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Abstract

The recently introduced OpenMP device constructs open a whole new world for ap-
plication writers, enabling them to easily utilize the host CPUs along with other attached
computational resources, in an intuitive and productive manner. At the same time, mul-
ticore architectures have conquered the whole computing spectrum. General-purpose and
embedded system alike integrate multicore CPUs and multicore co-processors or acceler-
ators. The new OpenMP target-related directives offload portions of the program code
(kernels) to any of the available devices; the kernels themselves can take advantage of
the multiplicity of processing elements within the target device by employing OpenMP
constructs. However, most co-processors or accelerators, especially embedded ones, have
limited resources. This severely constrains the extend of OpenMP support that can be im-
plemented within a device. A usual design decision is to only support OpenMP partially,
in effect hindering the full exploitation of the device capabilities through a high-level pro-
gramming model. In this work, we present a novel solution to this problem. We propose
a compiler-assisted, adaptive runtime system organization, which generates application-
specific support by implementing only the OpenMP functionality required each time. In
particular, based on extensive compiler analysis, the offloaded kernels can be accompa-
nied by a runtime library tailored to the needs of the given application. Full OpenMP
support is thus available, if needed. However, in the usual scenario where kernels do not
require complex OpenMP functionalities, our method can lead to dramatically reduced
executable sizes and/or execution times. To demonstrate the potential of our proposal

we present an implementation on the popular Parallella board.
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1 Introduction

Personal computers utilize multiple general-purpose cores in a socket, usually combined with
a multicore graphics processor (GPGPU). On the other hand, high performance supercom-
puters are heterogeneous systems and benefit from the combination of multicore CPUs with
specialized devices such as GPGPUs, DSPs and FPGAs, in order to accelerate a broad range of
applications and also gain power savings. As a result, modern system architectures present a
mix of different processor and memory hierarchies within the same system. At the same time
the building blocks of such heterogeneous computing nodes are designed for different workload
scenarios; multicore CPUs perform best in coarse grained tasks, while accelerators reach their
computational potential in large scale data and fine grained vector processing.

The embedded systems market has been formed to satisfy the demand for devices that are
small, portable, autonomous and also relying on limited energy resources. As a response to the
ever increasing demand of end-user applications for computational power and multitasking,
embedded systems have also joined the heterogeneous multicore area. One design paradigm
for heterogeneous embedded system is Parallella [4] which combines a small number of ARM-
based cores assisted by a many-core group of (up to 64) RISC cores. Another example is
the STM STHORM [7] architecture that utilizes multi-cluster computation fabrics, where each
cluster contains up to a few tens of simple processing elements communicating via low-latency,
high-throughput interconnection and shared L1 memory.

However, in order to exploit the computation capabilities of a heterogeneous system effi-
ciently, significant programmer effort is required. The common case is to utilize a low-level
SDK in order to optimize an application with respect to the specific hardware features. This
fact poses significant challenges, even for expert programmers. In the same line, program-
ming models such as OpenCL [2] and cuDA [22] provide very efficient albeit rather primitive
mechanisms for an application to take advantage of the hardware capabilities of GPGPUs. In
addition, requiring different code bases for the host CPU and the accelerator devices increases
code complexity, decreases its portability and also complicates the compiler and runtime system
(RTS).

The biggest challenge in this era of multicore computing proliferation is to provide a pro-
gramming model that enables the extraction of satisfactory performance while also keeping pro-
grammer productivity at high levels. OpenMP has proven to be a productive solution for par-
allel programming on shared memory systems. It became quite popular mainly due to the fact
that it is a directive-based model which does not change the base language (C/C++/Fortran),
making it quite accessible to mainstream programmers. Recently, OpenMP 4 [28] has come
to embrace platforms based on a heterogeneous collection of processors, co-processors and ac-
celerators; it has been augmented with new directives which allow offloading portions of the
application code onto the processing elements of an attached device. One important and de-

sirable characteristic of OpenMP is that the application blends the host and the device code



portions in a unified and seamless way. Although support for the OpenMP 4.0 device model
has been slow to be adopted by both compiler and device vendors, it is gaining momentum.

The new device extensions allow full OpenMP functionality within the regions of code
executed by a selected device (also known as kernels). This fact provides flexibility and ease of
use regarding parallelization expressiveness. However, it requires an OpenMP infrastructure
within the co-processor. In the general case, implementing such an infrastructure is a non-
trivial task. Supporting the required functionality, which was originally designed for shared
memory multiprocessors, can be a very difficult procedure due to limited resources. As a
result, common approaches are to either provide partial OpenMP support (i.e. handle a subset
of the directives in the device side) or implement full but simplified OpenMP facilities so
as to avoid consuming the limited amount of resources. For example, in devices such as
embedded multicores of multicore systems-on-chip (MCSoC), the small amount of on-chip
memory and hardware synchronizers must accommodate both the OpenMP runtime libraries
and the application code/data. This holds even in cases where particular application kernels
do not make use of all the provided OpenMP functionality.

In this paper we propose a novel RTS organization designed to work with an OpenMP
infrastructure which targets the aforementioned problems. Instead of having a single monolithic
OpenMP RrrTs for a given device, we propose an adaptive RTS architecture which implements
only the features required by a particular application. More specifically, the compiler analyzes
the kernels that are to be offloaded to the device, and provides metrics which are later used
to select a particular RTS configuration tailored to the needs of the application. This way the
user’s code implies the choice of an appropriately optimized RTS which may result to reduced
executable sizes and /or faster execution times. For example, an OpenMP kernel which does not
make use of explicit tasks can greatly benefit by a barrier which avoids time consuming tasking
actions. Furthermore, the resulting specialized runtime library, does not need to include the
tasking subsystem, leading to reduced executable size. Our technique is quite general and can
be also utilized in the OpenMP runtime system executing on the host.

The remainder of the paper is organized as follows: In Section [2| we give an overview of
related work while in Section [3| we present some background material on OpenMP and the new
extensions for device support. In Section[3.1]we discuss the difficulties induced when developing
an OpenMP RTS for devices. An overview of our adaptive RTS proposal is presented in Section [4]
In particular Sections and present the kernel analysis procedure that produces a set of
metrics and the way these metrics are utilized. We then describe a prototype implementation of
our proposal in Section [5]and in Section [6] we present some evaluation measurements. Section

concludes this work.



2 Related Work

OpenMP was considered as a possible model for accelerators or multicore embedded systems
long before the introduction of its device extensions. Liu and Chaudhary [23] implement an
OpenMP compiler for the 3SoC Cradle system, a heterogeneous system with multiple RISC
and Dsp-like cores. Additionally in [I7] double buffering schemes and data prefetching are
proposed for this system. Sato et al [25] implement OpenMP and report its performance on
a dual M32R processor, which runs Linux and supports fully the POSIX execution model. In
[21] Woo-Chul and Soonhoi discuss an OpenMP implementation that targets MPSoCs with
physically shared memories, hardware semaphores, and no operating system. Cabrera et al
in [II] propose some OpenMP extensions to provide a high level API for executing code on
FPGAs. They propose a hybrid computation model supported by a bitstream cache in order to
hide the FPGA configuration time needed when a bitstream has to be loaded. In [19] Hanawa
et al evaluate the OpenMP model for the Renesas M32700, ARM/NEC MPCore, and Waseda
University RP1 multicore embedded Systems.

Furthermore, extensions to OpenMP have been proposed to enable additional models of ex-
ecution for embedded applications. Gonzalez et al [18] extend OpenMP to facilitate expressing
streaming applications through the specification of relationships between tasks generated from
OpenMP worksharing constructs. Carpenter et al in [I2] propose a set of OpenMP extensions
that can be used to convert conventional serial programs into streaming applications. Chapman
et al [13] describe the goals of an OpenMP-based model for different types of MPSoCs that
take into account non-functional characteristics such as deadlines, priorities, power constrains
etc. They also present the implementation of the worksharing part of OpenMP on a multicore
DSP processor. In [10] Burgio et al present an OpenMP task implementation for a simulated
embedded multicore platform inspired by the STHORM architecture. Their system consists of
doubly linked queues which store the tasks. They make use of task cut-off techniques and
task descriptor recycling. In [5] Agathos et al present an implementation of OpenMP on the
STHORM accelerator. The innovative feature of their design is the deployment of the OpenMP
model both at the host and the fabric sides in a seamless way, which provides the program-
mer with an interface similar to the device model of OpenMP 4 for offloading and executing
OpenMP kernels on the MPSoC.

Support for OpenMP 4.0 devices is fairly limited both in the compiler side and the device
side. In fact, there are very few compilers that implement the target construct and the only
device they support is the Intel Xeon Phi [20] [I]. Details of the offload procedure in the 1cC
compiler are given in [26]. Preliminary support for the OpenMP target construct is also
available in the ROSE compiler. Chunhua et al [T4] discuss their experiences on implementing a
prototype called HOMP on top of the ROSE compiler, which generates code for CUDA devices.
Bertolli et al [§] propose a method to coordinate threads in an NVIDIA GPU using a single kernel

as opposed to multiple kernels; they also discuss how their methods could be implemented as



part of the LLVM compiler implementation of OpenMP 4.0. In [24] the authors present their
implementation of OpenMP 4.0 on a TT Keystone II, where they use the DSP cores as devices
to offload code to. Finally, Papadogiannakis et al in [29] present the infrastructure for device
support in the OMPi compiler, placing special emphasis on the problem of data environment
handling, while Agathos et al in [6] present the first implementation of the OpenMP 4.0
accelerator directives for the Parallella board [4], a credit-card sized multicore system consisting
of a dual-core ARM host processor and a distinct 16-core Epiphany co-processor. All the these
works either propose a partial OpenMP implementation or a monolithic full implementation,
which may consume the limited system resources. This is in contrast to our proposal, where

adaptive RTS configurations are utilized for different applications.

3 The OpenMP 4 Device Model

One of the key new features of version 4.0 of the OpenMP API [28] is the introduction of a state
of art, platform-agnostic model for heterogeneous parallel programming. Multiple devices, as
for example co-processors, graphical processors or accelerators, can be utilized to reduce the
execution time and improve the energy efficiency of an application by utilizing the new device
directives. The programmer simply marks portions of the (unified) source code to be offloaded
to a particular device; the details of data and code allocations, mappings and movements are
orchestrated by the compiler. The OpenMP device model requires that the target devices are
connected to a host processor which is also considered a device. The program execution follows
a host-centric model; it starts executing at the host side until one of the newly introduced
constructs is met, which may trigger the creation of data environments and the execution of a
specified portion of code on a given device.

In order to transfer data and control flow to a device, the target directive is used. This
directive has an associated structured block representing the code (kernel) to be offloaded and
executed directly on the device side. During the execution of the kernel the host task waits
until the device finishes and returns back the control. Each target directive may contain its
own data environment, that is a set of variables accessible in some way by both the host and
the device, initialized when the kernel starts and freed when the kernel ends its execution. In
the case where the if clause is used, and the condition evaluates to false then the target region
will be executed by the host CPU instead of the chosen device.

Data movements between the host and the devices may be the cause for large delays during
the launch or the completion of the kernels. In order to avoid repetitive creation and deletion
of data environments, the target data directive allows the definition of a data environment
which persists among successive kernel executions. When an if clause is used, and the con-
dition is evaluated to false then the data environment is initialized in the host memory space.
Furthermore, the programmer can use the target update directive between successive kernel

offloads to selectively update data values that reside in the host and the device data envi-



ronments. Finally, the declare target directive specifies that the associated set of variables
and functions are mapped to a device. In essence, the declared variables are allocated in
the global scope of the target device, and their lifetime equals the program execution time.
The code of the declared functions is compiled to produce device binaries accessible from the
target regions.

A device data environment can be manipulated through map clauses within target data
and target directives. These clauses determine how the specified variables are handled within
the data environment. When an alloc map type is used, an uninitialized variable is defined,
whereas with a to map type the variable is additionally initialized from the value of the
corresponding host variable. If variable is mapped as from then an uninitialized device variable
is defined; when the specified directive region finishes, the value of the device variable is copied
back to the original host variable. Finally, if no type is specified or the type is tofrom, the
variable has the characteristics of both to and from types.

Except for the aforementioned core constructs, the OpenMP device model includes ad-
ditional directives that may be suited to better exploit particular device architectures. For
example, the teams directive creates a given number of thread teams, where each team has a
specified number of threads and the master thread of each team executes the associated code
block. The distribute worksharing construct distributes the iterations of the loops across
the master threads of all teams that execute the teams region. The combination of target,
parallel, teams and distribute directives offers an effective way for exploiting the compute
units of GPGPU-style accelerators.

A major characteristic regarding the kernels code is that they can utilize arbitrary OpenMP
functionality, with no restrictions whatsoever (except that they cannot offload code to other
devices). This implies that any code that adheres to v3.1 [27] of the specifications can poten-
tially form a legal kernel. The only requirement is that all the global variables and functions
accessed from within the kernel code must be declared in a declare target directive and
reside at file, namespace, or class scope. Thus, the constructs for dynamically creating a team
of threads, synchronizing them, sharing work among them (for loops, sections), using ex-
plicit tasking, even employing nested parallelism, are all allowed within a target region. This
flexibility makes OpenMP a very powerful parallel programming model for taking advantage
of all available compute resources of a heterogeneous system in a intuitive and efficient man-
ner. Ideally any OpenMP program originally written for a shared memory system, can be
easily offload some of its computationally intensive parts onto specialized hardware. On the
other hand, to make all the above possible, the attached devices are effectively required to
provide complete OpenMP support. Since most of these devices are not usually equipped with

abundant resources, implementing full or efficient OpenMP support is not an easy task.



3.1 OpenMP on the Device Side

As discussed above, the OpenMP device model offers a great deal of flexibility regarding the
constructs allowed within kernel codes. This in effect requires that a complete OpenMP RTS
be present to support kernel execution. However, OpenMP was originally designed for shared
memory multiprocessors. These machines include a large amount of shared memory supported
by sophisticated cache coherent protocols, high bandwidth interconnections and usually offer
a large set of hardware-assisted synchronization primitives (e.g. compara-and-swap, fetch-and-
add, memory barriers). Moreover, these systems are equipped with an operating system ac-
companied with optimized low-level software libraries such as POSIX threads, for manipulating
the execution units of the system.

On the other hand, embedded or attached accelerators have different architectures and
are designed to serve different purposes. For example, the organization of some accelerators is
targeted to the efficient execution of streaming applications; GPGPUs are better suited to speed
up matrix-based computations; e.g. co-processors are synonymous to hardware diversity, since
each manufacturer equips a product with specialized hardware modules and target a specific
class of applications.

With some notable exceptions such as the Xeon Phi accelerator[26], a common characteris-
tic of the various types of co-processors is that they offer a limited amount of resources. Hence,
the challenges posed when implementing an OpenMP RTS for such devices depend on these
resource limitations. The absence of a POSIX-like interface for manipulating threads may add
design difficulties or considerable offloading costs regarding dynamic or nested parallelism. For
example, most of the current native development tools for GPGPUs do not support nested paral-
lelism. Lack of hardware synchronization primitives would add overheads in the cooperation of
the accelerator cores, since software implementations of locks or barriers result to considerable
delays. Arguably, one of the most important limitations is the size of the available memory;
small private or shared memories at the co-processor cores impose restrictions regarding the
kernel executable size and/or the actual application data. This is particularly pronounced in
the absence of a fast global memory; the kernel code has to include the OpenMP RS, further
limiting the available memory space. The Epiphany accelerator used in the Parallella [4] is
an example of an embedded accelerator with severely limited memory resources; each core
is equipped with just 32KiB of fast local memory. While it can also access a larger 32MiB
memory shared with the host processor its access times are almost an order of magnitude
larger.

There are two approaches for supporting OpenMP on a device with limited resources:

Partial support Partial support of the constructs is a pragmatic solution that works in real
world applications [24] [14] [13]. For example, there is no point in trying to implement
an optimized tasking infrastructure for a GPGPU with limited local memory which lacks

fine grain synchronization primitives. Instead, a careful implementation of a combined



construct such as target teams distribute parallel for is a desirable feature that
exposes the computational power of this kind of hardware. Of course, partial support
minimizes the expressiveness of the programming environment. The application code
may have to be redesigned to match the availability of OpenMP constructs, a fact that

also reduces code portability and re-usability.

Full support Some works in the bibliography [20] [I] choose to support OpenMP fully on the
device side. This strategy provides a powerful tool for developing parallel applications
based on a high level hardware abstraction. Nevertheless, the design of a complete
OpenMP RTs is not a trivial task. Furthermore, the hardware limitations may lead to

poor performance for some of the OpenMP constructs [6] 8, [14].

4 Proposed System

In this work we propose a general methodology which can be utilized to offer flexible and
adaptive OpenMP RTS. The goal is the development of an RTS architecture which implements
only the OpenMP features required by each particular application. That is, it results in an
application-specific RTS configuration. This is possible because of a key observation: all kernel
code must lie within a single source file. This enables a compiler to analyze the behavior of the
kernel with respect to OpenMP constructs, through detailed interprocedular analysis. Thus,
it can decide exactly what constructs are used, their nesting levels, the types of employed loop
schedules, etc.

The proposed system is shown in Fig. [l The compiler is responsible for analyzing and
transforming the code. It takes as input an OpenMP program with target-related constructs.
The output is a set of files; the main one is to be executed on the host and the other files
represent the kernels to be executed on the devices. Along with each kernel, a set of metrics
which are gathered during its analysis are output. The metrics are passed to the mapper.
The latter is responsible for choosing the most efficient runtime configuration for the given
metrics. In order to do this, the mapper either selects one from a precompiled set of libraries

or parametrizes appropriately one of them and builds it on the fly.

4.1 Analyzing a Kernel

The motivation behind our proposal stems from the observation that providing comprehensive
OpenMP support for an attached device can be quite demanding both in terms of memory
requirements and execution overheads, especially in devices with limited resources (e.g. em-
bedded MPSoCs). Each kernel should be accompanied by a rather sizable runtime library in
order to enjoy OpenMP support. However, most applications (typical kernels included) rarely
need all of the OpenMP facilities. What if the compiler can decide on the subset of OpenMP
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Figure 1: Overview of compiler assisted RTS

functionality that is necessary and just utilize a custom, kernel-specific runtime library to
accompany it? The potential savings could be quite significant.

An OpenMP kernel is defined by a block of code enclosed lexically within a target con-
struct. The actual kernel region includes any code in called routines. Such routines are defined
within declare target constructs and are in fact offioaded with the kernel. The compiler has
thus access to the whole kernel region and can employ inter-procedural analysis in order to
analyze the entire dynamic extend of the kernel.

The compiler can build the call graph of each kernel and visit each of the called routines.
Our thesis it that the compiler can then extract information about the employed OpenMP
constructs (if any), and thus determine the actual OpenMP functionality that is necessary for
the execution of each particular kernel. More often than not, a given kernel will not require
the entire OpenMP functionality but a rather small portion of it. Given this information,
the offloaded kernel can be accompanied by a suitable subset of the OpenMP runtime library,
potentially decreasing the total offloaded footprint.

Here is a number of important conclusions, among others, that can be derived from the

above code analysis:



OpenMP in kernel: Decide whether OpenMP functionality is required at all. If no
OpenMP directives are utilized and no OpenMP runtime functions are called, then there

is no need to include OpenMP support.

o Dynamic parallelism: Determine whether the kernel spawns parallelism, through parallel
directives, and if possible, their nesting levels and/or the total number of threads em-
ployed. The absence of parallelism can make the required runtime support rather mini-
mal. Knowledge about the number of threads and the nesting levels can also tailor the

corresponding runtime data structures to exact sizes.

o Work-sharing regions: A major portion of an OpenMP runtime library is devoted to
the handling of worksharing regions. Knowledge about the exact types of worksharing
constructs utilized by a kernel (for, sections, single) can slim down the necessary

runtime support.

e Faxplicit tasking: Discover the presence of user-defined tasks. If none is observed, the
tasking subsystem of the runtime library is not needed at all. Supporting tasks is one of
the most sophisticated assets of an OpenMP RTS, with significant overheads and memory

requirements.

e [nternal control variables: Decide whether the code makes use of OpenMP Internal
Control Variables (1CVs), either by setting them or getting their values. Furthermore, it
can be determined exactly which 1Cvs are being utilized. Storing and maintaining 1CV
values represents a major issue in an OpenMP support library. If, for example, 1CV values
are used only for retrieving information then a single copy of them (instead of repeating

them in every task structure) is adequate for the execution of the whole kernel.

The above proposal can be extended to the general case of host OpenMP programs, not
just kernels. The only obvious requirement, is that the application code must not refer to
external routines, so that the compiler is in a position to perform full inter-procedural analysis
and derive the above conclusions. In case where the program depends on external routines,
the analysis response will declare inability to provide valid conclusions or metrics. Otherwise,
the conclusions and a set of related metrics will be output to optimize the RTS used for the

specific application.

4.2 Mapper: Utilizing Compiler Metrics

The set of metrics generated by the compiler are passed to the mapper module which is
responsible for choosing the most appropriate runtime “flavor”. In the case where the kernel
does not make use of OpenMP directives, the RTS should only include basic features for enabling
a single co-processor core to execute the serial code of the kernel. Thus, this RTS should include

mainly host-specific functionalities, and will result to a minimal footprint library regarding the
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device side. The reduced capabilities of the RTS include the co-processor initialization and
finalization phases, as well as the code and data offloading. This minimal RTS may prove quite
useful in systems where the parallelization capabilities can not be abstracted as a team of
independent threads. Furthermore, there might be cases where dynamic creation of a parallel
team on the device side is hard or sometimes impossible to implement. A workaround for this
scenario is the utilization of a team of threads executing on the host side, that concurrently
offload kernels (containing serial code) to a multicore co-processor.

The usual case, nevertheless, is where the kernel includes directives for creating a parallel
team of threads that cooperatively execute a code block. The RTS library that is to be linked
with the kernel code consists of some RTS-specific data along with the code implementing the

required functionalities. In more detail the internal data are related to:
e the execution entities, represented mainly by some kind of thread abstractions and
e the implicit (or explicit) tasks executed by the threads

The smaller total footprint for the RTS library the more beneficial would be in the cases where
the cores of a co-processor are equipped with small amount of local memory.

Additionally, the presence of extra functionalities within the library not needed by the
kernel code, may lead to non-optimized execution times. A representative example of such
functionality are the tasking extensions of the OpenMP barrier. Upon encountering a barrier
construct, a thread has to wait until all its siblings reach the barrier and until all pending
tasks of its team are executed. The implementation of former condition results to far less
overheads when compared with the task executing part. Typically threads can be notified
about the entrance of their siblings in the barrier through the use of a counter or a matrix
of flags. Ensuring that all pending tasks are executed though, involves repeated snooping to
shared queues and/or counters, adding substantial amount of overheads. Thus, avoiding the
unnecessary functionalities may result to execution speed-up.

Implementing a general, full fledged RTS which is capable of offering OpenMP support is the
typical approach in the bibliography. What we propose here is to utilize custom, application-
driven RTSs, that only supply the functionality required by the particular application. In
Fig. [1) the mapper is the module responsible for this: based on the application characteristics
as depicted by the compiler-generated metrics, it optimizes the RTS by tuning its internal data
and functionalities to best fit for the particular application.

Possible realizations of specialized runtime libraries include:

e A fixed set pre-compiled libraries. The set of libraries is selected to target specific classes
of applications, as derived from typical use-case scenarios. For example, there can exist
a library that does not provide tasking support. Another possibility would be a trimmed
down library that only supports a selected work-sharing construct (e.g. for loops). The

mapper then undertakes the task of mapping the provided kernel metrics to the set of
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available libraries; the most appropriate one should be selected so as to minimize the

offered OpenMP functionality while at same time covering all kernel requirements.

o A set of on-the-fly parameterizable libraries. Because not all applications can benefit
from the default values of the runtime parameters, the mapper can choose to tune some
parameters according to kernel characteristics and build different library flavors. For
example, if the team sizes are known, the barrier data structures can be tuned to service
the specific number of threads. Of course, parametrization requires recompiling and thus

the custom libraries are built at the compile-time of the application.

The mapper combines the metrics with all possible library configurations to provide the op-
timized library. The larger the number of the pre-compiled libraries/parametrized RTSs, the
better the decisions taken by the mapper for the result libraries that will support the applica-

tion kernels.

5 Implementation in the OMPi Compiler

The oMPi compiler [15] is a lightweight OpenMP C infrastructure, composed of a source-to-
source translator and a flexible, modular RTS. OMPi is an open source project and targets
general-purpose SMPs and multicore platforms. It adheres to V3.1 of the OpenMP specifica-
tions, while also supporting a number of V4.0 constructs. In particular, all the target-related
device constructs, the cancellation constructs, and the taskgroup construct are already sup-
ported.

The compilation process for an accelerator-assisted program is shown in Fig. [2. The com-
piler takes as input C code with OpenMP directives, and after the pre-processing and trans-
formation steps, it outputs a multi-threaded C file for executing on the host and another set
of intermediate files, one for each kernel (i.e. one for each target region in the user program).
Every intermediate file has been augmented with calls to the RTS of the corresponding device.
In the last stage, the intermediate files are compiled with the appropriate system compiler in
order to provide the final executables. In order to implement the proposed mechanism, this
last stage is where the mapper module should be inserted. The intermediate files must carry
the deduced metrics so as to guide the mapper. Finally, the compiler must be equipped with

new kernel analysis capabilities in order to derive the desired metrics.

5.1 Kernel Analysis

The analysis of the kernels is done at a high level. The whole program is represented by an
abstract syntax tree. Upon encountering an OpenMP target node, the compiler analyzes
its body and follows the chain of routine calls (if any) in order to discover the OpenMP

functionality required by this particular kernel. To avoid visiting a routine multiple times (since
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Figure 2: oMPi compilation chain

it may be called by multiple kernels), all routines defined within declare target regions are
analyzed before any other program transformations. The compiler constructs the call graph
and traverses it; for each visited function f, the following are some of the metrics currently

gathered:
e The total number of OpenMP constructs
e The number of first-level (non-nested) parallel constructs (N{/)).

The number of for loop (Nl(f)), sections (N)) and single (Ni(f)) constructs; a counter

for the number of constructs with nowait clauses is also maintained (N{/)).

The number of task constructs (N\).
e The number of explicit barrier directives (Nb(f )).
e The maximum level of parallelism (L{).

All the metrics except the last one count the constructs encountered in the function itself. The
parallelism nesting level is determined from the function and all the functions called by it as

follows: If a function g is called by f at nesting level ls_,,, then the nested parallelism level

13



for this particular call is given by l;_,, + L};"). The maximum parallelism level observed for
function f is given by:

LY — l L@l
P g ca{lrégxby f{ foe ¥ P }

Consequently, if for example Lz()f ) = 1, there may be no need to add support for nested paral-
lelism to a kernel that calls function f. If the compiler detects recursion, this particular metric
is disabled.

To maximize performance, OMPi allows overlapping worksharing regions whereby each
thread of a team may proceed independently to a following worksharing region, as long as
the previous one contains a nowait clause. The mechanism is quite complex [30, BI] and
requires handling of sizable data structures. If Ngu) = 0, there is no need to implement it;
a simple blocking barrier would be enough to support all worksharing regions. On the other
hand, if for all functions f called by a kernel, N\/) = Nl(f) + N + Ni(f), and Nb(f) = 0, there
may not be a need to implement a barrier mechanism at all.

The gathered metrics are used at every encounter of a target tree node during code trans-
formations. Before actually transforming the construct, its body is analyzed in a similar way
as above, and the metrics are combined with the precomputed ones for every function called
from the kernel. The final set of metrics are stored in a table and the compiler proceeds to
the transformation of the kernel body. During code generation, the computed metrics for each
target construct are embedded into the corresponding kernel file as C language comments,

for communicating them to the mapper.

5.2 A Concrete Target: The Epiphany Accelerator

The Parallella-16 board is a popular 18-core credit card-sized computer equipped with two
processing modules; the main (host) cPU, a dual-core ARM Cortex V9 processor, and the 16-
core Epiphany chip which is used as a co-processor. Each Epiphany core (eCORE) has 32 KiB
of fast local memory. The board has 1 GiB of DDR3 RAM, addressable by both the host cpu
and the Epiphany providing a 32 MiB portion to be used as shared memory. More details
about the hardware are provided in Section [6l Currently OMPi supports most of the device
directives of OpenMP and is the first compiler to support the Epiphany accelerator of the
Parallella board. Here we present the key aspects of the original RTS for the Epiphany; more
details can be found in [0, 29]. The Epiphany module consists of two parts; the first is executed
at the host space and is used for controlling and accessing the Epiphany device. The second
part is executed by the Epiphany cores and provides support of OpenMP within the device
side.

The communication between the ARM and the Epiphany eCORESs occurs through the shared
memory portion of the system RAM. The eCOREs do not execute any operating system and
there is no provision for creating and handling dynamic parallelism within the Epiphany chip.

Because only the host can activate and control the eCOREs, when offloading a kernel it chooses
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the first idle core and loads the precompiled kernel object file to it for immediate execution.
Dynamic parallelism in a kernel is achieved with support from the host; the core that meets a
parallel region contacts the host and requests the activation of a number of cores. A copy
of the same kernel is then offloaded to the newly activated cores.

The limited local memory of the device cores makes it impossible to fit sophisticated
OpenMP RTS structures alongside the application data. The original RTS started as a cus-
tomized version of the host OpenMP runtime library, carefully trimmed so as to minimize its
memory footprint. The coordination among the participating eCOREs occurs through struc-
tures stored in the local memory of a team’s master core. The synchronization mechanisms
(locks and barriers) are customized versions of those provided by the native libraries. The
tasking infrastructure is based on a simple blocking shared queue which is also stored in the
local memory of the team’s master eCORE, for speed. On the other hand, the corresponding
task data environments for each task are stored in the slower shared memory area, due to space
requirements.

This original RTS was used as a basis for the design of a set of adjustable RTSs, each one
specialized for a certain type of kernels. For the rest of the text we will refer to the original
RTS as the Full RTS. It is built as a Linux static library, and is linked with each offloaded
kernel. It is organized as a collection of a largely independent routines so that the system
linker can attach only the necessary routines with each kernel. However, the complex relations
between the internal data structures and the runtime routines force the linker to include sizable
portions of the library. As a result, the Full RTS has a relatively large footprint, even when it
accompanies an effectively empty kernel [6]. Furthermore, because dynamic memory allocation
is not supported at the eCORE level, the RTS must reserve enough local memory space to cover
the worst case. As a result, the actual local memory left for pure application data is well below
the 32 KiB available.

Our strategy for implementing the proposed mechanism was to create different library
flavors, aiming to minimize the library footprint. In particular, based on detailed analysis of
the runtime organization, we identified three parts that contribute the most both because of

the size of the involved routines and the size of the required data structures:

1. Dynamic parallelism. A substantial amount of data and routines are needed in order to
support dynamic parallelism within a kernel. In particular, beyond the data structures
needed for controlling parallel team members, extra room is necessary for communicating
with the host processor. Furthermore, the thread synchronization mechanisms, especially
the barrier, consume additional memory space. All this is more than doubled if a second

level of parallelism is to be supported.

All this infrastructure can be discarded if the kernel does not contain a parallel direc-
tive. Hence we developed an RTS variant which does not support dynamic parallelism

creation. Although the original design can support arbitrary levels of nested parallelism,
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there is no practical use for more than two levels of parallelism on 16 cores. Consequently,
we designed two versions of the RTS, one supporting exactly one level of parallelism and

another supporting two levels.

2. Worksharing. The OpenMP worksharing constructs (single, for, sections) may have
different combinations of reduction, schedule (with the various schedule types), collapse,
ordered and nowait clauses. Supporting all of them requires data structures with large
memory footprint. In practice, typical applications do not utilize all possible variations.
As a result, we developed a set of RTSs that support specific combinations of the above

constructs and clauses.

3. Tasking. The tasking infrastructure for the Epiphany is the module with the largest
memory requirements. The required functionalities include fine grain synchronization so
most of the runtime data must be stored in local memories; in particular they are stored
in the local memory of the team’s master eCORE. This means that the local memory of
one eCORE stores the tasking data of all eCOREs. Because all eCOREs are candidates for
team masters, preallocated tasking structures must be present in the local memories of
all eCOREs. Furthermore, barrier synchronization is charged with task execution duties
which impact overall performance. To optimize the support for applications which do
not utilize tasks, we developed RTS flavors with no tasking subsystem. In addition, these

flavors implement lighter /faster versions of the barrier mechanism.

6 Evaluation

6.1 Environment

To evaluate our proposed method we used the Parallella-16 SKUA101020 board. The board
comes with standard peripheral ports such as USB, Ethernet, HDMI, GPIO, etc. and is
equipped with two processing modules; the main (host) processor, which is a dual-core ARM
Cortex A9 with 32 KiB L1 cache per core and 512KiB shared L2 cache, built within a Zynq
7010 SoC and an Epiphany-III 16-core co-processor. The former runs Linux and uses virtual
addresses while the latter does not have an OS and uses a flat, unprotected memory map.
The Epiphany-III has 16 cores (eCOREs) and a peak performance of approximately 25 GFLOPS
(single-precision) with a maximum power dissipation of less than 2 Watt. The ARM and the
Epiphany use a 32 MiB portion of the system RAM as shared memory which is physically
addressable by both of them.

A closer look at the architecture of the Epiphany reveals a 64 x 64 mesh interconnect, so
in theory systems up to 4096 eCOREs are possible. On the Epiphany III the chip is pinned
on a 4 x 4 submesh of the virtual 64 x 64 mesh whose north-west coordinates are (32, 8), as
shown in Fig. The chip has four eLinks (west, east, north and south), that may be used
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Figure 3: The Epiphany co-processor

to interconnect it with other chips. In the Parallella board version, the west eLink is inactive
and the east eLink is connected to the Zynq host. Each eCORE is a 32-bit superscalar RISC
processor, capable of performing single-precision floating point operations, and owns 1 MiB of
the total address space, which is addressable by all cores. However it comes with just 32 KiB
of local scratchpad memory; in addition it is equipped with two DMA engines. All memories
are available through regular load/store instructions by all eCOREs.

All common programming tools are available for the ARM host processor. For the Epiphany,
a Software Development Kit (espK [3]) is available, which includes a C compiler and runtime
libraries for both the host (eHAL) and the co-processor (eLIB). For the results presented here
we used eSDK v5.13.9.10 which includes the Gcc and E-GCC compilers for the host and the

Epiphany executables respectively.

6.2 A Detailed Breakdown of the RTS of OMP1i

The original RTS support for the Epiphany [6] was designed to provide full OpenMP support,
under the constraint of the limited memory resources. The first step towards designing a set of
adjustable RTSs was to analyze the original runtime and understand the impact each component
has. The purpose of this procedure was to discover in detail byte sizes of all different data
structures and the corresponding functionalities they support. The results of this analysis
guided the design of distinct RTSs, specialized to different kernel scenarios.

In Table (1] we present the sizes of the most important runtime data structures. Notice
that these represent only the eCORE-resident parts; additional data structures are kept in the

(slower) shared memory and are of no interest here. The RTS of OMPI utilizes two fundamental
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Table 1: Data sizes in the original RTS

Data structures Size in bytes
EECB data 1440 (1 active region)
Essential 48
Worksharing > 80
No-wait regions | 8 + 64 x (# active regions)
Loops 32
Static loops 4
Ordered 28
Sections 4
Tasking data 1312
Task descriptor 72
Icv data 32 per task
Reductions 16 per eCORE
Critical 16 per eCORE
User defined locks 176 per eCORE
Nested parallelism | 88(4-1088 in SM) per level

descriptors: the thread and the task descriptor. The former is named EECB (execution entity
control block) and holds all the information needed by an OpenMP thread to execute a code
region and to coordinate with sibling or child threads. The later holds the data required for
the execution of a specified task, either implicit or explicit. As seen in Table [I] the sizes of
these entities have the biggest impact on the total footprint of the RTS.

Not all bookkeeping data are actually needed for the execution of every kernel. The idea
is to trim down these structures to save local memory, while at the same time satisfy the real
needs of a kernel. The essential data require 48 bytes per EECB while the data for worksharing
constructs are 80 bytes. A closer look at each worksharing construct reveals that the loop
construct occupies almost half of the space. A performance-oriented but memory-consuming
feature of the original runtime, is the ability to allow multiple active worksharing regions,
whereby each thread of a team may proceed independently to a following worksharing region,
as long as the previous one contains a nowait clause. If up to n overlapping regions are
supported, an additional n x 64 bytes per EECB are necessary.

The space needed for a task descriptor is 72 bytes. In the current RTS all the task-related
structures of all eCOREs must be stored in the EECB data structure of the master eCORE.
Because all eCOREs are eligible as team masters, the same space must be provided in all eCOREs.
This results in a total 1312 bytes per EECB for the whole tasking mechanism. This demonstrates
the potential for reducing the memory footprint in the case where the an application does not

use explicit tasking. The size of the necessary 1CVs is measured to be 32 bytes per task. If the
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kernel does not modify any of their values (e.g. there are no calls to omp_set_xxx () routines),
then it could be possible for the RTS to use only one copy of the 1cvs for all tasks. In such a
case, up to 12256 bytes could be saved in total (in the local memories of all 16 eCORES).

Synchronization between the eCOREs is relatively cheap, since 16 bytes per core are needed
for the reduction and critical constructs. Due to lack of dynamic memory allocation,
the original runtime pre-allocates space for 8 user-defined locks. This mechanism requires
176 bytes in the local memory of each eCORE, even if a kernel uses no locks at all. Finally,
considering parallelism levels, the data needed for each supported nesting level occupies a
significant amount of memory. Each additional level needs 88 extra bytes in the local memory
(plus more than 1KiB on the shared memory).

We should make two important observations at this point. First, except for the data
structures, there is the corresponding code that handles them, so removing unnecessary data
structures has the beneficial side-effect of decreasing the size of the library code. Second,
slimmer code usually means faster code. Although in this section we concentrated on mini-
mizing the library sizes, we also expect to have some performance gains for free. Additional
performance gains are possible by redesigning the employed algorithms. For example, if the
tasking subsystem is removed from the equation, a significantly faster barrier implementation

is possible, which avoids polling for tasks to execute.

6.3 Implementation of Runtime Flavors

Based on the above analysis of the original RTS, we redesigned and implemented 12 different
runtime flavors. Each flavor is a modified version of the original, trimmed to support a limited
number of constructs. For each flavor we removed the unnecessary internal data structures

and modified all routines respectively. The set of the different RTSs are as follows:

(1) NoOMP. This RTS does not support any OpenMP directives within the kernel. Each

eCORE can execute only sequential code.

(2) ParallelOnly. This RTS provides the mechanism for an eCORE to form and deform a parallel
team. No other OpenMP functionality is supported.

(3) ParReduction. This RTS is an extension of the previous one, which implements the

reduction clause on a list of variables.

(4) ParCritical. This RTS extends (2) and allows only the critical synchronization construct

between the eCOREs of a parallel team.

(5) ForStatic. This is the ParallelOnly RTS where the team members can also utilize the for
worksharing construct. Only the static schedule is supported. No other worksharing

constructs are offered.
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(6) ForOrdered. This alternative extends the previous one by adding the ability to utilize the

ordered clause of the for directive.

(7) SingleOnly. Here we extend the ParallelOnly flavor by supporting only the single work-

sharing construct.

(8) NoTasks. We developed this RTS to optimize the support of kernels with no explicit tasks.
The rest of the OpenMP functionality (e.g. workharing, synchronization, etc) is present.

(9) BlockingOnly. This is an almost complete OpenMP RTS but the support for nowait work-
sharing regions has been disabled in order to reduce the footprint of the related RTS

structures.

(10) NoTasksBO. We added a variation of the BlockingOnly flavor where the tasking support

has been removed.

(11) SingleTasks. This RTS provides support for creating teams of eCOREs that can create
explicit tasks and can workshare only through the single construct. This is based on a

common pattern where one thread generates tasks and the others consume them.
(12) Full. This is the original RTS.

The above set does not cover all possible use cases, i.e. does not include all possible combi-
nations of OpenMP constructs. Instead it was guided by common sense for supporting usual
application scenarios. Anyway, our goal is to prove the potential of the proposed mechanism,
and not to derive all possible runtime flavors targeted for all possible kernels.

Furthermore, all RTS routines were carefully trimmed to implement only the required func-
tionality. Barriers constitute an important example. In a complete OpenMP runtime system a
barrier has to synchronize team threads and also act as a task scheduling point. In all flavors
but BlockingOnly, SingleTasks and Full there is no tasking support and consequently barriers
were simplified to handle only thread synchronization.

The RTSs are parametrized so as to offer better adaption to specific kernels. This adjustment
occurs during the library compilation time, based on the metrics produced by the compiler.
Specifically, in all flavors but NoOMP we parametrize the number of parallel nesting levels
that the library supports. For the NoTasks and Full RTSs there is an additional parameter
that sets the number of maximum active nowait worksharing regions. Furthermore for the
RTSs (8), (9), (10) and (12) we can limit the number of user-defined locks that the library can
support.

6.3.1 Choosing the Runtime Module

The mapper imports the set of metrics provided by the compiler and uses them in order to

choose the most appropriate RTS module to be linked with a kernel. In our implementation the
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mapper is designed to work with the specific device (Epiphany). This means that the mapper
is aware of the characteristics of the 12 RTS flavors described in the previous section and maps
the compiler metrics onto them. A different approach would be to utilize a configurable, device-
agnostic mapper. Such a mapper can adapt its decision process according to the capabilities of
each device. This is achievable through additional information taken from a meta-data file that
describes the features of the available RTSs. The implementation of such a universal mapper
would offer the advantage of providing a single mechanism that can deal with different types
of devices and runtime flavors, but it is beyond the scope of this work.

The operation of our mapper can be summarized in two steps:

e During the first step, it reads the metrics generated by the compiler and decides the
actual RTS flavor to be used.

e In the second step, it parametrizes (if needed) the chosen RTS and compiles its sources

to provide the final binary of the library.

An overview of the decision making mechanism of the first step is presented in Fig@ RTS (1) is
chosen to accompany kernels which do not include OpenMP constructs. Based on the tasking
metrics, RTSs (9), (11) or (12) are used when tasks are present; the actual choice depends on
the type of worksharing regions observed. If no explicit tasks are used RTSs (2)-(8) and (10)
are candidates. The decision is driven by the presence of parallel, reduction and other

worksharing constructs and clauses.
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6.4 Results

For our experiments we use as a reference the Full RTS (12) with the default parameters, and
compare it with the optimized RTSs resulting from the combination of the kernel analysis and
the mapper selection. The kernels were compiled with “-O3 -funroll-loops” flags and we used
the e-size tool of the eSDK to examine the produced ELF object files.

The first set of tests included a modified version of the EPCC microbenchmark suite [9]
where their basic routines are offloaded through target directives. These benchmarks are
intended for measuring the overheads of specific constructs; in addition we utilized them to
exhibit possible size benefits for the produced kernels. From the whole set, we selected the
benchmarks related to for with static schedule, critical, single and for with the ordered
clause.

Next, we implemented three simple applications. The first one is the scenario of a kernel
which does not include any OpenMP functionality at all. In practice, this is an empty kernel
containing only one assignment instruction. The second one is the iterative computation of
m = 3.14159, based on the trapezoid rule with 2,000,000 intervals, and using an OpenMP
kernel which spawns a parallel team of 16 threads. The third application is a modified version
of the NQueens task benchmark, taken from the Barcelona OpenMP Tasks Suite [16]. This
application computes all solutions of the N-queens placement problem on an N x N chessboard,
so that none of the queens threatens any other. Due to the severe memory limitations of
the Epiphany, we considered the manual cut-off version of the benchmark, where the nested
production of tasks stops at a given depth. We present the results for N = 12 queens, and a
cut-off value of 2, where a total of 144 tasks are produced.

Our last experiment was the Mandelbrot deep zoom application which calculates a Man-
delbrot set and zooms in and out up to 10500x at six predefined points. Each image frame is
written directly to the frame buffer of the Parallella board (with a resolution of 1024 x 768),
resulting in an impressive colorful video. The full traversal generates 204 frames per zoom
point. The source code for this application is provided as an example included with the eSDK
in order to exhibit the real time performance possibilities of the Epiphany chip. We have
parallelized it using OpenMP [6]. The kernel statically distributes the calculation among the
16 cores; each core calculates the colors for a region of the image and writes the values to the

frame buffer. At the end of each frame, all cores are synchronized through an OpenMP barrier.

6.4.1 Size Results

In Table [2| we present the sizes in bytes of the resulting object files when our mechanism is
employed. Each application is linked with an appropriate optimized RTS as selected by the
mapper. For comparison we show the corresponding sizes without applying our mechanism
(i.e. the Full rTS is linked with the kernels). The last column of table represents the reduction

percentage with respect to Full RTS case. A quick glance reveals significant improvements in
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Table 2: Elf sizes (bytes)

Application Full RTS | Optimized RTS | Reduction
Empty kernel 8228 2252 72.63%
Mandelbrot 13156 9620 26.88%
Pi calculation 11972 8864 25.96%
NQueens (tasks) 20908 19704 5.76%
EPCC-for-static 14176 10944 22.80%
EPCC-critical 12560 9320 25.80%
EPCC-single 12200 8900 27.05%
EPCC-ordered 14192 10952 22.83%

all cases.

For the special case of a kernel with no OpenMP directives the mapper clearly utilized
the NoOMP Rrrs, listed as (1) in Section and the savings were almost 6 KiB, freeing
precious space in local memories for the eCOREs to fit more application data. For the case
of the Mandelbrot application the chosen RTS was the ParallelOnly one, which provides only
functionalities for creating and synchronizing a parallel team. This resulted in object file
smaller by 3 KiB.

The kernel for the calculation of 7 creates a team of eCOREs that share evenly the workload.
The code utilizes the reduction clause to combine the partial results. Therefore, the mapper
selected the ParReduction RTS, which resulted in a savings of 3 KiB. The NQueens application
utilizes the parallel, single and task directives. Consequently, the SingleTasks runtime
library was linked with the kernel. In the cases of the EPCC-based kernels the mapper employed
the RTSs (4) through (7) according to kernel directives; the final result exhibits memory savings
in excess of 3 KiB.

For completeness, we note that the eSDK versions of the Empty kernel and the Mandelbrot
application gave object files with sizes 2248 and 4728 bytes, respectively. Obviously, one cannot
compare these with what an OpenMP compiler produces, since the lower-level eSDK API lacks
most of the functionality provided by OpenMP. However, we consider important the fact that
when OpenMP is not utilized in a kernel of the application, OMPi does not introduce any bloat
to the executable (just 6 bytes). Furthermore, the productivity benefits should be clear. For
example, while the eSDK version of the Mandelbrot application required separate host and
Epiphany programs with a total of 301 lines of code, the OpenMP program was written in a
single file with 198 lines.

6.4.2 Timing Results

Following the size results, we compare the execution performance of the optimized kernels
with that obtained when the Full RTS is employed. Starting with the OpenMP overheads, in
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Table 3: EPCC overheads (usec)

Kernel Full RTS | Optimized RTS | Reduction
EPCC-for-static 72.65 19.85 72.68%
EPCC-critical 2.17 1.55 28.57%
EPCC-single 83.72 14.92 82.18%
EPCC-ordered 4.70 4.66 0.85%

Table [3| we present timing results for the EPCC microbenchmarks. As mentioned previously, we
modified the original suite by having their basic routines offloaded through target directives.
Time measurements were taken from the host side, after carefully subtracting any offloading
costs. These timings, shown in microseconds, corroborate our intuition on the performance
benefits of the specialized RTSs. Improvements up to 82% are observed. The noticeable cases
are those of single and for with static schedule. The reason is mostly the optimized barrier;
in contrast to the Full RTS, the runtimes chosen by the mapper contain barriers with no tasking
extensions. We get borderline improvements in the case of for with an ordered clause, because
in both scenarios the loop iterations are executed in a serial manner and the e COREs perform
their synchronization through a shared variable, stored in the (slow) shared memory.

The execution times (in sec) regarding the other applications are given in Table . The 0.1
sec of the empty kernel is due to the way the Parallella handles execution on the Epiphany and is
a performance burden that any offloaded kernels must bare (even esbk-based ones). Regarding
the Mandelbrot application, most of the execution time is spent on actual calculations, and the
OpenMP overheads constitute a rather negligible quantity. Nevertheless, the optimized RTS
results offers some minimal speed gains. The same holds for the NQueens kernel. In addition,
accesses to the shared memory area which stores the tasks data environments have impact to
the total execution time. Finally, a significant improvement of 7% is observed in the kernel
that calculates m. The reason behind this is that the optimized runtime does not support tasks.
Therefore, it utilizes the lighter barrier which has no tasking extensions. In fact, the barrier
flavors are the only algorithmic optimization we implemented in the various RTSs. We expect
to get even better performance if other portions of the OpenMP infrastructure are written
from scratch, specialized for each different RTS.

We also report that the eSDK version of the Mandelbrot application runs in 26.76 sec; it
is approximately 11% faster than our version. We consider this very encouraging, considering
that the original is a hand-optimized, bare-metal code, while we only have a general-purpose

OpenMP infrastructure prototype which still has room for optimizations.
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Table 4: Application kernels execution times (sec)

Kernel Full RTS | Optimized RTS | Reduction
Empty Kernel 0.10 0.10 0%
Mandelbrot 30.05 30.00 0.16%
Pi calculation 0.28 0.26 7.14%
NQueens (tasks) 1.81 1.81 0%

7 Conclusions and Future Work

In this work we present a novel RTS organization that is able to produce specialized and
optimized OpenMP support, tailored to the needs of each particular application. The compiler
performs a detailed inter-procedural analysis of the target kernel regions and calculates a set
of metrics depicting the kernel behavior with respect to OpenMP functionality. These metrics
are fed to a mapper mechanism which decides on the most appropriate runtime library flavor
to employ, and parametrize it according to the functionality requirements. As a result, each
kernel offloaded to a device is accompanied by an optimized kernel-specific runtime library that
is able to provide exactly the OpenMP features required.

We have implemented our ideas on the Parallella-16 board, in the context of the OMPi
compiler. Our experiments show dramatic decrease in kernel sizes and execution times as
compared to the original, monolithic RTS. We are currently working on three directions. First,
we are optimizing the runtime library flavors even more so as to produce even smaller and
faster kernels. Second, we work on implementing similar OpenMP support for other platforms.
Third, we examine whether new metrics can be added to our code analysis and the potential

impact they may have on further code optimization.
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