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Abstract

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent
to a vertex in D. The paired domination problem on G asks for a minimum-cardinality dominating
set S of G such that the subgraph induced by S contains a perfect matching; motivation for this
problem comes from the interest in finding a small number of locations to place pairs of mutually
visible guards so that the entire set of guards monitors a given area. The paired domination problem
on general graphs is known to be NP-complete.

In this paper, we consider the paired domination problem on interval and circular-arc graphs.
We use properties of the models of interval and circular-arc graphs in order to describe simple and
efficient algorithms for the problem: given an interval (arc, resp.) model of an interval (circular-arc,
resp.) graph on n vertices and m edges with endpoints sorted, our algorithms detect whether there
exist isolated vertices, returning one if one exists, otherwise returning a minimum paired-dominating
set of the input graph; our algorithm for interval graphs runs in O(n) time and space whereas the
one for circular arc graphs runs in O(n + m) time using O(n) space. Both algorithms achieve better
time complexities over the corresponding known algorithms.
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1 Introduction

A subset D of vertices of a graph G is a dominating set if every vertex of G either belongs to D or is
adjacent to a vertex in D; the minimum cardinality of a dominating set of G is called the domination
number of G and is denoted by 7(G). The problem of computing the domination number of a graph has
received and keeps receiving considerable attention by many researchers (see [15] for a long bibliography
on domination). The problem finds many applications, most notably in relation to area monitoring
problems by a minimum-cardinality set of guards.

The domination problem admits many variants: domination, edge domination, weighted domination,
independent domination, connected domination, total/open domination, locating domination, and paired
domination [15, 16, 17, 18, 26, 32]. Among these, we will focus on paired domination: a vertex subset S
of a graph G is a paired-dominating set if it is a dominating set and the subgraph induced by the set S
has a perfect matching; the minimum cardinality of a paired-dominating set in G is called the paired
domination number and is denoted by 7,(G). Paired domination was introduced by Haynes and Slater
[17]; their motivation came from the variant of the area monitoring problem in which each guard has
another guard as a backup (i.e., we have pairs of guards protecting each other). Haynes and Slater
noted that every graph with no isolated vertices has a paired-dominating set (on the other hand, it easily
follows from the definition that a graph with isolated vertices does not have a paired-dominating set).



Additionally, they showed that the paired domination problem is NP-complete on arbitrary graphs; thus,
it is of theoretical and practical importance to find classes of graphs for which this problem can be solved
in polynomial time and to describe efficient algorithms for its solution.

Trees have been one of the first targets of researchers working on paired domination: Qiao et al. [28]
presented a linear-time algorithm for computing the paired domination number of a tree and characterized
the trees with equal domination and paired domination number; Henning and Plummer [19] characterized
the set of vertices of a tree that are contained in all, or in no minimum paired-dominating sets of the
tree. Kang et al. [21] considered “inflated” graphs (for a graph G, its inflated version is obtained from
G by replacing each vertex of degree d in G by a clique on d vertices), gave an upper and lower bound
for the paired domination number of the inflated version of a graph, and described an algorithm for
computing a minimum paired-dominating set of the inflated version of a tree T, which runs in O(|V (T}.)|)
time. Bounds for the paired domination number have been established also for claw-free cubic graphs
[12], for Cartesian products of graphs [3], and for generalized claw-free graphs [9]; we call K 3 a claw
and K , a generalized claw, where a > 3, and thus a graph G is called claw-free (generalized claw-free,
resp.) graph if G does not contain K13 (K4, resp.) as an induced subgraph. Cheng et al. [8] gave an
O(nm)-time algorithm for the paired domination problem on permutation graphs, where n and m are
the numbers of vertices and edges of the graph, working on the permutation defining the input graph;
an optimal O(n)-time algorithm for this problem was recently described by Lappas et al. [25]. For the
paired domination problem on interval graphs, Cheng et al. [7] proposed an O(n + m)-time algorithm
assuming that an interval model for the graph with endpoints sorted is available; they also extended their
result to circular-arc graphs giving an algorithm running in O(m(m + n)) time in this case. Chen et al.
[6] pointed out that the interval graph algorithm in [7] is incorrect and gave O(n + m)-time algorithms
for the paired domination problem on block graphs provided that an appropriate vertex ordering is given
and on interval graphs provided that an interval model with endpoints sorted is given; they also showed
that the problem is NP-complete for bipartite, chordal, and split graphs. The same authors....

Chen et al. [5] described an O(n + m)-time algorithm for the paired domination problem on strongly
chordal graphs if the strong (elimination) vertex ordering is given; their algorithm implies an O(n + m)-
time algorithm for the paired-domination problem on interval graphs when

We too consider the paired domination problem on the classes of interval and circular-arc graphs.
An interval graph is the intersection graph of a family of intervals in the real line; the class of interval
graphs is a subclass of the very interesting class of perfect graphs [13]. Recognizing whether a graph on
n vertices and m edges is interval can be done in O(n +m) time [2, 24, 14]; in fact, the algorithms in [24]
and [14] produce an interval model whenever the input graph is found to be interval. The circular-arc
graphs generalize the interval graphs; a circular-arc graph is the intersection graph of a family of arcs
on a circle. McConnell [27] gave an O(n + m)-time algorithm to recognize whether a given graph is
circular-arc. In 2006, Kaplan and Nussbaum [22] described a simpler O(n + m)-time circular-arc graph
recognition algorithm based on an earlier O(n?)-time algorithm of Eschen and Spinrad [10]. Both the
algorithms of McConnell and of Kaplan and Nussbaum produce a corresponding arc model if the given
graph is circular-arc graph.

Both the interval and the circular-arc graphs have received considerable attention and many algorithms
have been developed for various problems on these graphs. In addition to the result of Cheng, Kang, and
Ng [7] on paired domination that we mentioned earlier, several variants of the domination problem have
been considered on interval and circular-arc graphs. Farber [11] presented a polynomial-time algorithm
for computing a minimum-weight dominating set and a minimum-weight independent dominating set
on strongly chordal graphs that require O(n + m) time on interval graphs. White et al. [31] gave an
O(n?)-time algorithm for a minimum-cardinality connected dominating set for strongly chordal graphs
and thus for interval graphs. Bertossi [1] described an O(n?)-time algorithm for computing a minimum-
cardinality total dominating set on an interval graph. The same year, Keil [23] proposed an improved
algorithm for the same problem that run in O(n+m) time; Ramalingam and Pandu Rangan [29] pointed



out an error in Keil’s algorithm and corrected it. The same authors in [30] described a unified approach
leading to O(n + m)-time algorithms for the minimum-weight versions of the domination, independent
domination, total domination, and connected domination on interval graphs. In 1998, Chang [4] gave
O(n)-time algorithms for minimum-weight {independent, connected} domination, and an O(nloglogn)-
time algorithm for minimum-weight total domination on interval graphs assuming that an interval model
with endpoints sorted is given; he also extended the results to circular-arc graphs obtaining O(n 4+ m)-
time algorithms for the same problems. We also note that Hsu and Tsai [20] presented an O(n)-time
algorithm for the minimum-cardinality dominating set (as well as the minimum independent set and the
minimum clique cover) on circular-arc graphs assuming that an arc model is given.

In this paper, we study the paired domination problem on interval and circular-arc graphs, assuming
that an interval and arc representation of the graph with endpoints sorted is given. We prove properties
of the intervals and the arcs in the representation which help us describe an optimal O(n)-time algorithm
for the paired-dominating problem on interval graphs and an O(n-+m)-time algorithm for the circular-arc
graphs. Since an interval model of an interval graph and an arc model of a circular-arc graph can be
computed in time linear in the total number of vertices and edges of the graph, our algorithms imply
O(n + m)-time algorithms for interval and circular-arc graphs when the graph is given.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph GG, we denote its vertex
and edge set by V(G) and E(G), respectively. The subgraph of G induced by a subset S of the vertex
set V(G) is denoted by G[S]. The neighborhood N(x) of a vertex = of G is the set of all the vertices of
G which are adjacent to x; the closed neighborhood of x is defined as N[z| := N(z) U {z}. The degree of
a vertex z in G is the number of vertices adjacent to x in Gj; thus, degree(x) = |N(z)]|.

Our algorithms assume that an interval model of an interval graph and an arc model for a circular-
arc graph is given with endpoints sorted. Furthermore, for convenience, we assume that the intervals
and the arcs have distinct endpoints. Yet, even if we had a model in which intervals or arcs may have
the same endpoint, then we can easily get a model with distinct endpoints as follows: first, to each
vertex v of the graph, we arbitrarily assign a distinct integer from 1 to n, denoted id(v), where n is the
number of vertices of the graph; then, an endpoint of the interval or the arc of a vertex w at z = x; is
represented by the ordered pair (z;,id(w)) and the comparison of the endpoints is done lexicographically
on the corresponding ordered pairs. This corresponds to moving the endpoint of the interval (arc, resp.)
corresponding to the larger id a bit to the right (clockwise, resp.).

3 Paired Domination of Interval Graphs

In this section, we present and analyze the algorithm for the paired domination problem on interval
graphs; we assume that an interval model with endpoints sorted is given.

The general idea of our algorithm is to traverse the intervals in the interval model of the input graph
from left to right

e collecting pairs of adjacent vertices whose intervals extend as far to the right as possible
e without however leaving behind intervals corresponding to non-dominated vertices.

This can be done in a systematic way by taking advantage of the result described in the following lemma:

Lemma 3.1 Let Zg be an interval model of an interval graph G without isolated vertices and let
v; be the non-dominated vertex of G whose interval in Zg has the leftmost right endpoint,
v; be the meighbor of v; whose interval in g has the rightmost right endpoint, and



v, be the neighbor of v; whose interval in Zg has the rightmost right endpoint.
Then there exists a minimum paired-dominating set of G which contains the pair {vj, vy }.

Proof: Since the graph G has no isolated vertices, the vertices v; and vy exist (note that it may hold
that vy, = v;). Consider a minimum paired-dominating set S of G. First, we show that S contains a
neighbor of v;. If not, then v; € S; since the induced subgraph G[S] has a perfect matching, v; is matched
to one of its neighbors belonging to S, a contradiction. Thus, S contains a neighbor of v;. If S does not
contain v;, then we can obtain a minimum paired-dominating set S’ of the paired domination problem
on G containing v; by simply replacing a neighbor of v; in S by v;; note that the definitions of v; and v;
imply that v; is adjacent to all the neighbors of v; and of v;’s neighbors.

Next, since S’ is a minimum paired-dominating set of G, the subgraph G[S’] of G induced by S’ has
a perfect matching; thus v; is matched to another vertex in S’, say, w. If w = v;, then S’ contains both
v; and vg. If w # vy, then we can obtain a minimum paired-dominating set containing both v; and
v, by replacing w by vy; v; dominates all the vertices whose intervals in Zg start to the left of the left
endpoint of the interval of v; while the definition of v, implies that for any neighbor w of v; it holds that
N(w) — N(v;) € N(vg) — N(vj). 1

Let us denote by I(v) the interval corresponding to vertex v in an interval model. In order to simplify
our presentation, let us denote by r_neighbor(v) the neighbor of vertex v whose interval in the interval
model has the rightmost right endpoint; thus, for a vertex v, r_neighbor(v) is well defined as long as v is
not an isolated vertex. We note that if the intervals of the neighbors of v do not extend past the right
endpoint of the interval I(v) of v, the right endpoint of the interval of r_neighbor(v) will be to the left of
the right endpoint of I(v).

Then, our method to compute a paired-dominating set of an interval graph G with interval model Z,
as suggested by Lemma, 3.1, is as follows: we initialize the dominating set of G to the empty set; next, we
find the vertex, say, v, whose interval in Zg has the leftmost right endpoint and we add the doubleton set
{r_neighbor(v), r_neighbor(r_neighbor(v))} in the dominating set of G; following that, we ignore all the
vertices dominated by the current dominating set and find the vertex, say, v/, (among the vertices that
are not yet dominated) whose interval in Zg has the leftmost right endpoint and we add the doubleton
set {r_neighbor(v’), r_neighbor(r_neighbor(v'))} in the dominating set of G; we keep repeating the last
step for as long as there are non-dominated vertices.

It is interesting to note that the choice of pairs of adjacent vertices guarantees that at any time, the
interval of any non-dominated vertex v starts to the right of the intervals of all the vertices in the current
dominating set. This implies that r_neighbor(v) does not belong to the current dominating set, nor does
r_neighbor(r_neighbor(v)).

Of course, if there exist isolated vertices in the graph G, the paired domination problem on G has
no solution [17]. So, in its Step 1, our algorithm checks for isolated vertices and computes the values
of r_neighbor(z) for all vertices x € V(G). If isolated vertices are found, an appropriate message is
printed and the algorithm stops, whereas if no such vertices exist our algorithm applies the method
described in the previous paragraph. A description of our algorithm in pseudocode is given in Algorithm
INTERVAL_PAIRED_DOMINATION.

Algorithm INTERVAL_PAIRED_DOMINATION(Z)
Input : an interval model Z¢ of an interval graph G with interval endpoints sorted
Output : a minimum paired-dominating set of G, if it exists, or

a message that there is no solution and an isolated vertex of G

1. traverse the interval endpoints in Zg (from left to right) in order to check for isolated vertices and
to compute the value of r_neighbor(v) Vv € V(G);
if there exists a vertex w that is isolated in G
then print(“No solution...”);
print that w is an isolated vertex and exit;



2. {traverse interval endpoints again (from left to right) to get a minimum paired-dominating set}

mark all vertices in G with —1; {-1 denotes not yet encountered vertex}
S — 0; {S will store a dominating set; initially empty}
1+ 0; {counter for pairs in S; initially 0 pairs}

while there exist interval endpoints to be processed do
p < next interval endpoint in Zg;
v «— vertex corresponding to the interval with p as an endpoint;
if p is the left endpoint of I(v)
then mark v with i; {I(v) encountered (v non-dominated) after the i-th pair in S}
else {p is the right endpoint of I(v)}
if v is marked with ¢
then {v: non-dominated vertex whose right endpoint is leftmost}
S «— S U {r.neighbor(v), r_neighbor(r_neighbor(v))};
skip endpoints in Z¢g up to the rightmost between the right endpoints of
I(r_neighbor(v)) and I(r_neighbor(r_neighbor(v)));
i— i+ 1; {increment counter for next pair in S}
end-while

3. print(“A minimum paired-dominating set of the input graph is:”);
print the elements of the set S.

The correctness of Algorithm INTERVAL_PAIRED_DOMINATION follows from Lemma 3.1 and the dis-
cussion preceding the pseudocode. Additionally, as the set S is constructed by collecting disjoint pairs of
adjacent vertices, this guarantees that the subgraph of the input graph G induced by the resulting set S
will have a perfect matching.

Time and Space Complexity

Let n be the numbers of vertices of the given graph G. In order to achieve a good time complexity, we
establish pointers from each endpoint of each interval I(v) to the corresponding vertex v and with each
vertex we store the values of the endpoints of its corresponding interval; these can be set in O(n) time
by means of an initial traversal of the intervals in the interval model Zg. Then, Step 2 runs in in time
linear in the number of interval endpoints, that is, in O(n) time and uses O(n) space. Step 3 also takes
O(n) time.

Let us now see how we can implement Step 1 in O(n) time and space as well. The computation
of r_neighbors relies in maintaining the value of rightmost_v, i.e., the vertex whose interval has the
rightmost right endpoint so far. Then, r_neighbor(x) is equal to the value of rightmost_v when the right
endpoint of the interval I(z) of x is reached unless it happens that the value of rightmost_v is equal to .
The latter holds if and only if none of the intervals of the neighbors of x extends past the right endpoint
of I(x); in such a case, the r_neighbor(v) is the vertex whose interval ended last before the right endpoint
of I(z) was reached (maintained in previous_v in our algorithm) provided that x has neighbors. If  has
neighbors then previous_v differs from x and is indeed r_neighbor(x). If x has no neighbors (i.e., it is an
isolated vertex) then no interval endpoint appears between the endpoints of I(x) in the interval model,
i.e., previous_v is equal to x; we take advantage of precisely this observation in order to detect isolated
vertices. Below, we present the implementation of Step 1 in pseudocode:

while there exist interval endpoints to be processed do
p < next interval endpoint in Z¢g;
v «— vertex corresponding to the interval with p as an endpoint;
if p is the left endpoint of I(v)
then if p is the leftmost interval endpoint in Zg or



the right endpoint of I(v) is to the right of the right endpoint of I(rightmost_v)
then rightmost_v « v; {the right endpoint of I(v) is currently rightmost}
else {p is the right endpoint of I(v)}
if rightmost_v = v
then  {the intervals of v’s neighbors do not extend past the right endpoint of I(v)}
if previous.v = v
then vertex v is an isolated vertex of the input graph;
exit from the while-loop;
else r_neighbor(v) « previous_v; {previous_v is v’s r_neighbor}
else r_neighbor(v) < rightmost_v; {set r_neighbor(v)}
Previous_v «— v;

end-while
In summary, we have the following theorem.

Theorem 3.1 Let G be an interval graph on n vertices. Then, given an interval model of G with end-
points sorted from left to right, Algorithm INTERVAL_PAIRED_DOMINATION compules a paired-dominating
set of G in O(n) time and space.

Since an interval model corresponding to an interval graph can be computed from the graph in time
linear in the total number of its vertices and edges (e.g., [24, 14]), we conclude that, given an interval
graph, we can compute a minimum-cardinality paired-dominating set of the graph in O(n + m) time,
where n is the number of vertices and m is the number of edges of the graph.

4 Paired Domination of Circular-Arc Graphs

In this section, we present and analyze the algorithm for the paired domination problem on circular-arc
graphs; we assume that we are given an arc model of the input circular-arc graph with endpoints sorted
(recall that we assume that the arcs have distinct endpoints).

Since we have an optimal algorithm for the paired domination problem on interval graphs when given
an interval model, it is worth trying to reduce the problem on circular-arc graphs into that on interval
graphs. This can be easily done whenever the arc model of the input circular-arc graph G has a gap, that
is, the union of angle ranges of the arcs in the model do not span the full range of 360 degrees; in such
a case, we can obtain an interval model of G by “unrolling” the arcs of the arc model of the circular-arc
graph onto a line and then use Algorithm INTERVAL_PAIRED_DOMINATION on it. If the arc model has no
gap, then we are able to consider subgraphs of the given graph whose arc models have gaps and reduce
again the problem to that on interval graphs.

In order to make our description more precise, we need some additional terminology and notation,
which are introduced in Section 4.1; the theoretical background of our algorithm is given in Section 4.2,
and the algorithm in Section 4.3.

4.1 Circular-arc Model Terminology and Notation

In an arc model, the arc corresponding to vertex z is denoted by A(z). Each such arc has a ccw_endpoint
and a cw_endpoint and the arc extends in a clockwise direction from the former to the latter and in a
counterclockwise direction from the latter to the former (in Figure 1(a), a and b are the ccw_endpoint and
cw_endpoint, respectively, of the arc A(x)). With respect to the arc of a vertex x, the arc of a neighbor y
of x may be such that:

(i) the arc of x covers the arc of y (see Figure 1(a));



Figure 1: The cases of the arcs of two neighbors x and y.

(ii) the arc of y covers the arc of = (see Figure 1(b)) or equivalently the arc of = is covered by the arc
of y;

(iii) the arcs of z and y overlap and the arc of y extends past the cw_endpoint of the arc of x (see
Figure 1(c));

(iv) the arcs of x and y overlap and the arc of y extends past the ccw_endpoint of the arc of x (see
Figure 1(d)).

In cases (i) and (ii) above, we say that x and y form a nested pair; in cases (iii) and (iv), they form
an overlapping pair. In particular, in case (iii) we say that x forms a clockwise overlapping pair with
y, whereas in case (iv) it forms a counterclockwise overlapping pair with y; clearly, if vertex x forms
a clockwise overlapping pair with y then y forms a counterclockwise overlapping pair with z, and vice
versa.

For a vertex x, the set of neighbors of = can be partitioned into the following 4 sets:

e N.,(z): set of neighbors y of x such that x forms a clockwise overlapping pair with y;

e Neew(x): set of neighbors y of x such that x forms a counterclockwise overlapping pair with y;
® Neovering(2): set of neighbors of « whose arcs cover the arc of x;

e Neovered(): set of neighbors of @ whose arcs are covered by the arc of z.

(Note that this partition of the neighbors of = depends on the arc model considered; a different arc
model for the same input graph may yield different neighborhood partitions.) Among the elements of
New(), Neew(), and Neopering(z), whenever these sets are non-empty, we distinguish the following
special neighbors of z:

o cw,(x): among the elements of N, (z) (if any), cw,(x) is the vertex whose arc extends farthest
clockwise;

e ccw,(x): among the elements of N, (z) (if any), ccw,(x) is the vertex whose arc extends farthest
counterclockwise;

o cw.(x): among the elements of Neoyering(x) (if any), cw.(z) is the vertex whose arc extends farthest
clockwise;

o ccw.(z): among the elements of Neopering(z) (if any), ccw.(x) is the vertex whose arc extends
farthest counterclockwise.



Figure 2: Examples of arcs.

The above vertices are well defined provided that the corresponding set of neighbors of x is non-empty
(recall that we assume that the endpoints are all distinct). Moreover, we note that it may hold that
cwo () = ccw,(x) (see Figure 2(a)), as well as cwq(x) = ccw.(z) (see Figure 2(b)). It is clear that for
a vertex, some or all of the above neighbors need not exist. However, under certain conditions some of
these neighbors exist as we show in the following observation.

Observation 4.1 Let G be a circular-arc graph with arc model Ag. Then:

(i) For each vertex x whose arc A(x) is covered by another arc in Ag, both neighbors cw.(x) and
ccw.(x) exist and their arcs are not covered by any arc in Ag.

(ii) If the arc model Ac does not have a gap, then for each vertex x whose arc A(z) is not covered by any
arc in Ag, both neighbors cw,(x) and ccw,(x) exist. Moreover, if for a vertex x the neighbor cw,(x)
(ccw, (), resp.) ewists, then the arc of cw,(x) (ccw,(x), resp.) is not covered by any arc in Ag.

(iii) Consider any vertex x whose arc A(x) is not covered by any arc in Ag. If neighbor y = cw,(x) ewists,
then cw,(ccw,(y)) = y. Symmetrically, if neighbor z = ccw,(x) exists, then ccw,(cw,(z)) = z.

Proof: (i) Any arc covering the arc A(z) of = extends both clockwise and counterclockwise farther than
the endpoints of A(x). Hence both cw.(z) and ccw.(x) exist. Moreover, the arc of cw.(x) is not covered
by any arc in Ag; if not, any such arc would cover the arc of  and would extend farther clockwise than
the arc of cw.(z) contradicting the definition of cw.(z). A similar argument establishes that the arc of
ccw.(z) is not covered by any arc either.

(ii) Since A¢ does not have a gap, there must be an arc extending farther clockwise than the cw_endpoint
of the arc of z. The vertex corresponding to this arc is a neighbor of  and belongs to N, (z) since
Neovering(z) = 0; thus, cw,(x) exists. Additionally, the arc of cw,(z) is not covered by any other arc; if
there were such an arc A(w) of a vertex w, then w € Neovering (%) U New () = New(x), in contradiction
to the definition of cw,(x).

A similar argument holds for ccw,(z) as well.

(iii) Suppose that y = cw,(z) exists. Since z forms a clockwise overlapping pair with y, y forms a
counterclockwise overlapping pair with z. Thus, © € N¢cw(y) and the vertex ccw,(y) exists. In turn,
Yy € Newl(ccwo(y)) and thus cw,(ccw,(y)) exists. Since the arc of x is not covered by any arc, it is
important to note that N..,(y) contains

e vertices Vi (y) (if any) whose arcs have their cw_endpoints in A(y) — A(z) and their ccw_endpoints
in A(z) — A(y),

e vertices V2 (y) whose arcs have their cw_endpoints in A(z) N A(y) and their ccw_endpoints in A(z) —
A(y), and



e vertices V3(y) (if any) that belong to Nee,, (z) and whose arcs have their cw_endpoints in A(x)NA(y).

Then, ccw,(y) € {x} U Vs(y) which implies that y € Ney(ccw,(y)). If Va(y) = 0, then ccw,(y) = = and
thus cw,(ccw,(y)) = y. If V3(y) # 0, then if cw,(ccw,(y)) = y' # y (i.e., the arc of y’ extends farther
clockwise than the cw_endpoint of the arc of y), we have that the ccw_endpoint of ¢’ (i) either belongs to
A(x)NA(y) which implies that ¢’ € Ny, () in contradiction to the definition of y = cw,(x) (ii) or belongs
to A(x) — A(y) which contradicts the fact that the arc of y is not covered by any arc (see statement (ii)
for y = cwo(z)). 1

4.2 Useful Lemmas

Now we are ready to prove the two main lemmas which are the basis of our algorithm. Before that, we
show the following fact. We consider a circular-arc graph G whose arc model does not have a gap; thus
G has no isolated vertices and there exists a paired-dominating set of G.

Fact 4.1 Let S be a minimum paired-dominating set of a circular-arc graph G with arc model Ag that
does not have a gap, and let vertices x,y € S such that x is matched to y in a perfect matching M of the
induced subgraph G[S].

(i) If vertex x forms a clockwise overlapping pair with vertex y in Aq, then there exists a minimum
paired-dominating set T of G and perfect matching My of the induced subgraph G[T| such that
x,cwo(x) € T and x is matched to cw, () in Mr.

(ii) If vertex x forms a counterclockwise overlapping pair with vertex y in the arc model A, then
there exists a minimum paired-dominating set T of G and perfect matching My of the induced
subgraph G[T] such that x, ccw,(x) € T and x is matched to ccw,(x) in Mrp.

(iii) If the arc of vertex x covers the arc of vertex y in the arc model Ag that does not have a gap,
then there exists a minimum paired-dominating set T of G and perfect matching My of the induced
subgraph G[T| such that z,cw,(z) € T and x is matched to cw,(x) in Mr.

Proof: (i) We first observe that since vertex z forms a clockwise overlapping pair with y, then cw,(z)
exists and

P1: N[y] — N(z) C Nlcw,(z)] — N(z).

If cw,(x) & S then in light of Property P1, we can obtain a minimum paired-dominating set T as suggested
in the statement of the fact by simply replacing y by cw,(x). So, next suppose that cw,(z) € S. If
y = cwo(x) then T = 5. If y # cwo(x) and cw,(z) € S then let u be the vertex matched to cw,(x)
in the matching M. Vertex u dominates a vertex w not dominated by any other vertex in S, otherwise
the set S — {y,w} would also be a paired-dominating set of G due to Property P1, in contradiction
to the minimality of S. Then we can obtain a minimum paired-dominating set T as suggested in the
statement of the fact by replacing the vertex y by the vertex w in S; note that a perfect matching of the
subgraph G[T] is obtained from M by replacing the pairs {x,y} and {cw,(x), u} by the pairs {x, cw,(x)}
and {u,w}.

(ii), (iii) Statements (ii) and (iii) are established in a similar fashion. The existence of vertex cw,(z) in
statement (iii) follows from statement (ii) of Observation 4.1 since the arc model Ag does not have a gap
and the arc of x in Ag is not covered by any arc. 1

Lemma 4.1 Let S be a minimum paired-dominating set of a circular-arc graph G with arc model A
that does not have a gap, and let © € S. Then:

(i) If the arc of x is covered by another arc in Ag, then there exists a minimum paired-dominating set
of G containing cw.(x);



(ii) If the arc of x is not covered by another arc in Ag, then there exists a minimum paired-dominating
set D of G and perfect matching Mp of the induced subgraph G[D] such that

> ccwo(cwy (), cwo(x) € D and ccw,(cwy(x)) and cwy(x) are matched in Mp or

> ccwo (), cwo(ccwy(x)) € D and ccwo () and cw,(ccw,(x)) are matched in Mp

where none of the arcs of cw,(x), ccw,(x), ccw,(cwy(x)), and cw,(ccw,(x)) is covered by any arc
in Ag.

Proof: (i) Since the arc of x is covered, then the vertex cw.(x) exists (as does ccw.(x)). If cw.(z) € S
then S is a paired-dominating set as described in statement (i); if not, then we can replace x by cw.(x)
in S and obtain such a paired-dominating set since N[z] C N[cw.(z)].

(ii) Since the arc of z is not, covered by any arc, the vertices cw,(x) and ccw,(z) exist and since the arcs of
these vertices are not covered either (see statement (ii) of Observation 4.1), then the vertices ccw, (cw,(x))
and cw,(ccw,(z)) exist as well. Let y € S be the vertex matched to z in a perfect matching M of the
subgraph G[S]. Then, exactly one of the following 3 cases holds:

e 1 forms a clockwise overlapping pair with y in the arc model Ag;
e 1 forms a counterclockwise overlapping pair with y in Ag;
e the arc of = covers the arc of y in Ag.

These 3 cases correspond to statements (i), (ii), and (iii), respectively, of Fact 4.1, which implies that in
all cases there exists a minimum paired-dominating set 7" of G’ and perfect matching M of the induced
subgraph G[T] such that

x,cwo(x) € T and =z is matched to cw,(z) in My or

x,ccwo(x) € T and x is matched to ccwy(x) in Mp.
Then, statement (ii) of the lemma follows from once again applying statement (i) of Fact 4.1 in the
former case (with respect to cw,(z)) and statement (ii) of Fact 4.1 in the latter case (with respect to
ccw,(z)). Note that since the arc of x is not covered by any arc in the arc model Ag, statement (ii) of
Observation 4.1 implies that the arcs of cw,(x) and ccw,(z) are not covered, which in turn implies that
the arcs of ccw,(cw,(x)) and cw,(ccw,(x)) are not covered either. 1

For a circular-arc graph with arc model without a gap, Lemma 4.1 implies that there always exists a
minimum paired-dominating set containing a pair of matched vertices x,y forming an overlapping pair
such that x = ccw,(y) and y = cw,(x); Lemma 4.2 considers such a case. We note that this does not
imply that all pairs of matched vertices in a minimum paired-dominating set form overlapping pairs.
Indeed, there are cases such that no such a minimum paired-dominating set exists; for example, any
minimum paired-dominating set for the arc model shown in Figure 3(a) contains vertices u, v, and w,
and a neighbor of exactly one among u, v, and w, which forms a nested pair with (its matched neighbor)
u, v, and w, respectively. Additionally, Lemma 4.1 in conjunction with the neighborhood partition given
in Section 4.1 may also give the impression that one need consider only minimum paired-dominating sets
containing an appropriate vertex v, or ccw,(v), or cw,(v), or perhaps ccw.(v) and cw.(v). However, this
is not true as indicated by the example shown in Figure 3(b): as shown, the minimum paired-dominating
set is equal to {va, ua}; yet, the arcs of z, 2z’ can be appropriately rotated so that the minimum paired-
dominating set becomes any of the sets {v;, u;}, ¢ = 1,2,..., k. Therefore, without knowing the position
of z,2’, we need consider all neighbors of vertex w in order to find a minimum paired-dominating set.

Lemma 4.2 Let G be a circular-arc graph, whose arc model Ag does not have a gap, and suppose that
the adjacent vertices x,y are matched to each other in a perfect matching M of the subgraph of G induced
by a minimum paired-dominating set S of G. Further suppose that x = ccw,(y) and y = cw,(x) (that
is, x forms a clockwise overlapping pair with y) and neither the arc A(x) of x nor the arc A(y) of y are
covered by any arc in Ag.
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Figure 3: Examples of arc models.

(i) There exists a minimum paired-dominating set D = D" U{x,y} of G such that

e D’ does not contain any vertices whose arcs in Ag are covered by the union of the arcs of x
and of y;

e D' contains at most 1 neighbor of y whose arc extends farther clockwise than the cw_endpoint
of the arc of y; symmetrically, D contains at most 1 neighbor of x whose arc extends farther
counterclockwise than the ccw_endpoint of the arc of x.

(ii) Consider the following 4 arc models resulting from Ag:

o Ai: from Ag remove the arcs of x, y, and all their neighbors;
o Ay: from Ag remove the arcs of x, y, and all their neighbors except for ccw,(z);
o As: from Ag remove the arcs of x, y, and all their neighbors except for cw,(y);

o Ay: from Ag remove the arcs of x, y, and all their neighbors except for cw,(y) and ccw,(x).
Then

(a) each of A1, As, As, and Ay has a gap;

(b) there exists a minimum paired-dominating set of G containing the pair {x,y} and the smallest
among the minimum paired-dominating sets on the graphs corresponding to Ay, Az, As, and
Ay (whenever a paired-dominating set exists).

Proof:  Since the arcs of  and y are not covered by any arc in the arc model Ag, statement (ii) of
Observation 4.1 implies that the vertices ccw,(x) and cw,(y) exist.

(i) Consider the minimum paired-dominating set S and let M be a perfect matching of the induced
subgraph G[S]. Suppose that S contains a vertex z whose arc is covered by the union of the arcs of z and
yin Ag, and let 2/ € S be the vertex in S matched to z in M. Clearly, z/ must dominate some vertex w
not dominated by any other vertex in S, otherwise the set S — {z, 2’} would also be a paired-dominating
set, in contradiction to the minimality of S. The fact that 2z’ dominates w implies that the arc of 2’ is
not covered by the union of the arcs of x and y; additionally, w is not adjacent to either x or y. Then,
we can replace z by w in S obtaining a minimum paired-dominating set not containing z (the matched
pair {z, 2’} is replaced by the matched pair {z’,w}). Because we can replace any such vertex z, we can
obtain a minimum paired-dominating set S’ that does not contain vertices (other than = and y) whose
arcs are covered by the union of the arcs of x and y.

Finally, we show the restriction on the number of neighbors of y whose arcs extend farther clockwise
than the cw_endpoint of the arc of y; for simplicity, let us call such a neighbor a cw-neighbor of y (we note

11
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Figure 4: For the proof of Lemma 4.2 (the dashed part of an arc may or may not exist).

that the definition of y = cw,(z) implies that a cw-neighbor of y is not a neighbor of ). We will show
that there exists a minimum paired-dominating set of the graph G which, in addition to not containing
vertices whose arcs are covered by the union of the arcs of z and y, contains at most one cw-neighbor
of y. Consider the minimum paired-dominating set S’ as described in the previous paragraph and let
M’ be a perfect matching of the induced subgraph G[S’]. Suppose, for contradiction, that S’ contains
two cw-neighbors p; and ps of y. First, suppose that p1, p2 are not matched to each other in M’ and let
q1, g2 € S’ be the vertices matched to p; and ps, respectively, in M’ (see Figure 4 for the four general cases
for the position of each pair p;,¢; (i = 1,2) in the arc model Ag taking into account that y = cw,(x) and
that no vertex in S’ — {x, y} has its arc covered by the union of the arcs of x and y). The vertices ¢1, g2
are not neighbors of y, and thus the ccw_endpoints of their arcs lie farther clockwise than the cw_endpoint
of the arc of y (see Figure 4(c) and (d)). Assume without loss of generality that the cw_endpoint of the
union of the arcs of po and ¢s is farther clockwise than the cw_endpoint of the union of the arcs of po
and go; then, (N[p1] U N[a1]) — (N(z) UN(y)) € (N[p2] U N[g2]) — (N(2) U N(y)) which implies that
the set S" — {p1,q1} is a paired-dominating set of GG, in contradiction to the minimality of S’. Suppose
now that pi, pa are matched to each other in M’, and assume without loss of generality that the arc of ps
extends farther clockwise than the arc of p; (see Figure 4(b) for p = p; and ¢ = p2), which implies that
N[p1] — N(y) € N[p2] — N(y). The vertex ps dominates a vertex, say, w, not dominated by the elements
of 8" — {p1, p2}; otherwise, the set S — {p1,p2} is a paired-dominating set of G, in contradiction to the
minimality of S’. Then, if we replace p; by w in S/, we obtain a minimum paired-dominating set of G
containing only one cw-neighbor of y; note that w is not a neighbor of y since it is not dominated by any
element of S" — {p1,p=2}.

Therefore, S’ contains at most one cw-neighbor of y. A symmetric argument works for the case of
neighbors of x whose arcs extend farther counterclockwise than the ccw_endpoint of the arc of z.

(ii) (a) Since y = cw,(x), the arc of cw,(y) cannot extend farther counterclockwise than the cw_endpoint
of the arc of x; additionally, since z = ccw,(y), the arc of ccw,(x) cannot extend farther clockwise than
the ccw_endpoint of the arc of y. Then, since the cw_endpoint of the arc of z lies in the arc of y, each of
the arc models A; (i = 1,2,3,4) has a gap in a clockwise direction from the ccw_endpoint of the arc of y
to the cw_endpoint of the arc of x.

(b) Let D be a minimum paired-dominating set of the graph G as described in statement (i) of the lemma.
We have the following cases for D.

1. If D contains no neighbor of x other than y and no neighbor of y other than z, then the set D—{z, y}
is a paired-dominating set of the graph G; with arc model A;j; in fact, D — {z,y} is a minimum
paired-dominating set of Gy since if there were a smaller paired-dominating set X of Gi, then
X U{z,y} would be a paired-dominating set of G in contradiction to the minimality of D.

12



2. If D contains one neighbor of y (other than z) whose arc extends farther clockwise than the
cw-endpoint of the arc A(y) of y and no neighbor of x other than y, then the set D — {z,y}
is a minimum paired-dominating set of the graph with arc model A,.

3. Similarly to the previous case, if D contains one neighbor of x (other than y) whose arc extends
farther counterclockwise than the ccw_endpoint of the arc A(z) of 2 and no neighbor of y other than
x, then the set D — {x,y} is a minimum paired-dominating set of the graph with arc model Asj.

4. Finally, if D contains one neighbor of x (other than y) whose arc extends farther counterclockwise
than the ccw_endpoint of the arc A(z) of z, and one neighbor of y (other than ) whose arc extends
farther clockwise than the cw_endpoint of the arc A(y) of y, then the set D — {x,y} is a minimum
paired-dominating set of the graph with arc model Ay. 1

4.3 The Algorithm

As mentioned above, the idea behind our algorithm is to reduce the problem to a paired-domination on an
interval graph by appropriately creating a gap in the arc model of the input circular-arc graph G. In order
to create a gap, we take advantage of the fact that for any vertex v € V(G), at least one among v and
its neighbors belongs to each paired-dominating set. Thus we pick an appropriate! vertex v and for each
vertex x € N[v], we apply Lemma 4.1 so that if the arc of = is not covered we consider minimum paired-
dominating sets containing either {ccw,(cw,(x)), cw,(x)} or {ccw,(x), cw,(ccw,(x))}, whereas if the arc
of x is covered we consider minimum paired-dominating sets containing either {ccw,(cw,(z)), cw,(z)} or
{ccwo(z), cwo(ccwy(2))} where z = cw,(z). Then, for each such pair, we apply Lemma 4.2 obtaining four
arc models with a gap, which can be turned into interval models and the paired domination problem can
be solved on each of them in O(n) time using the algorithm of the previous section. A description of the
overall algorithm in pseudocode is given below where we also detect the existence of isolated vertices;
Procedure SOLUTION_CONTAINING_VERTEX applies Lemmas 4.1 and 4.2.

Algorithm CIRC_ARC_PAIRED DOMINATION(Ag)
Input : an arc model Ag of a circular-arc graph G with arc endpoints sorted
Qutput : a minimum paired-dominating set of G, if one exists, or

a message that there is no solution and an isolated vertex of G

1. {compute useful information and check for a gap and isolated vertices}

check for a gap in the arc model Ag and find a vertex v of minimum degree in G;

if the degree of v is 0

then print(“No solution...”);
print that v is an isolated vertex and exit;

if 3 a gap in Ag (say, next to the ccw_endpoint of the arc A(w))

then D < INTERVAL_PAIRED_DOMINATION(Z) where Z¢ is an interval model corresponding to
the arcs in Aq starting at the ccw_endpoint of A(w) and moving clockwise;
go to Step 3;

2. {v: a vertex of minimum degree in G}
find cw,(v) (if it exists);
if cw.(v) does not exist {arc A(v) not covered in Ag}
then D < paired-domin. set returned by Procedure MIN_P-D-SET_CONTAINING_VERTEX(Aq,v);
else {Procedure MIN_P-D-SET_CONTAINING_VERTEX on cw.(v) will be called...}
{...in the for-loop below when w = cw.(v)}

L In order to get a good time complexity, in our algorithm we choose as v the vertex of minimum degree in G.
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D —V(G);
for each neighbor w of v do
find cw.(w) (if it exists);
if cw.(w) does not exist {arc A(w) not covered in Ag}
then D’ «— paired-domin. set returned by MIN_P-D-SET_CONTAINING_VERTEX(Aq, w);
else D’ — paired-domin. set returned by MIN_P-D-SET_CONTAINING_VERTEX(Aq, cw.(w));
D «— minimum between D and D’;
end-for

3. print(“A minimum paired-dominating set of the input graph is:”);
print the elements of the set D.

Procedure MIN_P-D-SET_CONTAINING_VERTEX(Ag,w)

Input : an arc model Ag of a circular-arc graph G without isolated vertices and
a vertex w of G whose arc is not covered by any arc in Ag

Output : a minimum paired-dominating set of G among those containing w

1. {try the overlapping pair {ccw,(cw,(w)), cwo(w)}}
find cw,(w) and ccw,(cw,(w)) and assign y «— cw,(w) and = — ccw,(y);
{z forms a clockwise overlapping pair with y, and y = cw,(x) and x = ccw,(y)}
A; « arc model obtained by Ag after having removed the arcs of x, y, and their neighbors except
for ccw,(x) and cw,(y);
7, < interval model corresponding to the arcs in A; starting at the cw_endpoint of the arc A(x)
of z and moving clockwise;
7y « interval model obtained from Z, after having removed the interval corresponding to cw,(y);
7. « interval model obtained from Z, after having removed the interval corresponding to ccw,(z);
Z, < interval model obtained from Z, after having removed the intervals corresponding to ccw,(x)
and cw, (y);
Dy — {x,y}U smallest among the minimum paired-dominating sets (whenever they exist) returned
by Algorithm INTERVAL_PAIRED_DOMINATION when applied on Z,, 7y, Z., and Zg;

2. {try the overlapping pair {ccw,(w), cw,(ccw,(w))}}
repeat Step 1 for x « ccw,(w) and y < cw,(y) obtaining a paired-dominating set Do;

3. D «+ minimum between the paired-dominating sets D; and Ds;
report the vertices in D as a minimum paired-dominating set of the graph G that contains x.

We note that the problems on some of the interval models produced may not admit a solution as the
removal of the neighbors of x and y may leave isolated vertices; in such a case, another interval model
produces the final minimum paired-dominating set.

The correctness of Algorithm CIRC_ARC_PAIRED_DOMINATION follows from Lemmas 4.1 and 4.2.

Time and Space Complexity

Let n and m be the numbers of vertices and edges, respectively, of the given graph G. First, we note
that each call to Procedure MIN_P-D-SET_CONTAINING_VERTEX takes O(n) time: Step 1 of the pro-
cedure involves identifying y = cw,(w) and then z = ccw,(y) (by twice examining all the vertices in
the graph in O(n) time), constructing 4 interval models which can be obtained in O(n) time, and ap-
plying Algorithm INTERVAL_PAIRED_DOMINATION on each of them, which also takes O(n) time (see
Theorem 3.1); similarly, Step 2 also takes O(n) time, as does Step 3. The time complexity of Procedure
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Figure 5: An arc model to illustrate the degree computation.

MIN_P-D-SET_CONTAINING_VERTEX implies that Step 2 of Algorithm CIRC_ARC_PAIRED_DOMINATION
takes O(n + m) time: O(n) time is needed for identifying all neighbors of v and for computing cw.(v)
(by comparing the arc of v to all other arcs in the arc model Ag) and O(n (1 + degree(v))) time for
all the calls to Procedure MIN_P-D-SET_CONTAINING_VERTEX and for all the “minimum between D
and D”” computations; because v is a vertex of minimum degree in G, its degree is at most 2m/n since
2m =3, cv(q degree(z) > ndegree(v).

Let us now show how to check whether the arc model Ag has a gap and how to find a vertex of
minimum degree in G. The idea is to process all the arc endpoints and maintain the number of active
arcs, that is, the number of arcs containing the current arc endpoint in their interior (hence we exclude
the arc ending at that endpoint). Then, if before processing the ccw_endpoint of an arc, the number of
active arcs is 0, we conclude that there exists a gap counterclockwise from that ccw_endpoint. Moreover,
the degree of a vertex can be computed by observing that the set of neighbors of a vertex x with arc A(x)
is precisely the disjoint union of the set of vertices corresponding to the arcs containing the ccw_endpoint
of A(x) in their interior and the set of vertices with arcs whose ccw_endpoint belongs to the interior of
A(z). The cardinality of the former set of vertices (neighbors of x) is equal to the number of active arcs
while processing the ccw_endpoint of A(x); the cardinality of the latter set of vertices can be computed by
keeping count of the ccw_endpoints encountered. In particular, if we first encounter the cew_endpoint ¢4
of the arc of z and then its cw_endpoint 2, then it is not difficult to see that the degree of z is

degree(x) = active_num_at_t; + ccw_num_at_ts — ccw_num_at_ty

where ccw_num is the number of arc ccw_endpoints encountered and ccw_num_at_t; is equal to the
number of ccw_endpoints encountered including ¢; (since ¢2 is a cw_endpoint the number of ccw_endpoints
does not change while processing t2). (For example, in Figure 5, let k be the number of ccw_endpoints
encountered when reaching (and including) the ccw_endpoint ¢; of the arc of x (1 < k < 6); then, the
number of ccw_endpoints at ¢9 is k 4+ 3 and since the number of arcs containing ¢; in their interior is 3,
the degree of z is correctly found equal to 3 + (k 4+ 3) — k = 6.) On the other hand, if we first encounter
the cw_endpoint to of the arc A(z) of  and then its ccw_endpoint ¢1, then the degree of = is

degree(x) = activenum_at_t; +n — (ccw_num_at_t; — ccw_num_at_ts)

where ccw_num_at_t; is again equal to the number of ccw_endpoints encountered including ¢1; note that
ccw-nume-at_t; — ccw_num-_at_te is equal to the number of arcs whose ccw_endpoints do not belong to
the interior of A(z) and thus by subtracting this number from n gives the number of arcs with their
cew_endpoints in the interior of A(x). (For example, in Figure 5, let k& be the number of ccw_endpoints
encountered when reaching the cw_endpoint ¢o of the arc of z (1 < k < 3); then, the number of c-
cw_endpoints at (and including) ¢; is k+ 6 and since the total number of arcs is 9 and the number of arcs
containing t; in their interior is 3, the degree of x is correctly found equal to 3+9 — ((k+6) — k) =6.)
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In order to be able to compute the degrees of vertices as presented above (from which we will obtain
a vertex of minimum degree):

e we count the number ccw_num of ccw_endpoints starting the count at an arbitrary ccw_endpoint;

e we maintain the number active_num of active arcs (the value of active_num at the first endpoint
processed is computed by examining all the arcs of the arc model in order to find those containing
that endpoint);

e with each vertex x, we maintain the number x.endpoints_met of endpoints of the arc A(z) of z
encountered (initialized to 0), the value x.ccw_num_at_ccw_endp of ccw_num at and including the
cew_endpoint of A(z), and the value z.active_num_at_prev_endp of active_-num at the endpoint of
A(x) encountered first.

In detail, the algorithm to check for a gap in the arc model and to find a vertex of minimum degree is as
follows:

for each vertex w of G do
w.endpoints-met «— 0;
v «— an arbitrary vertex of G;
active_num < number of arcs containing the ccw_endpoint of the arc A(v) of v (excluding A(v));
min_-degree < n;
ccw-num «— 0;
for each arc endpoint ¢ starting at the ccw_endpoint of A(v) and moving clockwise do
w «— vertex of G such that ¢ is an endpoint of A(w) in Ag ;
w.endpoints_met «— w.endpoints_met + 1;
if ¢ is the ccw_endpoint of A(w)
then ccw_-num «— ccw_num + 1;
if activenum =0
then there exists a gap next to the ccw_endpoint of arc A(w);
exit the for-loop;
if w.endpoints_met = 2
then degree «— active_num + n — (ccw_num — w.ccw_num_at_prev_endp);
else w.active_num_at_ccw_endp < active_num,; {first endpoint met}
active_num «— active_num + 1; {a new arc has been encountered}
else {t is the cw_endpoint of arc A(w)}
if w.endpoints_met = 2
then degree «— w.active_num-_at_ccw_endp 4+ ccw_num — w.ccw-num-_at_prev_endp;
active_num «— active_num — 1; {an arc has ended}
if w.endpoints_met =1 {first endpoint met}
then w.ccw_num_at_prev_endp «— ccw-num;
if degree < min_degree {minimum degree calculation}
then min_degree «— degree;
main_degree_v «— w;

end-for

The correctness of the above procedure follows from the discussion preceding the pseudocode and the
fact that both endpoints of each arc will be processed implying that the degrees of all the vertices will
be computed and will be taken into account in the minimum degree computation.

Initializing the values of the fields endpoints_met for each vertex and computing the initial value of
active_num take O(n) total time. Assuming that each arc endpoint is associated with the vertex whose
arc ends at that endpoint, then each iteration of the for-loop takes O(1) time. Therefore, the above
computation takes a total of O(n) time and so does Step 1 of Algorithm CIRC_ARC_PAIRED_DOMINATION.
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Finally, Step 3 takes O(n) time. The space needed by the algorithm is O(n). In total, Algorithm
CIRC_ARC_PAIRED_DOMINATION takes O(n + m) time using O(n) space.
Summarizing, we have the following theorem:

Theorem 4.1 Let G be a circular-arc graph with no isolated vertices. Then, given an arc model of G with
the arc endpoints sorted, Algorithm CIRC_ARC_PAIRED_DOMINATION computes a minimum-cardinality
paired-dominating set of G in O(n +m) time and O(n) space.

Since an arc model corresponding to a circular-arc graph can be computed from the graph in time
linear in its size [27, 22], we conclude that, given a circular-arc graph, we can compute a minimum-
cardinality paired-dominating set of the graph in O(n + m) time, where n is the number of vertices and
m is the number of edges of the graph.

5 Concluding Remarks

In this paper we studied the paired domination problem on interval and circular-arc graphs and presented
O(n) and O(n 4+ m)-time algorithms, respectively, given an interval or an arc model representation with
endpoints sorted; our results improve on previous O(n 4+ m) and O(m(n + m))-time algorithms [7].

An interesting open question is to investigate whether the paired domination problem on circular-arc
graphs can be solved in O(n) time. The case of Figure 3(b) seems to imply that a new different approach
will be needed to obtain an O(n)-time algorithm.

Additionally, it would also be interesting to find optimal or at least better algorithms for the paired
domination problem on other classes of graphs.

Acknowledgments The author would like to thank the anonymous referees for bringing [6] to his
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