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Abstract

The ever increasing volume of available social network skttacreates
the need to derive anonymization methods that permit usetallysis of such
datasets without disclosing any sensitive informatiorarding their users.
In this article, we review the problem of privacy in onlinec&d networks
focusing on related models and algorithms.

1 Introduction

Recent years have witnessed a tremendous increase of théagtypof online
social networking (OSN) sites. More and more people joitoer social networks
on the web, (such as Facebook, Linkedin, or Twitter) to comigate and share
information with their friends.

Social networks are instances of a general type of dataseteednetwork
or graphdatasets. Network datasets appear in a variety of domamsexample,
network datasets includeformation network®f articles connected by citations or
co-authorshipcommunication networksf Internet hosts related by traffic flows,
mobile-phone and email users connected based on the medbkagehave inter-
changed, anépidemics networkdescribing for example, the transmission of in-
fectious diseases among individuals. The actors and thal selationships among
them in social networks (and graph datasets in general)eamdeled using graph
models whose vertices correspond to actors and edges tiomslaps.
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The increasing volume of available network datasets csdaw¢h the need to
protect the privacy of the individuals involved in them, lal$o the potential to
extend their analysis towards improving our understandihtheir structure and
the complex patterns involved in them. Social networks asdyaed for example
to study disease transmission, to detect spam, to measuneflidrence of a publi-
cation, to detect trends in user behavior, or to evaluateeigency of a network
to attacks.

In this article, we consider the problem of publishing sbaoetwork data to
allow useful analysis without disclosing sensitive infation. The problem can
be formalized as follows.

In a nutshell, given a network= construct an anonymized netwok* in which
private information is hidden. There are three differertiti@s involved:

1. theusersof the social network whose private data needs to be pratecte

2. theadversaryor attackerthat attempts to combin&™ with any external
information that she owns or can attain to deduce privatzinétion,

3. the benigranalystwho wants to usé* to extract useful information.

Then, the problem is how to construGt so that both (i) the private data of
each user are protected under all possible forms of extknwlledge of the at-
tacker and (ii) the utility ofG* for the analyst remains high. The problem and its
solutions take various forms depending on what type of mfdion is considered
private, the extent and form of the background knowledgdefattacker, and the
privacy and utility criteria that the released network reetsatisfy.

In the remainder of this article, we focus in this privacylgem and its varia-
tions. In Section 2, we present the formal model of the probéad in Section 3
related algorithms. In Section 4, we outline other issuesdes data anonymiza-
tion. Section 5 concludes the paper.

2 The OSN Privacy Model

In this section, we introduce the basic abstractions usddrtoulate the privacy
problem in OSNs. First, we present the graph model that isdjlg used to repre-
sent OSNs. Then, we focus on the model of privacy that ingltiaeee important
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AI|ce Bob Carol

O—O
| ID [Age| Sex |HIV | i \
Alice | 25 | Female| Pos pave Ear
Bob | 30 Male | Neg Q/ \Q
Carol | 30 | Female| Neg

Dave | 19 | Male | Pos Fred Greg Harry
Earl | 45 Male | Neg (b)

Fred | 23 Male | Neg
Gerg | 45 Male | Pos

Harry | 19 Male | Neg
(@)

Figure 1: (a) Example of tabular data, (b) example of so@alork data.

components (i) a concrete specification of what is consitiprivate and needs to
be anonymized, (ii) the type of external information thatattacker or adversary
may posses, and (iii) a set of criteria to assess the degrpevaty attained (i.e,
“how much” private are the data released) and the assocdta®tdor loss in their
utility for analysis.

Most existing work on privacy in data publishing has focusedelational data,
where the data to be released are in tabular format with esrd representing
a separate entity. An example of tabular data is shown inr€id@{a), while an
example of OSN data is shown in Figure 1(b). However, anongtitin techniques
for tabular data do not apply to social network data, sinesettechnigues do not
take into account the interconnectedness of the entitieseifample, the fact that
Alice is connected with Bob). For a survey on privacy preagon for relational
data, see for example [4].

2.1 Social Networks as Graphs

A social network and in general any network dataset is contynorodeled as
a graph where vertices correspond to users or other enpiiggipating in the
network, such as for example, groups of users, or matereleshamong users
(such as photos or documents). Links between users repretaionship between
them (such as users being “friends” or “followers” of eadan}, interactions (such



as information exchange in the form of emails or messagaspus dependencies,
or commonalities among users (such as similar behaviormnuan interests).

Definition 1 (Basic OSN Model) An OSN is modeled as an undirected grédphk-
(V, E) whereV is a set of vertices andl = V' x V is a set of edges. The vertices
v € V model individual social actors in the network, while the esig), v2) € E
represent a relationship between social actoysandvs.

An example of social network data representing by a graphds/s in Figure
1(b). Vertices corresponds to individuals actors and edgesng them represent
relationships.

Extended graph models have been used to capture the caséimthe re-
leased data include additional information besides iddials and their connec-
tions. Such models include:

- edge weights or edge labels used to represent, for exathplémportance
or strength of connection between the two individuals,.(¢tge number of
messages that they have exchanged, or the affinity of tHetrameship), the
type of the connection (e.qg., friends), or other attribatiethe corresponding
relationship that the edge models.

- directed graph models to express the fact that the rekttiprbetween two
individuals is not symmetric (i.e, that fact that is connected with, does
not necessarily means that is also connected with;) as is the case in
some social networks, e.g., “follow” in Twitter,

- attributes or labels associated with vertices, for examiol Figure 1, each
vertex instead of being labeled with just the ID of the cquasling actor,
it could have been labeled with additional attributes ofabtr (such as her
genre or age).

- the domain of the labels associated with vertices and edggstake values
from hierarchical domains; in such cases, the value of tieldamay differ in
the level of the provided detail and thus in the level of privdisclosed (e.g.,
age may be described using general categories such as yaunggdle-
aged).



Besides general graphs, specific types of graph, such agitefgaphs, have
also been used to represent OSNsk-partite graphconsists ofk disjoint sets of
vertices, with no edges between vertices of the same seh @aphs are used to
model social networks that involve entities of differenpag. For example, users
at a site such as deli.cio.us, place tags on Web pages, #matingr social networks
that involve three distinct types of entities: users, tagsl pages. This naturally
leads to a 3-partite graph with the corresponding threefssitdies. In this graph,
the only edges are among entities of the same type. Userslated to each other,
if they use the same tags frequently, or if they tag the sargegpaSimilarly, tags
are related to each other, if they appear on the same pages wsed by the same
users and pages are related to each other, if they have mémy £dime tags or are
tagged by many of the same users.

2.2 Privacy Model

But what do participants in an OSN consider as private in&diom that needs to
be protected?

This appears to be highly subjective. Some interesting faagarding the pat-
terns of personal information revelation and the privacylioations associated
with OSNs were reported in a study involving 4000 users iretiidy days of Face-
book [9]. The authors observed an apparent openness of ¢ng tasreveal per-
sonal information to a vast network of loosely defined aaofag@ices or complete
strangers. Further, the relation between privacy and to&lsnetwork of each
user was multifaceted. In certain occasions, users wargesbpal information to
be known only by a small circle of close friends, and not barsgiers, whereas
in other instances, they were willing to reveal personarimfation to anonymous
strangers but not to those that know them better. It needstalbe stressed that
as opposed to real life, where friendships have degree®sékss, in online net-
works, friendships tend to be binary. The authors also lgghpotential privacy
breaches and other dangers, such as identifying anonymied using similar
photos that the users have released in other networks, drining released infor-
mation such as age, address or occupation for stalking,fseriglentity theft, or
even for deducing their social security numbers.

Another issue that complicates privacy management in OSKi multitude
of the available information. In relational data, the imf@tion made available is



in the form of attribute-value pairs, thus privacy pres@orais performed at the
level of attributes. In particular, the goal is to proteat thisclosure of the values of
specific attributes associated with a user, cadledsitiveattributes. For example,
some users may consider as sensitive attributes theiigabliieliefs, others their
age or the type of disease that they may suffer from. For elgrimpFigure 1(a),
users may want to protect the value of their age or HIV attebu

In OSNSs, sensitive or private data privacy protection gagghd protecting
the values of single attributes. In general, sensitivermfdion may be classified
as referring to:

vertex existencewhether a target individual appears in the network or not
(for example, we may want to hide the appearance of indivédnaa disease
infection network),

identity disclosurebesides just the existence of an individual, her correspon-
dence to a specific vertex in the social network is revealedefample, the
fact that Alice is associated with the leftmost vertex in ¢inaph of Figure

1(b))

vertex attribute disclosurebesides the identity of an individual, other at-
tributes that she considers private are also disclosedeffample, the fact
that Alice is HIV positive)

link or edge disclosurethe sensitive relationship between two individuals is
disclosed, (for example, the fact that Alice and Bob arenfigein the graph
of Figure 1(b))

edge attribute disclosuresensitive attributes related with an edge are dis-
closed

content disclosureithe sensitive data associated with each vertex or edge
is compromised (for example, the actual content of the ema#sages ex-
changed between two individuals in an email communicatetwark is dis-
closed)

property disclosure:properties regarding the network structure around an
individual are revealed, such as vertex degrees clustedafjicient or prop-
erties of the neighbors of a vertex (for example, implyingttthe specific
individual is a community leader).



2.3 The Attacker

Central to protecting the privacy of an OSN is knowing theetg external knowl-
edge that a malicious user, called attacker or adversasyoihean attain regarding
the OSN.

In relational data, a common assumption is that the attdakmws the values
of specific attributes, callequasi identifiers Using the values of these attributes,
such as say the age or the address of a user, an adversary teatghy identify
an individual in areleased table, even when the identitheftdividual is masked.
For example, it suffices for an attacker to know that AliceSg/2ars old, to deduce
from the tabular data in Figure 1(a) that Alice is HIV pogtiveven if her identity
is hidden.

For OSNs, external knowledge may take many different for@gecifically,
besides values of specific attributes, the attacker may krameledge of the struc-
tural properties of the network. A commonly made reasonabsamption is that
the structural knowledge of the attacker is local, limiteétsmall radius or neigh-
borhood around the targeted individual.

In general, external information may either

- consist of background knowledge of the adversary, or

- be acquired through specific malicious actions of the ahrgr calledat-
tacks

Background knowledge may exist due to the fact that the adveis a partici-
pant in the network which gives her innate knowledge of tieoparticipating en-
tities and their relationships. Background knowledge maglso attained through
public information sources.

External information sources may be accurate or not. Evemvelccurate, the
provided information may not be necessarily complete. Tawlstinction is made
between:

- a closed world adversaryin which case, external information is complete
and absent facts are considered false,

- an open world adversaryin which case, external information may be in-
complete and absent facts are simply unknown



| D | Ho [Hi]| H2 |

Alice | Female| 1 {4} /O O C\ O
Bob Male 4 | {1,1,4,4} Dave O DaveQ/ O
Carol | Female| 1 {4} Q/%

Dave | Male 4 14{2,4,4,4}

Earl Male 4 | {2,4,4,4} (b)

Fred | Male | 2 {4, 4

Gerg | Male 4 | {2,2,4,4

Harry | Male 2 {4, 4}

Figure 2: (a) The results of the vertex refinement querieshergtaph of Figure
1(b), and (b) the results of subgraph queries with 4 edges fastthe graph of
Figure 1(b) using breadth first search search (left) anchdiénst search (right)

The authors of [12] use a query-based model of attacks. Arradwy is as-
sumed to have access to a source that provides answers tactustt query@
evaluated for a single target verte>of the original graph=(V, E). Let Q(v) be
the provided answer. The candidate setdawith regards toQ is a set of ver-
tices in the anonymized graplis,(V,, E,) defined as:candg(v) = {w € V, |
Qv) = Q(w)}.

Three types of queries are proposédertex refinemengueries is a class of
queries of increasing power that report on the local strectfi the graph around
a vertex. The weakest knowledge query, quiy(v), simply returns the label of
v. QueryH;(v) returns the degree of, while H,(v) returns the multi-set of the
degrees of each of the neighborswof Generalizing,/;(v) returns the multi-set
of values which are the result of evaluatifty_; on the vertices adjacent tq
whereasH* stands for the iterative computation #f, until no new vertices are
distinguished. An example is shown in Figure 2 (a) using ttagly of Figure 1(b)
and assuming that vertices are labeled with the sex atribut

Subgraph queriesre a class of queries about the existence of a subgraph
around the target vertex. Their descriptive power is meabby the number of
edges in the subgraph, termedge facts Different subgraphs correspond to dif-
ferent strategies of knowledge acquisition by the advgrsacluding breadth-first
and depth-first exploration. For a given number of edge fatime queries are



more effective at distinguishing individuals. Figure 2¢&picts the result of two
subgraph queries with three edge facts around the individewaDave. As op-
posed to vertex refinement queries that are closed worldraph queries are open
world. Finally, hub fingerprint queriesssume the existence of hubs. A hub is a
vertex with a high degree and high betweenness centraléy, the proportion of
shortest paths in the network that include the vertex). A figerprint query,
F;(v) for a target vertex, is a description of the connectionsofo a set of des-
ignated hubs in the network, wheféas a limit on the maximum distance. Hub
fingerprint queries may be open-world or closed world. Fanegle consider that
Dave and Earl in Figure 1(b) are hubs, theh, (Fred) = (1; 0) - meaning that
Fredis connected witiDave but not with Farl within distance 1 - and similarly,
Fy(Fred) = (1;1).

Since users often participate in more than one social n&tvibe authors of
[17] consider a form of attack that is based on knowing thecstire of another
auxiliary social networkwith overlapping membership with the targer network.
Given a set of seeds vertices with known mappings betweeautkigary and the
target OSNSs, the attacker attempts to learn private infoomabout other mem-
bers of the target network. The authors applied their dewamization algorithm
using Twitter as the target network and Flickr as the auxilisetwork. They show
that a third of the users who are verifiable members of bottkF&nd Twitter can
be recognized in the completely anonymous Twitter graphn witly 12% error
rate, even though the overlap in the relationships for timeembers is less than
15%.

Particular to social networks is the fact that the attackay tme a user of the
network herself, thus she may interfere and alter the nétivefore its anonymized
version is released. Consequently, targeted attacks araatbrized as [1]:

- active when the attacker attempts to compromise privacy by sficety
creating new users and edges before the anonymized netsvaleased, so
that these new vertices and edges will be present in thesedazetwork, and

- passive when the attacker tries to deduce private information arfilyr the
anonymized network has been released.

A specific active attack for attaining structural infornaaitiof targeted individu-
als is described in [1]. Before the anonymized network isaséd, the attacker cre-
ates links with other cooperating users (or, creates nevs asel links with them),
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so that a highly connected subgraph having a distinctivestre is formed. Then,
she links this subgraph to the targeted individuals. Afterdanonymized network
is released, the attacker searches to locate the injectegiaqah in the network.
From this subgraph, she can identify the targeted indiv&aad attain structural
information about them. The authors show that given a nét@owith n vertices,
it is possible to construct a pattern subgraph wkith O(log(n)) vertices that will
be unique inG with high probability. Further, this subgraph can be effitie
found in the released network* and can be linked to as many @5log?(n))
target vertices.

In general, the success of an attack depends both on theptiescpower of
the external information and on the structural diversityhaf OSN itself.

2.4 Evaluation

An anonymized network is evaluated with regards to two dat@amely on whether:
(i) the private data of each user are protected and (ii) tiieywdf the graph is pre-
served.

2.4.1 Privacy Criterion

A privacy criterion characterizes how safe it is to releaspecific instance of an
OSN. In relational data, a criterion that is often usek-anonymity[18, 20].

Definition 2 (k-anonymity) Given a set of quasi-attribute®, ..., Qq4, a re-
leased relatioril™ is said to be k-anonymous with respecig, ..., Qq, if each
unique tuple in the projection @* on Q)+, ..., @4, occurs at leask times.

This means that an individual is hidden amdngthers, in the following sense.
An adversary that knows only the values of thguasi attributes can only guess
which of thek tuples correspond to a specific individual with probabilifjt. For
example, if we consider that the quasi attributéés, and the sensitive attribute
is HIV, then, the Table in Figure 1(a) is 2-anonymous.

Many approaches inspired by k-anonymity have been propios€dNS. They
differ on what is considered as “quasi” information. Exaegpbf such definitions
are given in Section 3.
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2.4.2 Utility Criterion

Utility, also called information loss or anonymization djtya depends on the type
of analysis that we want to perform on the anonymized graph.

In the case of relational data, in general, utility is meaduwising the sum of
information loss in individual tuples. This may be quandfley the distance of the
tuple in the original table from the anonymized tuple in takeased table.

In the case of OSNSs, utility may be measured by various nget8ach metrics
can be roughly put into two categories with regards of whrethe goal is to:

- preserve general graph properties of the released graph, o

- maintain a high quality for the result of executing aggtegeetwork queries
on the released graph.

Some examples of graph properties that we want to maintainde between-
ness (that measures the degree an individual lies betwaen iatividuals in the
network, in their shortest path), closenes (that meastesglégree an individual
is near to all other individuals in the network directly odirectly), the shortest
distance between the vertex and all other vertices reagliadh it, centrality (the
counts the number of relationships to other individualshie metwork), and path
length (that is, the distances between pairs of verticelsadmetwork).

In terms of graph properties, the best utility is achieve@mthe released graph
G* is isomorphic to the original grapf.

Definition 3 (Graph Isomorphism) Given two graphs) = (Vg, Eg) andG =
(Ve, Eg), Q is isomorphic to G, if and only if there exists at least onedtiye
function f : Vo — Vi such that for any edgéu,v) € Eq, there exists an edge

(f(u), f(v)) € Eg.

Measuring utility in terms of aggregate queries is usefpkeeglly in the case
in which the edges or the vertices of the graph are labeleslidh a case, we often
want to compute the aggregate on some path or subgraph tisfiesaa given
condition. For example, assume that the vertices in thehgod-igure 2(b) are
labeled with the age of the participants; an aggregate quenid be to compute
the average distance between people of similar ages as aipposhe average
distance of people of different ages. Such queries are lugaftany applications,
for example in customer relationship management.
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Often, utility is empirically evaluated through experint®n the anonymized
graph.

3 Algorithms

There are two general approaches to constructing the aripaggraphz*, namely
releasing data vs releasing statistics. In this articlefages on the former. The
latter based odifferential privacy|[7] is beyond the scope of this work.

3.1 Naive Anonymization

With naive or pseudocanonymization, all identifiers in the initial graph G are re-
placed with random numbers in the released graph G*. An elamshown in
Figure 3(a).

Let us consider vertex re-identification. Can an adversadude which vertex
in the anonymized network in Figure 3(a) corresponds to I2andth no external
information, Carol could correspond with equal probapili any of the 8 vertices.
But, what if the adversary knew that Carol has only one naghihen, Carol can
be mapped only to two vertices (namely vertices 1 and 3). Adttitional external
knowledge such as the strength (or type) of the connectinradaersary could
even reduce the candidate vertices in the hidden networst@jsingle one.

What about edge disclosure: can an adversary deduce thiddwiified indi-
viduals, say Alice and Bob, are connected in the anonymizddiark? With no
external knowledges, Alice and Bob have a 11/28 likelihobang connected.
But what if, the adversary knew that Bob is the sole neighbodhof Alice, or the
strength of their connection, or both?

The examples above show that pseudo-anonymization isnalileeto various
types of attacks. However note, that haive anonymizatidwieses the best utility,
since the anonymized graph is isomorphic to the originalvoek.

The approaches to OSN anonymization can be distinguishedvim general
categories:

1. clustering-basear generalizatiorapproaches that cluster vertices and edges

into groups and replace a subgraph with a super-vertex, and
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Figure 3: (a) The naively anonymized graph of Figure 1(b) és)da 4-degree
anonymous graph

2. graph modificatiorapproaches that modify the graph by inserting or deleting
edges and vertices in the graph by either [10]:

e direct alteration adding or removing specific edges

e random alteration stochastically adding, removing or rewiring edges

Next, we present examples for each of the above approaches.

3.2 Clustering

With clustering-based approaches the edges and verticdke dDSN graph are
grouped together. Then in the published graph, verticeseataced by the formed
groups.

We present next an approach that cluster vertices into grofipt leask ver-
tices using a maximum likelihood approach. Other algorghimthis category
include: grouping entities (e.qg., individuals) into clessnd masking the mapping
between entities and the vertices that represent them iartbeymized graph [5]
and(k, 1)-grouping for bipartite graphs that preserve the undeglgraph structure
and instead anonymize the mapping from entities to vertotése graph [6].

3.2.1 Case Study: Clustering by Vertex Partitioning

The approach of [12, 11] preserves anomymity against argistructural knowl-
edge by generalizing a naively-anonymized grépliV,, £, ) by clustering its ver-
tices to create a new anonymized graph(V,, &£;). The vertices in/, are parti-
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tioned into disjoint setsy C V,. These sets become the vertices of the generalized
graphG,. In a sense, the ses can be thought of as super-vertices, since they
contain vertices fronds,, but are themselves the vertices(of.

The superedges df, include self-loops and are labeled with non-negative
weigths by the functionl. G, is a generalization o7, under a partition/,, if
the edge labels report the density of edgegi{in that exist within and across the
partitions. LetV, be the supervertices ¢f,. G, is a a generalization df, if, for
all Vv, V; € Vg, d(V;, Vj) = [{(vi,vj) € Eq | v; € V; andu; € V;}.

For any generalizatiorts, of graphG,, we denote byV(G,) all possible
worlds (i.e., graphs ove¥,) that are consistent wittv,. Vertices are partitioned
so that the generalized graph satisfies privacy goals andtimes utility. In the
extreme case that all partitions contain a single veriéX(z) contains just the
graphG,; function d encodes its adjacency matrix. At the other extreme, if all
vertices are grouped into a single partition, tiignconsists of a single supervertex
with a self-loop labeled withE,| (i.e., the total number of edges in the original
graph). In this caséV(G) is the set of all graphs ovéf, with |E,| edges. In this
case the generalization provides anonymity, but low ytisince it reflects only the
edge density of the original graph.

Let G, be a generalized graph such that each superveéitdras at leask
vertices. Ther( satisfies graph k-anonymity. The reason is that the gerechli
graph contains no information that allows the adversarysirdjuish between two
vertices in the same supervertex. Therefore, each of tiemore vertices in the
same supervertex are equally likely candidates for beiadatyet.

GivenG, andk, the proposed algorithi¥raphGen attempts to find the gen-
eralized graph that best fit5,. Fitness is estimatd via a maximum likelihood
approach.GraphGen starts with a single partition (i.e., superedge) contgjrah
vertices, and uses simulating annealing to search the ggaessible generaliza-
tions. Each valid generalized graph (i.e., one in which eaglervertex has at least
k vertices) is a state in the search spaGraphGenproposes a change of state,
by splitting a partition, merging two partitions, or moviagvertex to a different
partition. Each proposed change is evaluated based ondingeln likelihood that
results. The proposal is always accepted if it improvesileditiood and accepted
with some probability if it decreases the likelihood.
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3.3 Graph Modifications

In general, graph modification techniques work by addingd@deting) edges and
vertices. We present next a number of direct alterationnigctes that add (delete)
specific vertices or edges to achigvelegree k-neighborhood and-automorphic
anonymity. We also present an approach that uses randoratigteto preserve
edge weight anonymity.

Approaches that use random alteration for identity dissi®snclude: spec-
trum preserving edge randomization by edge swapping [2&@]uming low rank
approximation techniques to reconstruct the graph togofagnm the randomized
network [21].

3.3.1 Case Study: k-Degree Anonymity

In this case study, privacy refers to identity disclosure tre background informa-
tion of the adversary is the degree of the target vertex [E8}. example, assume
that an adversary knows that the target user has 421 coongdti a social net-
work. If in the pseudo-anonymized graph, there is only omgexewith degree
421, the attacker can identify this vertex as being the tadyendividual. This
privacy criterion is expressed througkdegree anonymity.

Definition 4 (k-degree anonymity) A graph G(V, E) is k-degree anonymous if
every vertex i/ has the same degree &asl other vertices irl/.

The proposed algorithm uses direct graph modificationseGagrapltz(V, E)
and an integek, the algorithm modifieg: via a set of edge addition and deletion
operations to construct a néwdegree anonymous gragh(V, E') in which every
vertex has the same degree with at ldadtother vertices

The utility objective is to keep the symmetric differensgmdiff betweenGd
andG’ defined asymdiffG,G’) = |E/E’' U E/E’|, as small as possible, so that
degree-anonymization does not destroy the structure ofjridugh. Utility is em-
pirically evaluated through experiments that comparertémesformed grapliy and
G’ in terms of their average path length, clustering coeffigiand the exponent of
power-law distribution.

The algorithm uses degree sequences. A degree seqdéméeanonymous,
if each distinct degree value thappears at leadttimes. Clearly, a graph whose
degree sequence isanonymous i%-degree anonymous. For example, the degree
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sequence of the graph of Figure 1(b), is [4, 4, 4, 4, 2, 2, Inghning that the graph
is 2-degree anonymous. The algorithm uses dynamic progiagnim construct a
new sequence that isanonymous with the minimum number of alterations. For
example, the above sequence can be Madiesgree anonymous by adding 2 edges,
resulting in [4, 4, 4, 4, 2, 2, 2, 2]. Then, a graph is createat tealizes this
sequence by adding edges to the origifal A degree sequenceis realizable,
if there exists a simple undirected graph with vertices igndegree sequencé
For the example, the above sequence can be realized, bydjliagaan edge from
Alice to Fred and from Carol to Harry, as shown in Figure 3wever, not all
degrees sequences are realizable. Take, for example edsggaences [1, 1, 1] or
[3,3, 3]

A heuristic is proposed that tries to realize a graph by ayldioise (edges)
in the sequence. In addition, greedy edge swaps are coadiderimprove the
achievedsymmdiff

3.3.2 Case Study: k-Neighborhood Anonymity

In this case study, privacy again refers to identity disates however the back-
ground information now is the immediate neighborhood of exg[25]. Take for
example the case that the attacker knows that Bob has twhbwig for whom, he
is the only neighbor.

Formally, the neighborhood of vertex € V' is the induced subgraph of the
neighbors ofu, denoted byVeighborg(u) = G(N, ) whereN,, = {v|(u,v) € E}.

Definition 5 (k-neighborhood anonymity) Assume a grapl&(V, E). A vertexu
€ V is k-neighborhood anonymous in G, if there are at lefast other vertices.,

. ug—1 € V such thatNeighborg(u), Neighborg(uy), ..., Neighborg(ug—1)
are isomorphic. G ig-anonymous if every vertex in Gisanonymous.

The algorithm uses direct alterations and works in two st&€pging the first
step, the neighborhoods of all vertices in the network ateeted and encoded to
facilitate comparison between neighborhoods. The neidftmal N eighbor(u)
of each vertex: is divided into into components that correspond to the makim
connected subgraphs dfeighborg(u). Each component is then encoded using
a technique that utilizes a depth-first pre-order travess#the graphs. During the
second step, the vertices are greedily, organized intqogt@nd the neighborhoods
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of vertices in the same group are anonymized. Anonymizasi@ossible by both
(a) adding edges and (b) generalizing edge labels.

The OSN model in [25] includes vertex labels from a label GetThe label
set L forms a hierarchy. For example, if occupations are used d@exvi&abels,
in addition to specific occupations such as dentist, gemdmgdician, high school
teacher, and primary school teachéralso contains general categories such as
medical doctor and teachetl also includes a special label, denotedhythat
corresponds to most general category generalizing allr déifeeels. For any two
labelsiy, I € L we write l; < [o, if 1 is more general thah,. For example,
medical doctor< dentist In addition,l; < o, if and only if, [y < I or l; = I5.
Relation= is a partial order ord..

Having labels allows generalization by replacing speciéitegories by more
general ones.

Utility is empirically measured by considering queriesttb@ampute some ag-
gregate on some paths or subgraphs satisfying some giveitioos E.g., Average
distance from a medical doctor to a teacher

3.3.3 Case Studyk%-Automorphic Anonymity

In this case, identity disclosure is studied, but now theeg&incase is considered,
where the adversary knows the subgraph of the OSN graphislimisdeled by an
adversary queryy that corresponds to a subgraph of the OSN gré@dR6]. The
goal is to anonymizé&- so that there are at leastdifferent results omatchedor
Q in the anonymized graph.

This is formalized using the notion of graph authomorphisAn automor-
phism of a graplG = (V, E) is a permutatiory of the vertex set’, such that for
any edges = (u,v) € E, f(e) = (f(u), f(v)) is also an edge if7. That s, itis a
graph isomorphism frond to itself underf.

If there existk automorphisms iz, it means that there exists1 different
automorphic functions.

Definition 6 (Sub-Graph Isomorphism) Given two graphs) and G, graph @
is sub-graph isomorphic to grap@, if there exists at least one sub-graph in
graphG such that is isomorphic taX under a bijective functiorf. SubgraphX
is called a sub-graph match (match for short)@fin G, while the vertexf(u) in
G is called the match vertex with regard to vertein Q).
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Definition 7 (k-automorphic graph) A graphG is called ak-automorphic graph,
if (a) there existk-1 automorphic functiong,, (« =1, ..., k-1) in G, and (b) for
each vertex in G, F,, (v) # Fo,(v), l < a1 #ay <k —1).

Definition 8 (Different Matches) Given a sub-graph quer§, a graphG and two
matchesn, andms of @ in G that are isomorphic ta) under functionsf; and
f2 respectively, are called different, if there exists no&ertin query Q, such that

fi(v) = fa(v).

Definition 9 (k-different match principle) Given a graphG any sub-graph query
Q, G obeys the:-different match principle, if (a) there exist at ledstmatches of
Q@ in G, and (b) any two of thé matches are different matches.

The proposed K-Match (KM) algorithm uses direct alterati@md works in
three steps. In the first step, the graph is partitionednnibbocks which are then
clustered inm groups so that each of the groups contains at leaktblocks. In the
second step, the blocks are aligned to attain isomorphickblby adding edges.
In the third step, an “edge-copy” technique is applied todfmmatches that cross
blocks.

Utility, called anonymization cost, is defined similarlytivthe symmetric dis-
tance aost(G,G') = (FUE') — (ENFE').

3.3.4 Case Study: Privacy of Edge Weights

In this case study, we consider a social network with edgghtei[15]. Here the
goal is to protect the privacy of the weights.

Anonymization is achieved by modifying the edge weightslityis measured
in terms of the shortest paths and their lengths, where tbdestt path between
two vertices is defined as the path with the minimum sum of ttsigThe authors
show that there does not exist a perturbation schema sughéshortest paths and
the corresponding lengths between any pair of vertices atie ireserved. They
present two complementary schemes that partially achimaetgoals.

With Gaussian perturbation, the weight; of each edgév;, v;) in graphG is
replaced in the anonymized graph by a new weightv; ; computed asw; ; =
w; ; X x; j, wherex; ; is a randomly generated number from the Gaussian distribu-
tion N (0,02). Numberz; ; can be generated locally by andv,. Verticesv; and
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v; may independently generate random numb;égsand:cf’ ; respectively from the
Gaussian distributioiV (0, 0%). Then,z; ; may be set as the average valuerpf
andxij. However, Gaussian perturbation does not maintain the saorgest path
when the perturbation (i.ez) gets large.

Greedy perturbation achieves the utility objective forwegisetH of shortest
paths in a static network. Edges@hare divided into three types with respect to set
H: (1) non-visited edges, that are edges that no shortestipafhpasses through
them, (2) all-visited edges, that are edges that all shqughs inH pass through
them, and (3) partially-visited edges that are edges swattstime but not all short-
est paths ind passes through them. The greedy algorithm carefully inerem
or decrements the weights of an edge based on its type usrfgltbwing obser-
vations. Increasing the weight of a non-visited edge do¢simange any shortest
path inH or its corresponding length. Decreasing the weight of amisited edge
does not change any shortest patl#inbut may change their lengths. For partially
visited edges, both increasing and decreasing their vahagslead to modifying
shortest paths ifi/. Thus, such modifications are appropriately constrained.

3.4 Extensions

We discuss next two important extensions with regards tonamgation algo-
rithms: (a) personalization and (b) dynamic networks.

Personalization All approaches presented so far assume that all users have si
ilar privacy needs. In practice, however, users have diffeprivacy protection
requirements. For example, in Facebook, a user can spehdy part of her pro-
file or her connections should be made visible to others.

The authors of [23] present a personalized framework tHatothree differ-
ent levels of protection requirements based on gradualigmcing the background
knowledge of the attacker. Specifically, for a vertexi a published labeled graph:
Level lassumes that the attacker knows only the label bEvel 2assumes that the
attacker knows both the label and the degree aidLevel 3assumes that, besides
the label and degree of the attacker also knows the labels on the edges adjacent
to v. The proposed algorithms combine label generalizationdinedt graph alter-
ation methods. Specifically, for Level 1 protection, verasel generalization is
used. For Level 2 protection, vertex/edge adding methoel€@nbined with the
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protection for Level 1, while for Level 3 protection, an edgkel generalization is
used in addition.

Dynamic Networks Social networks evolve over time. Thus, often multiple
snapshots (or, versions) of the same network at differem¢ instances may be
published to allow analysis of the evolution of the networkl gerform longitu-
dinal data analysis. This creates the potential for a new kinattack, since an
adversary may deduce private information by combiningrmtation from differ-
ent versions of the same network. For example, knowing lieatiarget has reduced
its connections by 7 can lead to identity disclosure if thergist a single vertex
with this characteristics.

The class-based clustering anonymization method of [Stteneled in [2] for
the dynamic case using link prediction algorithms to model ¢volution of the
social network. Based on the predicted edges, a groupingrtites is chosen so
that not only do existing edges meet an appropriate grougngition for privacy,
but also future edges are unlikely to violate it either. THd Klgorithm of [26]
also supports dynamic releases by a vertex ID generalizatiethod that allows
lists of IDs to be assigned to each vertex so that each pkatitidi is hidden within
the list.

4 Beyond Data Publishing

In the previous sections, we focused on data anonymizatibieeed through pub-
lishing a transformed graph. In this section, we discuserapproaches to privacy
for OSNs.

A different line of research has been focusing on the use@3Ms. Various
tools have been proposed to allow usspecifytheir privacy requirements and
measurehe potential privacy risks of the information that theyrgha

Most of the available social network management systenes tifftheirs users
only coarse control in specifying their privacy requirenserin general, users are
allowed to characterize a given piece of information onlypeisg public, private,
or accessible to a limited set of other users (e.g., theid§enMore advanced
specification languages have been proposed. For exampecass control mech-
anism that adopts a rule-based approach in specifying apudisies is proposed
in [3]. In this approach, authorized users are denoted mdeaf the type, depth,
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and trust level of the relationships they have formed in taad network. Access
to a resource is granted only if the requester succeeds ipmgnating that she is
authorized to do so by providing a proof.

While fine-grained privacy control is useful, it is difficdtir the average user
to specify such detailed policies. To address this probketemplate for the design
of a social networking privacy wizard is proposed [8]. Theiition for the design
of the wizard comes from the observation that privacy pesfees of the users
(such as which friends should be able to see which informatisually follow
some implicit set of rules. Thus, it is possible to build a hiae learning model to
concisely describe such preferences using only limiteduenrinof user input. This
model can then be used to configure the privacy settings bfieser automatically.

Another approach in assisting users to compose and maneigaticess con-
trol policies is proposed in [19]. This approach is based sopervised learning
mechanism that in order to build classifiers uses as trasgtgiexample policy set-
tings provided by the users. These classifiers are then asedd-generate access
control policies. In addition, users are given the posigyhiib fuse policy decisions
provided by their friends or other users of the OSN.

There has been a lot of work also on the topic of accessingritiacy risks
of the information revealed by users in social networks. atiors of [24] show
how an adversary can exploit an OSN where both public andteriuser profiles
exist to predict the private attributes of a user. Prediciachieved by mapping
the problem to a relational classification problem and uiiegdship and group
membership information which is often not hidden to infarstive attributes.

The authors of [14] propose a framework for computing thegmy score of
each user in an OSN. This score indicates the potential sisthé user caused by
her participation in the OSN. The definition is based on thmiemption that the
privacy score of a user increases as she discloses morévaeirdormation. In
addition, the risk to privacy becomes higher if the inforimatis more visible. A
mathematical model is developed to estimate both sengitwid visibility of the
information.

Beyond anonymization, privacy can be achieved by restgcsiccess to data.
Instead of publishing a transformed graph, access to spbeislork data can be
provided through querying such data. Prior work on queryirigate data consid-
ers either (i) auditing, or (ii) adding noise to answers [Mjth query auditing a
query is denied, if its answer may lead to privacy breach6§ [With perturba-
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tions random noise is added to the result of a query to hide priaiz.

5 Summary

In this article, we have focused on privacy issues in onlowad networks (OSN).

Publishing OSN data even when the identity of the users wdmanay lead to pri-

vacy leaks. To protect privacy, various data anonymizatiémmniques have been
proposed. Anonymization techniques fall into two genegtikgories: (i) general-
ization by clustering and (ii) graph transformations. Tbhenplexity of such tech-

nigues depends on the range of attacks they can handle. 8acksaare usually

structural: the attacker has prior knowledge of the so@ahections in the neigh-
borhood of the target. Since published data are used foysisahnonymization

must be such that the utility of the resulting data is not camyised.
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