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Abstract

The ever increasing volume of available social network datasets creates
the need to derive anonymization methods that permit usefulanalysis of such
datasets without disclosing any sensitive information regarding their users.
In this article, we review the problem of privacy in online social networks
focusing on related models and algorithms.

1 Introduction

Recent years have witnessed a tremendous increase of the popularity of online

social networking (OSN) sites. More and more people join various social networks

on the web, (such as Facebook, Linkedin, or Twitter) to communicate and share

information with their friends.

Social networks are instances of a general type of datasets,termednetwork

or graphdatasets. Network datasets appear in a variety of domains. For example,

network datasets includeinformation networksof articles connected by citations or

co-authorship,communication networksof Internet hosts related by traffic flows,

mobile-phone and email users connected based on the messages they have inter-

changed, andepidemics networksdescribing for example, the transmission of in-

fectious diseases among individuals. The actors and the social relationships among

them in social networks (and graph datasets in general) can be modeled using graph

models whose vertices correspond to actors and edges to relationships.
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The increasing volume of available network datasets creates both the need to

protect the privacy of the individuals involved in them, butalso the potential to

extend their analysis towards improving our understandingof their structure and

the complex patterns involved in them. Social networks are analyzed for example

to study disease transmission, to detect spam, to measure the influence of a publi-

cation, to detect trends in user behavior, or to evaluate theresiliency of a network

to attacks.

In this article, we consider the problem of publishing social network data to

allow useful analysis without disclosing sensitive information. The problem can

be formalized as follows.

In a nutshell, given a networkG construct an anonymized networkG∗ in which

private information is hidden. There are three different entities involved:

1. theusersof the social network whose private data needs to be protected,

2. the adversaryor attacker that attempts to combineG∗ with any external

information that she owns or can attain to deduce private information,

3. the benignanalystwho wants to useG∗ to extract useful information.

Then, the problem is how to constructG∗ so that both (i) the private data of

each user are protected under all possible forms of externalknowledge of the at-

tacker and (ii) the utility ofG∗ for the analyst remains high. The problem and its

solutions take various forms depending on what type of information is considered

private, the extent and form of the background knowledge of the attacker, and the

privacy and utility criteria that the released network needs to satisfy.

In the remainder of this article, we focus in this privacy problem and its varia-

tions. In Section 2, we present the formal model of the problem and in Section 3

related algorithms. In Section 4, we outline other issues besides data anonymiza-

tion. Section 5 concludes the paper.

2 The OSN Privacy Model

In this section, we introduce the basic abstractions used toformulate the privacy

problem in OSNs. First, we present the graph model that is typically used to repre-

sent OSNs. Then, we focus on the model of privacy that involves three important
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ID Age Sex HIV

Alice 25 Female Pos

Bob 30 Male Neg

Carol 30 Female Neg

Dave 19 Male Pos

Earl 45 Male Neg

Fred 23 Male Neg

Gerg 45 Male Pos

Harry 19 Male Neg
(a)

Alice Bob Carol

Dave  Earl

Greg HarryFred

(b)

Figure 1: (a) Example of tabular data, (b) example of social network data.

components (i) a concrete specification of what is considered private and needs to

be anonymized, (ii) the type of external information that anattacker or adversary

may posses, and (iii) a set of criteria to assess the degree ofprivacy attained (i.e,

“how much” private are the data released) and the associatedcost or loss in their

utility for analysis.

Most existing work on privacy in data publishing has focusedon relational data,

where the data to be released are in tabular format with each record representing

a separate entity. An example of tabular data is shown in Figure 1(a), while an

example of OSN data is shown in Figure 1(b). However, anonymization techniques

for tabular data do not apply to social network data, since these techniques do not

take into account the interconnectedness of the entities (for example, the fact that

Alice is connected with Bob). For a survey on privacy preservation for relational

data, see for example [4].

2.1 Social Networks as Graphs

A social network and in general any network dataset is commonly modeled as

a graph where vertices correspond to users or other entitiesparticipating in the

network, such as for example, groups of users, or material shared among users

(such as photos or documents). Links between users represent relationship between

them (such as users being “friends” or “followers” of each other), interactions (such
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as information exchange in the form of emails or messages), various dependencies,

or commonalities among users (such as similar behavior or common interests).

Definition 1 (Basic OSN Model) An OSN is modeled as an undirected graphG =

(V,E) whereV is a set of vertices andE = V × V is a set of edges. The vertices

v ∈ V model individual social actors in the network, while the edges(v1, v2) ∈ E

represent a relationship between social actorsv1 andv2.

An example of social network data representing by a graph is shown in Figure

1(b). Vertices corresponds to individuals actors and edgesamong them represent

relationships.

Extended graph models have been used to capture the cases in which the re-

leased data include additional information besides individuals and their connec-

tions. Such models include:

- edge weights or edge labels used to represent, for example,the importance

or strength of connection between the two individuals, (e.g., the number of

messages that they have exchanged, or the affinity of their relationship), the

type of the connection (e.g., friends), or other attributesof the corresponding

relationship that the edge models.

- directed graph models to express the fact that the relationship between two

individuals is not symmetric (i.e, that fact thatv1 is connected withv2 does

not necessarily means thatv2 is also connected withv1) as is the case in

some social networks, e.g., “follow” in Twitter,

- attributes or labels associated with vertices, for example, in Figure 1, each

vertex instead of being labeled with just the ID of the corresponding actor,

it could have been labeled with additional attributes of theactor (such as her

genre or age).

- the domain of the labels associated with vertices and edgesmay take values

from hierarchical domains; in such cases, the value of the labels may differ in

the level of the provided detail and thus in the level of privacy disclosed (e.g.,

age may be described using general categories such as young,or middle-

aged).
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Besides general graphs, specific types of graph, such as k-partite graphs, have

also been used to represent OSNs. Ak-partite graphconsists ofk disjoint sets of

vertices, with no edges between vertices of the same set. Such graphs are used to

model social networks that involve entities of different types. For example, users

at a site such as deli.cio.us, place tags on Web pages, thus creating social networks

that involve three distinct types of entities: users, tags,and pages. This naturally

leads to a 3-partite graph with the corresponding three set of entities. In this graph,

the only edges are among entities of the same type. Users are related to each other,

if they use the same tags frequently, or if they tag the same pages. Similarly, tags

are related to each other, if they appear on the same pages or are used by the same

users and pages are related to each other, if they have many ofthe same tags or are

tagged by many of the same users.

2.2 Privacy Model

But what do participants in an OSN consider as private information that needs to

be protected?

This appears to be highly subjective. Some interesting facts regarding the pat-

terns of personal information revelation and the privacy implications associated

with OSNs were reported in a study involving 4000 users in theearly days of Face-

book [9]. The authors observed an apparent openness of the users to reveal per-

sonal information to a vast network of loosely defined acquaintances or complete

strangers. Further, the relation between privacy and the social network of each

user was multifaceted. In certain occasions, users wanted personal information to

be known only by a small circle of close friends, and not by strangers, whereas

in other instances, they were willing to reveal personal information to anonymous

strangers but not to those that know them better. It needs also to be stressed that

as opposed to real life, where friendships have degrees of closeness, in online net-

works, friendships tend to be binary. The authors also highlight potential privacy

breaches and other dangers, such as identifying anonymizedusers using similar

photos that the users have released in other networks, or combining released infor-

mation such as age, address or occupation for stalking users, for identity theft, or

even for deducing their social security numbers.

Another issue that complicates privacy management in OSNs is the multitude

of the available information. In relational data, the information made available is
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in the form of attribute-value pairs, thus privacy preservation is performed at the

level of attributes. In particular, the goal is to protect the disclosure of the values of

specific attributes associated with a user, calledsensitiveattributes. For example,

some users may consider as sensitive attributes their political beliefs, others their

age or the type of disease that they may suffer from. For example, in Figure 1(a),

users may want to protect the value of their age or HIV attribute.

In OSNs, sensitive or private data privacy protection goes beyond protecting

the values of single attributes. In general, sensitive information may be classified

as referring to:

- vertex existence:whether a target individual appears in the network or not

(for example, we may want to hide the appearance of individuals in a disease

infection network),

- identity disclosure:besides just the existence of an individual, her correspon-

dence to a specific vertex in the social network is revealed (for example, the

fact that Alice is associated with the leftmost vertex in thegraph of Figure

1(b))

- vertex attribute disclosure:besides the identity of an individual, other at-

tributes that she considers private are also disclosed (forexample, the fact

that Alice is HIV positive)

- link or edge disclosure:the sensitive relationship between two individuals is

disclosed, (for example, the fact that Alice and Bob are friends in the graph

of Figure 1(b))

- edge attribute disclosure:sensitive attributes related with an edge are dis-

closed

- content disclosure:the sensitive data associated with each vertex or edge

is compromised (for example, the actual content of the emailmessages ex-

changed between two individuals in an email communication network is dis-

closed)

- property disclosure:properties regarding the network structure around an

individual are revealed, such as vertex degrees clusteringcoefficient or prop-

erties of the neighbors of a vertex (for example, implying that the specific

individual is a community leader).
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2.3 The Attacker

Central to protecting the privacy of an OSN is knowing the type of external knowl-

edge that a malicious user, called attacker or adversary, has or can attain regarding

the OSN.

In relational data, a common assumption is that the attackerknows the values

of specific attributes, calledquasi identifiers. Using the values of these attributes,

such as say the age or the address of a user, an adversary may potentially identify

an individual in a released table, even when the identity of the individual is masked.

For example, it suffices for an attacker to know that Alice is 25 years old, to deduce

from the tabular data in Figure 1(a) that Alice is HIV positive, even if her identity

is hidden.

For OSNs, external knowledge may take many different forms.Specifically,

besides values of specific attributes, the attacker may haveknowledge of the struc-

tural properties of the network. A commonly made reasonableassumption is that

the structural knowledge of the attacker is local, limited to a small radius or neigh-

borhood around the targeted individual.

In general, external information may either

- consist of background knowledge of the adversary, or

- be acquired through specific malicious actions of the adversary, calledat-

tacks.

Background knowledge may exist due to the fact that the adversary is a partici-

pant in the network which gives her innate knowledge of the other participating en-

tities and their relationships. Background knowledge may be also attained through

public information sources.

External information sources may be accurate or not. Even when accurate, the

provided information may not be necessarily complete. Thus, a distinction is made

between:

- a closed world adversary, in which case, external information is complete

and absent facts are considered false,

- an open world adversary, in which case, external information may be in-

complete and absent facts are simply unknown
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ID H0 H1 H2

Alice Female 1 {4}

Bob Male 4 {1, 1, 4, 4}

Carol Female 1 {4}

Dave Male 4 {2, 4, 4, 4,}

Earl Male 4 {2, 4, 4, 4}

Fred Male 2 {4, 4}

Gerg Male 4 {2, 2, 4, 4}

Harry Male 2 {4, 4}
(a)

DaveDave

(b)

Figure 2: (a) The results of the vertex refinement queries on the graph of Figure

1(b), and (b) the results of subgraph queries with 4 edge facts on the graph of

Figure 1(b) using breadth first search search (left) and depth first search (right)

The authors of [12] use a query-based model of attacks. An adversary is as-

sumed to have access to a source that provides answers to a structural queryQ

evaluated for a single target vertexv of the original graphG(V,E). Let Q(v) be

the provided answer. The candidate set forv with regards toQ is a set of ver-

tices in the anonymized graph,Ga(Va, Ea) defined as:candQ(v) = {w ∈ Va |

Q(v) = Q(w)}.

Three types of queries are proposed.Vertex refinementqueries is a class of

queries of increasing power that report on the local structure of the graph around

a vertex. The weakest knowledge query, queryH0(v), simply returns the label of

v. QueryH1(v) returns the degree ofv, while H2(v) returns the multi-set of the

degrees of each of the neighbors ofv. Generalizing,Hi(v) returns the multi-set

of values which are the result of evaluatingHi−1 on the vertices adjacent tov,

whereasH∗ stands for the iterative computation ofH, until no new vertices are

distinguished. An example is shown in Figure 2 (a) using the graph of Figure 1(b)

and assuming that vertices are labeled with the sex attribute.

Subgraph queriesare a class of queries about the existence of a subgraph

around the target vertex. Their descriptive power is measured by the number of

edges in the subgraph, termededge facts. Different subgraphs correspond to dif-

ferent strategies of knowledge acquisition by the adversary, including breadth-first

and depth-first exploration. For a given number of edge facts, some queries are
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more effective at distinguishing individuals. Figure 2(b)depicts the result of two

subgraph queries with three edge facts around the individual v = Dave. As op-

posed to vertex refinement queries that are closed world, subgraph queries are open

world. Finally, hub fingerprint queriesassume the existence of hubs. A hub is a

vertex with a high degree and high betweenness centrality (i.e., the proportion of

shortest paths in the network that include the vertex). A hubfingerprint query,

Fi(v) for a target vertexv, is a description of the connections ofv to a set of des-

ignated hubs in the network, wherei is a limit on the maximum distance. Hub

fingerprint queries may be open-world or closed world. For example consider that

Dave andEarl in Figure 1(b) are hubs, thenF1(Fred) = (1; 0) - meaning that

Fred is connected withDave but not withEarl within distance 1 - and similarly,

F2(Fred) = (1;1).

Since users often participate in more than one social network, the authors of

[17] consider a form of attack that is based on knowing the structure of another

auxiliary social networkwith overlapping membership with the targer network.

Given a set of seeds vertices with known mappings between theauxiliary and the

target OSNs, the attacker attempts to learn private information about other mem-

bers of the target network. The authors applied their de-anonymization algorithm

using Twitter as the target network and Flickr as the auxiliary network. They show

that a third of the users who are verifiable members of both Flickr and Twitter can

be recognized in the completely anonymous Twitter graph with only 12% error

rate, even though the overlap in the relationships for thesemembers is less than

15%.

Particular to social networks is the fact that the attacker may be a user of the

network herself, thus she may interfere and alter the network before its anonymized

version is released. Consequently, targeted attacks are characterized as [1]:

- active, when the attacker attempts to compromise privacy by strategically

creating new users and edges before the anonymized network is released, so

that these new vertices and edges will be present in the released network, and

- passive, when the attacker tries to deduce private information onlyafter the

anonymized network has been released.

A specific active attack for attaining structural information of targeted individu-

als is described in [1]. Before the anonymized network is released, the attacker cre-

ates links with other cooperating users (or, creates new users and links with them),
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so that a highly connected subgraph having a distinctive structure is formed. Then,

she links this subgraph to the targeted individuals. After the anonymized network

is released, the attacker searches to locate the injected subgraph in the network.

From this subgraph, she can identify the targeted individuals and attain structural

information about them. The authors show that given a network G with n vertices,

it is possible to construct a pattern subgraph withk = O(log(n)) vertices that will

be unique inG with high probability. Further, this subgraph can be efficiently

found in the released networkG∗ and can be linked to as many asO(log2(n))

target vertices.

In general, the success of an attack depends both on the descriptive power of

the external information and on the structural diversity ofthe OSN itself.

2.4 Evaluation

An anonymized network is evaluated with regards to two criteria, namely on whether:

(i) the private data of each user are protected and (ii) the utility of the graph is pre-

served.

2.4.1 Privacy Criterion

A privacy criterion characterizes how safe it is to release aspecific instance of an

OSN. In relational data, a criterion that is often used isk-anonymity[18, 20].

Definition 2 (k-anonymity) Given a set of quasi-attributesQ1, . . . , Qd, a re-

leased relationT ∗ is said to be k-anonymous with respect toQ1, . . . , Qd, if each

unique tuple in the projection ofT ∗ onQ1, . . . , Qd, occurs at leastk times.

This means that an individual is hidden amongk others, in the following sense.

An adversary that knows only the values of thed quasi attributes can only guess

which of thek tuples correspond to a specific individual with probability1/k. For

example, if we consider that the quasi attribute isSex, and the sensitive attribute

is HIV , then, the Table in Figure 1(a) is 2-anonymous.

Many approaches inspired by k-anonymity have been proposedfor ONS. They

differ on what is considered as “quasi” information. Examples of such definitions

are given in Section 3.
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2.4.2 Utility Criterion

Utility, also called information loss or anonymization quality, depends on the type

of analysis that we want to perform on the anonymized graph.

In the case of relational data, in general, utility is measured using the sum of

information loss in individual tuples. This may be quantified by the distance of the

tuple in the original table from the anonymized tuple in the released table.

In the case of OSNs, utility may be measured by various metrics. Such metrics

can be roughly put into two categories with regards of whether the goal is to:

- preserve general graph properties of the released graph, or

- maintain a high quality for the result of executing aggregate network queries

on the released graph.

Some examples of graph properties that we want to maintain include between-

ness (that measures the degree an individual lies between other individuals in the

network, in their shortest path), closenes (that measures the degree an individual

is near to all other individuals in the network directly or indirectly), the shortest

distance between the vertex and all other vertices reachable from it, centrality (the

counts the number of relationships to other individuals in the network), and path

length (that is, the distances between pairs of vertices in the network).

In terms of graph properties, the best utility is achieved when the released graph

G∗ is isomorphic to the original graphG.

Definition 3 (Graph Isomorphism) Given two graphsQ = (VQ, EQ) andG =

(VG, EG), Q is isomorphic to G, if and only if there exists at least one bijective

functionf : VQ → VG such that for any edge(u, v) ∈ EQ, there exists an edge

(f(u), f(v)) ∈ EG.

Measuring utility in terms of aggregate queries is useful especially in the case

in which the edges or the vertices of the graph are labeled. Insuch a case, we often

want to compute the aggregate on some path or subgraph that satisfies a given

condition. For example, assume that the vertices in the graph of Figure 2(b) are

labeled with the age of the participants; an aggregate querywould be to compute

the average distance between people of similar ages as opposed to the average

distance of people of different ages. Such queries are useful in many applications,

for example in customer relationship management.
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Often, utility is empirically evaluated through experiments on the anonymized

graph.

3 Algorithms

There are two general approaches to constructing the anonymized graphG∗, namely

releasing data vs releasing statistics. In this article, wefocus on the former. The

latter based ondifferential privacy[7] is beyond the scope of this work.

3.1 Naive Anonymization

With naiveor pseudoanonymization, all identifiers in the initial graph G are re-

placed with random numbers in the released graph G*. An example is shown in

Figure 3(a).

Let us consider vertex re-identification. Can an adversary deduce which vertex

in the anonymized network in Figure 3(a) corresponds to Carol? With no external

information, Carol could correspond with equal probability to any of the 8 vertices.

But, what if the adversary knew that Carol has only one neighbor? Then, Carol can

be mapped only to two vertices (namely vertices 1 and 3). Withadditional external

knowledge such as the strength (or type) of the connection, an adversary could

even reduce the candidate vertices in the hidden network to just a single one.

What about edge disclosure: can an adversary deduce that twoidentified indi-

viduals, say Alice and Bob, are connected in the anonymized network? With no

external knowledges, Alice and Bob have a 11/28 likelihood of being connected.

But what if, the adversary knew that Bob is the sole neighborhood of Alice, or the

strength of their connection, or both?

The examples above show that pseudo-anonymization is vulnerable to various

types of attacks. However note, that naive anonymization achieves the best utility,

since the anonymized graph is isomorphic to the original network.

The approaches to OSN anonymization can be distinguished into two general

categories:

1. clustering-basedor generalizationapproaches that cluster vertices and edges

into groups and replace a subgraph with a super-vertex, and
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1 2 3

6 7 8

4 5

(a)

1 2 3

6 7 8

4 5

(b)

Figure 3: (a) The naively anonymized graph of Figure 1(b) and(b) a 4-degree

anonymous graph

2. graph modificationapproaches that modify the graph by inserting or deleting

edges and vertices in the graph by either [10]:

• direct alteration: adding or removing specific edges

• random alteration: stochastically adding, removing or rewiring edges

Next, we present examples for each of the above approaches.

3.2 Clustering

With clustering-based approaches the edges and vertices ofthe OSN graph are

grouped together. Then in the published graph, vertices arereplaced by the formed

groups.

We present next an approach that cluster vertices into groups of at leastk ver-

tices using a maximum likelihood approach. Other algorithms in this category

include: grouping entities (e.g., individuals) into classes and masking the mapping

between entities and the vertices that represent them in theanonymized graph [5]

and(k, l)-grouping for bipartite graphs that preserve the underlying graph structure

and instead anonymize the mapping from entities to verticesof the graph [6].

3.2.1 Case Study: Clustering by Vertex Partitioning

The approach of [12, 11] preserves anomymity against arbitrary structural knowl-

edge by generalizing a naively-anonymized graphGa(Va, Ea) by clustering its ver-

tices to create a new anonymized graphGg(Vg, Eg). The vertices inVa are parti-
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tioned into disjoint sets,V ⊆ Va. These sets become the vertices of the generalized

graphGg. In a sense, the setsV can be thought of as super-vertices, since they

contain vertices fromGa, but are themselves the vertices ofGg.

The superedges ofEg include self-loops and are labeled with non-negative

weigths by the functiond. Gg is a generalization ofGa under a partitionVg, if

the edge labels report the density of edges (inGa) that exist within and across the

partitions. LetVg be the supervertices ofGg. Gg is a a generalization ofGa if, for

all Vi, Vj ∈ Vg, d(Vi,Vj) = |{(vi, vj) ∈ Ea | vi ∈ Vi andvj ∈ Vj}|.

For any generalizationGg of graphGa, we denote byW(Gg) all possible

worlds (i.e., graphs overVa) that are consistent withGg. Vertices are partitioned

so that the generalized graph satisfies privacy goals and maximizes utility. In the

extreme case that all partitions contain a single vertex,W(G) contains just the

graphGa; function d encodes its adjacency matrix. At the other extreme, if all

vertices are grouped into a single partition, thenGg consists of a single supervertex

with a self-loop labeled with|Ea| (i.e., the total number of edges in the original

graph). In this case,W(G) is the set of all graphs overVa with |Ea| edges. In this

case the generalization provides anonymity, but low utility, since it reflects only the

edge density of the original graph.

Let Gg be a generalized graph such that each supervertexVi has at leastk

vertices. ThenG satisfies graph k-anonymity. The reason is that the generalized

graph contains no information that allows the adversary to distinguish between two

vertices in the same supervertex. Therefore, each of thek or more vertices in the

same supervertex are equally likely candidates for being the target.

GivenGa andk, the proposed algorithmGraphGen attempts to find the gen-

eralized graph that best fitsGa. Fitness is estimatd via a maximum likelihood

approach.GraphGen starts with a single partition (i.e., superedge) containing all

vertices, and uses simulating annealing to search the spaceof possible generaliza-

tions. Each valid generalized graph (i.e., one in which eachsupervertex has at least

k vertices) is a state in the search space.GraphGenproposes a change of state,

by splitting a partition, merging two partitions, or movinga vertex to a different

partition. Each proposed change is evaluated based on the change in likelihood that

results. The proposal is always accepted if it improves the likelihood and accepted

with some probability if it decreases the likelihood.
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3.3 Graph Modifications

In general, graph modification techniques work by adding (ordeleting) edges and

vertices. We present next a number of direct alteration techniques that add (delete)

specific vertices or edges to achievek-degree,k-neighborhood andk-automorphic

anonymity. We also present an approach that uses random alteration to preserve

edge weight anonymity.

Approaches that use random alteration for identity disclosure include: spec-

trum preserving edge randomization by edge swapping [22] and using low rank

approximation techniques to reconstruct the graph topology from the randomized

network [21].

3.3.1 Case Study: k-Degree Anonymity

In this case study, privacy refers to identity disclosure and the background informa-

tion of the adversary is the degree of the target vertex [13].For example, assume

that an adversary knows that the target user has 421 connections in a social net-

work. If in the pseudo-anonymized graph, there is only one vertex with degree

421, the attacker can identify this vertex as being the targeted individual. This

privacy criterion is expressed throughk-degree anonymity.

Definition 4 (k-degree anonymity) A graphG(V,E) is k-degree anonymous if

every vertex inV has the same degree ask-1 other vertices inV .

The proposed algorithm uses direct graph modifications. Given a graphG(V,E)

and an integerk, the algorithm modifiesG via a set of edge addition and deletion

operations to construct a newk-degree anonymous graphG′(V,E′) in which every

vertex has the same degree with at leastk-1 other vertices

The utility objective is to keep the symmetric difference,symdiff, betweenG

andG′ defined assymdiff(G,G′) = |E/E′ ∪ E/E′|, as small as possible, so that

degree-anonymization does not destroy the structure of thegraph. Utility is em-

pirically evaluated through experiments that compare the transformed graphG and

G′ in terms of their average path length, clustering coefficient, and the exponent of

power-law distribution.

The algorithm uses degree sequences. A degree sequenced is k-anonymous,

if each distinct degree value ind appears at leastk times. Clearly, a graph whose

degree sequence isk anonymous isk-degree anonymous. For example, the degree
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sequence of the graph of Figure 1(b), is [4, 4, 4, 4, 2, 2, 1, 1],meaning that the graph

is 2-degree anonymous. The algorithm uses dynamic programming to construct a

new sequence that isk-anonymous with the minimum number of alterations. For

example, the above sequence can be made4-degree anonymous by adding 2 edges,

resulting in [4, 4, 4, 4, 2, 2, 2, 2]. Then, a graph is created that realizes this

sequence by adding edges to the originalG. A degree sequenced is realizable,

if there exists a simple undirected graph with vertices having degree sequenced.

For the example, the above sequence can be realized, by just adding an edge from

Alice to Fred and from Carol to Harry, as shown in Figure 3(b).However, not all

degrees sequences are realizable. Take, for example, degree sequences [1, 1, 1] or

[3, 3, 3].

A heuristic is proposed that tries to realize a graph by adding noise (edges)

in the sequence. In addition, greedy edge swaps are considered to improve the

achievedsymmdiff.

3.3.2 Case Study: k-Neighborhood Anonymity

In this case study, privacy again refers to identity disclosure, however the back-

ground information now is the immediate neighborhood of a vertex [25]. Take for

example the case that the attacker knows that Bob has two neighbors for whom, he

is the only neighbor.

Formally, the neighborhood of vertexu ∈ V is the induced subgraph of the

neighbors ofu, denoted byNeighborG(u) = G(Nu) whereNu = {v|(u, v) ∈ E}.

Definition 5 (k-neighborhood anonymity) Assume a graphG(V,E). A vertexu

∈ V is k-neighborhood anonymous in G, if there are at leastk-1 other verticesu1,

. . . uk−1 ∈ V such thatNeighborG(u), NeighborG(u1), . . . , NeighborG(uk−1)

are isomorphic. G isk-anonymous if every vertex in G isk-anonymous.

The algorithm uses direct alterations and works in two steps. During the first

step, the neighborhoods of all vertices in the network are extracted and encoded to

facilitate comparison between neighborhoods. The neighborhoodNeighborG(u)

of each vertexu is divided into into components that correspond to the maximal

connected subgraphs ofNeighborG(u). Each component is then encoded using

a technique that utilizes a depth-first pre-order traversalof the graphs. During the

second step, the vertices are greedily, organized into groups, and the neighborhoods
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of vertices in the same group are anonymized. Anonymizationis possible by both

(a) adding edges and (b) generalizing edge labels.

The OSN model in [25] includes vertex labels from a label setL. The label

setL forms a hierarchy. For example, if occupations are used as vertex labels,

in addition to specific occupations such as dentist, generalphysician, high school

teacher, and primary school teacher,L also contains general categories such as

medical doctor and teacher.L also includes a special label, denoted by∗, that

corresponds to most general category generalizing all other labels. For any two

labels l1, l2 ∈ L we write l1 ≺ l2, if l1 is more general thanl2. For example,

medical doctor≺ dentist. In addition,l1 � l2, if and only if, l1 ≺ l2 or l1 = l2.

Relation� is a partial order onL.

Having labels allows generalization by replacing specific categories by more

general ones.

Utility is empirically measured by considering queries that compute some ag-

gregate on some paths or subgraphs satisfying some given conditions E.g., Average

distance from a medical doctor to a teacher

3.3.3 Case Study:k-Automorphic Anonymity

In this case, identity disclosure is studied, but now the general case is considered,

where the adversary knows the subgraph of the OSN graph. Thisis modeled by an

adversary queryQ that corresponds to a subgraph of the OSN graphG [26]. The

goal is to anonymizeG so that there are at leastk different results ormatchesfor

Q in the anonymized graph.

This is formalized using the notion of graph authomorphism.An automor-

phism of a graphG = (V,E) is a permutationf of the vertex setV , such that for

any edgee = (u, v) ∈ E, f(e) = (f(u), f(v)) is also an edge inG. That is, it is a

graph isomorphism fromG to itself underf .

If there existk automorphisms inG, it means that there existsk-1 different

automorphic functions.

Definition 6 (Sub-Graph Isomorphism) Given two graphsQ and G, graph Q

is sub-graph isomorphic to graphG, if there exists at least one sub-graphX in

graphG such thatQ is isomorphic toX under a bijective functionf . SubgraphX

is called a sub-graph match (match for short) ofQ in G, while the vertexf(u) in

G is called the match vertex with regard to vertexu in Q.
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Definition 7 (k-automorphic graph) A graphG is called ak-automorphic graph,

if (a) there existk-1 automorphic functionsFα (α = 1, . . . , k-1) in G, and (b) for

each vertexv in G,Fα1
(v) 6= Fα2

(v), (1 ≤ α1 6= α2 ≤ k − 1).

Definition 8 (Different Matches) Given a sub-graph queryQ, a graphG and two

matchesm1 andm2 of Q in G that are isomorphic toQ under functionsf1 and

f2 respectively, are called different, if there exists no vertexv in query Q, such that

f1(v) = f2(v).

Definition 9 (k-different match principle) Given a graphG any sub-graph query

Q, G obeys thek-different match principle, if (a) there exist at leastk matches of

Q in G, and (b) any two of thek matches are different matches.

The proposed K-Match (KM) algorithm uses direct alterations and works in

three steps. In the first step, the graph is partitioned inton blocks which are then

clustered inm groups so that each of them groups contains at leastk blocks. In the

second step, the blocks are aligned to attain isomorphic blocks by adding edges.

In the third step, an “edge-copy” technique is applied to handle matches that cross

blocks.

Utility, called anonymization cost, is defined similarly with the symmetric dis-

tance asCost(G,G′) = (E ∪ E′)− (E ∩ E′).

3.3.4 Case Study: Privacy of Edge Weights

In this case study, we consider a social network with edge weights [15]. Here the

goal is to protect the privacy of the weights.

Anonymization is achieved by modifying the edge weights. Utility is measured

in terms of the shortest paths and their lengths, where the shortest path between

two vertices is defined as the path with the minimum sum of weights. The authors

show that there does not exist a perturbation schema such that the shortest paths and

the corresponding lengths between any pair of vertices are both preserved. They

present two complementary schemes that partially achieve these goals.

With Gaussian perturbation, the weightwi,j of each edge(vi, vj) in graphG is

replaced in the anonymized graphG∗ by a new weightw∗

i,j computed as:w∗

i,j =

wi,j × xi,j, wherexi,j is a randomly generated number from the Gaussian distribu-

tion N(0, σ2). Numberxi,j can be generated locally byvi andvj . Verticesvi and
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vj may independently generate random numbersx1i,j andx2i,j respectively from the

Gaussian distributionN(0, σ2). Then,xi,j may be set as the average value ofx1i,j
andx2i,j. However, Gaussian perturbation does not maintain the sameshortest path

when the perturbation (i.e.,σ) gets large.

Greedy perturbation achieves the utility objective for a given setH of shortest

paths in a static network. Edges inG are divided into three types with respect to set

H: (1) non-visited edges, that are edges that no shortest pathin H passes through

them, (2) all-visited edges, that are edges that all shortest paths inH pass through

them, and (3) partially-visited edges that are edges such that some but not all short-

est paths inH passes through them. The greedy algorithm carefully increments

or decrements the weights of an edge based on its type using the following obser-

vations. Increasing the weight of a non-visited edge does not change any shortest

path inH or its corresponding length. Decreasing the weight of an all-visited edge

does not change any shortest path inH, but may change their lengths. For partially

visited edges, both increasing and decreasing their valuesmay lead to modifying

shortest paths inH. Thus, such modifications are appropriately constrained.

3.4 Extensions

We discuss next two important extensions with regards to anonymization algo-

rithms: (a) personalization and (b) dynamic networks.

Personalization All approaches presented so far assume that all users have sim-

ilar privacy needs. In practice, however, users have different privacy protection

requirements. For example, in Facebook, a user can specify what part of her pro-

file or her connections should be made visible to others.

The authors of [23] present a personalized framework that offers three differ-

ent levels of protection requirements based on gradually enhancing the background

knowledge of the attacker. Specifically, for a vertexv in a published labeled graph:

Level 1assumes that the attacker knows only the label ofv, Level 2assumes that the

attacker knows both the label and the degree ofv andLevel 3assumes that, besides

the label and degree ofv, the attacker also knows the labels on the edges adjacent

to v. The proposed algorithms combine label generalization anddirect graph alter-

ation methods. Specifically, for Level 1 protection, vertexlabel generalization is

used. For Level 2 protection, vertex/edge adding methods are combined with the
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protection for Level 1, while for Level 3 protection, an edgelabel generalization is

used in addition.

Dynamic Networks Social networks evolve over time. Thus, often multiple

snapshots (or, versions) of the same network at different time instances may be

published to allow analysis of the evolution of the network and perform longitu-

dinal data analysis. This creates the potential for a new kind of attack, since an

adversary may deduce private information by combining information from differ-

ent versions of the same network. For example, knowing that the target has reduced

its connections by 7 can lead to identity disclosure if thereis just a single vertex

with this characteristics.

The class-based clustering anonymization method of [5] is extended in [2] for

the dynamic case using link prediction algorithms to model the evolution of the

social network. Based on the predicted edges, a grouping of vertices is chosen so

that not only do existing edges meet an appropriate groupingcondition for privacy,

but also future edges are unlikely to violate it either. The KM algorithm of [26]

also supports dynamic releases by a vertex ID generalization method that allows

lists of IDs to be assigned to each vertex so that each particular ID is hidden within

the list.

4 Beyond Data Publishing

In the previous sections, we focused on data anonymization achieved through pub-

lishing a transformed graph. In this section, we discuss other approaches to privacy

for OSNs.

A different line of research has been focusing on the users ofOSNs. Various

tools have been proposed to allow usersspecifytheir privacy requirements and

measurethe potential privacy risks of the information that they share.

Most of the available social network management systems offer to theirs users

only coarse control in specifying their privacy requirements. In general, users are

allowed to characterize a given piece of information only asbeing public, private,

or accessible to a limited set of other users (e.g., their fiends). More advanced

specification languages have been proposed. For example, anaccess control mech-

anism that adopts a rule-based approach in specifying access policies is proposed

in [3]. In this approach, authorized users are denoted in terms of the type, depth,
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and trust level of the relationships they have formed in the social network. Access

to a resource is granted only if the requester succeeds in demonstrating that she is

authorized to do so by providing a proof.

While fine-grained privacy control is useful, it is difficultfor the average user

to specify such detailed policies. To address this problem,a template for the design

of a social networking privacy wizard is proposed [8]. The intuition for the design

of the wizard comes from the observation that privacy preferences of the users

(such as which friends should be able to see which information) usually follow

some implicit set of rules. Thus, it is possible to build a machine learning model to

concisely describe such preferences using only limited amount of user input. This

model can then be used to configure the privacy settings of each user automatically.

Another approach in assisting users to compose and manage their access con-

trol policies is proposed in [19]. This approach is based on asupervised learning

mechanism that in order to build classifiers uses as trainingsets example policy set-

tings provided by the users. These classifiers are then used to auto-generate access

control policies. In addition, users are given the possibility to fuse policy decisions

provided by their friends or other users of the OSN.

There has been a lot of work also on the topic of accessing the privacy risks

of the information revealed by users in social networks. Theauthors of [24] show

how an adversary can exploit an OSN where both public and private user profiles

exist to predict the private attributes of a user. Prediction is achieved by mapping

the problem to a relational classification problem and usingfriendship and group

membership information which is often not hidden to infer sensitive attributes.

The authors of [14] propose a framework for computing the privacy score of

each user in an OSN. This score indicates the potential risk for the user caused by

her participation in the OSN. The definition is based on the assumption that the

privacy score of a user increases as she discloses more sensitive information. In

addition, the risk to privacy becomes higher if the information is more visible. A

mathematical model is developed to estimate both sensitivity and visibility of the

information.

Beyond anonymization, privacy can be achieved by restricting access to data.

Instead of publishing a transformed graph, access to socialnetwork data can be

provided through querying such data. Prior work on queryingprivate data consid-

ers either (i) auditing, or (ii) adding noise to answers [10]. With query auditing, a

query is denied, if its answer may lead to privacy breaches [16]. With perturba-
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tions, random noise is added to the result of a query to hide privatedata.

5 Summary

In this article, we have focused on privacy issues in online social networks (OSN).

Publishing OSN data even when the identity of the users is hidden may lead to pri-

vacy leaks. To protect privacy, various data anonymizationtechniques have been

proposed. Anonymization techniques fall into two general categories: (i) general-

ization by clustering and (ii) graph transformations. The complexity of such tech-

niques depends on the range of attacks they can handle. Such attacks are usually

structural: the attacker has prior knowledge of the social connections in the neigh-

borhood of the target. Since published data are used for analysis, anonymization

must be such that the utility of the resulting data is not compromised.
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