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Abstra
t

We are interested in the problem of 
overing simple orthogonal polygons with the mini-

mum number of r-stars. An orthogonal polygon P is an r-star if P is (orthogonally) 
onvex

and star-shaped. The problem of 
overing a simple orthogonal polygon with the mini-

mum number of r-stars has been 
onsidered by Worman and Keil [13℄ who des
ribed an

O(n17
poly- log n)-time algorithm where n is the size of the given polygon.

In this paper, we 
onsider the above problem on simple 
lass-3 orthogonal polygons; a


lass-3 orthogonal polygon is de�ned to have dents along at most 3 di�erent orientations. By

taking advantage of geometri
 properties of these polygons, we provide an O(n log n)-time

algorithm; this is the �rst purely geometri
 algorithm for this problem. Moreover, ideas in

our algorithm may be generalized to yield exa
t algorithms for this problem that are faster

than Worman and Keil's.

Keywords: orthogonal polygon, 
over, de
omposition, r-star, visibility

1 Introdu
tion

Motivated by a question of Klee in 1973 and thanks to work of Chv�atal and Fisk (see [11℄),

the now-
lassi
 Art Gallery Theorem states that for an n-sided simple polygon, ⌊n/3⌋ immobile

guards are sometimes ne
essary and always suÆ
ient su
h that every point of the polygon is

wat
hed by at least one guard [11℄.

Sin
e then, many variants have been 
onsidered making the �eld of Art Gallery problems

a vibrant and large resear
h area in 
ombinatorial and 
omputational geometry [11, 12℄. The

multitude of variants is in part due to the fa
t that getting the minimum number of guards to

wat
h a given polygon is NP-
omplete (Aggarwal [1℄). This stimulated resear
h in restri
ted

types of polygons or with guards possessing di�erent visibility or mobility 
hara
teristi
s.

Guarding problems have been 
onsidered on orthogonal polygons, i.e., polygons whose edges

are either horizontal or verti
al. It turns out that fewer guards (in terms of the size of the

polygon) are needed for su
h a polygon sin
e the art gallery theorem in this 
ase states that

⌊n/4⌋ immobile guards are sometimes ne
essary and always suÆ
ient su
h that every point of

the polygon is wat
hed by at least one of the guards [4℄.
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Figure 1: (a) Illustration of the main de�nitions; (b) an r-star with its kernel shaded.

Sin
e the edges of an orthogonal polygon are either horizontal or verti
al, we 
an 
hara
terize

them using the 
ompass dire
tions (N, S, E, W); more spe
i�
ally, an edge is a N-edge (S-edge,

E-edge, and W-edge, resp.) if the ve
tor normal to the edge and pointing outward is dire
ted

towards the North (South, East, and West, resp.). Of parti
ular importan
e are edges whose

both endpoints are re
ex verti
es of the polygon; su
h edges are 
alled dents and as above

they are 
hara
terized as N-dents, S-dents, E-dents, and W-dents (see Figure 1(a)). Orthogonal

polygons 
an be 
lassi�ed in terms of the types of dents that they 
ontain [2℄: a 
lass-k orthogonal

polygon (0 ≤ k ≤ 4) is de�ned to have dents along at most k di�erent orientations. Class-2

polygons 
an be further 
lassi�ed into 
lass-2a where the 2 dent orientations are parallel (i.e., N

and S, or E and W), and 
lass-2b where the 2 dent orientations are perpendi
ular to ea
h other.

An orthogonal polygon is an r-star if it is (orthogonally) 
onvex and star-shaped. The

term r-star 
omes from its formal de�nition with respe
t to the r-visibility : in an orthogonal

polygon P , two points p, q of P are r-visible from one another if and only if the axis-parallel

re
tangle with p, q at opposite 
orners lies within P (Figure 1(a) shows two su
h points p and

q); then, a polygon P is an r-star if there exists a point p of P su
h that every point q ∈ P
is r-visible from p while the set of all su
h points p in P is 
alled the kernel of the r-star.
Figure 1(b) shows an r-star with its kernel shaded. (For 
ompleteness, we mention that in

orthogonal polygons another type of visibility, the s-visibility, is de�ned: two points p, q of an

orthogonal polygon P are s-visible from one another if and only if there exists a stair
ase path

from p to q that lies entirely in P (a stair
ase path is a 
hain of axis-parallel edges with bends

that alternate between exa
tly two orientations) { in Figure 1(a) points p and q′ are s-visible
from one another.)

Clearly, the problem of determining a minimum set of r-visibility (or s-visibility) guards
to wat
h a simple polygon is equivalent to determining a minimum 
over of the polygon by

r-stars (or s-stars, respe
tively). A 
over of a polygon P by a set S of pie
es (or subpolygons

or 
omponents) requires that the union of the pie
es in S is equal to P . If additionally the

pie
es are required to be mutually disjoint (ex
ept along boundaries), then we have a partition.

Obviously, a partition of a polygon also forms a 
over of the polygon; thus, a minimum-size


over of a polygon involves at most as many pie
es as a minimum-size partition of the polygon

into the same type of pie
es, and 
onsequently 
overs are better than partitions in terms of

the number of pie
es. On the other hand, 
overing problems prove to be harder than their


orresponding partition problems and there are 
ases where the former are NP-hard whereas

the latter admit polynomial solutions (e.g., �nding a minimum-size Steiner-free partition of a

simple polygon into star-shaped polygons is known to be 
omputable in polynomial time [5℄,

whereas the 
orresponding 
overing problem is NP-
omplete [1℄). Covers and partitions are very

important as they 
an be used for de
omposition into simpler pie
es. Re
ent appli
ations of
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re
tangulations in
lude planar self-assembly with lo
al information [7℄ and DNA self-assembly

(M.Y. Kao and A. Sterling).

Covering by r-stars has been investigated early enough. Keil [6℄ des
ribed an O(n2)-time

algorithm to 
over a 
lass-2a orthogonal polygon by r-stars. Culberson and Re
khow [2℄ showed

that Keil's algorithm is worst-
ase optimal if the r-stars need to be expli
itly reported and

presented an O(n)-time algorithm to 
ount the number of r-stars needed; they also gave O(n2)-
time algorithms for minimally 
overing 
lass-2a as well as 
lass-2b orthogonal polygons. Soon

afterwards, Motwani, Raghunathan, and Saran [10℄ studied s-star 
overs. They showed a 
lose

relation between minimum-size 
overs of orthogonal polygons by s-stars and 
overs of perfe
t

graphs with the minimum number of 
liques; they took advantage of this very interesting idea

to derive an O(n8)-time algorithm for 
overing an orthogonal polygon by the minimum number

of s-stars and an O(n3)-time algorithm for the same problem in the 
ase that the orthogonal

polygon is 
lass-3. Returning ba
k to r-stars, Gewali, Keil, and Ntafos [3℄ 
onsidered the problem
of 
overing 
lass-2a orthogonal polygons by the minimum number of r-stars and they gave an

O(n)-time algorithm to report the lo
ations of a minimum-
ardinality set of guards. Their

algorithm was improved by Lingas, Wasylewi
z, and

_

Zyli�nski [8℄ who were able to perform the


omputations in the two passes of the algorithm of Gewali et al. into a single pass; they also

redu
ed the spa
e requirement (in addition to the spa
e required to store the polygon) to linear

in the number of guards required rather than linear in the size of the polygon. The problem

of 
overing general orthogonal polygons with r-stars was addressed by Worman and Keil who

took advantage of the graph-theoreti
 approa
h to des
ribe an O(n17
poly-logn)-time algorithm

[13℄. Very re
ently, a linear-time 3-approximation algorithm for general orthogonal polygons has

been given by Lingas, Wasylewi
z, and

_

Zyli�nski [9℄.

In this paper, we study the r-star 
overing problem on 
lass-3 orthogonal polygons. We

take advantage of geometri
 properties of these polygons and we des
ribe an O(n log n)-time

algorithm to report the lo
ations of a minimum-
ardinality set of r-visibility guards to wat
h

the entire polygon by sweeping the polygon a single time. This is the �rst purely geometri


algorithm for this problem. Moreover, ideas in our algorithm may be generalized to yield exa
t

algorithms for this problem that are faster than Worman and Keil's.

2 Theoreti
al Framework

We 
onsider simple orthogonal polygons; so, in the following, we will omit the adje
tive \simple."

Consider an orthogonal polygon P that does not have N-dents in a 
artesian 
oordinate

system. The interse
tion of su
h a polygon with a horizontal line L may 
onsist of several

line segments. Sin
e P has no N-dents, these line segments 
orrespond to disjoint parts of the

polygon P below the line L; for 
onvenien
e, we 
all ea
h su
h part of P a trouser. Next, we

give extensions of the notions of \grid segment" and \level" used in [3℄: a grid segment of P or

a trouser T is a maximal (
losed) horizontal line segment in P or T ; the level of a point or a

horizontal line segment (whi
h may be a grid segment or a horizontal edge) is its y-
oordinate.
We also use the notion of orthogonal proje
tion in an orthogonal polygon P given in [8℄: the

orthogonal proje
tion o(s) of a horizontal line segment s at level ℓ in P onto the grid segment s′

at level ℓ′ ≥ ℓ is the maximal subsegment of s′ su
h that for ea
h point a of o(s) there exists

a verti
al line segment in P that goes through a and interse
ts s. Finally, for a horizontal line

segment s (edge or grid segment) we de�ne its x-range to be the set of x-
oordinates of the

points of s. (We note that although a polygon is 
onsidered a 
losed set, we 
onsider edges to

be open sets (i.e., they do not in
lude their endpoints) and thus their x-ranges are open sets as

well.)

The following lemma provides three important properties of 
lass-3 orthogonal polygons.
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Lemma 2.1 Let P be a 
lass-3 orthogonal polygon and assume that P has no N-dents. Then:

(i) The polygon P has a single topmost edge.

(ii) Consider sweeping the polygon from bottom to top. Ea
h edge en
ountered other than the

bottommost edge of ea
h trouser is in
ident with the boundary of the swept polygon.

(iii) Let T be a trouser at the moment when P is interse
ted by a horizontal line at level ℓ, and
let s1 and s2 be grid segments of T at levels ℓ1 and ℓ2, respe
tively, where ℓ1 < ℓ2 ≤ ℓ,
su
h that there exists a verti
al line segment in T interse
ting both s1 and s2. Then, the

orthogonal proje
tion of s1 onto ℓ is a subset of the orthogonal proje
tion of s2 onto ℓ.

Proof: Statements (i) and (ii) easily follow from the la
k of N-dents. Statement (iii) follows

from the observation that the orthogonal proje
tion of s1 onto level ℓ2 is a subset of s2 taking

into a

ount that ℓ1, ℓ2 ≤ ℓ.

3 The Algorithm

Our algorithm applies plane-sweeping as do the algorithms in [3, 8℄; we assume that the given


lass-3 polygon does not have N-dents and we sweep it from bottom to top stopping at ea
h

horizontal edge (thus we 
an take advantage of Lemma 2.1). The invariant that we maintain is

that at any given time, the guards that have been pla
ed wat
h all points of the swept polygon

that 
annot be wat
hed by a guard lo
ated at a point above the sweep-line at its 
urrent position.

In parti
ular, at any S-edge we do some preparatory work but do not pla
e guards as su
h edges


an be wat
hed by guards lo
ated at a higher level. N-edges may \
over" parts of the polygon

from guards positioned higher; we 
he
k this and only if a guard is needed, it is lo
ated at the

level of the N-edge (the x-
oordinate of its lo
ation may not be set at the moment as we pla
e

guards so that they 
an see as mu
h of the polygon above them as possible {details are given

below). In the end, the algorithm reports the lo
ations of a minimum-size set of r-visibility
guards that wat
h the entire input polygon.

Determining When a Guard is Needed and Where to be Pla
ed

Consider any S-edge e of the given polygon; see Figure 2(a). As long as the x-ranges of the
en
ountered N -edges do not interse
t the x-range of e, then a guard at a level higher than the

level of the N -edge 
an see the entire e; see the N-edge e1 in Figure 2(a). However, if the x-
range of a N -edge d interse
ts e's x-range, then a guard must be pla
ed at a level between (and

in
luding) the levels of e and d sin
e no guard at a level higher than the level of d 
an see the

entire e; see the N-edge e2 in Figure 2(a). Additionally, if su
h a guard is to be pla
ed at level ℓ,
it has to be pla
ed at any point of the orthogonal proje
tion of the grid segment 
ontaining e
onto level ℓ, in order to wat
h e.

Therefore, in order to enfor
e the above observations, ea
h S-edge e submits a type-1 guard-

request with whi
h we maintain:

⊲ a for
ing-range, or f-range for short, whi
h is the x-range of the edge e (be
ause a guard

is needed to wat
h e if the x-range of a N-edge above e interse
ts e's f-range);

⊲ a pla
ement-range, or p-range for short, whi
h is the range of x-
oordinates of the grid

segment 
ontaining e (be
ause this is the initial range of x-
oordinates of the guard's

lo
ation).
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Figure 2: (a) A guard needs to be pla
ed no higher than the N-edge e2 to wat
h the entire

S-edge e; (b) the f-range (shown dotted) and the p-range (shown dashed) of the S-edge e.
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Figure 3: Type-2 guard-requests (f-range shown dotted, p-range shown dashed).

Ea
h of these ranges is a single interval of x-
oordinates (the f-range is open, the p-range is


losed), and it always holds that the f-range of a S-edge is a subset of its p-range. Figure 2(b)

shows the f-range (shown dotted) and p-range (shown dashed) for the S-edge e.
In fa
t, there is one more 
ase in whi
h we need a guard-request. See Figure 3 (left). While

pro
essing the N-edge e, a guard g gets positioned as shown to wat
h the lowermost S-edge.

The same guard wat
hes the S-edge e′ whi
h justi�es the removal of the guard-request produ
ed

due to e′; however, if we do not do anything else, no need will be re
orded for a guard to wat
h

the orthogonal proje
tion of e′ onto a level slightly above the level of e. This 
learly leads to an

error in the 
ase of Figure 3 (left) as no guard other than g is pla
ed.

Therefore, at ea
h N-edge e (of a trouser T ), we investigate the need to pla
e a type-2

guard-request. Let I be the grid-segment of T at a level slightly above e's level. If the entire

I is wat
hed, no guard-request is needed. Otherwise, a guard-request r is submitted with p-

range equal to I and f-range equal to (xl, xr) where xl (xr, resp.) is the x-
oordinate of the

leftmost (rightmost, resp.) point in I not wat
hed by any of the 
urrently pla
ed guards (see

Figure 3 (right)).

Here is how the f- and p-range of a guard-request r submitted by an edge e are used: During
the sweeping, as long as we en
ounter N-edges whose x-ranges do not interse
t either range, no


hange o

urs. If we en
ounter a N-edge whose x-range interse
ts the p-range of r, then the

p-range simply gets 
lipped. However, if we en
ounter a N-edge d whose x-range interse
ts the
f-range of r, then a guard is needed immediately; any guard lo
ated at a level between (and

in
luding) the levels of e and d, whi
h 
an be positioned at a point with x-
oordinate in the

p-range of r will do.

Maintaining and Pro
essing Guards

In order to be able to manage the guards, with ea
h guard we maintain:

• its level (i.e., the y-
oordinate of its lo
ation),

• its lo
ation-range, or lo
-range for short, whi
h is the range of x-
oordinates of the points
at whi
h the guard 
an 
urrently be pla
ed;
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• its visibility-range, or vis-range for short, whi
h is the range of x-
oordinates of the points
above the 
urrent position of the sweep-line that are r-visible to the guard.

Sin
e there are no N-dents, ea
h of these ranges is a single interval of x-
oordinates, and it

always holds that the lo
-range of a guard is a subset of its vis-range.

For a guard g to be pla
ed at a grid segment sℓ at level ℓ in a trouser T , initially its lo
-range
and its vis-ranges 
oin
ide with the x-range of sℓ. As the sweep-line moves upward, both ranges

get 
lipped by N-edges whose x-ranges interse
t them. If g is 
hosen to ful�ll a guard-request r
(then g's lo
-range must interse
t r's p-range), the lo
-range of g is set equal to its interse
tion

with the p-range of r; in this way, the guard will be able to wat
h both the edge that submitted

r and as mu
h of the unseen polygon as possible. Finally, when a N-edge d is en
ountered su
h

that the (possibly 
lipped) lo
-range of g is a subset of d's x-range, then g is pla
ed at the point

(xl, ℓ) where xl is the left bound value of g's (
lipped) lo
-range right before the N-edge d is

en
ountered (in a

ordan
e with the 
onvention followed by [3, 8℄); moreover, g 
annot see any

points in the polygon P above the level of the edge d.

Sele
ting a Guard to Wat
h a S-Edge

Many guards at di�erent levels in the polygon may be able to wat
h a S-edge e′ when the f-range

in the guard-request submitted by e′ is interse
ted by the x-range of a N-edge. In order to make

a good 
hoi
e among them, we apply the poli
y suggested in the following lemma.

Lemma 3.1 There exists a minimum-size set of guards su
h that whenever a guard-request

needs to be ful�lled, among all guards that 
an ful�ll it, the lowermost one is 
hosen.

In other words, among the guards ful�lling the guard-request, we 
hoose a guard g that has

the smallest vis-range, saving guards with larger vis-ranges to possibly wat
h portions of the

polygon that g 
annot see. The proof of Lemma 3.1 relies on Lemma 2.1(iii). Re
all that the

vis-range of a guard at a level ℓ is initialized to the x-range of the grid segment at level ℓ and is

subsequently 
lipped by N-edges en
ountered; thus, at a level ℓ′ > ℓ, the guard 
an see all the

points in the orthogonal proje
tion of its initial vis-range onto ℓ′.
In fa
t, there are 
ases where by 
hoosing a guard other than the lowermost available we

get an in
orre
t result; see Figure 4. When en
ountering the N-edges e1 and e2, we realize that

guards are needed at these levels. If when assigning a guard to wat
h the S-edge e3, we sele
t a

guard at the level of e2 (see guard g1 in the polygon at Figure 4 (left), then a third guard g3 will

also be needed; yet, two guards suÆ
e to wat
h the entire polygon as shown at Figure 4 (right).

Des
ription of the Algorithm

As mentioned, we sweep the given 
lass-3 orthogonal polygon P from bottom to top maintaining

information on the 
urrent trousers (at the 
urrent position of the sweep-line), and the ranges
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of the guards and of the guard-requests. With ea
h trouser T , we also maintain T 's guards

partitioned into two sets, Available(T ) and Positioned(T ), storing the guards in T that 
an

wat
h points in P above the 
urrent position of the sweep-line or not, respe
tively.

During the sweeping, we stop at ea
h horizontal edge e and pro
ess it. If e is a S-edge, we

update the trouser information and set up and insert a 
orresponding type-1 guard-request. If e
is a N-edge, we pro
ess the guard-requests whose f-ranges are interse
ted by e's x-range, position
the guards whose lo
-ranges are subsets of e's x-range, 
lip the guard-requests' p-ranges and the

guards' lo
- and vis-ranges, and 
onditionally set up and insert a type-2 guard-request. After

all the edges have been pro
essed, the resulting guard set Positioned gives us the lo
ations of a

minimum-
ardinality set of r-visibility guards.

Below, we give a detailed des
ription of the algorithm in pseudo
ode when applied on a 
lass-

3 orthogonal polygon P (the ranges of a guard g are denoted by g.lo
-range and g.vis-range,
the ranges of a guard-request r by r.f-range and r.p-range, and the x-range of an edge e by

e.x-range).

Algorithm Class3 rStar Cover(P )

Input : a simple 
lass-3 orthogonal polygon P (no N-dents)

Output : a minimum set of r-visibility guards

1. sort the N- and S-edges of P by non-de
reasing y-
oordinate;

reate an empty data stru
ture Dt to store the trousers;

2. {sweep from bottom to top maintaining the trousers}
for ea
h N- or S-edge e in order do

if e is a S-edge

then 
reate the 
orresponding type-1 guard-request, say, r;
lo
ate e in the data stru
ture of the trousers;

if e does not belong to any of the 
urrent trousers

then 
reate a re
ord for the new trouser T (involving only e) and insert it in

the data stru
ture Dt;

insert r in T 's guard-requests data stru
ture;

Available(T )← ∅; Positioned(T )← ∅;
else if e is a S-dent

then {merge the two trousers T1 and T2 on either side of e}
remove T1 and T2 from Dt and insert a new trouser T ;
merge the guard sets and guard-requests data stru
tures asso
iated with

T1 and T2 and asso
iate them with T ;
insert r in the (merged) requests data stru
ture;

else {e belongs to a single trouser T}
insert r in T 's guard-requests data stru
ture;

else {e is a N-edge}
lo
ate e in the data stru
ture Dt of the trousers and let T be the trouser whose

boundary is in
ident with e;

{pro
ess T 's guard-requests whose f-ranges interse
t e's x-range}
for ea
h guard-request r in T s.t. r.f-range ∩ e.x-range 6= ∅ do

{r.f-range not interse
ted before by x-range of a N-edge}
if ∃ guards ∈ Available(T ) ∪ Positioned(T ) whose lo
-range is a subset

of r.p-range
then g ← lowermost su
h guard;

else if ∃ guards ∈ Available(T ) whose lo
-ranges interse
t r.p-range
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then g ← lowermost su
h guard;

g.lo
-range ← g.lo
-range ∩ r.p-range;
else use a new guard g and insert it in Available(T );

g.level ← level of e;
g.vis-range ← x-range of the grid segment of T 
ontaining e;
g.lo
-range ← r.p-range;

remove r from T 's guard-requests data stru
ture;

{pro
ess T 's guards whose lo
-ranges are \
overed" by e}
for ea
h guard g su
h that g.lo
-range ⊆ e.x-range do

xg ← x-
oordinate of left endpoint of g.lo
-range;
position g at (xg, yg) where yg is the level of g;
remove g from Available(T ) and insert it in Positioned(T );

{
lip ranges}

lip lo
-ranges and vis-ranges (if needed) of guards ∈ Available(T );

lip the p-ranges (if needed) of the guard-requests of T ;

{
he
k if a type-2 guard-request is needed}
I ← x-range of 
losure((grid segment at the level of e)− e);
if I is not entirely wat
hed

then 
reate a new guard-request r′; {type-2 guard-request}
r′.p-range ← I;
xl ← x-
oordinate of leftmost non-wat
hed point in I;
xr ← x-
oordinate of rightmost non-wat
hed point in I;
r′.f-range ← (xl, xr);
insert r′ in the guard-requests data stru
ture of T ;

3. report the lo
ations of the guards in the resulting set Positioned.

The 
orre
tness of the algorithm follows from the fa
t that we use a new guard only when we

have lo
ated a portion of the polygon that is not wat
hed by any of the 
urrently used guards

and by any guard above the sweep-line at its 
urrent position, from Lemmas 2.1 and 3.1, and

from the pre
eding dis
ussion.

Time and Spa
e Complexity

Let n be the number of verti
es of the given 
lass-3 polygon. Then, the number of trousers

is O(n) and so is the number of guard-requests (we have at most 1 guard-request for ea
h of

the S-edges (type-1 request) and ea
h of the N-edges (type-2 request) en
ountered), and the

number of guards (note that by pla
ing a guard on ea
h N- and S-edge, we 
an wat
h the entire

polygon).

Data Stru
tures. Let us now dis
uss the data stru
tures used. Sin
e we need to be able

to insert new trousers, to delete trousers, and to sear
h the 
urrent trousers to lo
ate the one

in
ident with an edge (see Lemma 2.1(ii)), we maintain the trousers in a balan
ed binary sear
h

tree Dt storing them in order from left to right; then every insertion, deletion, and sear
h

operation takes O(log n) time.

Ea
h of the guard sets Available(T ) and Positioned(T ) asso
iated with a trouser T is stored

with T in a doubly-linked list with pointers at both ends so that insertion, deletion, and list


on
atenation 
an be done in 
onstant time.

In order to store the f-ranges of all the guard-requests (we do not distinguish them depending

on the trouser to whi
h they belong sin
e the f-ranges of guard-requests from di�erent trousers
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do not overlap), we use two threaded balan
ed binary sear
h trees Tl and Tr storing the f-ranges

in their leaves (sin
e the trees are threaded, their leaves are linked in order from left to right in

the tree) with ea
h pair of 
orresponding leaves in Tl and Tr linked to ea
h other: Tl (Tr, resp.)

stores the f-ranges in in
reasing order of their left (right, resp.) endpoint and in 
ase of ties in

de
reasing order of the level of the edge that 
aused the guard-request. The size of ea
h tree

is again O(n) and thus, inserting and deleting an f-range in both trees 
an be done in O(log n)
time. In order to �nd all the f-ranges interse
ted by the x-range of a N-edge e, we work as

follows: if e has its left endpoint on the boundary of a trouser de�ned by the sweep-line at its


urrent position (see Lemma 2.1(ii)), we use Tl to lo
ate all the f-ranges, if any, with their left

endpoint identi
al to e's left endpoint, and move rightward from leaf to leaf using the thread

pointers until all the f-ranges interse
ting e's x-range are lo
ated; if e has its right endpoint

on the boundary of a trouser, we work similarly with Tr. In summary, this 
an be done in

O(t + log n) time where t is the number of f-ranges a

essed (and whi
h are deleted).

Clipping on the guards' vis-ranges is done in an impli
it way; thus, the vis-ranges are stored

in a spe
ial doubly-linked list as shown in Figure 5. Ea
h node 
orresponds to a verti
al edge

(whi
h de�ned the endpoint of a vis-range or whi
h 
lipped a previously de�ned vis-range) and

stores the x-
oordinate of that edge and a y-ordered sublist of vis-ranges (with pointers at both

ends) ending at that verti
al edge; the levels of the vis-ranges stored at the sublists of two nodes

enable us to 
ompare them along the y-axis. If the 
lipping a�e
ts only the �rst or last node in

the list, then we simply update the x-
oordinate stored in the node in O(1) time. If the 
lipping

a�e
ts more nodes, then their sublists are 
on
atenated (maintaining their y-ordering) and again

the x-
oordinate stored in the �rst or last node of the resulting list gets updated; the O(1)-time


on
atenation of the sublists of two 
onse
utive nodes t1, t2 is 
harged to the horizontal edge

in
ident on the top endpoint of the verti
al edge 
orresponding to the lowermost node between

t1 and t2 (the sublist of the lowermost node gets linked to the sublist of the other one).

A similar data stru
ture is used to store the guard-requests' p-ranges together with the

guards' lo
-ranges; all these are linked together in y-ordered sublists whi
h also have extra

pointers doubly-linking only the p-ranges. Clipping is done as above. Getting the lowermost

guard to ful�ll a guard-request r involves getting to the sublist node for r (through pointers

from Tl and Tr) in the �rst or last node of the main list and then moving upwards in the sublist

until a guard's lo
-range is found; if a guard is found, then all the traversed guard-requests will

be ful�lled by that guard and they are removed (we may remove some guard-requests whose

p-ranges are not interse
ted by the x-range of the 
urrently pro
essed N-edge but this does not


ause an error), whereas if no guard is found then a new is used who again ful�lls all the traversed

guard-requests. Assigning the lo
-range of the guard to the p-range of the guard-request is done

by using the representation of the guard-request for the guard's lo
-range and updating the

information and pointers for the p-ranges linking.

Complexity. Sorting the N- and S-edges (by y-
oordinate) takes O(n log n) time. Then, for

ea
h S-edge e, we need to lo
ate e with respe
t to the existing trousers in Dt, do at most one

insertion and at most two deletions of trousers (in O(log n) time), and update the information

stored in the 
orresponding trouser (in O(1) time).

Let us now 
onsider the pro
essing of ea
h N-edge e. Lo
ating all the O(n) N-edges in Dt

takes O(n log n) time. Pro
essing all the guard-requests whose f-ranges interse
t the x-ranges
of all the N-edges requires O(n log n) time for sear
hing Tl, Tr, and O(n) for the deletion of

guard-requests. Pro
essing all the guards whose lo
-ranges are 
overed by N-edges is done using

the lo
-ranges list and takes O(1) time per guard sin
e the guard-requests in the same node have

already been pro
essed and removed. Clipping is done in O(n) time in total, sin
e the 
lipping

verti
al edge is 
harged for the O(1)-time information updates while a di�erent horizontal edge

is 
harged for ea
h O(1)-time sublist 
on
atenation. Handling all type-2 guard-requests takes

9
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Figure 5: The data stru
ture for the guards' vis-ranges (re
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onne
ted by thi
k lines

indi
ate nodes of the main doubly-linked list, dark 
ir
les indi
ate sublist nodes).

O(n log n) time; for ea
h su
h request r′, lo
ating the leftmost and rightmost non-wat
hed points


an be done in O(1) time using the vis-ranges data stru
ture, inserting and linking r′ in the

p-ranges (and lo
-ranges) data stru
ture is done in O(1) time as well, whereas inserting r′ in Tl

and Tr takes O(log n) time. In summary, pro
essing all the N-edges takes O(n log n) time.

Sin
e reporting the guards takes O(n) time, we have:

Theorem 3.1 Let P be a simple 
lass-3 orthogonal polygon with n verti
es. Then, a minimum-


ardinality set of r-visibility guards wat
hing the entire P 
an be 
omputed in O(n log n) time

and O(n) spa
e.

4 Con
luding Remarks

We presented an O(n log n)-time algorithm for 
omputing a minimum r-star 
over of a 
lass-3

orthogonal polygon on n verti
es. It would be interesting to make our algorithm output-sensitive.

We believe that a more 
onservative poli
y on 
olle
ting guard-requests will help improve the

time 
omplexity to O(n + k log k) where k is the minimum number of guards needed to wat
h

the given 
lass-3 orthogonal polygon.

We leave as open problems the following on minimum r-star 
overs: obtaining faster al-

gorithms for general simple orthogonal polygons 
ompared to the algorithm of Worman and

Keil [13℄, investigating the 
omplexity of the problem on orthogonal polygons with holes, and

studying extensions of the problem in three dimensions.

Finally, it would also be interesting to obtain faster algorithms for the s-star 
overing problem
on general simple orthogonal polygons; the 
urrent fastest algorithm takes O(n8) time [10℄ and

is based on the graph-theoreti
 approa
h.
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