its solution leads to the re-

placement of the fewest variables ai in the L-vector window (search space). In that way, at each step there

will be more variables available in the linear expressions of the symbolic vectors of the window and there-

fore more systems will be solvable in the following steps of the algorithm, making it possible to encode

more test cubes in just one seed. Thus this second, new criterion enhances the encoding ability of each one

of the selected seeds.

Finally, in the case that after the application of the two above criteria there are more than one test cubes

that can be selected, a third criterion is necessary in order to choose just one of them. According to that,

among the systems that correspond to test cubes with the same maximum number of defined bits and re-

quire the replacement of the same minimum number of variables in order to be solved, the one which is

nearest to the first vector of the window is selected. This third selection criterion (the second new one)

targets the minimization of the test sequences resulting after the application of the test sequence reduction

technique that will be presented in the following section.

Various optimizations have been adopted for reducing the execution time of the seed-selection algo-

rithm. The "always select the hardest cube" nature of the algorithm allows the test cubes of T to be

grouped in cube-groups. Each cube-group contains only test cubes with the same number of defined bits.

The groups are sorted in descending order starting from the one that contains the cubes with the maximum

number of defined bits. In the process of selecting a new seed, the algorithm considers only the test cubes

of a group and only when no cube belonging to that group can be further encoded, proceeds to the next

group. This reduces significantly the number of traverses of the search space and thus, the number of lin-

ear systems solved at each step of the algorithm. Also, when a test cube is considered, the positions in the

search space that a linear system can be solved for that cube are marked, so that if the same cube has to be

re-examined (after the selection of another cube in the same group), only these positions are checked.

These run-time optimizations combined with the fact that the procedures for solving systems of binary

linear equations are much faster than those for solving conventional systems of linear equations [10], lead

to run-times in the range of some minutes to few hours in a Pentium 4, 2.6 GHz workstation, for each of

the experiments that will be presented in Section 4.

3. Test-sequence reduction scheme

As it has been explained in the previous section, the seed-selection algorithm assumes a window of L

successive test vectors for each selected seed. Only some of the vectors of each window are actually being

used for reproducing the test cubes of set T. One can easily understand that, if the last vector of a window

is not a useful one, i.e. no test cube has been selected by the algorithm in order to be covered at that posi-

tion, then all vectors from the last useful one to the last window vector are redundant (Figure 2). On the

other hand, the useless vectors between two successive useful ones are necessary since they connect the

two useful vectors in the test vector sequence. Therefore, they cannot be removed without reseeding the

LFSR (so as to bridge the gap created in its state sequence by the removed vectors). Moreover, as more

seeds are selected by the algorithm, fewer cubes are encoded in new seeds’ windows, leaving more useless

states at the end of those windows. Due to the above-mentioned reasons we conclude that usually there

will be a significant number of final-redundant test vectors in each window. This fact negatively affects

the required test application time. This problem is much more important in the case of test set embedding

since the increased number of seeds, compared to the case where the CUT is of known structure, leads to

much longer test sequences.

The most efficient way, in terms of test-sequence length, for eliminating those redundant final vectors

is to stop the expansion of each vector-window after the clock cycle, in which the last useful vector was

loaded in the scan chains of the CUT. In that way the number of redundant vectors in each window (the

useless vectors at the end of the window) will be equal to zero. Assuming that a Vector Counter is used for

counting the vectors of each window, this “maximum reduction” approach requires Vector Counter to be

initialized in a different value at each reseeding and consequently, the initialization values of the counter

should be stored along with the corresponding seeds. Therefore, excessive test data storage may be re-

quired, especially when a long Vector Counter is needed. In order to overcome this inefficiency, a differ-

ent approach has to be followed.

L-vector
window

First Window Vector

Last Useful Vector

Redundant
Vectors

(from new seed)

Last Window Vector

Figure 2. A window of L states

Such an approach would require a component (e.g. a state machine), which could generate the required

number of test vectors (the initial value of the Vector Counter) for every window in the test sequence.

Since the value that would be loaded in the Vector Counter at each reseeding is generated by that state

machine, the corresponding initialization values do not have to be stored. A counter could be a simple im-

plementation of that machine. Due to its functionality we call it Load Counter. As far as this counter is

concerned, the only information that should be kept in a ROM is some trigger bits. Since one such bit can

be used for triggering (or not) Load Counter only once (bit=1 => Load Counter proceeds to its next value,

bit=0 => Load Counter maintains its previous value), the volume of stored data is proportional to the accu-

racy provided by the counter's values, i.e. how close are these values to the best possible ones (those re-

quired for achieving “maximum reduction”). If for example, at the end of seed's i window there are five

useful vectors less than those at the end of the window of seed i-1, Load Counter should be decreased five

times in order for the best result to be achieved. Unfortunately, in this case, the volume of data that should

be stored may increase to such an amount that no gain would be feasible compared to the “maximum re-

duction” approach (for which the initial values of Vector Counter are stored).

A solution to this problem would be to assign each value of Load Counter to a group of test vectors in-

stead of just one. In order to realize that, we segment each window into a number of equal-sized groups of

test vectors (segments). The partitioning of a window into segments is shown in Figure 3. The useful vec-

tors of the window are included in the first k segments, where the kth segment contains the last useful vec-

tor. k is, most of the times, smaller than m (the total number of segments a window has been partitioned

to) and thus the last m-k segments (those containing redundant vectors) can be dropped during test genera-

tion. Furthermore, with proper selection of the segment size (parameter Segment_Size), the distance be-

tween the last useful vector and the end of the last useful segment can be minimized. Both the above rea-

sons assure that this segmentation approach eliminates the majority of redundant vectors that a window

includes, having as upper limit (of the eliminated redundant vectors) those dropped by the “maximum re-

duction” approach. Since Load Counter values now correspond to the segments of each window, Vector

Counter has to be split in two separate counters, Segment Counter and Segment-Vectors Counter. The

former counts the segments that should be generated for each window and is the one that is loaded with

Load Counter's value, while the latter counts the test vectors of a segment (from Segment_Size-1 to 0). The

combination of these two counters substitutes the Vector Counter of the classical reseeding approach.

Useful
Vectors

Redundant
Vectors

Segment 1

Window of Size L
Partitioning the window

in m segments

Segment 2

Segment k
(Last useful segment)

Segment k+1
(First redundant segment

Segment m
(Last segment - redundan

Figure 3. The proposed window segmentation technique

After partitioning each seed's window into segments, two issues remain to be resolved. The first one has

to do with the frequency with which Load Counter will be triggered, or, in other words, with the number

of extra bits that will be stored. There are two extreme approaches that can be followed: a) a single trigger

per multiple reseedings or b) multiple triggers per one reseeding. Since the first approach lacks accuracy

and the second one has increased storage requirements, we choose the solution of triggering the counter

once for each reseeding. This solution combines the advantages of easy implementation, reduced test data

storage requirements (one extra bit is stored per seed) and satisfactory accuracy (as earlier mentioned, the

accuracy can be further improved by adjusting the size of the segments).

The second issue concerns the functionality of Load Counter. If from seed i more useful segments have

to be generated compared to seeds i-1 and i+1, then Load Counter should first increase (from seed i-1 to

seed i) and then decrease (from seed i to seed i+1). Seed reordering helps to eliminate this problem. We

remind that the seeds are independent of each other and can be reordered in any suitable way. Therefore,

we rearrange the seeds, in descending order, according to the number of useful segments they include.

However, there will be cases for which the difference in the number of useful segments between two suc-

cessive (ordered) seeds will be greater than one. In such cases, some useless segments should be main-

tained in the window with the smaller number of useful segments. The proposed seed rearrangement pro-

cedure is better explained with the example of Figure 4.

ca

b
d

ac

b
d

e

e

a) In itia l W ind o w s an d u se fu l segm ent vo lu m es

7

3

8

5

7

c) F in al w ind o w s an d ex tra b its

7

3
5

78

S eed 1

E x tra B its
R edun dan t
S egm ents

S ee d 2 S eed 5S ee d 4S eed 3

1 0 1 1 0

S eed 1 S eed 2S eed 5 S eed 4S e ed 3

ac

b
d

e

7
5678

S eed 1 S eed 2S eed 5 S ee d 4S ee d 3

b) R eo rd e rin g
Figure 4. Rearrangement technique: a) Initial Windows, b) Windows after the reordering, c) Final win-

dows and extra bits

At first, the seeds are arranged in descending order according to the number of useful segments their

windows include (Figure 4.b). After that, if there is any difference in the number of required segments

between two successive windows, let say Wi and Wi+1, that is larger than one, then a number of redundant

segments should be allowed in Wi+1, so as this difference to be reduced to one (Figure 4.c windows d and

b). On the other hand, if the above difference is smaller than or equal to one then the number of segments

remains unchanged (Figure 4.c windows c, a and e). Finally the procedure runs over the resulting windows

and calculates the value of the extra bit of each seed (one=next seed’s window requires one segment less,

zero=next seed’s window requires the same number of segments). Although the existence of a single extra

bit per seed decreases somehow the effectiveness of the segment-partitioning scheme (due to the redun-

dant-segments allowed in some windows), with proper selection of the segment size the number of al-

lowed redundant segments can be reduced. This way, test-sequence length reductions that are very close to

those of the “maximum reduction” approach can be achieved, as will be demonstrated in Section 4.

Control
Logic

LFSR

S
eg

m
en

t
C

ou
nt

er

S
eg

m
en

t-
V

ec
to

rs
C

ou
nt

er

2-to-1
MUX

1

0

Lo
ad

C
ou

nt
er

Seeds

(controlled by extra bit)
Enable

TRC

………

B
it

C
ou

nt
er

Enable

SC2 SCnSC1

Phase Shifter

Figure 5. The proposed test-sequence reduction scheme

The architecture that handles the operation of the proposed scheme is shown in Figure 5. As previously

mentioned, Load Counter is controlled by the value of the extra bit of each seed and is responsible for

maintaining the required number of segments for each window. If this bit is equal to 1, the counter is trig-

gered and its value decreases by one (just after its previous value has been loaded in the Segment

Counter), while if it is 0, Load Counter remains unchanged. That is, before being triggered, Load Counter

contains the number of vector-segments that should be applied to the CUT, starting from the current seed.

In order to actually control the generation of the test vectors of a window, three counters are needed: Bit

Counter, Segment Counter and Segment-Vectors Counter. Bit Counter controls the scan-in operation of

each vector's bits in the scan chains of the CUT. Segment-Vectors Counter controls the generation of the

test vectors of a single segment, while Segment Counter is responsible for counting the required number

of segments for each window and thus is initialized for each seed with the value of Load Counter. As pre-

viously mentioned, Segment and Segment-Vectors Counter constitute a combined counter. Segment

Counter’s value is decreased by one every time Segment-Vectors Counter signals that Segment_Size pat-

terns have been applied to the CUT. That is, for every state of Segment Counter a full count down of

Segment-Vectors Counter is carried out. When Segment Counter becomes equal to zero, the vectors of the

current window have been generated and the expansion of the current seed stops (Bit Counter is disabled).

In order to generate the next window the following steps have to be carried out: the next stored seed is

loaded in the LFSR, Segment Counter is loaded with current Load Counter’s value, Load Counter is trig-

gered (or not) according to the value of the seed’s extra bit and Bit Counter is enabled again (due to the

initialization of Segment Counter to a value different from 0). The above-described process is repeated

until all the seeds have been expanded to their corresponding vector-segments. We stress that Segment

Counter does not count down from (#Segments-1) to 0 for each seed but from #Segments, since its zero

value triggers the loading of the next seed.

A final comment that should be made about the proposed scheme is that, since Segment and Segment-

Vectors Counters are combined to generate the vectors of a seed’s window, their combined size cannot be

much greater than the size of the Vector Counter of the classical reseeding approach. In fact it can be

proven that their combined length can be at most one bit larger than that of Vector Counter. Consequently,

extra hardware overhead in the Control Logic of the proposed scheme is imposed only by the addition of

Load Counter, which, as will be seen in the evaluation section, is very small (its length is equal to that of

Segment Counter).

4. Evaluation and comparisons

In order to evaluate the effectiveness of the proposed scheme, we implemented the seed-selection and

segmentation-rearrangement algorithms in C programming language and we conducted a series of ex-

periments on the larger ISCAS’89 benchmark circuits with many hard-to-detect faults, assuming 32 and

64 scan chains. The required test sets were obtained by using the Atalanta ATPG tool [12]. The character-

istic polynomials of the LFSRs were selected to be primitive and the Phase Shifters were calculated ac-

cording to the work of [13], using 2 XOR gates for every output of the shifter.

The choice of the window size L of the seed-selection algorithm significantly affects both the number

of final selected seeds and the length of the resulting test sequences (before the application of segmenta-

tion-rearrangement technique). By increasing the size of the window, the number of required seeds ini-

tially reduces due to the existence of more test vectors in each window. However, as the value of L in-

creases, after a point we get diminishing returns (Saturation Point in Figure 6). The primary target of the

selection process of the window size L was the reduction of the required seeds. For that reason, the win-

dow size L was chosen to be at the right of the saturation point (Figure 6).

Figure 6. Number of seeds versus windows size L for s9234.

In Table 1 we present the results of the proposed technique for 32 and 64 scan chains, having deter-

mined the window size L as explained above. Columns 6 to 8 give the results after the application of the

seed-selection algorithm with the last one (the column labelled “Test-seq. length (unreduced)”) referring

to the test-vector sequences for which full size windows are used for each seed (i.e., before the application

of the segmentation-rearrangement technique). Moreover, in columns 9 to 13 we present the results of the

segmentation-rearrangement technique. In contrast to the window size parameter L, the value of Seg-

ment_Size parameter can be easily determined by using a very quick, brute-force procedure. This proce-

dure tests all possible values for the Segment_Size and chooses the best of them, with respect to the final

test-sequence length. That is, it chooses the Segment_Size that achieves the best balance between the num-

ber of allowed redundant segments in the seeds' windows and the number of redundant vectors included in

the useful segments. The running time of this procedure is very low. In fact, it was lower than two seconds

for each of the experiments of Table 1, in a Pentium 4, 2.6 GHz workstation. The final test sequence

length after the application of the segmentation-rearrangement procedure is shown in column 11, while the

reduction achieved compared to the unreduced test sequences of column 8 is given in column 12. As can

be seen, the gain is up to 42,9% while the average test-sequence-length reduction reaches 30.05% and

29.91% for 32 and 64 scan chains, respectively. For the case of the s38584, assuming either 32 or 64 scan

chains, this gain is small due to the fact that the seed-selection algorithm achieves high levels of compres-

sion, by encoding many test cubes in each window, and therefore less redundant test vectors remain at the

end of the windows. As a result, the segmentation-rearrangement technique achieves small reductions for

this circuit.

For assessing the effectiveness of the segmentation-rearrangement technique, in the rightmost column

of Table 1 we provide the percentage of the managed test-sequence-length reductions over those that can

be achieved by the "maximum reduction" approach (Section 3). That is, if the application of the segmenta-

tion-rearrangement technique leads to a test-sequence-length reduction of X vectors, while the "maximum

reduction" technique achieves a Y-vector reduction, then this percentage is equal to (X/Y)⋅100. As can be

seen the proposed test-sequence-reduction technique manages to drop most of the windows' redundant

vectors (94.12% and 94.62% on average for 32 and 64 scan chains respectively). This is valid even for the

small-gain case of s38584, where a significant percentage of the (few) redundant vectors is eliminated

from the final test sequence (83.14% for 32 scan chains and 85.79% for the case of 64 scan chain).

In Table 2 we compare the proposed technique against the Reconfigurable Interconnection Network

(RIN) approach of [9], which has been shown to be the most successful test set embedding technique in

the literature, in terms of the required test-data storage. Since, according to this approach no reseedings are

performed, two strategies are proposed for declustering the care bits of the test cubes: scan cell reorganiza-

tion and the insertion of an extra level of multiplexers between the outputs of RIN and the inputs of scan

chains of the CUT (Interleaving Multiplexers). Due to the fact that scan cell reorganization is not a prefer-

able approach, in the comparisons we considered only the strategy of the extra interleaving level.

According to [9], the number of tristate gates in each multiplexer of the RIN is equal either to the number

of configurations or to the number of LFSR cells, whichever is smaller. By doing so, the authors ensure

the usage of the minimum overall number of tristate gates. Although this is true, in the case that the num-

ber of configurations is bigger than the size of the LFSR, some extra gates will be needed in every MUX

of the RIN, in order to actually connect each configuration control line Di with a tristate gate that is used

in more than one configurations. That is, for every tristate gate of the RIN, which is used more than once,

an extra gate (having as inputs the respective configurations’ control lines) is needed in order to control

this tristate gate. If we assume that each of these extra gates require at least 4 transistors, then the hard-

ware overhead of the RIN will be equal to or even greater than the case in which a single tristate gate (4

transistors) is used for every configuration in each MUX of the RIN. Consequently, the easiest and fairest

way to compare the two techniques is to assume that the number of tristate buffers in each MUX is equal

to the number of configurations’ control lines (Di), as shown in Figure 2.b of [9].

Table 1. The results of the proposed technique.

Taking into consideration all the above, we have calculated the hardware overhead of [9] as the overall

number of transistors that this approach requires. In other words, the overhead presented in Table 2 is

equal to the sum of the transistors required for the implementation of the tristate-buffer-based MUXes of

the RIN and the interleaving level, as well as the ROM for storing some necessary control bits. We have

assumed that for the implementation of each tristate buffer 4 transistors are needed as mentioned in [9],

while the area that each ROM bit occupies was considered to be equal to that of 1 transistor [14]. More-

over, for every configuration control line (Di) we have calculated the overhead of an inverter required for

generating the signal
iD , which, combined with the Di, controls the inputs enable and enable of the as-

sumed tristate buffers, respectively. The hardware overhead of the proposed approach was calculated as

 Seed-selection algorithm Segmentation-rearrangement technique

Scan
Chains Circuit

Scan
elements

LFSR
length

Test set (T)
size

(#vectors)

Window
size (L)

Number
of seeds

Test-seq.
length

(unreduced)

Segment
_Size

Segment
Counter
length

Test-seq.
length (re-

duced)

Test-seq.
length

gain (%)

% of "Max.
reduction"

gain
s9234 247 44 1190 500 146 73000 8 6 46312 36.56 97.55
s13207 700 24 2217 350 129 45150 5 7 34040 24.61 92.55
s15850 611 39 2391 300 157 47100 5 6 30095 36.10 97.79
s38417 1664 85 6322 300 548 164400 2 8 97736 40.55 99.56

32 scan
chains

s38584 1464 56 8317 500 84 36775 25 5 36775 12.44 83.14
s13207 700 24 2217 370 126 46620 11 6 34573 25.84 94.33
s15850 611 39 2391 200 162 32400 3 7 20004 38.26 98.55
s38417 1664 85 6322 300 555 166500 1 9 95078 42.90 99.80

64 scan
chains

s38584 1464 56 8317 500 86 43000 18 5 37566 12.64 85.79

the sum of the transistors required for the implementation of the phase shifter plus the transistors that cor-

respond to the ROM bits that should be stored (as above, 1 transistor per bit was assumed). The hardware

overhead of the phase shifters is equal to 16·Number of scan chains, since 2 standard transmission-gate-

based XORs were used for the realization of each of their XOR trees. Such a XOR gate requires 8 transis-

tors for its implementation. We note that in our ROM-bit results we have also calculated the extra bit that

is stored along with each seed. We should stress that, for the calculation of the hardware overhead of the

approach of [9] we did not take into account neither the excessive wiring of the RIN and the interleaving

level, nor the decoder needed for driving the RIN. As for the rest of the control logic of the two compared

schemes, it is very small and imposes similar area overhead and, for that reason, it has not been considered

in the comparisons.

Two kinds of comparison are presented in Table 2. In columns 3 to 5 we compare the two techniques

with respect to the imposed hardware overhead, while in the next 3 columns we compare them as far as

the length of the resulting test sequences is concerned. As can be seen from this table, the proposed ap-

proach requires substantially smaller test sequences than those of [9]. Specifically, our technique is better

in terms of test-sequence length in all cases, requiring on average 80.96% and 78.62% fewer test vectors,

for the 32 and 64 scan chains respectively. As for the hardware overhead comparisons, the RIN approach

requires significantly fewer ROM bits but this is done at the expense of the insertion of two levels of

MUXes between the LFSR and the scan chains of the CUT. Consequently, these MUXes, the size of

which is proportional to the number of the scan chains, require for their implementation significantly more

transistors compared to those needed by both the phase shifter and the stored data bits of our approach.

Therefore, as far as the hardware overhead comparisons are concerned, even with much smaller test se-

quences, the proposed technique is, in all but one case, more efficient than that of RIN approach. Only for

s38417 in the case of 32 scan chains, the proposed approach imposes more hardware overhead. However,

in this case the test sequence length saving is equal to 84.37%. On average, compared to the technique of

[9] the proposed one requires 13.49% and 53.67% less hardware overhead for 32 and 64 scan chains re-

spectively.

Table 2. Hardware overhead and test-sequence length comparisons.

 Hardware overhead Test sequence length
Scan

Chains
Circuit

[9]
(#trans.)

Proposed
(#trans.)

Reduct.
(%)

[9] (#vec.)
Proposed

(#vec.)
Reduct.

(%)
s9234 9424 7082 24.85 135765 46312 65.89
s13207 5428 3737 31.15 152596 34040 77.69
s15850 7352 6792 7.62 222336 30095 86.46
s38417 44896 47640 -6.11 625273 97736 84.37

32 scan
chains

s38584 5884 5300 9.93 383009 36775 90.40
64 scan s13207 19409 4174 78.49 75047 34573 53.93

s15850 19420 7504 61.36 179580 20004 88.86
s38417 52524 48754 7.18 616835 95078 84.59

chains

s38584 18323 5926 67.66 291425 37566 87.11

5. Conclusion
An efficient LFSR-based test set embedding approach with reseeding has been proposed in this paper. It

features an effective seed-selection algorithm that minimizes the test data storage requirements, as well as

a technique for reducing the resulting test sequences. The latter achieves significant test sequence length

savings (30% on average), while the overhead imposed is confined to one extra bit per stored LFSR seed

plus one very small counter in the scheme's control logic. The proposed approach compares favorably

against the most recent and efficient test set embedding technique in the literature.

References
[1] B. Koenemann et al., "A SmartBIST variant with guaranteed encoding", Proc. of ATS, 2001, pp. 325-

330.

[2] J. Rajski et al., “Embedded deterministic test”, IEEE TCAD, vol. 23, May 2004, pp. 776-792.

[3] C. Dufaza et al., "LFSROM: A hardware test pattern generator for deterministic ISCAS85 test sets",

Proc. of ATS, 1993, pp. 160-165.

[4] A. Jas et al., "Scan Vector Compression/Decompression Using Statistical Coding", Proc. of VTS,

1999, pp. 114-120.

[5] K. Chakrabarty, V. Iyengar, A. Chandra, ”Test resource partitioning for System-on-a-Chip”, Kluwer,

2002.

[6] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction and compression for test

time and data volume reduction in scan designs”, IEEE TC, vol. 52, Nov. 2003, pp.1480-1489.

[7] D. Kagaris & S. Tragoudas, "On the design of optimal counter-based schemes for test set embedding",

IEEE TCAD, Feb. 1999, pp. 219-230.

[8] S. Swaminathan & K. Chakrabarty, "On using twisted-ring counters for test set embedding in BIST",

JETTA, vol. 17, Dec. 2001, pp. 529-542.

[9] L. Li & K. Chakrabarty, "Test set embedding for deterministic BIST using a reconfigurable intercon-

nection network", IEEE TCAD, Sept. 2004, pp. 1289-1305.

[10] E. Kalligeros, X. Kavousianos & D. Nikolos, "Multiphase BIST: A new reseeding technique for high

test-data compression", IEEE TCAD, Oct. 2004, pp. 1429-1446.

[11] B. Koenemann, "LFSR-coded test patterns for scan design", Proc. of ETC, 1991, pp. 237-242.

[12] H. K. Lee and D. S. Ha, “Atalanta: an Efficient ATPG for Combinational Circuits,” TR, 93-12, Dep't

of Electrical Eng., Virginia Polytechnic Institute and State University, 1993.

[13] J. Rajski et al., “Automated synthesis of phase shifters for Built-In Self-Test applications”, IEEE

TCAD, vol. 19, Oct. 2000, pp. 1175-1188.

[14] L. Huang et al., "Gauss-Elimination-Based Generation of Multiple Seed-Polynomial Pairs for LFSR",

IEEE TCAD, vol. 16, Sept 1997, pp. 1015-1024.

