A Faster Algorithm for Covering Class-3 Orthogonal Polygons
with the Minimum Number of r-Stars

Leonidas Palios* and Petros Tzimas
Department of Computer Science, University of loannina
GR-45110 Toannina, Greece
{palios, ptzimas}@cs.uoi.gr

Abstract

We are interested in the problem of covering simple orthogonal polygons with the mini-
mum number of r-stars. An orthogonal polygon P is an r-star if P is (orthogonally) convex
and star-shaped. The problem of covering a simple orthogonal polygon with the mini-
mum number of r-stars has been considered by Worman and Keil [13] who described an
O(n'"poly-logn)-time algorithm where n is the size of the given polygon.

In this paper, we consider the above problem on simple class-3 orthogonal polygons; a
class-3 orthogonal polygon is defined to have dents along at most 3 different orientations. By
taking advantage of geometric properties of these polygons, we provide an O(nlogn)-time
algorithm; this is the first purely geometric algorithm for this problem. Moreover, ideas in
our algorithm may be generalized to yield exact algorithms for this problem that are faster
than Worman and Keil’s.

Keywords: orthogonal polygon, cover, decomposition, r-star, visibility

1 Introduction

Motivated by a question of Klee in 1973 and thanks to work of Chvétal and Fisk (see [11]),
the now-classic Art Gallery Theorem states that for an n-sided simple polygon, |n/3| immobile
guards are sometimes necessary and always sufficient such that every point of the polygon is
watched by at least one guard [11].

Since then, many variants have been considered making the field of Art Gallery problems
a vibrant and large research area in combinatorial and computational geometry [11, 12]. The
multitude of variants is in part due to the fact that getting the minimum number of guards to
watch a given polygon is NP-complete (Aggarwal [1]). This stimulated research in restricted
types of polygons or with guards possessing different visibility or mobility characteristics.

Guarding problems have been considered on orthogonal polygons, i.e., polygons whose edges
are either horizontal or vertical. Tt turns out that fewer guards (in terms of the size of the
polygon) are needed for such a polygon since the art gallery theorem in this case states that
|n/4| immobile guards are sometimes necessary and always sufficient such that every point of
the polygon is watched by at least one of the guards [4].

* This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning” of the national Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS UOA (MIS 375891).

W-dent

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

W-edge

S-edge
(a) (b)

Figure 1: (a) Illustration of the main definitions; (b) an r-star with its kernel shaded.

Since the edges of an orthogonal polygon are either horizontal or vertical, we can characterize
them using the compass directions (N, S, E, W); more specifically, an edge is a N-edge (S-edge,
E-edge, and W-edge, resp.) if the vector normal to the edge and pointing outward is directed
towards the North (South, East, and West, resp.). Of particular importance are edges whose
both endpoints are reflex vertices of the polygon; such edges are called dents and as above
they are characterized as N-dents, S-dents, E-dents, and W-dents (see Figure 1(a)). Orthogonal
polygons can be classified in terms of the types of dents that they contain [2]: a class-k orthogonal
polygon (0 < k < 4) is defined to have dents along at most k different orientations. Class-2
polygons can be further classified into class-2a where the 2 dent orientations are parallel (i.e., N
and S, or E and W), and class-2b where the 2 dent orientations are perpendicular to each other.

An orthogonal polygon is an r-star if it is (orthogonally) convex and star-shaped. The
term r-star comes from its formal definition with respect to the r-visibility: in an orthogonal
polygon P, two points p,q of P are r-visible from one another if and only if the axis-parallel
rectangle with p, g at opposite corners lies within P (Figure 1(a) shows two such points p and
q); then, a polygon P is an r-star if there exists a point p of P such that every point ¢ € P
is r-visible from p while the set of all such points p in P is called the kernel of the r-star.
Figure 1(b) shows an r-star with its kernel shaded. (For completeness, we mention that in
orthogonal polygons another type of visibility, the s-wvisibility, is defined: two points p, ¢ of an
orthogonal polygon P are s-visible from one another if and only if there exists a staircase path
from p to ¢ that lies entirely in P (a staircase path is a chain of axis-parallel edges with bends
that alternate between exactly two orientations) — in Figure 1(a) points p and ¢’ are s-visible
from one another.)

Clearly, the problem of determining a minimum set of r-visibility (or s-visibility) guards
to watch a simple polygon is equivalent to determining a minimum cover of the polygon by
r-stars (or s-stars, respectively). A cover of a polygon P by a set S of pieces (or subpolygons
or components) requires that the union of the pieces in S is equal to P. If additionally the
pieces are required to be mutually disjoint (except along boundaries), then we have a partition.
Obviously, a partition of a polygon also forms a cover of the polygon; thus, a minimum-size
cover of a polygon involves at most as many pieces as a minimum-size partition of the polygon
into the same type of pieces, and consequently covers are better than partitions in terms of
the number of pieces. On the other hand, covering problems prove to be harder than their
corresponding partition problems and there are cases where the former are NP-hard whereas
the latter admit polynomial solutions (e.g., finding a minimum-size Steiner-free partition of a
simple polygon into star-shaped polygons is known to be computable in polynomial time [5],
whereas the corresponding covering problem is NP-complete [1]). Covers and partitions are very
important as they can be used for decomposition into simpler pieces. Recent applications of

rectangulations include planar self-assembly with local information [7] and DNA self-assembly
(M.Y. Kao and A. Sterling).

Covering by r-stars has been investigated early enough. Keil [6] described an O(n?)-time
algorithm to cover a class-2a orthogonal polygon by r-stars. Culberson and Reckhow [2] showed
that Keil’s algorithm is worst-case optimal if the r-stars need to be explicitly reported and
presented an O(n)-time algorithm to count the number of r-stars needed; they also gave O(n?)-
time algorithms for minimally covering class-2a as well as class-2b orthogonal polygons. Soon
afterwards, Motwani, Raghunathan, and Saran [10] studied s-star covers. They showed a close
relation between minimum-size covers of orthogonal polygons by s-stars and covers of perfect
graphs with the minimum number of cliques; they took advantage of this very interesting idea
to derive an O(n®)-time algorithm for covering an orthogonal polygon by the minimum number
of s-stars and an O(n?)-time algorithm for the same problem in the case that the orthogonal
polygon is class-3. Returning back to r-stars, Gewali, Keil, and Ntafos [3] considered the problem
of covering class-2a orthogonal polygons by the minimum number of r-stars and they gave an
O(n)-time algorithm to report the locations of a minimum-cardinality set of guards. Their
algorithm was improved by Lingas, Wasylewicz, and Zyliriski [8] who were able to perform the
computations in the two passes of the algorithm of Gewali et al. into a single pass; they also
reduced the space requirement (in addition to the space required to store the polygon) to linear
in the number of guards required rather than linear in the size of the polygon. The problem
of covering general orthogonal polygons with r-stars was addressed by Worman and Keil who
took advantage of the graph-theoretic approach to describe an O(n!"poly-logn)-time algorithm
[13]. Very recently, a linear-time 3-approximation algorithm for general orthogonal polygons has
been given by Lingas, Wasylewicz, and Zyliriski [9].

In this paper, we study the r-star covering problem on class-3 orthogonal polygons. We
take advantage of geometric properties of these polygons and we describe an O(nlogn)-time
algorithm to report the locations of a minimum-cardinality set of r-visibility guards to watch
the entire polygon by sweeping the polygon a single time. This is the first purely geometric
algorithm for this problem. Moreover, ideas in our algorithm may be generalized to yield exact
algorithms for this problem that are faster than Worman and Keil’s.

2 Theoretical Framework

We consider simple orthogonal polygons; so, in the following, we will omit the adjective “simple.”

Consider an orthogonal polygon P that does not have N-dents in a cartesian coordinate
system. The intersection of such a polygon with a horizontal line L may consist of several
line segments. Since P has no N-dents, these line segments correspond to disjoint parts of the
polygon P below the line L; for convenience, we call each such part of P a trouser. Next, we
give extensions of the notions of “grid segment” and “level” used in [3]: a grid segment of P or
a trouser T is a maximal (closed) horizontal line segment in P or T'; the level of a point or a
horizontal line segment (which may be a grid segment or a horizontal edge) is its y-coordinate.
We also use the notion of orthogonal projection in an orthogonal polygon P given in [8]: the
orthogonal projection o(s) of a horizontal line segment s at level £ in P onto the grid segment s’
at level ¢/ > ¢ is the maximal subsegment of s’ such that for each point a of o(s) there exists
a vertical line segment in P that goes through a and intersects s. Finally, for a horizontal line
segment s (edge or grid segment) we define its z-range to be the set of x-coordinates of the
points of s. (We note that although a polygon is considered a closed set, we consider edges to
be open sets (i.e., they do not include their endpoints) and thus their z-ranges are open sets as
well.)

The following lemma, provides three important properties of class-3 orthogonal polygons.

Lemma 2.1 Let P be a class-3 orthogonal polygon and assume that P has no N-dents. Then:
(i) The polygon P has a single topmost edge.

(1) Consider sweeping the polygon from bottom to top. Each edge encountered other than the
bottommost edge of each trouser is incident with the boundary of the swept polygon.

(111) Let T be a trouser at the moment when P is intersected by a horizontal line at level £, and
let s1 and sy be grid segments of T at levels £1 and {5, respectively, where {1 < lo < £,
such that there exists a vertical line segment in T intersecting both s1 and so. Then, the
orthogonal projection of s1 onto £ is a subset of the orthogonal projection of so onto £.

Proof: Statements (i) and (ii) easily follow from the lack of N-dents. Statement (iii) follows
from the observation that the orthogonal projection of s; onto level /5 is a subset of so taking
into account that /1,0y < /.]

3 The Algorithm

Our algorithm applies plane-sweeping as do the algorithms in [3, 8]; we assume that the given
class-3 polygon does not have N-dents and we sweep it from bottom to top stopping at each
horizontal edge (thus we can take advantage of Lemma 2.1). The invariant that we maintain is
that at any given time, the guards that have been placed watch all points of the swept polygon
that cannot be watched by a guard located at a point above the sweep-line at its current position.
In particular, at any S-edge we do some preparatory work but do not place guards as such edges
can be watched by guards located at a higher level. N-edges may “cover” parts of the polygon
from guards positioned higher; we check this and only if a guard is needed, it is located at the
level of the N-edge (the z-coordinate of its location may not be set at the moment as we place
guards so that they can see as much of the polygon above them as possible —details are given
below). In the end, the algorithm reports the locations of a minimum-size set of r-visibility
guards that watch the entire input polygon.

Determining When a Guard is Needed and Where to be Placed
Consider any S-edge e of the given polygon; see Figure 2(a). As long as the z-ranges of the
encountered N-edges do not intersect the x-range of e, then a guard at a level higher than the
level of the N-edge can see the entire e; see the N-edge e; in Figure 2(a). However, if the z-
range of a N-edge d intersects e’s z-range, then a guard must be placed at a level between (and
including) the levels of e and d since no guard at a level higher than the level of d can see the
entire e; see the N-edge e in Figure 2(a). Additionally, if such a guard is to be placed at level ¢,
it has to be placed at any point of the orthogonal projection of the grid segment containing e
onto level ¢, in order to watch e.

Therefore, in order to enforce the above observations, each S-edge e submits a type-1 guard-
request with which we maintain:

> a forcing-range, or f-range for short, which is the xz-range of the edge e (because a guard
is needed to watch e if the z-range of a N-edge above e intersects e’s f-range);

> a placement-range, or p-range for short, which is the range of xz-coordinates of the grid
segment containing e (because this is the initial range of z-coordinates of the guard’s
location).

€2

€1

Qi R

(a) (b)

Figure 2: (a) A guard needs to be placed no higher than the N-edge e; to watch the entire
S-edge e; (b) the f-range (shown dotted) and the p-range (shown dashed) of the S-edge e.

g

91 92

I]

Figure 3: Type-2 guard-requests (f-range shown dotted, p-range shown dashed).

Each of these ranges is a single interval of x-coordinates (the f-range is open, the p-range is
closed), and it always holds that the f-range of a S-edge is a subset of its p-range. Figure 2(b)
shows the f-range (shown dotted) and p-range (shown dashed) for the S-edge e.

In fact, there is one more case in which we need a guard-request. See Figure 3 (left). While
processing the N-edge e, a guard g gets positioned as shown to watch the lowermost S-edge.
The same guard watches the S-edge ¢’ which justifies the removal of the guard-request produced
due to ¢/; however, if we do not do anything else, no need will be recorded for a guard to watch
the orthogonal projection of ¢’ onto a level slightly above the level of e. This clearly leads to an
error in the case of Figure 3 (left) as no guard other than g is placed.

Therefore, at each N-edge e (of a trouser T'), we investigate the need to place a type-2
guard-request. Let I be the grid-segment of T" at a level slightly above e’s level. If the entire
I is watched, no guard-request is needed. Otherwise, a guard-request r is submitted with p-
range equal to I and f-range equal to (z;,z,) where z; (z,, resp.) is the z-coordinate of the
leftmost (rightmost, resp.) point in I not watched by any of the currently placed guards (see
Figure 3 (right)).

Here is how the f- and p-range of a guard-request r submitted by an edge e are used: During
the sweeping, as long as we encounter N-edges whose z-ranges do not intersect either range, no
change occurs. If we encounter a N-edge whose x-range intersects the p-range of r, then the
p-range simply gets clipped. However, if we encounter a N-edge d whose z-range intersects the
f-range of 7, then a guard is needed immediately; any guard located at a level between (and
including) the levels of e and d, which can be positioned at a point with x-coordinate in the
p-range of r will do.

Maintaining and Processing Guards
In order to be able to manage the guards, with each guard we maintain:

e its level (i.e., the y-coordinate of its location),

e its location-range, or loc-range for short, which is the range of z-coordinates of the points
at which the guard can currently be placed;

Figure 4: Not selecting the lowermost candidate guard may lead to a non-minimum number of
guards.

e its wisibility-range, or vis-range for short, which is the range of x-coordinates of the points
above the current position of the sweep-line that are r-visible to the guard.

Since there are no N-dents, each of these ranges is a single interval of z-coordinates, and it
always holds that the loc-range of a guard is a subset of its vis-range.

For a guard ¢ to be placed at a grid segment s, at level £ in a trouser T, initially its loc-range
and its vis-ranges coincide with the x-range of s;. As the sweep-line moves upward, both ranges
get clipped by N-edges whose x-ranges intersect them. If g is chosen to fulfill a guard-request r
(then g’s loc-range must intersect r’s p-range), the loc-range of g is set equal to its intersection
with the p-range of r; in this way, the guard will be able to watch both the edge that submitted
r and as much of the unseen polygon as possible. Finally, when a N-edge d is encountered such
that the (possibly clipped) loc-range of g is a subset of d’s z-range, then g is placed at the point
(x1,¢) where z; is the left bound value of ¢’s (clipped) loc-range right before the N-edge d is
encountered (in accordance with the convention followed by [3, 8]); moreover, g cannot see any
points in the polygon P above the level of the edge d.

Selecting a Guard to Watch a S-Edge

Many guards at different levels in the polygon may be able to watch a S-edge ¢’ when the f-range
in the guard-request submitted by €’ is intersected by the z-range of a N-edge. In order to make
a good choice among them, we apply the policy suggested in the following lemma.

Lemma 3.1 There exists a minimum-size set of guards such that whenever a guard-request
needs to be fulfilled, among all guards that can fulfill it, the lowermost one is chosen.

In other words, among the guards fulfilling the guard-request, we choose a guard ¢ that has
the smallest vis-range, saving guards with larger vis-ranges to possibly watch portions of the
polygon that g cannot see. The proof of Lemma 3.1 relies on Lemma 2.1(iii). Recall that the
vis-range of a guard at a level / is initialized to the z-range of the grid segment at level ¢ and is
subsequently clipped by N-edges encountered; thus, at a level ¢/ > £, the guard can see all the
points in the orthogonal projection of its initial vis-range onto £'.

In fact, there are cases where by choosing a guard other than the lowermost available we
get an incorrect result; see Figure 4. When encountering the N-edges e; and ey, we realize that
guards are needed at these levels. If when assigning a guard to watch the S-edge es, we select a
guard at the level of ey (see guard g; in the polygon at Figure 4 (left), then a third guard g5 will
also be needed; yet, two guards suffice to watch the entire polygon as shown at Figure 4 (right).

Description of the Algorithm
As mentioned, we sweep the given class-3 orthogonal polygon P from bottom to top maintaining
information on the current trousers (at the current position of the sweep-line), and the ranges

of the guards and of the guard-requests. With each trouser 7', we also maintain 7’s guards
partitioned into two sets, Available(T) and Positioned(T), storing the guards in 7' that can
watch points in P above the current position of the sweep-line or not, respectively.

During the sweeping, we stop at each horizontal edge e and process it. If e is a S-edge, we
update the trouser information and set up and insert a corresponding type-1 guard-request. If e
is a N-edge, we process the guard-requests whose f-ranges are intersected by e’s z-range, position
the guards whose loc-ranges are subsets of e’s x-range, clip the guard-requests’ p-ranges and the
guards’ loc- and vis-ranges, and conditionally set up and insert a type-2 guard-request. After
all the edges have been processed, the resulting guard set Positioned gives us the locations of a
minimum-cardinality set of r-visibility guards.

Below, we give a detailed description of the algorithm in pseudocode when applied on a class-
3 orthogonal polygon P (the ranges of a guard g are denoted by g.loc-range and g.vis-range,
the ranges of a guard-request r by r.f-range and r.p-range, and the z-range of an edge e by
e.r-range).

Algorithm Class3_rStar_Cover(P)
Input : a simple class-3 orthogonal polygon P (no N-dents)
Qutput: a minimum set of r-visibility guards

1. sort the N- and S-edges of P by non-decreasing y-coordinate;
create an empty data structure D; to store the trousers;

2. {sweep from bottom to top maintaining the trousers}
for each N- or S-edge e in order do
if e is a S-edge
then create the corresponding type-1 guard-request, say, ;
locate e in the data structure of the trousers;
if e does not belong to any of the current trousers
then create a record for the new trouser T' (involving only e) and insert it in
the data structure Dy;
insert r in 1”’s guard-requests data structure;
Available(T) « ; Positioned(T) « 0
else if e is a S-dent
then {merge the two trousers Ty and Ty on either side of e}
remove 17 and Ty from D, and insert a new trouser 7T
merge the guard sets and guard-requests data structures associated with
T7 and T5 and associate them with T7;
insert r in the (merged) requests data structure;
else {e belongs to a single trouser T'}
insert r in 1”’s guard-requests data structure;
else {e is a N-edge}
locate e in the data structure D; of the trousers and let 1" be the trouser whose
boundary is incident with e;

{process T’s guard-requests whose f-ranges intersect e’s x-range}
for each guard-request r in T s.t. r.f-range N e.z-range # () do
{r.f-range not intersected before by x-range of a N-edge}
if 3 guards € Available(T) U Positioned(T) whose loc-range is a subset
of r.p-range
then g < lowermost such guard;
else if 3 guards € Available(T) whose loc-ranges intersect r.p-range

then g < lowermost such guard;
g.loc-range < g.loc-range N r.p-range;
else use a new guard g and insert it in Available(T);
g.level « level of e;
g.vis-range «— x-range of the grid segment of T containing e;
g.loc-range «— r.p-range;
remove r from T”’s guard-requests data structure;

{process T’s guards whose loc-ranges are “covered” by e}
for each guard g such that g.loc-range C e.z-range do
x4 + w-coordinate of left endpoint of g.loc-range;
position g at (xg4,y,) where y, is the level of g;
remove g from Available(T) and insert it in Positioned(T);

{clip ranges}
clip loc-ranges and vis-ranges (if needed) of guards € Available(T);
clip the p-ranges (if needed) of the guard-requests of T

{check if a type-2 guard-request is needed}

I — z-range of closure((grid segment at the level of e) — e);

if I is not entirely watched

then create a new guard-request /; {type-2 guard-request}
r’.p-range « I;
x; < x-coordinate of leftmost non-watched point in [;
x, «— x-coordinate of rightmost non-watched point in I;
r’ f-range «— (a7, x,);
insert 1’ in the guard-requests data structure of T’

3. report the locations of the guards in the resulting set Positioned.

The correctness of the algorithm follows from the fact that we use a new guard only when we
have located a portion of the polygon that is not watched by any of the currently used guards
and by any guard above the sweep-line at its current position, from Lemmas 2.1 and 3.1, and
from the preceding discussion.

Time and Space Complexity

Let n be the number of vertices of the given class-3 polygon. Then, the number of trousers
is O(n) and so is the number of guard-requests (we have at most 1 guard-request for each of
the S-edges (type-1 request) and each of the N-edges (type-2 request) encountered), and the
number of guards (note that by placing a guard on each N- and S-edge, we can watch the entire
polygon).

Data Structures. Let us now discuss the data structures used. Since we need to be able
to insert new trousers, to delete trousers, and to search the current trousers to locate the one
incident with an edge (see Lemma 2.1(ii)), we maintain the trousers in a balanced binary search
tree D; storing them in order from left to right; then every insertion, deletion, and search
operation takes O(logn) time.

Each of the guard sets Available(T) and Positioned(T) associated with a trouser T is stored
with 7" in a doubly-linked list with pointers at both ends so that insertion, deletion, and list
concatenation can be done in constant time.

In order to store the f-ranges of all the guard-requests (we do not distinguish them depending
on the trouser to which they belong since the f-ranges of guard-requests from different trousers

do not overlap), we use two threaded balanced binary search trees T; and 7T, storing the f-ranges
in their leaves (since the trees are threaded, their leaves are linked in order from left to right in
the tree) with each pair of corresponding leaves in 7} and 7, linked to each other: T} (7., resp.)
stores the f-ranges in increasing order of their left (right, resp.) endpoint and in case of ties in
decreasing order of the level of the edge that caused the guard-request. The size of each tree
is again O(n) and thus, inserting and deleting an f-range in both trees can be done in O(logn)
time. In order to find all the f-ranges intersected by the x-range of a N-edge e, we work as
follows: if e has its left endpoint on the boundary of a trouser defined by the sweep-line at its
current position (see Lemma 2.1(ii)), we use 7] to locate all the f-ranges, if any, with their left
endpoint identical to e’s left endpoint, and move rightward from leaf to leaf using the thread
pointers until all the f-ranges intersecting e’s z-range are located; if e has its right endpoint
on the boundary of a trouser, we work similarly with 7,.. In summary, this can be done in
O(t +logn) time where ¢ is the number of f-ranges accessed (and which are deleted).

Clipping on the guards’ vis-ranges is done in an implicit way; thus, the vis-ranges are stored
in a special doubly-linked list as shown in Figure 5. Each node corresponds to a vertical edge
(which defined the endpoint of a vis-range or which clipped a previously defined vis-range) and
stores the z-coordinate of that edge and a y-ordered sublist of vis-ranges (with pointers at both
ends) ending at that vertical edge; the levels of the vis-ranges stored at the sublists of two nodes
enable us to compare them along the y-axis. If the clipping affects only the first or last node in
the list, then we simply update the z-coordinate stored in the node in O(1) time. If the clipping
affects more nodes, then their sublists are concatenated (maintaining their y-ordering) and again
the a-coordinate stored in the first or last node of the resulting list gets updated; the O(1)-time
concatenation of the sublists of two consecutive nodes t1,ty is charged to the horizontal edge
incident on the top endpoint of the vertical edge corresponding to the lowermost node between
t1 and to (the sublist of the lowermost node gets linked to the sublist of the other one).

A similar data structure is used to store the guard-requests’ p-ranges together with the
guards’ loc-ranges; all these are linked together in y-ordered sublists which also have extra
pointers doubly-linking only the p-ranges. Clipping is done as above. Getting the lowermost
guard to fulfill a guard-request r involves getting to the sublist node for r (through pointers
from T; and T,.) in the first or last node of the main list and then moving upwards in the sublist
until a guard’s loc-range is found; if a guard is found, then all the traversed guard-requests will
be fulfilled by that guard and they are removed (we may remove some guard-requests whose
p-ranges are not intersected by the z-range of the currently processed N-edge but this does not
cause an error), whereas if no guard is found then a new is used who again fulfills all the traversed
guard-requests. Assigning the loc-range of the guard to the p-range of the guard-request is done
by using the representation of the guard-request for the guard’s loc-range and updating the
information and pointers for the p-ranges linking.

Complexity. Sorting the N- and S-edges (by y-coordinate) takes O(nlogn) time. Then, for
each S-edge e, we need to locate e with respect to the existing trousers in Dy, do at most one
insertion and at most two deletions of trousers (in O(logn) time), and update the information
stored in the corresponding trouser (in O(1) time).

Let us now consider the processing of each N-edge e. Locating all the O(n) N-edges in D,
takes O(nlogn) time. Processing all the guard-requests whose f-ranges intersect the z-ranges
of all the N-edges requires O(nlogn) time for searching 7;, 7)., and O(n) for the deletion of
guard-requests. Processing all the guards whose loc-ranges are covered by N-edges is done using
the loc-ranges list and takes O(1) time per guard since the guard-requests in the same node have
already been processed and removed. Clipping is done in O(n) time in total, since the clipping
vertical edge is charged for the O(1)-time information updates while a different horizontal edge
is charged for each O(1)-time sublist concatenation. Handling all type-2 guard-requests takes

Figure 5: The data structure for the guards’ vis-ranges (rectangles connected by thick lines
indicate nodes of the main doubly-linked list, dark circles indicate sublist nodes).

O(nlogn) time; for each such request 7/, locating the leftmost and rightmost non-watched points

can be done in O(1) time using the vis-ranges data structure, inserting and linking " in the

p-ranges (and loc-ranges) data structure is done in O(1) time as well, whereas inserting " in T;

and T, takes O(logn) time. In summary, processing all the N-edges takes O(nlogn) time.
Since reporting the guards takes O(n) time, we have:

Theorem 3.1 Let P be a simple class-3 orthogonal polygon with n vertices. Then, a minimum-
cardinality set of r-visibility guards watching the entire P can be computed in O(nlogn) time
and O(n) space.

4 Concluding Remarks

We presented an O(nlogn)-time algorithm for computing a minimum r-star cover of a class-3
orthogonal polygon on n vertices. It would be interesting to make our algorithm output-sensitive.
We believe that a more conservative policy on collecting guard-requests will help improve the
time complexity to O(n + klog k) where k is the minimum number of guards needed to watch
the given class-3 orthogonal polygon.

We leave as open problems the following on minimum r-star covers: obtaining faster al-
gorithms for general simple orthogonal polygons compared to the algorithm of Worman and
Keil [13], investigating the complexity of the problem on orthogonal polygons with holes, and
studying extensions of the problem in three dimensions.

Finally, it would also be interesting to obtain faster algorithms for the s-star covering problem
on general simple orthogonal polygons; the current fastest algorithm takes O(n®) time [10] and
is based on the graph-theoretic approach.

References

[1] A. Aggarwal, The Art Gallery Theorem: its Variations, Applications, and Algorithmic Aspects, PhD
Thesis, Department of Electrical Engineering and Computer Science, Johns Hopkins University,
1984

[2] J. Culberson and R.A. Reckhow, Orthogonally convex coverings of orthogonal polygons without
holes, J. Comput. Syst. Sci. 39(2), 166-204, 1989

[3] L. Gewali, M. Keil, and S.C. Ntafos, On covering orthogonal polygons with star-shaped polygons,
Information Sciences 65, 45-63, 1992

10

[4]

J. Kahn, M. Klawe, and D. Kleitman, Traditional galleries require fewer watchmen, SIAM J. Alge-
braic Discrete Methods 4(2), 194-206, 1983

J.M. Keil, Decomposing a polygon into simpler components, STAM J. Computing 14, 799-817, 1985

J.M. Keil, Minimally covering a horizontally convex orthogonal polygon, Proc. 2nd Annual ACM
Symp. Computational Geometry, 43-51, 1986

G. Li and H. Zhang, A rectangular partition algorithm for planar self-assembly, Proc. IEEE/RSJ
Int. Conference on Intelligent Robots and Systems, 3213-3218, 2005

A. Lingas, A. Wasylewicz, and P. Zylir’lski, Note on covering orthogonal polygons with star-shaped
polygons, Information Processing Letters 104(6), 220-227, 2007

A. Lingas, A. Wasylewicz, and P. Zyliniski, Linear-time 3-approximation algorithm for the r-star
covering problem, International Journal of Computational Geometry & Applications 22(2), 103-141,
2012

R. Motwani, A. Raghunathan, H. Saran, Covering orthogonal polygons with star polygons: the
perfect graph approach, J. Comput. Systems Science 40, 19-48, 1990

J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987

J. Urrutia, Art gallery and illumination problems, Handbook of Computational Geometry, Elsevier
Science, Amsterdam, 973-1027, 2000

C. Worman and J.M. Keil, Polygon decomposition and the orthogonal art gallery problem, In-
tern. J. of Comput. Geometry € Applications 17(2), 105-138, 2007

11

