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Abstra
t

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adja
ent

to a vertex in D. The paired domination problem on G asks for a minimum-
ardinality dominating

set S of G su
h that the subgraph indu
ed by S 
ontains a perfe
t mat
hing; motivation for this

problem 
omes from the interest in �nding a small number of lo
ations to pla
e pairs of mutually

visible guards so that the entire set of guards monitors a given area. The paired domination problem

on general graphs is known to be NP-
omplete.

In this paper, we 
onsider the paired domination problem on interval and 
ir
ular-ar
 graphs.

We use properties of the models of interval and 
ir
ular-ar
 graphs in order to des
ribe simple and

eÆ
ient algorithms for the problem: given an interval (ar
, resp.) model of an interval (
ir
ular-ar
,

resp.) graph on n verti
es and m edges with endpoints sorted, our algorithms dete
t whether there

exist isolated verti
es, returning one if one exists, otherwise returning a minimum paired-dominating

set of the input graph; our algorithm for interval graphs runs in O(n) time and spa
e whereas the

one for 
ir
ular ar
 graphs runs in O(n + m) time using O(n) spa
e. Both algorithms a
hieve better

time 
omplexities over the 
orresponding known algorithms.

Keywords: interval graph, 
ir
ular-ar
 graph, paired domination, 
ertifying algorithm, domination.

1 Introdu
tion

A subset D of verti
es of a graph G is a dominating set if every vertex of G either belongs to D or is

adja
ent to a vertex in D; the minimum 
ardinality of a dominating set of G is 
alled the domination

number of G and is denoted by γ(G). The problem of 
omputing the domination number of a graph has

re
eived and keeps re
eiving 
onsiderable attention by many resear
hers (see [15℄ for a long bibliography

on domination). The problem �nds many appli
ations, most notably in relation to area monitoring

problems by a minimum-
ardinality set of guards.

The domination problem admits many variants: domination, edge domination, weighted domination,

independent domination, 
onne
ted domination, total/open domination, lo
ating domination, and paired

domination [15, 16, 17, 18, 26, 32℄. Among these, we will fo
us on paired domination: a vertex subset S

of a graph G is a paired-dominating set if it is a dominating set and the subgraph indu
ed by the set S

has a perfe
t mat
hing; the minimum 
ardinality of a paired-dominating set in G is 
alled the paired

domination number and is denoted by γp(G). Paired domination was introdu
ed by Haynes and Slater

[17℄; their motivation 
ame from the variant of the area monitoring problem in whi
h ea
h guard has

another guard as a ba
kup (i.e., we have pairs of guards prote
ting ea
h other). Haynes and Slater

noted that every graph with no isolated verti
es has a paired-dominating set (on the other hand, it easily

follows from the de�nition that a graph with isolated verti
es does not have a paired-dominating set).
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Additionally, they showed that the paired domination problem is NP-
omplete on arbitrary graphs; thus,

it is of theoreti
al and pra
ti
al importan
e to �nd 
lasses of graphs for whi
h this problem 
an be solved

in polynomial time and to des
ribe eÆ
ient algorithms for its solution.

Trees have been one of the �rst targets of resear
hers working on paired domination: Qiao et al. [28℄

presented a linear-time algorithm for 
omputing the paired domination number of a tree and 
hara
terized

the trees with equal domination and paired domination number; Henning and Plummer [19℄ 
hara
terized

the set of verti
es of a tree that are 
ontained in all, or in no minimum paired-dominating sets of the

tree. Kang et al. [21℄ 
onsidered \in
ated" graphs (for a graph G, its in
ated version is obtained from

G by repla
ing ea
h vertex of degree d in G by a 
lique on d verti
es), gave an upper and lower bound

for the paired domination number of the in
ated version of a graph, and des
ribed an algorithm for


omputing a minimum paired-dominating set of the in
ated version of a tree Tr whi
h runs in O(|V (Tr)|)

time. Bounds for the paired domination number have been established also for 
law-free 
ubi
 graphs

[12℄, for Cartesian produ
ts of graphs [3℄, and for generalized 
law-free graphs [9℄; we 
all K1,3 a 
law

and K1,a a generalized 
law, where a ≥ 3, and thus a graph G is 
alled 
law-free (generalized 
law-free,

resp.) graph if G does not 
ontain K1,3 (K1,a, resp.) as an indu
ed subgraph. Cheng et al. [8℄ gave an

O(nm)-time algorithm for the paired domination problem on permutation graphs, where n and m are

the numbers of verti
es and edges of the graph, working on the permutation de�ning the input graph;

an optimal O(n)-time algorithm for this problem was re
ently des
ribed by Lappas et al. [25℄. For the

paired domination problem on interval graphs, Cheng et al. [7℄ proposed an O(n + m)-time algorithm

assuming that an interval model for the graph with endpoints sorted is available; they also extended their

result to 
ir
ular-ar
 graphs giving an algorithm running in O(m(m + n)) time in this 
ase. Chen et al.

[6℄ pointed out that the interval graph algorithm in [7℄ is in
orre
t and gave O(n + m)-time algorithms

for the paired domination problem on blo
k graphs provided that an appropriate vertex ordering is given

and on interval graphs provided that an interval model with endpoints sorted is given; they also showed

that the problem is NP-
omplete for bipartite, 
hordal, and split graphs. The same authors....

Chen et al. [5℄ des
ribed an O(n + m)-time algorithm for the paired domination problem on strongly


hordal graphs if the strong (elimination) vertex ordering is given; their algorithm implies an O(n + m)-

time algorithm for the paired-domination problem on interval graphs when

We too 
onsider the paired domination problem on the 
lasses of interval and 
ir
ular-ar
 graphs.

An interval graph is the interse
tion graph of a family of intervals in the real line; the 
lass of interval

graphs is a sub
lass of the very interesting 
lass of perfe
t graphs [13℄. Re
ognizing whether a graph on

n verti
es and m edges is interval 
an be done in O(n+m) time [2, 24, 14℄; in fa
t, the algorithms in [24℄

and [14℄ produ
e an interval model whenever the input graph is found to be interval. The 
ir
ular-ar


graphs generalize the interval graphs; a 
ir
ular-ar
 graph is the interse
tion graph of a family of ar
s

on a 
ir
le. M
Connell [27℄ gave an O(n + m)-time algorithm to re
ognize whether a given graph is


ir
ular-ar
. In 2006, Kaplan and Nussbaum [22℄ des
ribed a simpler O(n + m)-time 
ir
ular-ar
 graph

re
ognition algorithm based on an earlier O(n2)-time algorithm of Es
hen and Spinrad [10℄. Both the

algorithms of M
Connell and of Kaplan and Nussbaum produ
e a 
orresponding ar
 model if the given

graph is 
ir
ular-ar
 graph.

Both the interval and the 
ir
ular-ar
 graphs have re
eived 
onsiderable attention and many algorithms

have been developed for various problems on these graphs. In addition to the result of Cheng, Kang, and

Ng [7℄ on paired domination that we mentioned earlier, several variants of the domination problem have

been 
onsidered on interval and 
ir
ular-ar
 graphs. Farber [11℄ presented a polynomial-time algorithm

for 
omputing a minimum-weight dominating set and a minimum-weight independent dominating set

on strongly 
hordal graphs that require O(n + m) time on interval graphs. White et al. [31℄ gave an

O(n2)-time algorithm for a minimum-
ardinality 
onne
ted dominating set for strongly 
hordal graphs

and thus for interval graphs. Bertossi [1℄ des
ribed an O(n2)-time algorithm for 
omputing a minimum-


ardinality total dominating set on an interval graph. The same year, Keil [23℄ proposed an improved

algorithm for the same problem that run in O(n+m) time; Ramalingam and Pandu Rangan [29℄ pointed
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out an error in Keil's algorithm and 
orre
ted it. The same authors in [30℄ des
ribed a uni�ed approa
h

leading to O(n + m)-time algorithms for the minimum-weight versions of the domination, independent

domination, total domination, and 
onne
ted domination on interval graphs. In 1998, Chang [4℄ gave

O(n)-time algorithms for minimum-weight {independent, 
onne
ted} domination, and an O(n log log n)-

time algorithm for minimum-weight total domination on interval graphs assuming that an interval model

with endpoints sorted is given; he also extended the results to 
ir
ular-ar
 graphs obtaining O(n + m)-

time algorithms for the same problems. We also note that Hsu and Tsai [20℄ presented an O(n)-time

algorithm for the minimum-
ardinality dominating set (as well as the minimum independent set and the

minimum 
lique 
over) on 
ir
ular-ar
 graphs assuming that an ar
 model is given.

In this paper, we study the paired domination problem on interval and 
ir
ular-ar
 graphs, assuming

that an interval and ar
 representation of the graph with endpoints sorted is given. We prove properties

of the intervals and the ar
s in the representation whi
h help us des
ribe an optimal O(n)-time algorithm

for the paired-dominating problem on interval graphs and an O(n+m)-time algorithm for the 
ir
ular-ar


graphs. Sin
e an interval model of an interval graph and an ar
 model of a 
ir
ular-ar
 graph 
an be


omputed in time linear in the total number of verti
es and edges of the graph, our algorithms imply

O(n + m)-time algorithms for interval and 
ir
ular-ar
 graphs when the graph is given.

2 Theoreti
al Framework

We 
onsider �nite undire
ted graphs with no loops or multiple edges. For a graph G, we denote its vertex

and edge set by V (G) and E(G), respe
tively. The subgraph of G indu
ed by a subset S of the vertex

set V (G) is denoted by G[S]. The neighborhood N(x) of a vertex x of G is the set of all the verti
es of

G whi
h are adja
ent to x; the 
losed neighborhood of x is de�ned as N [x] := N(x) ∪ {x}. The degree of

a vertex x in G is the number of verti
es adja
ent to x in G; thus, degree(x) = |N(x)|.

Our algorithms assume that an interval model of an interval graph and an ar
 model for a 
ir
ular-

ar
 graph is given with endpoints sorted. Furthermore, for 
onvenien
e, we assume that the intervals

and the ar
s have distin
t endpoints. Yet, even if we had a model in whi
h intervals or ar
s may have

the same endpoint, then we 
an easily get a model with distin
t endpoints as follows: �rst, to ea
h

vertex v of the graph, we arbitrarily assign a distin
t integer from 1 to n, denoted id(v), where n is the

number of verti
es of the graph; then, an endpoint of the interval or the ar
 of a vertex w at x = xi is

represented by the ordered pair (xi, id(w)) and the 
omparison of the endpoints is done lexi
ographi
ally

on the 
orresponding ordered pairs. This 
orresponds to moving the endpoint of the interval (ar
, resp.)


orresponding to the larger id a bit to the right (
lo
kwise, resp.).

3 Paired Domination of Interval Graphs

In this se
tion, we present and analyze the algorithm for the paired domination problem on interval

graphs; we assume that an interval model with endpoints sorted is given.

The general idea of our algorithm is to traverse the intervals in the interval model of the input graph

from left to right

• 
olle
ting pairs of adja
ent verti
es whose intervals extend as far to the right as possible

• without however leaving behind intervals 
orresponding to non-dominated verti
es.

This 
an be done in a systemati
 way by taking advantage of the result des
ribed in the following lemma:

Lemma 3.1 Let IG be an interval model of an interval graph G without isolated verti
es and let

vi be the non-dominated vertex of G whose interval in IG has the leftmost right endpoint,

vj be the neighbor of vi whose interval in IG has the rightmost right endpoint, and
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vk be the neighbor of vj whose interval in IG has the rightmost right endpoint.

Then there exists a minimum paired-dominating set of G whi
h 
ontains the pair {vj, vk}.

Proof: Sin
e the graph G has no isolated verti
es, the verti
es vj and vk exist (note that it may hold

that vk = vi). Consider a minimum paired-dominating set S of G. First, we show that S 
ontains a

neighbor of vi. If not, then vi ∈ S; sin
e the indu
ed subgraph G[S] has a perfe
t mat
hing, vi is mat
hed

to one of its neighbors belonging to S, a 
ontradi
tion. Thus, S 
ontains a neighbor of vi. If S does not


ontain vj , then we 
an obtain a minimum paired-dominating set S′
of the paired domination problem

on G 
ontaining vj by simply repla
ing a neighbor of vi in S by vj ; note that the de�nitions of vi and vj

imply that vj is adja
ent to all the neighbors of vi and of vi's neighbors.

Next, sin
e S′
is a minimum paired-dominating set of G, the subgraph G[S′] of G indu
ed by S′

has

a perfe
t mat
hing; thus vj is mat
hed to another vertex in S′
, say, w. If w = vk then S′


ontains both

vj and vk. If w 6= vk, then we 
an obtain a minimum paired-dominating set 
ontaining both vj and

vk by repla
ing w by vk; vj dominates all the verti
es whose intervals in IG start to the left of the left

endpoint of the interval of vj while the de�nition of vk implies that for any neighbor w of vj it holds that

N(w)−N(vj) ⊆ N(vk)−N(vj).

Let us denote by I(v) the interval 
orresponding to vertex v in an interval model. In order to simplify

our presentation, let us denote by r neighbor(v) the neighbor of vertex v whose interval in the interval

model has the rightmost right endpoint; thus, for a vertex v, r neighbor(v) is well de�ned as long as v is

not an isolated vertex. We note that if the intervals of the neighbors of v do not extend past the right

endpoint of the interval I(v) of v, the right endpoint of the interval of r neighbor(v) will be to the left of

the right endpoint of I(v).

Then, our method to 
ompute a paired-dominating set of an interval graph G with interval model IG,

as suggested by Lemma 3.1, is as follows: we initialize the dominating set of G to the empty set; next, we

�nd the vertex, say, v, whose interval in IG has the leftmost right endpoint and we add the doubleton set

{r neighbor(v), r neighbor(r neighbor(v))} in the dominating set of G; following that, we ignore all the

verti
es dominated by the 
urrent dominating set and �nd the vertex, say, v′, (among the verti
es that

are not yet dominated) whose interval in IG has the leftmost right endpoint and we add the doubleton

set {r neighbor(v′), r neighbor(r neighbor(v′))} in the dominating set of G; we keep repeating the last

step for as long as there are non-dominated verti
es.

It is interesting to note that the 
hoi
e of pairs of adja
ent verti
es guarantees that at any time, the

interval of any non-dominated vertex v starts to the right of the intervals of all the verti
es in the 
urrent

dominating set. This implies that r neighbor(v) does not belong to the 
urrent dominating set, nor does

r neighbor(r neighbor(v)).

Of 
ourse, if there exist isolated verti
es in the graph G, the paired domination problem on G has

no solution [17℄. So, in its Step 1, our algorithm 
he
ks for isolated verti
es and 
omputes the values

of r neighbor(x) for all verti
es x ∈ V (G). If isolated verti
es are found, an appropriate message is

printed and the algorithm stops, whereas if no su
h verti
es exist our algorithm applies the method

des
ribed in the previous paragraph. A des
ription of our algorithm in pseudo
ode is given in Algorithm

Interval Paired Domination.

Algorithm Interval Paired Domination(IG)

Input : an interval model IG of an interval graph G with interval endpoints sorted

Output : a minimum paired-dominating set of G, if it exists, or

a message that there is no solution and an isolated vertex of G

1. traverse the interval endpoints in IG (from left to right) in order to 
he
k for isolated verti
es and

to 
ompute the value of r neighbor(v) ∀v ∈ V (G);

if there exists a vertex w that is isolated in G

then print(\No solution...");

print that w is an isolated vertex and exit;
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2. {traverse interval endpoints again (from left to right) to get a minimum paired-dominating set}

mark all verti
es in G with −1; {-1 denotes not yet en
ountered vertex}

S ← ∅; {S will store a dominating set; initially empty}

i← 0; {
ounter for pairs in S; initially 0 pairs}

while there exist interval endpoints to be pro
essed do

p← next interval endpoint in IG;

v ← vertex 
orresponding to the interval with p as an endpoint;

if p is the left endpoint of I(v)

then mark v with i; {I(v) en
ountered (v non-dominated) after the i-th pair in S}

else {p is the right endpoint of I(v)}

if v is marked with i

then {v: non-dominated vertex whose right endpoint is leftmost}

S ← S ∪ {r neighbor(v), r neighbor(r neighbor(v))};

skip endpoints in IG up to the rightmost between the right endpoints of

I(r neighbor(v)) and I(r neighbor(r neighbor(v)));

i← i + 1; {in
rement 
ounter for next pair in S}

end-while

3. print(\A minimum paired-dominating set of the input graph is:");

print the elements of the set S.

The 
orre
tness of Algorithm Interval Paired Domination follows from Lemma 3.1 and the dis-


ussion pre
eding the pseudo
ode. Additionally, as the set S is 
onstru
ted by 
olle
ting disjoint pairs of

adja
ent verti
es, this guarantees that the subgraph of the input graph G indu
ed by the resulting set S

will have a perfe
t mat
hing.

Time and Spa
e Complexity

Let n be the numbers of verti
es of the given graph G. In order to a
hieve a good time 
omplexity, we

establish pointers from ea
h endpoint of ea
h interval I(v) to the 
orresponding vertex v and with ea
h

vertex we store the values of the endpoints of its 
orresponding interval; these 
an be set in O(n) time

by means of an initial traversal of the intervals in the interval model IG. Then, Step 2 runs in in time

linear in the number of interval endpoints, that is, in O(n) time and uses O(n) spa
e. Step 3 also takes

O(n) time.

Let us now see how we 
an implement Step 1 in O(n) time and spa
e as well. The 
omputation

of r neighbors relies in maintaining the value of rightmost v, i.e., the vertex whose interval has the

rightmost right endpoint so far. Then, r neighbor(x) is equal to the value of rightmost v when the right

endpoint of the interval I(x) of x is rea
hed unless it happens that the value of rightmost v is equal to x.

The latter holds if and only if none of the intervals of the neighbors of x extends past the right endpoint

of I(x); in su
h a 
ase, the r neighbor(v) is the vertex whose interval ended last before the right endpoint

of I(x) was rea
hed (maintained in previous v in our algorithm) provided that x has neighbors. If x has

neighbors then previous v di�ers from x and is indeed r neighbor(x). If x has no neighbors (i.e., it is an

isolated vertex) then no interval endpoint appears between the endpoints of I(x) in the interval model,

i.e., previous v is equal to x; we take advantage of pre
isely this observation in order to dete
t isolated

verti
es. Below, we present the implementation of Step 1 in pseudo
ode:

while there exist interval endpoints to be pro
essed do

p← next interval endpoint in IG;

v ← vertex 
orresponding to the interval with p as an endpoint;

if p is the left endpoint of I(v)

then if p is the leftmost interval endpoint in IG or
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the right endpoint of I(v) is to the right of the right endpoint of I(rightmost v)

then rightmost v ← v; {the right endpoint of I(v) is 
urrently rightmost}

else {p is the right endpoint of I(v)}

if rightmost v = v

then {the intervals of v's neighbors do not extend past the right endpoint of I(v)}

if previous v = v

then vertex v is an isolated vertex of the input graph;

exit from the while-loop;

else r neighbor(v)← previous v; {previous v is v's r neighbor}

else r neighbor(v)← rightmost v; {set r neighbor(v)}

previous v ← v;

end-while

In summary, we have the following theorem.

Theorem 3.1 Let G be an interval graph on n verti
es. Then, given an interval model of G with end-

points sorted from left to right, Algorithm Interval Paired Domination 
omputes a paired-dominating

set of G in O(n) time and spa
e.

Sin
e an interval model 
orresponding to an interval graph 
an be 
omputed from the graph in time

linear in the total number of its verti
es and edges (e.g., [24, 14℄), we 
on
lude that, given an interval

graph, we 
an 
ompute a minimum-
ardinality paired-dominating set of the graph in O(n + m) time,

where n is the number of verti
es and m is the number of edges of the graph.

4 Paired Domination of Cir
ular-Ar
 Graphs

In this se
tion, we present and analyze the algorithm for the paired domination problem on 
ir
ular-ar


graphs; we assume that we are given an ar
 model of the input 
ir
ular-ar
 graph with endpoints sorted

(re
all that we assume that the ar
s have distin
t endpoints).

Sin
e we have an optimal algorithm for the paired domination problem on interval graphs when given

an interval model, it is worth trying to redu
e the problem on 
ir
ular-ar
 graphs into that on interval

graphs. This 
an be easily done whenever the ar
 model of the input 
ir
ular-ar
 graph G has a gap, that

is, the union of angle ranges of the ar
s in the model do not span the full range of 360 degrees; in su
h

a 
ase, we 
an obtain an interval model of G by \unrolling" the ar
s of the ar
 model of the 
ir
ular-ar


graph onto a line and then use Algorithm Interval Paired Domination on it. If the ar
 model has no

gap, then we are able to 
onsider subgraphs of the given graph whose ar
 models have gaps and redu
e

again the problem to that on interval graphs.

In order to make our des
ription more pre
ise, we need some additional terminology and notation,

whi
h are introdu
ed in Se
tion 4.1; the theoreti
al ba
kground of our algorithm is given in Se
tion 4.2,

and the algorithm in Se
tion 4.3.

4.1 Cir
ular-ar
 Model Terminology and Notation

In an ar
 model, the ar
 
orresponding to vertex x is denoted by A(x). Ea
h su
h ar
 has a 

w endpoint

and a 
w endpoint and the ar
 extends in a 
lo
kwise dire
tion from the former to the latter and in a


ounter
lo
kwise dire
tion from the latter to the former (in Figure 1(a), a and b are the 

w endpoint and


w endpoint, respe
tively, of the ar
 A(x)). With respe
t to the ar
 of a vertex x, the ar
 of a neighbor y

of x may be su
h that:

(i) the ar
 of x 
overs the ar
 of y (see Figure 1(a));
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Figure 1: The 
ases of the ar
s of two neighbors x and y.

(ii) the ar
 of y 
overs the ar
 of x (see Figure 1(b)) or equivalently the ar
 of x is 
overed by the ar


of y;

(iii) the ar
s of x and y overlap and the ar
 of y extends past the 
w endpoint of the ar
 of x (see

Figure 1(
));

(iv) the ar
s of x and y overlap and the ar
 of y extends past the 

w endpoint of the ar
 of x (see

Figure 1(d)).

In 
ases (i) and (ii) above, we say that x and y form a nested pair ; in 
ases (iii) and (iv), they form

an overlapping pair. In parti
ular, in 
ase (iii) we say that x forms a 
lo
kwise overlapping pair with

y, whereas in 
ase (iv) it forms a 
ounter
lo
kwise overlapping pair with y; 
learly, if vertex x forms

a 
lo
kwise overlapping pair with y then y forms a 
ounter
lo
kwise overlapping pair with x, and vi
e

versa.

For a vertex x, the set of neighbors of x 
an be partitioned into the following 4 sets:

• Ncw(x): set of neighbors y of x su
h that x forms a 
lo
kwise overlapping pair with y;

• Nccw(x): set of neighbors y of x su
h that x forms a 
ounter
lo
kwise overlapping pair with y;

• Ncovering(x): set of neighbors of x whose ar
s 
over the ar
 of x;

• Ncovered(x): set of neighbors of x whose ar
s are 
overed by the ar
 of x.

(Note that this partition of the neighbors of x depends on the ar
 model 
onsidered; a di�erent ar


model for the same input graph may yield di�erent neighborhood partitions.) Among the elements of

Ncw(x), Nccw(x), and Ncovering(x), whenever these sets are non-empty, we distinguish the following

spe
ial neighbors of x:

• cwo(x): among the elements of Ncw(x) (if any), cwo(x) is the vertex whose ar
 extends farthest


lo
kwise;

• ccwo(x): among the elements of Ncw(x) (if any), ccwo(x) is the vertex whose ar
 extends farthest


ounter
lo
kwise;

• cwc(x): among the elements of Ncovering(x) (if any), cwc(x) is the vertex whose ar
 extends farthest


lo
kwise;

• ccwc(x): among the elements of Ncovering(x) (if any), ccwc(x) is the vertex whose ar
 extends

farthest 
ounter
lo
kwise.
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Figure 2: Examples of ar
s.

The above verti
es are well de�ned provided that the 
orresponding set of neighbors of x is non-empty

(re
all that we assume that the endpoints are all distin
t). Moreover, we note that it may hold that

cwo(x) = ccwo(x) (see Figure 2(a)), as well as cwc(x) = ccwc(x) (see Figure 2(b)). It is 
lear that for

a vertex, some or all of the above neighbors need not exist. However, under 
ertain 
onditions some of

these neighbors exist as we show in the following observation.

Observation 4.1 Let G be a 
ir
ular-ar
 graph with ar
 model AG. Then:

(i) For ea
h vertex x whose ar
 A(x) is 
overed by another ar
 in AG, both neighbors cwc(x) and

ccwc(x) exist and their ar
s are not 
overed by any ar
 in AG.

(ii) If the ar
 model AG does not have a gap, then for ea
h vertex x whose ar
 A(x) is not 
overed by any

ar
 in AG, both neighbors cwo(x) and ccwo(x) exist. Moreover, if for a vertex x the neighbor cwo(x)

(ccwo(x), resp.) exists, then the ar
 of cwo(x) (ccwo(x), resp.) is not 
overed by any ar
 in AG.

(iii) Consider any vertex x whose ar
 A(x) is not 
overed by any ar
 in AG. If neighbor y = cwo(x) exists,

then cwo(ccwo(y)) = y. Symmetri
ally, if neighbor z = ccwo(x) exists, then ccwo(cwo(z)) = z.

Proof: (i) Any ar
 
overing the ar
 A(x) of x extends both 
lo
kwise and 
ounter
lo
kwise farther than

the endpoints of A(x). Hen
e both cwc(x) and ccwc(x) exist. Moreover, the ar
 of cwc(x) is not 
overed

by any ar
 in AG; if not, any su
h ar
 would 
over the ar
 of x and would extend farther 
lo
kwise than

the ar
 of cwc(x) 
ontradi
ting the de�nition of cwc(x). A similar argument establishes that the ar
 of

ccwc(x) is not 
overed by any ar
 either.

(ii) Sin
e AG does not have a gap, there must be an ar
 extending farther 
lo
kwise than the 
w endpoint

of the ar
 of x. The vertex 
orresponding to this ar
 is a neighbor of x and belongs to Ncw(x) sin
e

Ncovering(x) = ∅; thus, cwo(x) exists. Additionally, the ar
 of cwo(x) is not 
overed by any other ar
; if

there were su
h an ar
 A(w) of a vertex w, then w ∈ Ncovering(x) ∪Ncw(x) = Ncw(x), in 
ontradi
tion

to the de�nition of cwo(x).

A similar argument holds for ccwo(x) as well.

(iii) Suppose that y = cwo(x) exists. Sin
e x forms a 
lo
kwise overlapping pair with y, y forms a


ounter
lo
kwise overlapping pair with x. Thus, x ∈ Nccw(y) and the vertex ccwo(y) exists. In turn,

y ∈ Ncw(ccwo(y)) and thus cwo(ccwo(y)) exists. Sin
e the ar
 of x is not 
overed by any ar
, it is

important to note that Nccw(y) 
ontains

• verti
es V1(y) (if any) whose ar
s have their 
w endpoints in A(y)−A(x) and their 

w endpoints

in A(x) −A(y),

• verti
es V2(y) whose ar
s have their 
w endpoints in A(x)∩A(y) and their 

w endpoints in A(x)−

A(y), and

8



• verti
es V3(y) (if any) that belong to Nccw(x) and whose ar
s have their 
w endpoints in A(x)∩A(y).

Then, ccwo(y) ∈ {x} ∪ V3(y) whi
h implies that y ∈ Ncw(ccwo(y)). If V3(y) = ∅, then ccwo(y) = x and

thus cwo(ccwo(y)) = y. If V3(y) 6= ∅, then if cwo(ccwo(y)) = y′ 6= y (i.e., the ar
 of y′
extends farther


lo
kwise than the 
w endpoint of the ar
 of y), we have that the 

w endpoint of y′
(i) either belongs to

A(x)∩A(y) whi
h implies that y′ ∈ Ncw(x) in 
ontradi
tion to the de�nition of y = cwo(x) (ii) or belongs

to A(x) −A(y) whi
h 
ontradi
ts the fa
t that the ar
 of y is not 
overed by any ar
 (see statement (ii)

for y = cwo(x)).

4.2 Useful Lemmas

Now we are ready to prove the two main lemmas whi
h are the basis of our algorithm. Before that, we

show the following fa
t. We 
onsider a 
ir
ular-ar
 graph G whose ar
 model does not have a gap; thus

G has no isolated verti
es and there exists a paired-dominating set of G.

Fa
t 4.1 Let S be a minimum paired-dominating set of a 
ir
ular-ar
 graph G with ar
 model AG that

does not have a gap, and let verti
es x, y ∈ S su
h that x is mat
hed to y in a perfe
t mat
hing M of the

indu
ed subgraph G[S].

(i) If vertex x forms a 
lo
kwise overlapping pair with vertex y in AG, then there exists a minimum

paired-dominating set T of G and perfe
t mat
hing MT of the indu
ed subgraph G[T ] su
h that

x, cwo(x) ∈ T and x is mat
hed to cwo(x) in MT .

(ii) If vertex x forms a 
ounter
lo
kwise overlapping pair with vertex y in the ar
 model AG, then

there exists a minimum paired-dominating set T of G and perfe
t mat
hing MT of the indu
ed

subgraph G[T ] su
h that x, ccwo(x) ∈ T and x is mat
hed to ccwo(x) in MT .

(iii) If the ar
 of vertex x 
overs the ar
 of vertex y in the ar
 model AG that does not have a gap,

then there exists a minimum paired-dominating set T of G and perfe
t mat
hing MT of the indu
ed

subgraph G[T ] su
h that x, cwo(x) ∈ T and x is mat
hed to cwo(x) in MT .

Proof: (i) We �rst observe that sin
e vertex x forms a 
lo
kwise overlapping pair with y, then cwo(x)

exists and

P1: N [y]−N(x) ⊆ N [cwo(x)]−N(x).

If cwo(x) 6∈ S then in light of Property P1, we 
an obtain a minimum paired-dominating set T as suggested

in the statement of the fa
t by simply repla
ing y by cwo(x). So, next suppose that cwo(x) ∈ S. If

y = cwo(x) then T = S. If y 6= cwo(x) and cwo(x) ∈ S then let u be the vertex mat
hed to cwo(x)

in the mat
hing M . Vertex u dominates a vertex w not dominated by any other vertex in S, otherwise

the set S − {y, w} would also be a paired-dominating set of G due to Property P1, in 
ontradi
tion

to the minimality of S. Then we 
an obtain a minimum paired-dominating set T as suggested in the

statement of the fa
t by repla
ing the vertex y by the vertex w in S; note that a perfe
t mat
hing of the

subgraph G[T ] is obtained from M by repla
ing the pairs {x, y} and {cwo(x), u} by the pairs {x, cwo(x)}

and {u, w}.

(ii), (iii) Statements (ii) and (iii) are established in a similar fashion. The existen
e of vertex cwo(x) in

statement (iii) follows from statement (ii) of Observation 4.1 sin
e the ar
 model AG does not have a gap

and the ar
 of x in AG is not 
overed by any ar
.

Lemma 4.1 Let S be a minimum paired-dominating set of a 
ir
ular-ar
 graph G with ar
 model AG

that does not have a gap, and let x ∈ S. Then:

(i) If the ar
 of x is 
overed by another ar
 in AG, then there exists a minimum paired-dominating set

of G 
ontaining cwc(x);

9



(ii) If the ar
 of x is not 
overed by another ar
 in AG, then there exists a minimum paired-dominating

set D of G and perfe
t mat
hing MD of the indu
ed subgraph G[D] su
h that

⊲ ccwo(cwo(x)), cwo(x) ∈ D and ccwo(cwo(x)) and cwo(x) are mat
hed in MD or

⊲ ccwo(x), cwo(ccwo(x)) ∈ D and ccwo(x) and cwo(ccwo(x)) are mat
hed in MD

where none of the ar
s of cwo(x), ccwo(x), ccwo(cwo(x)), and cwo(ccwo(x)) is 
overed by any ar


in AG.

Proof: (i) Sin
e the ar
 of x is 
overed, then the vertex cwc(x) exists (as does ccwc(x)). If cwc(x) ∈ S

then S is a paired-dominating set as des
ribed in statement (i); if not, then we 
an repla
e x by cwc(x)

in S and obtain su
h a paired-dominating set sin
e N [x] ⊆ N [cwc(x)].

(ii) Sin
e the ar
 of x is not 
overed by any ar
, the verti
es cwo(x) and ccwo(x) exist and sin
e the ar
s of

these verti
es are not 
overed either (see statement (ii) of Observation 4.1), then the verti
es ccwo(cwo(x))

and cwo(ccwo(x)) exist as well. Let y ∈ S be the vertex mat
hed to x in a perfe
t mat
hing M of the

subgraph G[S]. Then, exa
tly one of the following 3 
ases holds:

• x forms a 
lo
kwise overlapping pair with y in the ar
 model AG;

• x forms a 
ounter
lo
kwise overlapping pair with y in AG;

• the ar
 of x 
overs the ar
 of y in AG.

These 3 
ases 
orrespond to statements (i), (ii), and (iii), respe
tively, of Fa
t 4.1, whi
h implies that in

all 
ases there exists a minimum paired-dominating set T of G and perfe
t mat
hing MT of the indu
ed

subgraph G[T ] su
h that

x, cwo(x) ∈ T and x is mat
hed to cwo(x) in MT or

x, ccwo(x) ∈ T and x is mat
hed to ccwo(x) in MT .

Then, statement (ii) of the lemma follows from on
e again applying statement (i) of Fa
t 4.1 in the

former 
ase (with respe
t to cwo(x)) and statement (ii) of Fa
t 4.1 in the latter 
ase (with respe
t to

ccwo(x)). Note that sin
e the ar
 of x is not 
overed by any ar
 in the ar
 model AG, statement (ii) of

Observation 4.1 implies that the ar
s of cwo(x) and ccwo(x) are not 
overed, whi
h in turn implies that

the ar
s of ccwo(cwo(x)) and cwo(ccwo(x)) are not 
overed either.

For a 
ir
ular-ar
 graph with ar
 model without a gap, Lemma 4.1 implies that there always exists a

minimum paired-dominating set 
ontaining a pair of mat
hed verti
es x, y forming an overlapping pair

su
h that x = ccwo(y) and y = cwo(x); Lemma 4.2 
onsiders su
h a 
ase. We note that this does not

imply that all pairs of mat
hed verti
es in a minimum paired-dominating set form overlapping pairs.

Indeed, there are 
ases su
h that no su
h a minimum paired-dominating set exists; for example, any

minimum paired-dominating set for the ar
 model shown in Figure 3(a) 
ontains verti
es u, v, and w,

and a neighbor of exa
tly one among u, v, and w, whi
h forms a nested pair with (its mat
hed neighbor)

u, v, and w, respe
tively. Additionally, Lemma 4.1 in 
onjun
tion with the neighborhood partition given

in Se
tion 4.1 may also give the impression that one need 
onsider only minimum paired-dominating sets


ontaining an appropriate vertex v, or ccwo(v), or cwo(v), or perhaps ccwc(v) and cwc(v). However, this

is not true as indi
ated by the example shown in Figure 3(b): as shown, the minimum paired-dominating

set is equal to {v2, u2}; yet, the ar
s of z, z′ 
an be appropriately rotated so that the minimum paired-

dominating set be
omes any of the sets {vi, ui}, i = 1, 2, . . . , k. Therefore, without knowing the position

of z, z′, we need 
onsider all neighbors of vertex w in order to �nd a minimum paired-dominating set.

Lemma 4.2 Let G be a 
ir
ular-ar
 graph, whose ar
 model AG does not have a gap, and suppose that

the adja
ent verti
es x, y are mat
hed to ea
h other in a perfe
t mat
hing M of the subgraph of G indu
ed

by a minimum paired-dominating set S of G. Further suppose that x = ccwo(y) and y = cwo(x) (that

is, x forms a 
lo
kwise overlapping pair with y) and neither the ar
 A(x) of x nor the ar
 A(y) of y are


overed by any ar
 in AG.
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Figure 3: Examples of ar
 models.

(i) There exists a minimum paired-dominating set D = D′ ∪ {x, y} of G su
h that

• D′
does not 
ontain any verti
es whose ar
s in AG are 
overed by the union of the ar
s of x

and of y;

• D′

ontains at most 1 neighbor of y whose ar
 extends farther 
lo
kwise than the 
w endpoint

of the ar
 of y; symmetri
ally, D 
ontains at most 1 neighbor of x whose ar
 extends farther


ounter
lo
kwise than the 

w endpoint of the ar
 of x.

(ii) Consider the following 4 ar
 models resulting from AG:

• A1: from AG remove the ar
s of x, y, and all their neighbors;

• A2: from AG remove the ar
s of x, y, and all their neighbors ex
ept for ccwo(x);

• A3: from AG remove the ar
s of x, y, and all their neighbors ex
ept for cwo(y);

• A4: from AG remove the ar
s of x, y, and all their neighbors ex
ept for cwo(y) and ccwo(x).

Then

(a) ea
h of A1, A2, A3, and A4 has a gap;

(b) there exists a minimum paired-dominating set of G 
ontaining the pair {x, y} and the smallest

among the minimum paired-dominating sets on the graphs 
orresponding to A1, A2, A3, and

A4 (whenever a paired-dominating set exists).

Proof: Sin
e the ar
s of x and y are not 
overed by any ar
 in the ar
 model AG, statement (ii) of

Observation 4.1 implies that the verti
es ccwo(x) and cwo(y) exist.

(i) Consider the minimum paired-dominating set S and let M be a perfe
t mat
hing of the indu
ed

subgraph G[S]. Suppose that S 
ontains a vertex z whose ar
 is 
overed by the union of the ar
s of x and

y in AG, and let z′ ∈ S be the vertex in S mat
hed to z in M . Clearly, z′ must dominate some vertex w

not dominated by any other vertex in S, otherwise the set S −{z, z′} would also be a paired-dominating

set, in 
ontradi
tion to the minimality of S. The fa
t that z′ dominates w implies that the ar
 of z′ is

not 
overed by the union of the ar
s of x and y; additionally, w is not adja
ent to either x or y. Then,

we 
an repla
e z by w in S obtaining a minimum paired-dominating set not 
ontaining z (the mat
hed

pair {z, z′} is repla
ed by the mat
hed pair {z′, w}). Be
ause we 
an repla
e any su
h vertex z, we 
an

obtain a minimum paired-dominating set S′
that does not 
ontain verti
es (other than x and y) whose

ar
s are 
overed by the union of the ar
s of x and y.

Finally, we show the restri
tion on the number of neighbors of y whose ar
s extend farther 
lo
kwise

than the 
w endpoint of the ar
 of y; for simpli
ity, let us 
all su
h a neighbor a 
w-neighbor of y (we note

11
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Figure 4: For the proof of Lemma 4.2 (the dashed part of an ar
 may or may not exist).

that the de�nition of y = cwo(x) implies that a 
w-neighbor of y is not a neighbor of x). We will show

that there exists a minimum paired-dominating set of the graph G whi
h, in addition to not 
ontaining

verti
es whose ar
s are 
overed by the union of the ar
s of x and y, 
ontains at most one 
w-neighbor

of y. Consider the minimum paired-dominating set S′
as des
ribed in the previous paragraph and let

M ′
be a perfe
t mat
hing of the indu
ed subgraph G[S′]. Suppose, for 
ontradi
tion, that S′


ontains

two 
w-neighbors p1 and p2 of y. First, suppose that p1, p2 are not mat
hed to ea
h other in M ′
and let

q1, q2 ∈ S′
be the verti
es mat
hed to p1 and p2, respe
tively, in M ′

(see Figure 4 for the four general 
ases

for the position of ea
h pair pi, qi (i = 1, 2) in the ar
 model AG taking into a

ount that y = cwo(x) and

that no vertex in S′ − {x, y} has its ar
 
overed by the union of the ar
s of x and y). The verti
es q1, q2

are not neighbors of y, and thus the 

w endpoints of their ar
s lie farther 
lo
kwise than the 
w endpoint

of the ar
 of y (see Figure 4(
) and (d)). Assume without loss of generality that the 
w endpoint of the

union of the ar
s of p2 and q2 is farther 
lo
kwise than the 
w endpoint of the union of the ar
s of p2

and q2; then,
(

N [p1] ∪ N [q1]
)

−
(

N(x) ∪ N(y)
)

⊆
(

N [p2] ∪ N [q2]
)

−
(

N(x) ∪ N(y)
)

whi
h implies that

the set S′ − {p1, q1} is a paired-dominating set of G, in 
ontradi
tion to the minimality of S′
. Suppose

now that p1, p2 are mat
hed to ea
h other in M ′
, and assume without loss of generality that the ar
 of p2

extends farther 
lo
kwise than the ar
 of p1 (see Figure 4(b) for p = p1 and q = p2), whi
h implies that

N [p1]−N(y) ⊆ N [p2]−N(y). The vertex p2 dominates a vertex, say, w, not dominated by the elements

of S′ − {p1, p2}; otherwise, the set S′ − {p1, p2} is a paired-dominating set of G, in 
ontradi
tion to the

minimality of S′
. Then, if we repla
e p1 by w in S′

, we obtain a minimum paired-dominating set of G


ontaining only one 
w-neighbor of y; note that w is not a neighbor of y sin
e it is not dominated by any

element of S′ − {p1, p2}.

Therefore, S′

ontains at most one 
w-neighbor of y. A symmetri
 argument works for the 
ase of

neighbors of x whose ar
s extend farther 
ounter
lo
kwise than the 

w endpoint of the ar
 of x.

(ii) (a) Sin
e y = cwo(x), the ar
 of cwo(y) 
annot extend farther 
ounter
lo
kwise than the 
w endpoint

of the ar
 of x; additionally, sin
e x = ccwo(y), the ar
 of ccwo(x) 
annot extend farther 
lo
kwise than

the 

w endpoint of the ar
 of y. Then, sin
e the 
w endpoint of the ar
 of x lies in the ar
 of y, ea
h of

the ar
 models Ai (i = 1, 2, 3, 4) has a gap in a 
lo
kwise dire
tion from the 

w endpoint of the ar
 of y

to the 
w endpoint of the ar
 of x.

(b) Let D be a minimum paired-dominating set of the graph G as des
ribed in statement (i) of the lemma.

We have the following 
ases for D.

1. If D 
ontains no neighbor of x other than y and no neighbor of y other than x, then the set D−{x, y}

is a paired-dominating set of the graph G1 with ar
 model A1; in fa
t, D − {x, y} is a minimum

paired-dominating set of G1 sin
e if there were a smaller paired-dominating set X of G1, then

X ∪ {x, y} would be a paired-dominating set of G in 
ontradi
tion to the minimality of D.

12



2. If D 
ontains one neighbor of y (other than x) whose ar
 extends farther 
lo
kwise than the


w endpoint of the ar
 A(y) of y and no neighbor of x other than y, then the set D − {x, y}

is a minimum paired-dominating set of the graph with ar
 model A2.

3. Similarly to the previous 
ase, if D 
ontains one neighbor of x (other than y) whose ar
 extends

farther 
ounter
lo
kwise than the 

w endpoint of the ar
 A(x) of x and no neighbor of y other than

x, then the set D − {x, y} is a minimum paired-dominating set of the graph with ar
 model A3.

4. Finally, if D 
ontains one neighbor of x (other than y) whose ar
 extends farther 
ounter
lo
kwise

than the 

w endpoint of the ar
 A(x) of x, and one neighbor of y (other than x) whose ar
 extends

farther 
lo
kwise than the 
w endpoint of the ar
 A(y) of y, then the set D − {x, y} is a minimum

paired-dominating set of the graph with ar
 model A4.

4.3 The Algorithm

As mentioned above, the idea behind our algorithm is to redu
e the problem to a paired-domination on an

interval graph by appropriately 
reating a gap in the ar
 model of the input 
ir
ular-ar
 graph G. In order

to 
reate a gap, we take advantage of the fa
t that for any vertex v ∈ V (G), at least one among v and

its neighbors belongs to ea
h paired-dominating set. Thus we pi
k an appropriate

1

vertex v and for ea
h

vertex x ∈ N [v], we apply Lemma 4.1 so that if the ar
 of x is not 
overed we 
onsider minimum paired-

dominating sets 
ontaining either {ccwo(cwo(x)), cwo(x)} or {ccwo(x), cwo(ccwo(x))}, whereas if the ar


of x is 
overed we 
onsider minimum paired-dominating sets 
ontaining either {ccwo(cwo(z)), cwo(z)} or

{ccwo(z), cwo(ccwo(z))} where z = cwc(x). Then, for ea
h su
h pair, we apply Lemma 4.2 obtaining four

ar
 models with a gap, whi
h 
an be turned into interval models and the paired domination problem 
an

be solved on ea
h of them in O(n) time using the algorithm of the previous se
tion. A des
ription of the

overall algorithm in pseudo
ode is given below where we also dete
t the existen
e of isolated verti
es;

Pro
edure Solution 
ontaining Vertex applies Lemmas 4.1 and 4.2.

Algorithm Cir
 Ar
 Paired Domination(AG)

Input : an ar
 model AG of a 
ir
ular-ar
 graph G with ar
 endpoints sorted

Output : a minimum paired-dominating set of G, if one exists, or

a message that there is no solution and an isolated vertex of G

1. {
ompute useful information and 
he
k for a gap and isolated verti
es}


he
k for a gap in the ar
 model AG and �nd a vertex v of minimum degree in G;

if the degree of v is 0

then print(\No solution...");

print that v is an isolated vertex and exit;

if ∃ a gap in AG (say, next to the 

w endpoint of the ar
 A(w))

then D ← Interval Paired Domination(IG) where IG is an interval model 
orresponding to

the ar
s in AG starting at the 

w endpoint of A(w) and moving 
lo
kwise;

go to Step 3;

2. {v: a vertex of minimum degree in G}

�nd cwc(v) (if it exists);

if cwc(v) does not exist {ar
 A(v) not 
overed in AG}

then D ← paired-domin. set returned by Pro
edure Min P-D-Set 
ontaining Vertex(AG,v);

else {Pro
edure Min P-D-Set 
ontaining Vertex on cwc(v) will be 
alled...}

{...in the for-loop below when w = cwc(v)}

1

In order to get a good time 
omplexity, in our algorithm we 
hoose as v the vertex of minimum degree in G.
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D ← V (G);

for ea
h neighbor w of v do

�nd cwc(w) (if it exists);

if cwc(w) does not exist {ar
 A(w) not 
overed in AG}

then D′ ← paired-domin. set returned by Min P-D-Set 
ontaining Vertex(AG, w);

else D′ ← paired-domin. set returned byMin P-D-Set 
ontaining Vertex(AG, cwc(w));

D ← minimum between D and D′
;

end-for

3. print(\A minimum paired-dominating set of the input graph is:");

print the elements of the set D.

Pro
edure Min P-D-Set 
ontaining Vertex(AG,w)

Input : an ar
 model AG of a 
ir
ular-ar
 graph G without isolated verti
es and

a vertex w of G whose ar
 is not 
overed by any ar
 in AG

Output : a minimum paired-dominating set of G among those 
ontaining w

1. {try the overlapping pair {ccwo(cwo(w)), cwo(w)}}

�nd cwo(w) and ccwo(cwo(w)) and assign y ← cwo(w) and x← ccwo(y);

{x forms a 
lo
kwise overlapping pair with y, and y = cwo(x) and x = ccwo(y)}

A1 ← ar
 model obtained by AG after having removed the ar
s of x, y, and their neighbors ex
ept

for ccwo(x) and cwo(y);

Ia ← interval model 
orresponding to the ar
s in A1 starting at the 
w endpoint of the ar
 A(x)

of x and moving 
lo
kwise;

Ib ← interval model obtained from Ia after having removed the interval 
orresponding to cwo(y);

Ic ← interval model obtained from Ia after having removed the interval 
orresponding to ccwo(x);

Id ← interval model obtained from Ia after having removed the intervals 
orresponding to ccwo(x)

and cwo(y);

D1 ← {x, y}∪ smallest among the minimum paired-dominating sets (whenever they exist) returned

by Algorithm Interval Paired Domination when applied on Ia, Ib, Ic, and Id;

2. {try the overlapping pair {ccwo(w), cwo(ccwo(w))}}

repeat Step 1 for x← ccwo(w) and y ← cwo(y) obtaining a paired-dominating set D2;

3. D ← minimum between the paired-dominating sets D1 and D2;

report the verti
es in D as a minimum paired-dominating set of the graph G that 
ontains x.

We note that the problems on some of the interval models produ
ed may not admit a solution as the

removal of the neighbors of x and y may leave isolated verti
es; in su
h a 
ase, another interval model

produ
es the �nal minimum paired-dominating set.

The 
orre
tness of Algorithm Cir
 Ar
 Paired Domination follows from Lemmas 4.1 and 4.2.

Time and Spa
e Complexity

Let n and m be the numbers of verti
es and edges, respe
tively, of the given graph G. First, we note

that ea
h 
all to Pro
edure Min P-D-Set 
ontaining Vertex takes O(n) time: Step 1 of the pro-


edure involves identifying y = cwo(w) and then x = ccwo(y) (by twi
e examining all the verti
es in

the graph in O(n) time), 
onstru
ting 4 interval models whi
h 
an be obtained in O(n) time, and ap-

plying Algorithm Interval Paired Domination on ea
h of them, whi
h also takes O(n) time (see

Theorem 3.1); similarly, Step 2 also takes O(n) time, as does Step 3. The time 
omplexity of Pro
edure
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ements

x

t1 t2

Figure 5: An ar
 model to illustrate the degree 
omputation.

Min P-D-Set 
ontaining Vertex implies that Step 2 of Algorithm Cir
 Ar
 Paired Domination

takes O(n + m) time: O(n) time is needed for identifying all neighbors of v and for 
omputing cwc(v)

(by 
omparing the ar
 of v to all other ar
s in the ar
 model AG) and O
(

n (1 + degree(v))
)

time for

all the 
alls to Pro
edure Min P-D-Set 
ontaining Vertex and for all the \minimum between D

and D′
" 
omputations; be
ause v is a vertex of minimum degree in G, its degree is at most 2m/n sin
e

2m =
∑

x∈V (G) degree(x) ≥ n degree(v).

Let us now show how to 
he
k whether the ar
 model AG has a gap and how to �nd a vertex of

minimum degree in G. The idea is to pro
ess all the ar
 endpoints and maintain the number of a
tive

ar
s, that is, the number of ar
s 
ontaining the 
urrent ar
 endpoint in their interior (hen
e we ex
lude

the ar
 ending at that endpoint). Then, if before pro
essing the 

w endpoint of an ar
, the number of

a
tive ar
s is 0, we 
on
lude that there exists a gap 
ounter
lo
kwise from that 

w endpoint. Moreover,

the degree of a vertex 
an be 
omputed by observing that the set of neighbors of a vertex x with ar
 A(x)

is pre
isely the disjoint union of the set of verti
es 
orresponding to the ar
s 
ontaining the 

w endpoint

of A(x) in their interior and the set of verti
es with ar
s whose 

w endpoint belongs to the interior of

A(x). The 
ardinality of the former set of verti
es (neighbors of x) is equal to the number of a
tive ar
s

while pro
essing the 

w endpoint of A(x); the 
ardinality of the latter set of verti
es 
an be 
omputed by

keeping 
ount of the 

w endpoints en
ountered. In parti
ular, if we �rst en
ounter the 

w endpoint t1
of the ar
 of x and then its 
w endpoint t2, then it is not diÆ
ult to see that the degree of x is

degree(x) = active num at t1 + ccw num at t2 − ccw num at t1

where ccw num is the number of ar
 

w endpoints en
ountered and ccw num at t1 is equal to the

number of 

w endpoints en
ountered in
luding t1 (sin
e t2 is a 
w endpoint the number of 

w endpoints

does not 
hange while pro
essing t2). (For example, in Figure 5, let k be the number of 

w endpoints

en
ountered when rea
hing (and in
luding) the 

w endpoint t1 of the ar
 of x (1 ≤ k ≤ 6); then, the

number of 

w endpoints at t2 is k + 3 and sin
e the number of ar
s 
ontaining t1 in their interior is 3,

the degree of x is 
orre
tly found equal to 3 + (k + 3)− k = 6.) On the other hand, if we �rst en
ounter

the 
w endpoint t2 of the ar
 A(x) of x and then its 

w endpoint t1, then the degree of x is

degree(x) = active num at t1 + n− (ccw num at t1 − ccw num at t2)

where ccw num at t1 is again equal to the number of 

w endpoints en
ountered in
luding t1; note that

ccw num at t1 − ccw num at t2 is equal to the number of ar
s whose 

w endpoints do not belong to

the interior of A(x) and thus by subtra
ting this number from n gives the number of ar
s with their



w endpoints in the interior of A(x). (For example, in Figure 5, let k be the number of 

w endpoints

en
ountered when rea
hing the 
w endpoint t2 of the ar
 of x (1 ≤ k ≤ 3); then, the number of 
-


w endpoints at (and in
luding) t1 is k+6 and sin
e the total number of ar
s is 9 and the number of ar
s


ontaining t1 in their interior is 3, the degree of x is 
orre
tly found equal to 3 + 9− ((k + 6)− k) = 6.)
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In order to be able to 
ompute the degrees of verti
es as presented above (from whi
h we will obtain

a vertex of minimum degree):

• we 
ount the number ccw num of 

w endpoints starting the 
ount at an arbitrary 

w endpoint;

• we maintain the number active num of a
tive ar
s (the value of active num at the �rst endpoint

pro
essed is 
omputed by examining all the ar
s of the ar
 model in order to �nd those 
ontaining

that endpoint);

• with ea
h vertex x, we maintain the number x.endpoints met of endpoints of the ar
 A(x) of x

en
ountered (initialized to 0), the value x.ccw num at ccw endp of ccw num at and in
luding the



w endpoint of A(x), and the value x.active num at prev endp of active num at the endpoint of

A(x) en
ountered �rst.

In detail, the algorithm to 
he
k for a gap in the ar
 model and to �nd a vertex of minimum degree is as

follows:

for ea
h vertex w of G do

w.endpoints met← 0;

v ← an arbitrary vertex of G;

active num← number of ar
s 
ontaining the 

w endpoint of the ar
 A(v) of v (ex
luding A(v));

min degree← n;

ccw num← 0;

for ea
h ar
 endpoint t starting at the 

w endpoint of A(v) and moving 
lo
kwise do

w ← vertex of G su
h that t is an endpoint of A(w) in AG ;

w.endpoints met← w.endpoints met + 1;

if t is the 

w endpoint of A(w)

then ccw num← ccw num + 1;

if active num = 0

then there exists a gap next to the 

w endpoint of ar
 A(w);

exit the for-loop;

if w.endpoints met = 2

then degree← active num + n− (ccw num− w.ccw num at prev endp);

else w.active num at ccw endp← active num; {�rst endpoint met}

active num← active num + 1; {a new ar
 has been en
ountered}

else {t is the 
w endpoint of ar
 A(w)}

if w.endpoints met = 2

then degree← w.active num at ccw endp + ccw num− w.ccw num at prev endp;

active num← active num− 1; {an ar
 has ended}

if w.endpoints met = 1 {�rst endpoint met}

then w.ccw num at prev endp← ccw num;

if degree < min degree {minimum degree 
al
ulation}

then min degree← degree;

min degree v ← w;

end-for

The 
orre
tness of the above pro
edure follows from the dis
ussion pre
eding the pseudo
ode and the

fa
t that both endpoints of ea
h ar
 will be pro
essed implying that the degrees of all the verti
es will

be 
omputed and will be taken into a

ount in the minimum degree 
omputation.

Initializing the values of the �elds endpoints met for ea
h vertex and 
omputing the initial value of

active num take O(n) total time. Assuming that ea
h ar
 endpoint is asso
iated with the vertex whose

ar
 ends at that endpoint, then ea
h iteration of the for-loop takes O(1) time. Therefore, the above


omputation takes a total of O(n) time and so does Step 1 of AlgorithmCir
 Ar
 Paired Domination.
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Finally, Step 3 takes O(n) time. The spa
e needed by the algorithm is O(n). In total, Algorithm

Cir
 Ar
 Paired Domination takes O(n + m) time using O(n) spa
e.

Summarizing, we have the following theorem:

Theorem 4.1 Let G be a 
ir
ular-ar
 graph with no isolated verti
es. Then, given an ar
 model of G with

the ar
 endpoints sorted, Algorithm Cir
 Ar
 Paired Domination 
omputes a minimum-
ardinality

paired-dominating set of G in O(n + m) time and O(n) spa
e.

Sin
e an ar
 model 
orresponding to a 
ir
ular-ar
 graph 
an be 
omputed from the graph in time

linear in its size [27, 22℄, we 
on
lude that, given a 
ir
ular-ar
 graph, we 
an 
ompute a minimum-


ardinality paired-dominating set of the graph in O(n + m) time, where n is the number of verti
es and

m is the number of edges of the graph.

5 Con
luding Remarks

In this paper we studied the paired domination problem on interval and 
ir
ular-ar
 graphs and presented

O(n) and O(n + m)-time algorithms, respe
tively, given an interval or an ar
 model representation with

endpoints sorted; our results improve on previous O(n + m) and O(m(n + m))-time algorithms [7℄.

An interesting open question is to investigate whether the paired domination problem on 
ir
ular-ar


graphs 
an be solved in O(n) time. The 
ase of Figure 3(b) seems to imply that a new di�erent approa
h

will be needed to obtain an O(n)-time algorithm.

Additionally, it would also be interesting to �nd optimal or at least better algorithms for the paired

domination problem on other 
lasses of graphs.
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