
ReDRIVE: Result-Driven Database Exploration through
Recommendations (Extended Version

∗
)

Marina Drosou
†

Computer Science Department
University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT

Typically, users interact with database systems by formu-
lating queries. However, many times users do not have a
clear understanding of their information needs or the exact
content of the database, thus, their queries are of an ex-
ploratory nature. In this paper, we propose assisting users in
database exploration by recommending to them additional
items that are highly related with the items in the result
of their original query. Such items are computed based on
the most interesting sets of attribute values (or faSets) that
appear in the result of the original user query. The inter-
estingness of a faSet is defined based on its frequency both
in the query result and in the database instance. Database
frequency estimations rely on a novel approach that employs
an ǫ-tolerance closed rare faSets representation. We report
evaluation results of the efficiency and effectiveness of our
approach on both real and synthetic datasets.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation, Search process

General Terms

Algorithms, Experimentation, Design, Performance

Keywords

Recommendations, Faceted Search, Data Exploration

1. INTRODUCTION
Typically, users interact with a database system by formu-

lating queries. This interaction mode assumes that users are

∗This is an extended version of the paper appearing in Proc.
of the 20th ACM Conference on Information and Knowledge
Management (CIKM 2011), October 24-28, 2011, Glasgow,
Scotland, UK.
†Work partially supported by the research program“HRAK-
LEITOS II” co-funded by the European Union and National
Sources.

to some extent familiar with the content of the database and
also have a clear understanding of their information needs.
However, as databases get larger and become accessible to a
more diverse and less technically-oriented audience, explo-
ration or recommendation style database interactions seem
attractive and useful.

A step towards this direction is offered by facet queries
that provide a form of navigational search, where users re-
strict their results by selecting interesting facets of the orig-
inal results (e.g., [12]). With facet search, users start with a
general query and progressively narrow its results down to
a specific item. Other related research includes addressing
the many- or empty- answers problems. Approaches to the
many-answers problem range from reformulating the origi-
nal query so as to restrict the size of its result (for example,
by adding additional constraints to it (e.g., [17]) to auto-
matically ranking the query results and presenting to the
user only the top-k most highly ranked among them (e.g.,
[7]). The empty-answers problem is commonly handled by
relaxing the original query (e.g., [13]).

In this paper, we propose a novel exploration mode of in-
teraction: we present to the users additional items which,
although not part of the answer of their original query, may
be of interest to them. This way users see information that
they may be unaware that exists. For instance, when asking
for movies directed by F.F. Coppola, we guide exploration by
recommending movies by other directors that have directed
movies similar to those of F.F. Coppola, i.e., with similar
characteristics, such as, genre or production year. We also
consider expanding the original query with additional at-
tributes, by finding correlations with other relations. For
example, when asking for the title of a movie, we also look
into its genre or other characteristics.

The computation of recommended results is based on the
most interesting sets of (attribute, value) pairs, called faSets,
that appear in the result of the original user query. The in-
terestingness of a faSet expresses how unexpected it is to see
this faSet in the result. The computation of interestingness
is based on the frequency of the faSet both in the user query
result and in the database instance. Since computing the
frequencies of faSets in the database instance on-line has
prohibitively high cost, we opt to maintain statistics that
allow us to estimate those frequencies when needed. More
specifically, we propose a novel approach that is based on
storing an ǫ-tolerance closed rare faSets representation as a
summary of such frequencies and exploit these summaries
to estimate the interestingness of the faSets that appear in
the result of any given user query.

movieid title year imdbid
movieid actorid as_character actorid name sex

ACTORS (A)MOVIES2ACTORS (M2A)

movieid directorid addition directorid name

DIRECTORS (D)MOVIES2DIRECTORS (M2D)

movieid producerid addition producerid name

PRODUCERS (P)MOVIES2PRODUCERS (M2P)

movieid writerid addition writerid name

WRITERS (W)MOVIES2WRITERS (M2W)

MOVIES (M)

movieid country

COUNTRIES (C)

movieid genre

GENRES (G)

movieid language

LANGUAGE (L)

movieid keywords

KEYWORDS (K)

Figure 1: Movies database schema.

We also present a two-phase algorithm for computing the
top-k faSets. In the first phase, the algorithm uses the pre-
computed statistics to set a frequency threshold that is then
used to run a frequent itemset based algorithm on the result
of the query. We evaluate the performance of our approach
using both real and synthetic datasets.

The rest of this paper is organized as follows. Section 2
presents the overall framework, Section 3 its implementation
and Section 4 an experimental evaluation. Finally, related
work is presented in Section 5 and conclusions are offered in
Section 6.

2. THE ReDRIVE FRAMEWORK
Let D be a relational database with n relations R = {R1,

. . ., Rn}. Let A be the set of all attributes in R. With-
out loss of generality, we assume that relation and attribute
names are distinct. To locate items of interest, users pose
queries. In particular, we consider Select-Project-Join (SPJ)
queries of the following form:

SELECT proj(Q)
FROM rel(Q)
WHERE sel(Q) AND join(Q)

where rel(Q) is a set of relations, sel(Q) is a conjunction of
selection conditions specified by the user, join(Q) is a set of
join conditions among the relations in rel(Q) and proj(Q)
is the set of projected attributes. For simplicity, we shall
focus on equality conditions, i.e., sel(Q) = (A1 = a1) ∧ . . .
∧ (Am = am), m ≥ 1, where Ai ∈ A and ai ∈ domain(Ai).
The result set, Res(Q), of a query Q is a relation with
schema proj(Q).

Since users must specify in their queries the conditions
that the searched items need to satisfy, they must have a
relatively clear understanding of the information they are
seeking. In this paper, we propose an exploratory way of
discovering interesting information based on identifying po-
tentially interesting pieces of information in the result set
and then using these pieces of information to explore the
database further by recommending additional results to the
users.

2.1 Interesting FaSets
Let us first define pieces of information in the result set:

Definition 1 (Facet and m-FaSet). A facet condi-
tion, or simply facet, is a condition of the form (Ai = ai),
where Ai ∈ A and ai ∈ domain(Ai). An m-set of facets or
m-faSet, m ≥ 1, is a set of m facet conditions on m different
attributes.

We shall also use the term faSet when the size of the m-
faSet is not of interest.

SELECT
FROM
WHERE

AND
AND

, 2 , , s

.directorid = 2 .directorid
2 .movieid = .movieid
.movieid = .movieid

D M.title, M.year, G.genre

D “F. F. ”

.name,

.name = Coppola
D M D M G

D M D
M D M
M G

AND

;

D.name M.title M.year G.genre

F. F. Coppola The Godfather: Part III 1990 Drama

F. F. Coppola The Rainmake 1997 Crime

F. F. Coppola The Godfather 1972 Drama

F. F. Coppola Rumble Fish 1983 Drama

F. F. Coppola The Conversation 1974 Thriller

F. F. Coppola The Outsiders 1983 Drama

F. F. Coppola Supernova 2000 Thriller

F. F. Coppola Apocalypse Now 1979 Drama

Figure 2: Example query and result set.

For a faSet f , we use Att(f) to denote its attributes. Let
t be a tuple from a set of tuples S with schema R; we say
that t satisfies a faSet f , where Att(f) ⊆ R, if t[Ai] = ai,
for all facets (Ai = ai) ∈ f . We call the percentage of tuples
in S that satisfy f , support of f in S. In the following, we
use the term faSet to mean both the conditions and the list
of the associated values appearing in the conditions.

Example: Consider the movies database in Figure 1 and
the query and its corresponding result set in Figure 2. Then
{G.genre = “Drama”} or simply {“Drama”} is a 1-faSet and
{M.year = “1972”, G.genre = “Drama”} or simply {“1972”,
“Drama”} is a 2-faSet.

We are looking for interesting pieces of information at the
granularity of a faSet: this may be the value of a single
attribute (i.e., a 1-faSet) or the values of m attributes (i.e.,
an m-faSet).

Example: Consider the example in Figure 2, where a user
poses a query to retrieve movies directed by F.F. Coppola.
{“Drama”} is a 1-faSet in the result that is likely to inter-
est the user, since it is associated with many of the movies
directed by F.F. Coppola. The same holds for the 2-faSet
{“1983”, “Drama”}.

To define faSet relevance formally, we take an IR-based
approach and rank faSets in decreasing order of their odds
of being relevant to a user information need. For a user
information need uQ expressed through a query Q, let RuQ

be the set of tuples that are relevant to the user need uQ

and RuQ
be the set of tuples that are not relevant to uQ.

Then, the relevance score of a faSet f for uQ is defined as
follows:

p(RuQ
|f)

p(RuQ
|f)

where p(RuQ
|f) is the probability that a tuple satisfying f is

relevant to uQ and p(RuQ
|f) is the probability that a tuple

satisfying f is not relevant to uQ.
Using the Bayes rule we get:

p(f |RuQ
)p(RuQ

)

p(f |RuQ
)p(RuQ

)

Since the terms p(RuQ
) and p(RuQ

) have the same value for

all faSets, and thus do not affect their ranking, they can be
ignored.

We make the assumption that all relevant to uQ results are
those that appear in Res(Q), thus p(f |RuQ

) is equal with
the probability that f is satisfied by a tuple in the result set,
written p(f |Res(Q)). Similarly, p(f |RuQ

) is the probability
that f is satisfied by a tuple that is not relevant, that is, a
tuple that does not belong to the result set. We make the
logical assumption that the result set is small in comparison
with the size of the database, and approximate the non-
relevant tuples with all tuples in the database, that is, all
tuples in the global relation, denoted by D, with schema
A. Based on the above motivation, we provide the following
definition for the relevance of a faSet:

Definition 2 (Interestingness Score). Let Q be a
query and f be a faSet with Att(f) ⊆ proj(Q). The inter-
estingness score, score(f, Q), of f for Q is defined as:

score(f, Q) =
p(f |Res(Q))

p(f |D)

The term p(f |Res(Q)) is estimated by the support of f
in Res(Q), that is, the percentage of tuples in the result set
that satisfy f . The term p(f |D) is a global measure that
does not depend on the query. It serves as an indication
of how frequent the faSet is in the whole dataset, i.e., it
measures the discriminative power of f . Note that when
the attributes in Att(f) do not belong to the same relation,
to estimate this value we may need to join the respective
relations first.

Example: In the example in Figure 2, “Drama” appears
more frequently than “Thriller” in the result set. However,
if“Thriller”appears only a handful of times in the database,
then it would be considered more interesting than “Drama”.

In general, a faSet stands out when it appears more fre-
quently in Res(Q) than expected. For a faSet f , score(f, Q)
> 1, if and only if, its support in the result set is larger than
its support in the database, while score(f, Q) = 1 means
that f appears as frequently as expected.

Clearly, the sel(Q) part of a query is also a faSet. There-
fore, another way of interpreting the interestingness score of
f for Q is as the confidence of the association rule: sel(Q)
→ f . High confidence indicates a strong dependency of the
faSet f on the selection conditions of Q.

Finally, note that in particular, for a faSet f with Att(f)⊆
Att(sel(Q)), that is, for a faSet that includes only attributes
whose values are specified in the selection conditions, it holds
that score(f, Q) ≥ 1, since p(f |Res(Q)) = 1.

2.2 Attribute Expansion
Definition 2 provides a means of ranking the various faSets

that appear in the result set Res(Q) of a query Q and discov-
ering the most interesting among them. However, there may
be interesting faSets that include attributes not in proj(Q)
and thus do not appear in Res(Q). Thus, we would like to
extend Definition 2 towards discovering such potentially in-
teresting faSets that include attributes not in proj(Q). This
can be achieved by expanding Res(Q) towards other rela-
tions in D.

Consider for example the following query that just returns
the titles of movies directed by F.F. Coppola:

SELECT M. t i t l e

FROM D, M2D, M
WHERE D. name = ‘F .F . Coppola ’
AND D. d i r e c t o r i d = M2D. d i r e c t o r i d
AND M2D. movieid = M. movieid

All faSets in the result set of Q will appear once (unless
F.F. Coppola has directed more than one movie with the
same title). However, including for instance the relation
“Countries” in rel(Q) and modifying join(Q) accordingly
may disclose interesting information, e.g., that many of the
movies directed by F.F. Coppola are related to Romania.

The definition of interestingness is extended to include
faSets with attributes not in proj(Q), by introducing an ex-
tended query Q′ with the same sel(Q′) as the original query
Q but with additional attributes in proj(Q′) and additional
relations in rel(Q′).

Definition 3 (Extended Interestingness Score).
Let Q be a query and f be a faSet with Att(f) ⊆ A. The
interestingness score of f for Q is equal to:

score(f, Q) =
p(f |Res(Q′))

p(f |D)

where Q′ is an SPJ query with proj(Q′) = proj(Q) ∪ Att(f),
rel(Q′) = rel(Q) ∪ {R′ | Ai ∈ R′, for Ai ∈ Att(f)}, sel(Q′)
= sel(Q) and join(Q′) = join(Q) ∧ (joins with {R′ | Ai ∈
R′, for Ai ∈ Att(f)}).

2.3 Selecting and Presenting FaSets
As a first step, we identify and present to the user the

faSets that have the k highest interestingness scores, where
k is an input parameter. In general, the success of recom-
mendations is found to depend heavily on explaining the
reasons behind them [21]. Thus, along with each faSet sug-
gestion f , we present an explanation of why f is considered
important for the query Q. Such explanations have the gen-
eral form: “The set of values f appears frequently with the
values in sel(Q)”.

Example: The explanation provided for the interesting
2-faSet {“1983”, “Drama”} in the example in Figure 2 is:
“The year and genre pair (1983, Drama) appears frequently
with director F.F Coppola”. Assuming that expanding this
query towards the “Countries” relation yields the interest-
ing 1-faSet {“Romania”}, the corresponding explanation is:
“Country Romania appears frequently with director F.F Cop-
pola”.

2.4 Exploratory Queries
Besides presenting interesting faSets, we also use faSets

to discover interesting pieces of data that are potentially re-
lated to the user needs but do not belong to the original
query. In particular, we aim at constructing exploratory
queries that retrieve results strongly correlated with those
of the original user query Q by replacing the selection condi-
tions, sel(Q), of Q with equivalent ones, thus allowing new
interesting results to emerge. Recall that a high interesting-
ness score for f means that the confidence of sel(Q) → f is
high, indicating replacing sel(Q) with f , since sel(Q) seems
to impose f .

For example, for the interesting faSet {“Drama”} in Fig-
ure 2, the following exploratory query:

SELECT D. name
FROM D, M2D, M, G

WHERE G. genre = ‘Drama ’
AND D. d i r e c t o r i d = M2D. d i r e c t o r i d
AND M2D. movieid = M. movieid
AND M. movieid = G. movieid

will retrieve other directors that have also directed drama
movies, which is an interesting value appearing in the origi-
nal query result set.

Definition 4 (Exploratory Query). Let Q be a user
query and f be an interesting faSet for Q. The exploratory
query Q̂ that uses f is an SPJ query with proj(Q̂) = Attr(

sel(Q)), rel(Q̂) = rel(Q) ∪ {R′ | Ai ∈ R′, for Ai ∈ Att(f)},

sel(Q̂) = f ∧ ¬ sel(Q) and join(Q̂) = join(Q) ∧ (joins with
{R′ | Ai ∈ R′, for Ai ∈ Att(f)}).

Then, interesting faSets for the exploratory Q̂ are recom-
mended to the user. As before, it is central to include an
explanation for why each faSet of Q̂ is suggested. The expla-
nation in this case specifies that the presented faSet appears
often with a value that is very common in the result of the
original query Q. For example, assuming that M. Scorsese
is a director retrieved by the above exploratory query, then
the corresponding explanation would be “Director name M.
Scorsese appears frequently with the frequent genre Drama
of the original query”.

Clearly, one can use the interesting faSets in the results of
an exploratory query to construct other exploratory queries.
This way, users may start with an initial query Q and follow
the various exploratory queries suggested to them to gradu-
ally discover other interesting information in the database.

Note that in this paper, for ease of presentation, we have
restricted faSets (and the conditions in sel(Q)) to attribute
value equality. However, the definitions of interestingness
and exploratory queries are applicable to any form of at-
tribute value conditions.

Framework Overview: In summary, ReDRIVE database
exploration works as follows. Given a query Q, the top-k
most interesting faSets for Q are computed and presented
to the users. Such faSets may be either interesting pieces
(sub-tuples) of the tuples in the result set of Q or extended
tuples that include additional attributes not in the origi-
nal result. Interesting faSets are further used to construct
exploratory queries that lead to discovering additional infor-
mation related to the initial user query. This process can be
repeated for each exploratory query.

3. TOP-K FASETS COMPUTATION
In this section, we present algorithms for finding interest-

ing faSets. In particular, first, we consider computing off-line
suitable statistics so that we can later estimate p(f |D) for
a faSet f . Then, we present an on-line two-phase algorithm
for computing the top-k most interesting faSets.

3.1 Estimation of p(f |D)

Let Q be a user query with schema proj(Q) and f =
{A1 = a1, . . . , Am = am} be an m-faSet with Ai ∈ proj(Q)
and ai ∈ domain(Ai), 1 ≤ i ≤ m. To compute the interest-
ingness of f , according to Definition 2 (and Definition 3), we
have to compute two quantities: p(f |Res(Q)) and p(f |D).

p(f |Res(Q)) is the support of f in Res(Q). This quan-
tity is different for every user query Q and, thus, has to be
computed on-line. p(f |D), however, is the same for all user
queries.

The straightforward approach is to also compute the value
of p(f |D) on-line when required. To do this, we have to
execute the following query:

SELECT count(∗)
FROM rel(Q)
WHERE f AND join(Q)

to compute the number of all database tuples satisfying the
faSet f . One such query would have to be executed for each
examined faSet of Res(Q). As the number of such faSets
may be large, the cost of executing these queries on-line may
become prohibitively large. Such an approach is feasible
only in the case where a handful of faSets need to be exam-
ined. However, this is not a typical case, since many faSets
are present even in relatively small query results. There-
fore, it is necessary to maintain some form of information (or
statistics) that will allow us to have an estimation of p(f |D)
without needing to execute such queries at execution time.
Next, we show how we can maintain such information.

3.1.1 Full Statistics

Let mmax be the maximum number of projected attributes
of any user query, i.e., mmax = |A|. An exhaustive approach
to statistics maintenance would be to generate all possible
faSets of size up to mmax and pre-compute their support
in D. Such an approach, however, is infeasible even for
small databases due to the combinatorial amount of pos-
sible faSets. Consider a database with a single relation R
containing 10 attributes. If each attribute has on average
50 distinct attribute values, then R contains, for example,
7.875 ·1010 faSets of size 5. Clearly, it is not possible to store
and maintain information about the support of all possible
faSets.

3.1.2 Partial Statistics

A feasible and efficient solution to our problem must reach
a compromise between the on-line computation of p(f |D)
and the maintenance of full statistics. There are a number of
available options for this which we examine in the following.

Maintaining 1-faSets.
A first approach is to pre-compute and store the support of

each faSet of size one that appears in the database. Then,
assuming that facet conditions are satisfied independently
from each other, the support of a higher-order m-faSet is
equal to:

p(f |D) = p({A1 = a1, . . . , Am = am}|D) =

m∏

i=1

p({Ai = ai}|D)

This approach requires the storage of information for only a
relatively small number of faSets, i.e.,

∑
Ai∈A |domain(Ai)|

faSets. However, although commonly used in the literature,
the independence assumption is quite strong for real-data
applications where it rarely holds in practice.

Maintaining faSets of size up to ℓ.
Considering that we are able to afford some extra storage

space to maintain the support of more faSets, say up to size
ℓ, we can have a more accurate estimation of the support of
a high-order faSet f with size m, m > ℓ, using some more
sophisticated method.

One such method that can be applied, similarly to [17],
is Iterative Proportional Fitting (IPF) [4]. Let f = {A1 =
a1, . . . , Am = am} be a faSet with size m, m > ℓ. f

director = Coppola year = 2010 genre = Action probability

0 0 0 p1

0 0 1 p2

0 1 0 p3

0 1 1 p4

1 0 0 p5

1 0 1 p6

1 1 0 p7

1 1 1 p8

p p p p p5 6 7 8+ + + = ({ = })director Coppola

p p p p p

p p p p p

p p p

p p p

p p p

p p p p p p p p

3 4 7 8

2 4 6 8

7 8

6 8

4 8

1 2 3 4 5 6 7 8

+ + + = ({ =

+ + + = ({ = })

+ = ({ = })

+ = ({ = })

+ = ({ })

+ + + + + + + = 1

year 2010})

genre Action

director Coppola, year = 2010

director Coppola, genre = Action

year = 2010, genre = Action

Figure 3: IPF constraints.

can be viewed as the result of a probabilistic experiment as
follows: We associate with each facet condition (Ai = ai) in
f a binary variable. This binary variable denotes whether
the corresponding facet condition is satisfied or not. This
experiment has v = 2m possible outcomes.

Let p1 be the probability that the outcome is (0, 0, . . . , 0),
p2 be the probability that the outcome is (0, 0, . . . , 1) and
so on. That is, pi is the probability of f being satisfied by
exactly the conditions corresponding to the variables equal
to 1 as specified by the ith possible outcome, 1 ≤ i ≤ v (see
Figure 3 for an example with m = 3). Having pre-computed
the support of low-order faSets, we have some knowledge
for the values of the discrete distribution p = (p1, . . . , pv)T :
First, all pis for which a faSet f of size m with m ≤ ℓ
is satisfied must sum up to p(f |D), i.e., the pre-computed
support. Second, all pis must sum up to 1. For example,
for ℓ = 2, we have m constraints due to the pre-computed
support values of all 1-faSets and m(m − 1)/2 constraints
due to the 2-faSets. Therefore, we have m+m(m−1)/2+1
constraints in total.

However, there are more variables pi than constraints,
therefore we cannot determine all values of p. Iterative
Proportional Fitting (IPF) can be employed to estimate p.
This method is based on the Principle of Maximum Entropy,
which states that, since there is no reason to bias the esti-
mated distribution of p towards any specific form, then the
estimation should be as close to the uniform distribution as
possible. IPF initializes the elements of p randomly and
then iteratively checks each available constraint and scales
by an equal amount the elements of p participating in the
constraint so that the constraint is satisfied. It can be proved
that this process converges to the maximum entropy distri-
bution.

Example: Let R be a relation with a number of attributes
including director, year, genre and that ℓ = 2, i.e., we know
the support of all faSets of size 1 and 2, e.g., {director =
“F.F. Coppola”}, {year = “2010”}, {year = “2010”, genre
= “Action”} and so on. To estimate the support of the 3-
faSet {director = “F.F. Coppola”, year = “2010”, genre =
“Action”}, we have m = 3, v = 8 and m+m(m−1)/2+1 = 7
constraints, as shown in Figure 3.

Maintaining ǫ-Tolerance Closed Rare FaSets.
The method described above can estimate the support of

high-order faSets, while maintaining information only about
a relatively small amount of low-order ones. However, the
maximum entropy criterion smooths the estimated distribu-
tion. This may lead to the loss of interesting information.
Consider for example that the faSets {G.genre = “Sci-Fi”},
{M.year = “2000”}, {M.year = “2005”} have similar sup-

ports, while the supports of {G.genre = “Sci-Fi”, M.year =
“2000”} and {G.genre = “Sci-Fi”, M.year = “2005”} differ
a lot. IPF (for ℓ = 1) will estimate similar values for these
two faSets. Therefore, we propose a different form of statis-
tics, aiming at capturing such fluctuations in the support
of related faSets. To do this, we employ the notion of δ-
tolerance frequent itemsets [8] and define ǫ-tolerance closed
rare faSets as explained in following.

Background Definitions: In data mining, the term item-
set refers to a set of items. An itemset is said to be frequent
in a dataset if its frequency is above a specific threshold.
Otherwise it is called rare. We observe that there is a one-to-
one correspondence between itemsets and faSets. An item-
set of size m containing the items {A1 = a1, . . . , Am = am}
appears in exactly the same set of tuples that satisfy the
m-faSet f = {A1 = a1, . . . , Am = am}. Therefore, we can
say that a faSet f is frequent (FF) for a set of tuples S if
its support in S is above a specific threshold. Otherwise it
is called rare (RF).

Based on related itemset definitions from data mining, we
call a faSet f closed frequent (CFF) for S if it is frequent
and has no proper superset f ′, such that, f ′ has the same
support as f in S, where f ′ is called a proper superset of f
if f ⊂ f ′, i.e., every item of f is contained in f ′ but there
is at last one item in f ′ that is not contained in f . We also
say that f is a proper subset of f ′. Similarly, we define a
faSet f to be closed rare (CRF) for S if it is rare and has no
proper subset f ′, such that, f ′ has the same support as f in
S. Finally, we say that a faSet f is maximal frequent (MFF)
for S if it is frequent for S and has no superset f ′ such that
f ′ is frequent for S and, finally, a faSet f is minimal rare
(MRF) for S if it is rare and has has no subset f ′ such that
f ′ is rare for S.

Statistics based on ǫ-tolerance: Maintaining the sup-
port of a number of representative faSets can assist us in
estimating the support of a given faSet f . There are many
available options regarding whether we maintain informa-
tion about frequent or rare faSets and also the granularity
of the maintained statistics.

Generally, faSets that appear frequently in the database
D are not expected to be interesting, even if they appear
often in the result of user queries, since this is expected.
Therefore, it would be more useful to maintain information
about the frequency of rare faSets in D. We use count(f, S)
to denote the absolute number of appearances of a faSet f
in a set of tuples S.

If we maintain the MRFs, we can derive all correspond-
ing RFs but not their actual support, while if we keep the
CRFs we can retrieve these supports as well. Generally, the
number of CRFs lies between the number of RFs and that of
MRFs. However, since according to the definition of CRFs
any RF having a distinct support is a CRF, the number of
CRFs can be very close to that of the RFs and, therefore, it
is impractical to store as previously discussed.

In our approach, we employ the notion of δ-tolerance closed
frequent itemsets and maintain statistics that allow us to
store a tunable amount of faSets from which we will be
able to retrieve a bounded estimation of the support of a
given faSet in the database. A frequent itemset is called
δ-tolerance closed if it has no frequent proper super-itemset

such that the support of the two itemsets differ more than
a threshold related to a constant δ. Similarly, we define
ǫ-tolerance closed rare faSets (ǫ-CRFs) as follows:

Definition 5 (ǫ-CRF). A faSet f is called ǫ-CRF for
a set of tuples S, if and only if, it is rare for S and it has
no proper immediate rare subset f ′, i.e., |f ′| = |f | − 1, such
that, count(f ′, S) ≤ (1 + ǫ) count(f, S), where ǫ ≥ 0.

Intuitively, a rare faSet f is an ǫ-CRF if, even if we increase
its count by a constant ǫ, all its subsets still have a larger fre-
quency than f . This means that f has a different frequency
from all its subsets and cannot be estimated (or represented)
by any of them.

Let us assume that a set of ǫ-CRFs is maintained for some
value of ǫ. We denote this set C. An RF f either belongs
to C or not. If f ∈ C, then the support of f is stored
and its count is readily available. If not, then, according to
Definition 5, there is some subset of f that belongs to C
whose support is close to that of f . Therefore, given an RF
f , we can estimate its count based on its closest subset in
C. If there are many such subsets, we use the one with the
minimum count, since this can estimate the count of f more
accurately. We use C(f) to denote the faSet in C that is the
most suitable one to estimate the count of f . The following
lemma holds:

Lemma 1. Let C be a set of ǫ-CRFs for a set of tuples
S and f be a faSet, f /∈ C. Then, there exists f ′, f ′ ∈ C,
such that, count(f ′, S) ≤ φ count(f, S), where φ = (1 +

ǫ)(|f |−|f ′|).

In order to provide estimations, each ǫ-CRF is stored
along with its frequency extension. The frequency extension
of an ǫ-CRF is defined as follows:

Definition 6 (Frequency Extension). Let C be a set
of ǫ-CRFs for a set of tuples S and f be a faSet in C. Let
also X (f) be the set of all RFs represented in C by f . Then,
Xi(f) = {x|x ∈ X (f) ∧ |x| − |f | = i}, 1 ≤ i ≤ m, where
m = max{i|Xi(f) 6= ∅}. The frequency extension of f for i,
1 ≤ i ≤ m, is defined as:

ext(f, i) =

∑
x∈Xi(f)

count(x,S)
count(f,S)

|Xi(f)|

Intuitively, the frequency extension of f for i is the average
count difference between f and all the faSets that f rep-
resents whose size difference from f is equal to i. Given a
faSet f , the estimation of p(f |D), denoted p̃(f |D) is equal
to:

p̃(f |D) = count(C(f), S) · ext(C(f), |f | − |C(f)|)

It holds that:

Lemma 2. Let f be an ǫ-CRF. Then, ∀i, it holds that
1
φ
≤ ext(f, i) ≤ 1, where φ = (1 + ǫ)i.

Proof. At one extreme, all faSets in Xi(f) have the same
count as f . Then, ∀x ∈ Xi(f) it holds that count(x, S) =
count(f, S) and ext(f, i) = 1. At the other extreme, all
faSets in Xi(f) differ as much as possible from f . Then,
∀x ∈ Xi(f) it holds that count(f, S) = φ count(x, S) and
ext(f, i) = 1/φ.

Similarly to the proof in [8], it can be shown that the
estimation error is bounded by φ, i.e., by ǫ. More specifically,
let f be an RF and |f | − |C(f)| = i. The estimation error
for p(f |D) is bounded as follows:

1

φ
− 1 ≤

p̃(f |D)− p(f |D)

p(f |D)
≤ φ− 1

The proof is omitted.

3.2 The Two-Phase Algorithm
Given a query Q, our goal is to locate the k faSets with the

highest interestingness scores. We consider first faSets in the
result set and defer the treatment of extended faSets until
the next section. Clearly, the brute-force method of gen-
erating all possible faSets in Res(Q) and computing their
score is exponential on the number of distinct values that
appear in Res(Q). Applying an a-priori approach for gener-
ating and pruning faSets is not applicable either, since score
is neither an upwards nor a downwards measure, as shown
below. Recall that, a measure d is monotone or upwards
closed if for any two sets S and S′, S ⊆ S′ ⇒ d(S) ≤ d(S′)
and anti-monotone or downwards closed if S ⊆ S′ ⇒ d(S)
≥ d(S′).

Proposition 1. Let Q be a query and f be a faSet. Then,
score(f, Q) is neither an upwards nor a downwards closed
measure.

Proof. Consider a database consisting of a single rela-
tion R with three attributes A, B and C and three tu-
ples {{a1, b1, c1}, {a1, b1, c2}, {a1, b2, c1}}. Let Res(Q) =
{{a1, b1, c1}, {a1, b2, c1}} and the following three faSets: f1

= {A = a1}, f2 = {A = a1, B = b1}, f3 = {A = a1,
B = b1, C = c1}. For f2, there exists both a subset (f1) and
a superset (f3) with larger scores than it.

This implies that we cannot employ any subset or superset
relations among the faSets of Res(Q) to prune the search
space.

Algorithm

As a baseline approach to reduce the number of examined
faSets of Res(Q), we consider only the most frequent faSets
of Res(Q), motivated by the fact that faSets that appear
in Res(Q) frequently are likely to be highly interesting to
the user. To this end, we apply an adaptation of a fre-
quent itemset mining algorithm [11], such as Apriori or FP-
Growth, to generate all frequent faSets of Res(Q), that is, all
faSets with support larger than some pre-specified thresh-
old minsuppf . Then, for each frequent faSet f , we use
the maintained statistics to estimate p(f |D) and compute
score(f, Q).

This baseline approach has the problem of being highly
dependent on minsuppf . A large value of minsuppf may
lead to losing some less frequent in the result but very rarely
appearing in the dataset faSets, whereas a small value may
result in a very large number of candidate faSets being ex-
amined. Therefore, we propose a Two-Phase Algorithm
(TPA), described next, that addresses this issue by setting
minsuppf to an appropriate value so that all top-k faSets
are located without generating redundant candidates. TPA
assumes that the maintained statistics are based on keeping
rare faSets of the database D. Let minsuppr be the support
threshold of the maintained rare faSets.

Algorithm 1 Two-Phase Algorithm (TPA).

Input: Q, Res(Q), k, C, minsuppr of C.
Output: The top-k interesting faSets for Q.

1: begin
2: S ← ∅
3: A ← all 1-faSets of Res(Q)
4: for all faSets f ∈ C do
5: if all 1-faSets g ⊆ f are contained in A then
6: f.score = score(f, Q)
7: S ← S ∪ {f}
8: end if
9: end for

10: for all tuples t ∈ Res(Q) do
11: generate all faSets f ⊆ t, s.t. ∃ g ∈ S with g ⊆ f
12: for all such faSets f do
13: f.score = score(f, Q)
14: S ← S ∪ {f}
15: end for
16: end for
17: minsuppf ← (kth highest score in S) × minsuppr

18: candidates ← frequentFaSetMiner(Res(Q), minsuppf)
19: for all faSets f in candidates do
20: f.score = score(f, Q)
21: S ← S ∪ {f}
22: end for
23: return The k faSets in S with the highest scores
24: end

In the first phase of the algorithm, all facet conditions, or
1-faSets, that appear in Res(Q) are located. TPA checks
which rare faSets of D, according to the maintained statis-
tics, contain only facet conditions from Res(Q). Let X be
the set of faSets. Then, in one pass of Res(Q), all faSets of
Res(Q) that are supersets of some faSet in X are generated
and their support in Res(Q) is measured. For each of the
located faSets, score(f, Q) is computed. Let s be the kth

highest score among them. TPA sets minsuppf equal to
s × minsuppr and proceeds to the second phase where it
executes a frequent itemset mining algorithm with thresh-
old equal to minsuppf . It is easy to see that any faSet
in Res(Q) less frequent than minsuppf clearly has score
smaller than the kth faSet located in the first phase and
thus can be safely ignored. To see this, let f be a faSet
examined in the second phase of the algorithm. Since the
score of f has not been computed in the first phase, then
p(f |D) > minsuppr. Therefore, for score(f, Q) > s to hold,
it must be that p(f |Res(Q)) > s × p(f |D), i.e., p(f |Res(Q))
> s × minsuppr. TPA is shown in Algorithm 1, where we
use C to denote the collection of maintained statistics.

3.3 FaSet Expansion
For a query Q, besides the faSets whose attributes belong

to proj(Q), we would also like to consider potentially inter-
esting faSets that have additional attributes. Clearly, con-
sidering all possible faSets for all combinations of (attribute,
value) pairs is prohibitive. Instead, we consider adding to
proj(Q) a few additional attributes B that appear relevant.
Then, besides Q, we construct and execute Q′ as defined in
Definition 3 and use TPA to compute the top-k (expanded)
faSets of Q′.

Our goal is to select a set of attributes B, B ⊂ A and B ∩

proj(Q) = ∅, such that the expected value of p(f ′|res(Q′))
is large. The first approach we consider is selecting the at-
tributes Bi ∈ B based solely on the attributes that appear in
Q. In particular, for each Ai, we maintain a list of promising
attributes for expansion and use them, each time Ai appears
in proj(Q) or sel(Q). This is done in the level of relations.
Let R be a relation appearing in rel(Q). We add a new re-
lation R′ in rel(Q) and a pre-specified attribute Bi of R′ in
proj(Q).

A more expensive but potentially more accurate approach
is to consider sel(Q) in selecting the attributes. In this case,
we need to maintain statistics for frequent faSets in D sim-
ilar to those maintained for rare faSets. We look into the
frequenet faSets and select a frequent faSet f ′ ⊃ sel(Q).
Then, we add the additional attributes of f ′ in proj(Q).

4. EXPERIMENTAL RESULTS
In this section, we present experimental results of the de-

ployment of our approach. We use both real and synthetic
datasets. Synthetic datasets consist of a single relation with
five attributes and 1000 tuples, each of which takes values
from a zipf distribution with parameter θ (“ZIPF-θ”) and
5 distinct values. We also use two real databases. The
first one (“AUTOS”) is a single-relation database consisting
of 41 characteristics for 15,191 used cars from Yahoo!Auto
[2]. The second one (“MOVIES”) is a multi-relation database
containing information extracted from the Internet Movie
Database [1]. The schema of this database is shown in Fig-
ure 1. The cardinality of the various relations ranges from
around 10,000 to almost 1,000,000 tuples. We consider a
subset of relations, namely Movies, Movies2Directos, Direc-
tors, Genres and Countries.

We use MySQL 5.0 to store our data. Our system is im-
plemented in JDK 1.6 and connects to the DBMS through
JDBC. Our experiments were executed on an Intel Pentium
Core2 2.4GHz PC with 2GB of RAM.

4.1 Performance Evaluation
We start by presenting performance results. There are two

building blocks for ReDRIVE. The first is a precomputation
step that involves maintaining statistics for estimating the
frequency of the various faSets in the database. The second
involves the run-time deployment of the maintained statis-
tics in conjunction with the results of the user query towards
discovering the k-most interesting faSets.

Statistics Generation: First, we evaluate the various op-
tions for maintaining statistics in terms of (i) storage, mea-
sured as the number of maintained faSets and (ii) genera-
tion time. We consider first maintaining ǫ-CRFs, as pro-
posed in Section 3, and report results for all the intermedi-
ate computation steps, i.e., locating MRFs, RFs and CRFs.
We base our implementation for locating MRFs and RFs
on the MRG-Exp and Arima algorithms [20] and use an
adapted version of the CFI2TCFI algorithm [8] for produc-
ing ǫ-CRFs. For a given minsuppr, all MRFs are located.
However, locating all respective RFs, for large datasets be-
comes inefficient, due to the exponential nature of algo-
rithms such as Apriori. To overcome this, we use a random
walk based approach [10] to generate RFs. In particular, we
do not produce all RFs as an intermediate step for comput-
ing ǫ-CRFs but, instead, we produce only a subset of them
discovered by random walks initiated at the MRFs. Never-

Table 1: Number of FaSets.

minsuppr # MRFs # RFs # CRFs
ǫ-CRFs

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

ZIPF-1.0

5% 186 2983 2283 2283 2177 1319 778 243

10% 145 3402 2639 2639 2505 1541 881 254

20% 54 3238 2547 2547 2443 1556 876 154

ZIPF-0.5

5% 197 3963 3329 3329 3263 2516 1578 246

10% 248 4284 3649 3649 3574 2811 1700 292

20% 55 4026 3401 3401 3339 2640 1663 118

AUTOS

5% 2106 2960 2737 2715 2683 2617 2547 2446

10% 2014 2856 2606 2591 2561 2486 2437 2338

20% 1960 2654 2421 2398 2365 2278 2231 2126

MOVIES

5% 11533 11809 11787 11787 11783 11757 11730 11630

10% 11537 11820 11803 11803 11798 11768 11734 11621

20% 11538 11826 11802 11802 11799 11776 11750 11643

(a)

1-faSets # 2-faSets

ZIPF-1.0

25 250

ZIPF-0.5

25 250

AUTOS

17664 851954

MOVIES

67094 561223

(b)

Table 2: FaSet Generation Time (in ms).

minsuppr MRFs RFs CRFs
ǫ-CRFs

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

ZIPF-1.0

5% 1344 54719 4641 3500 3437 3516 3516 3562

10% 860 243000 6156 4625 4578 4556 4703 4719

20% 281 58766 5610 4265 4250 4296 4359 4391

ZIPF-0.5

5% 1344 67031 8328 6750 6765 6828 6890 7000

10% 1391 76188 10157 8188 8218 8375 8453 8563

20% 250 70016 8969 7203 7281 7360 7391 7687

AUTOS

5% 86125 4564641 2969 2610 2578 2547 2571 2531

10% 49813 4061344 2500 1938 1953 1953 1953 1953

20% 21984 3770234 2187 1797 1796 1797 1781 1781

MOVIES

5% 21844 2225890 6781 6969 7000 7563 7500 7422

10% 22953 2218250 6890 7156 7203 7063 7390 7093

20% 21468 2164234 6703 6907 6907 6890 6890 6906

theless, our results indicate that, even though not all RFs
are generated, we still achieve good estimations.

Table 1(a) shows the number of the produced faSets for
our datasets for different values of minsuppr and ǫ. The
number of the produced RFs and the complexity of their
generation depends also on the number of random walks. In
the reported results, we kept the number of random walks
fixed (equal to 20). Clearly, given enough time and mem-
ory, a larger number of random walks can be used to pro-
duce more “complete” statistics. As ǫ increases, an ǫ-CRF
is allowed to represent faSets with larger support difference
and, thus, the number of maintained statistics decreases.
Also, as minsuppr increases, more faSets of the database
are considered to be rare and, thus, the size of statistics
becomes larger. In our experiments, this is not always the
case because of the random walks technique employed to re-
trieve RFs. Note also that the number of ǫ-CRFs is much
smaller than the number of RFs, even for values of ǫ as low
as 0.5. For comparison, we also report the number of 1-
faSets and 2-faSets (Table 1(b), we excluded id attributes)
that could alternatively be used for estimating frequencies,

as discussed in Section 3, which is considerably large for the
real databases.

Table 2 reports the execution time to generate the statis-
tics. We break down the execution time into three stages:
(i) the time required to locate all MRFs, (ii) the time re-
quired to generate RFs based on the MRFs and (iii) the
time required to extract the final ǫ-CRFs based on all RFs.
The main overhead is induced by the stage of generating
RFs of the database. We do not report the execution time
for locating 1-faSets and 2-faSets. This time was trivial for
the synthetic datasets due to the small domain size of each
attribute and very long for the real datasets; in which case
we had to execute the computation in batches because of
memory limitations.

In particular, the MOVIES database has a large number
of rare 1-faSets that appear only once in the database. To
avoid generating all super-sets of such 1-faSets, we use the
following approach. In a single scan of the dataset, we iden-
tify such 1-faSets, insert them in a hash-based data struc-
ture (in particular, a Bloom filter) and delete them from the
database. Then, we proceed with the generation of MRFs.

Table 3: Average absolute estimation error.

minsuppr m
ǫ

0.1 0.3 0.5 0.7 0.9

ZIPF-1.0

5%

2 0 0 0 0 0

3 0 0 5.20 4.80 2.67

4 0 0.14 2.33 3.47 4.30

5 0 4.00 1.66 1.77 1.43

10%

2 0 0 0 0 0

3 0.23 3.17 3.50 7.36 8.03

4 1.25 1.70 2.45 3.58 1.41

5 1.00 1.50 1.03 1.75 1.30

20%

2 0 0 0 8.10 13.59

3 2.30 2.37 4.19 7.85 4.26

4 3.40 1.80 1.89 1.47 2.32

5 1.00 1.93 2.80 2.30 1.90

Estimation Accuracy: Next, we evaluate how well ǫ-
CRFs estimate the support of a random rare faSet in the
database. To do this, we employ our synthetic datasets and
randomly construct a number of faSets for each of them.
More specifically, for each relation R, we generate random
faSets of length 1, . . . , 5. Then, we probe our statistics to
retrieve estimations for the frequency of 10 such rare faSets
for each size. Table 3 shows the average absolute estima-
tion error for the ZIPF-1.0 dataset. We observe that, even
though we do not have the complete set of ǫ-CRFs avail-
able, because of our random walk approach to producing
RFs, the estimation error remains low. Similar results are
attained for the AUTOS and the MOVIES databases, where the
absolute estimation error is higher than for the synthetic
datasets but still relatively low. For example, the average
absolute estimation error for the AUTOS database is around
40 (the higher value is due to the larger interval of faSets
support values than in the synthetic datasets).

We also experimented with using IPF for the estimation.
However, this approach turned out to be very inefficient for
estimating the frequency of rare faSets. This was mainly due
to two reasons. Take for example 3-faSets. On one hand, the
estimations attained for rare 3-faSets that consist of rare 2-
faSets were very small (most often equal to zero) due to the
maximum entropy principle that tends to considers faSet co-
occurrences independent. For example, for the faSets {make
= “Lexus”, state = “VA”, navigation system = “Yes”} and
{make = “Ford”, state = “FL”, alarm = “No”} of the AUTOS

database, the estimated support was zero while there are 20
and 80 tuples, respectively, in the database. On the other
hand, the estimations attained for rare 3-faSets that consist
of frequent 2-faSets resulted in over-estimations (often ten-
fold).

Top-k FaSet Discovery: Next, we compare the baseline
and the Two-Phase algorithms described in Section 3. For
the MOVIES dataset, the TPA is slightly modified to take
into consideration the special treatment of rare 1-faSets with
frequency 1. In this case, we first look-up the hash-based
structure for any supersets of the 1-faSets of Res(Q). In
case such subsets exist, then the corresponding 1-faSets of
Res(Q) and all their supersets in Res(Q) are higher ranked
than any other faSet.

For the synthetic datasets, we generate random queries to
test our algorithms, while for the AUTO and MOVIES databases
we use the example queries shown in Figures 5a and 5b,

respectively. These queries were selected so that their re-
sult set included various combinations of rare and frequent
faSets. Figure 4 shows the 1st and 20th highest ranked inter-
estingness score retrieved, i.e., for TPA we set k = 20 and
for the baseline approach we start with a high minsuppf

and gradually decrease it until we get at least 20 results.
We see that TPA is able to retrieve more interesting faSets,
mainly due to the first phase where rare faSets of Res(Q)
are examined.

We set k = 20 and minsuppr = 10% and experimented
with various values of ǫ. We saw that ǫ did not affect the
interestingness scores of the top-k results considerbaly. For
the above reported results ǫ was equal to 0.5. In all cases
except for q3 of the AUTOS database, TPA located k results
during phase one and, thus, phase two was never executed.
This means that in all cases there were some faSets present
in Res(Q) that were quite rare in the database and, thus,
their interestingness was high.

The efficiency of TPA depends on the size of Res(Q), since
in phase one the tuples of Res(Q) are examined for locating
supersets of faSets in the statistics. However, TPA was very
efficient for result sizes up to a few hundred results, requiring
from under a second to around 5 seconds to run.

4.2 Exploring the two Real Databases
Finally, we present results of our exploration of the AUTO

and MOVIES databases, using the example queries of Fig-
ures 5a and 5b respectively. When expanding queries, we
considered expansions towards predefined attributes based
on proj(Q). Due to space limitations, we next make some
interesting observations about the acquired results.

Take for example q1 of the AUTOS database which is a
query whose result set includes many rare faSets, all having a
high interestingness score, e.g., {make =“Land Rover”, name
= “Land Rover Discovery II HSE7”} and {make = “Mer-
cedes”, name = “Mercedes-Benz G55 AMG)”}. Expand-
ing q1 towards the “state” attribute reveals other interesting
faSets with varying scores, such as {make = “Land Rover”,
name =“Land Rover Range Rover”, state = VA} and {make
=“Cadillac”, state = DE}, i.e., another Land Rover model
was ranked higher because of “state” and also Cadillacs ap-
peared, suggesting that such combinations are highly related
with navigation systems (which appear in sel(q1)).

Another interesting example is q2 for the MOVIES database
where the highly interesting faSet {country =“Switzerland”,
genre = “Sci-Fi”} is retrieved. This faSet is rare in Res(q2)
but is also extremely rare in the database (appearing just
4 times), so it is very interesting that it was located by
the user query. Another highly ranked faSet is {country
=“Romania”} (and its supersets) which has a high interest-
ingness score since it appears relatively frequently in Res(q2)
while it is not a very frequent value in the database, which
is generally dominated by USA productions.

5. RELATED WORK
In this paper, we have proposed a novel database explo-

ration model. A common exploration technique is faceted
search (e.g., [15, 12, 9]), where results of a query are classi-
fied into different multiple categories or facets and the user
refines these results by selecting one or more facet condi-
tion. Our approach is different in that we do not tackle
refinement. Our goal is to identify faSets, possibly expand

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
0

50

100

150

200

Query

In
te

re
st

in
g

n
es

s

Baseline − 1st score

Baseline − 20th score

TPA − 1st score

TPA − 20th score

(a) ZIPF-1.0

q1 q2 q3 q4 q5
0

10

20

30

40

50

60

70

80

Query

In
te

re
st

in
g

n
es

s

Baseline − 1st score

Baseline − 20th score

TPA − 1st score

TPA − 20th score

(b) AUTOS

q1 q2 q3 q4 q5
0

500

1000

1500

2000

Query

In
te

re
st

in
g

n
es

s

Baseline − 1st score

Baseline − 20th score

TPA − 1st score

TPA − 20th score

(c) MOVIES

Figure 4: Baseline vs. TPA.
q1: select make, name

from autos

where navigation system = ’Yes’;

q2: select make, air condition, alarm

from autos

where state = ’FL’;

q3: select make, name, sunroof

from autos

where state = ’MD’ and make = ’Lexus’;

q4: select make, state, spoiler

from autos

where air condition = ’Yes’ and power steering = ’Yes’;

q5: select make, state, side air bag

from autos

where child safety = ’Yes’ and cruise control = ’Yes’;

(a) AUTOS.
q1: select D.name, G.genre, M.year

from C, M, D, M2D, G

where join and C.country=’France’;

q2: select C.country, G.genre, M.year

from C, M, D, M2D, G

where join and D.name=’Coppola, Francis Ford’;

q3: select C.country, M.year

from C, M, D, M2D, G

where join and M2D.addition=’Uncredited’;

q4: select D.name, G.genre

from C, M, D, M2D, G

where join and D.name=’Coppola, Francis Ford’ and

M2D.addition=’Uncredited’;

q5: select D.name, C.country

from D, M2D, M, C

where join and M.year=2000;

(b) MOVIES.

Figure 5: Dataset queries.

them and then use them to discover other interesting results
not part of the original query.

There is also some relation with query reformulation. In
this case, a query is relaxed or restricted when the num-
ber of results of the original query are too few or too many
respectively using term rewriting or query expansion to in-
crease recall and precision of the original query (e.g., [17]).
Again our aim is to present interesting results that are not
part of the original query but are highly related to them.
Note that we base the computation of interestingness for
our results on the surprise value. Similar measures have
been used in the literature, such as unexpectedness [24], χ2

[5] and other variants. Besides restricting the query, another
common method of addressing the too-many answers prob-
lem is ranking the results of a query and presenting only
the top-k most highly ranked ones to the user. This line
of research is extensive; the work most related to ours is

research based on automatically ranking the results [7, 3].
Besides addressing a different problem, our approach is also
different in that the granularity of ranking in our approach
is in the level of faSets as opposed to whole tuples. We also
propose a novel method for frequency estimation that makes
no independence assumptions.

Yet another method of exploring results relies on why
queries that consider the presence of unexpected tuples in
the result and why not queries that consider the absence of
expected tuples in the result. For example, ConQueR [22]
proposes posing follow-up queries for why not by relaxing the
original query. In our approach, we find interesting faSets in
the result based on their frequency and other faSets highly
correlated with them.

In some respect, exploration queries may be seen as recom-
mendations. Extending database queries with recommenda-
tions has been suggested in two recent works, namely [14]
and [6]. [14] proposes a general framework and a related en-
gine for the declarative specification of the recommendation
process. Our recommendations here are of a very specific
form. Recommendations in [6] are based on the past behav-
ior of similar users, whereas we consider only the content of
the database and the result. Some initial ideas of our work
can be found in [19].

A somewhat related problem is finding interesting or ex-
ceptional cells in an OLAP cube [16]. These are cells whose
actual value differs substantially from the anticipated one.
The anticipated value for a cell is estimated based on the
values of its adjacent cells at all levels of group-bys. The
techniques used in that area are different though and no
additional items are presented to the users.

Finally, another related problem is constructing a query
whose execution will yield results equivalent to a given result
set [23, 18]. Our work differs in that we do not aim at
constructing queries but rather guiding the users towards
related items in the database that they may be unaware of.

6. CONCLUSIONS
In this paper, we introduced ReDRIVE, a novel database

exploration framework based on presenting to the users ad-
ditional items which may be of interest to them although not
part of the results of their original query. The computation
of such results is based on identifying the most interesting
sets of (attribute, value) pairs, or faSets, that appear in the
result of the original user query. The computation of inter-
estingness is based on the frequency of the faSet in the user
query result and in the database instance. Besides propos-
ing a novel mode of exploration, other contributions of this

work include (i) a frequency estimation method based on
storing an ǫ-tolerance closed rare faSets representation and
(ii) a two-phase algorithm for computing the top-k faSets.

There are many directions for future work. One is to ex-
tend our work to more general types of facet conditions.
Although the general framework is readily applicable, this
will require extending our methods for maintaining statis-
tics. Another possible direction is to consider that a history
of previous database queries and results is available and ex-
tend our work to include faSets that appear in this history.

7. REFERENCES
[1] The Internet Movie Database (IMDb).

http://www.imdb.com.

[2] Yahoo!Auto. http://autos.yahoo.com.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. In
CIDR, 2003.

[4] Y. M. Bishop, S. E. Fienberg, and P. W. Holland.
Discrete Multivariate Analysis: Theory and Practice.
Springer, 2007.

[5] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: Generalizing association rules to
correlations. In SIGMOD Conference, pages 265–276,
1997.

[6] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Query recommendations for interactive database
exploration. In SSDBM, pages 3–18, 2009.

[7] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for
ranking of database query results. ACM Trans.
Database Syst., 31(3):1134–1168, 2006.

[8] J. Cheng, Y. Ke, and W. Ng. delta-tolerance closed
frequent itemsets. In ICDM, pages 139–148, 2006.

[9] S. Garg, K. Ramamritham, and S. Chakrabarti.
Web-cam: Monitoring the dynamic web to respond to
continual queries. In SIGMOD Conference, pages
927–928, 2004.

[10] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharm. Discovering all most
specific sentences. ACM Trans. Database Syst.,
28(2):140–174, 2003.

[11] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[12] A. Kashyap, V. Hristidis, and M. Petropoulos.
Facetor: cost-driven exploration of faceted query
results. In CIKM, pages 719–728, 2010.

[13] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica.
Relaxing join and selection queries. In VLDB, pages
199–210, 2006.

[14] G. Koutrika, B. Bercovitz, and H. Garcia-Molina.
Flexrecs: expressing and combining flexible
recommendations. In SIGMOD Conference, pages
745–758, 2009.

[15] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. K.
Mohania. Minimum-effort driven dynamic faceted
search in structured databases. In CIKM, pages 13–22,
2008.

[16] S. Sarawagi, R. Agrawal, and N. Megiddo.
Discovery-driven exploration of olap data cubes. In
EDBT, pages 168–182, 1998.

[17] N. Sarkas, N. Bansal, G. Das, and N. Koudas.
Measure-driven keyword-query expansion. PVLDB,
2(1):121–132, 2009.

[18] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina,
and J. Widom. Synthesizing view definitions from
data. In ICDT, pages 89–103, 2010.

[19] K. Stefanidis, M. Drosou, and E. Pitoura. “you may
also like” results in relational databases. In PersDB,
2009.

[20] L. Szathmary, A. Napoli, and P. Valtchev. Towards
rare itemset mining. In ICTAI (1), pages 305–312,
2007.

[21] N. Tintarev and J. Masthoff. Designing and evaluating
explanations for recommender systems. In
Recommender Systems Handbook, pages 479–510.
2011.

[22] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD Conference, pages 15–26, 2010.

[23] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In SIGMOD Conference, pages 535–548,
2009.

[24] K. Wang, Y. Jiang, and L. V. S. Lakshmanan. Mining
unexpected rules by pushing user dynamics. In KDD,
pages 246–255, 2003.

