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Abstract

In this study we present a sparse Bayesian framework foeviatction
approximation. The proposed method is based on the on-tinstrction
of a dictionary of states which are collected during the esgilon of the
environment by the agent. A linear regression model is éshkadal for the
observed partial discounted return of such dictionaryestawvhere we em-
ploy the Relevance Vector Machine (RVM) and exploit its erded model-
ing capability due to the embedded sparsity propertiesrderao speed-up
the optimization procedure and allow dealing with largalsgroblems, an
incremental strategy is adopted. Experiments have maddg s&inulated
and real environments, where we took promising results inpariso with
another Bayesian approach that uses Gaussian processes.

Keywords: Value function approximation, Sparse Bayesian modelired; R
evance Vector Machine, Incremental learning

1 Introduction

Reinforcement learning (RL) [12] aims at controlling anandmous agent in an
environment which is usually unknown. The agent is only aadia reward signal
that is applied to it when acting with the environment. Irstianner the actions
are evaluated and the learning process is designed on olgoie action with
the optimum expected reward. The goal of RL is to discover@mual policy,
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where in most cases this is equivalent to estimating a vaioetion of states. A
plethora of methods has been proposed in the last decadgsangriety of value-
function estimation techniques [5]. Algorithms such as@é&earning [17] and
Sarsa [8, 11] try to estimate the long-term expected valieaoh possible action
given a particular state by choosing actions with the marmnvalue. However
these methods have some drawbacks that prevent them intpindarge or con-
tinuous state spaces of real-world applications. Valuetion approximation ap-
proaches offer a nice solution to this problem. Least-sepisemporal-difference
(LSTD) learning [2] is a widely used algorithm for value fuion learning of a
fixed policy. Also the least-squares policy-iteration (I)8Rethod [6] extends the
LSTD by using it in the policy evaluation step of policy esation.

Recently, kernelized reinforcement learning methods heen paid a lot of
attention by employing all the benefits of kernel techniqd&3. In this manner,
standard RL methods have been extended by mapping to kpatwsds see for ex-
ample [19, 18]. One particularly elegant Bayesian RL foraioh is the Gaussian
Process Temporal Difference (GPTD) [3], that constitutegfficient adaptation
of the Gaussian processes to the problem of online valuetibmestimation. The
GPTD employs a probabilistic generative model for the statee function, and
the solution to the inference problem is given by the posteatistribution con-
ditioned to the observed sequence of rewards. An on-lineekesparsification
algorith has been also proposed in [3], by incrementallystroigting an appropri-
ate dictionary of representative states. Finally, the Kalmiemporal Differences
(KTD) framework has been introduced only recently [4], tieatctually quite
close to GPTD. In this case value function approximatiortasesl as a filtering
problem and nonstationarities are allowed through theiSp&ton of some evo-
lution model for parameters.

In this study an alternative Bayesian scheme for value fonapproxima-
tion is presented. The key aspects of our method are thdamezita state dic-
tionary and the partial discounted return which corresgadthe accumulated
reward between two states that get placed in the dictiofdrg.potential advan-



tages of this approach are threefold. First, it achieveddaced computational
complexity, since our analysis deals only with the statexlwhre stored in the
dictionary. At a second level, it manages to avoid making@gmations when
dealing with large-scale problems, as in the case of GPThodetor calculat-
ing the kernel covariance matrix. Finally, it offers enheshenodeling capabilities
due to the embedded sparsity model properties. More spbjifithe proposed
method addresses the problem of value function approxamdiy appropriately
creating a linear regression model. Training this modelcisieved through a
sparse Bayesian methodology [14, 10] that offers many ddgas in regression.
Enforcing sparsity is a fundamental machine learning @ggation principle that
causes to obtain more flexible inference methods. In spaagedtan regression
we employ models having initially many degrees of freedorhere we apply a
heavy tail prior over coefficients. After training, only aMeoefficients will be
maintained, since they will be automatically consideredigsificant. This is
equivalent of retaining only a part of dictionary which vk responsible for es-
timating the value function and designing the optimum poli€urthermore, we
have used a computationally efficient incremental strafgggented in [15], in
order to accelerate the optimization procedure. The prexgbosethod was tested
on a suite of benchmarks including known simulated envirems, such as the
mountain car and the cart pole, as well as real environmesitg) a PeopleBot
mobile robot. Comparison has been made using the sparseenrdrsion of
GPTD algorithm based on quantitative and qualitative cate

In section 2 we briefly describe the Markov Decision Proce$MDPs) and
the GPTD method as a Bayesian framework for value functigpragpmation.
The proposed sparse regression model is then presentectionsg, along with
an incremental learning procedure. To assess the perfoamainour method-
ology we present in section 4 numerical experiments witlical and real test
environments. Finally, in section 5 we give conclusions suggestions for future
research.



2 Markov Decision Processesand GPTD

In the most standard formulation of the problem, the envirent where an agent
acts, is modeled as a Markov Decision Process (MDP) [12]. APM®denoted
as a tuple{S, A, R, P,~}, whereS and A are the state and action spaces, re-
spectively,R is a reward function that specifies the immediate reward &he
transition, P is the state transition distribution, ande [0, 1] is a discount factor
that determines the importance of current and future resvakdstationary policy

7 defines a probability distribution over the action spaceddton on the states,
and can be seen as a mappingS x .4 — [0, 1]. The discounted returp(s) for

a states under a policyr, having a policy dependent state transition probability
distributionp™(-|s;), is

D(s) = Zth(st)\so =s. (1)

This can be written more concisely as
D(s) = R(s) +vD(s") , wheres' ~ p™(|s). 2)

The objective of RL problems is to estimate an optimal potitywhich max-
imize the expected discounted retulff;(s) = E.[D(s)]. This can be translated
into a value function approximation problem, accordind#following recursive
formulation:

V7(s) = Ex [R(st) + 7V (st41) |80 = ] - (3)
Equation 3 is the Bellman equation fgf which expresses a relationship between
the values of current and next state. Alternatively, theest&tion value function
usually used to facilitate policy improvement. This is thg@ected discounted
return starting from state, taking the actior and then following the policy::

Q" (s,a) = E" Zth(st)\so =Ss,a0=al. 4)

t=0
Having found the optimal action-state value functi@n, the optimal policy is
given by7n*(s) = argmax, Q*(s, a).



Gaussian Processes have been recently used as a Bayasienwdr& for mod-
eling RL tasks. Gaussian Process Temporal Difference (GR3]Ds based on
describing the value function as a Gaussian process. licpiart a decomposi-
tion of the discounted returf(s) is first considered into its mean value and a
zero mean residual:

D(s) = V(s) + (D(s) = V(s)) = V(s) + AV (s) . ()

By combining Eqs. 5, 2 we obtain the following rule:

R(s) =V (s) —vV(s') + N(s,s'), (6)
whereN (s, s') = AV (s) — yAV (s') is the difference between residuals. Given a
sample trajectory of stat€s, .. ., s, }, the model results in a set 6f- 1 linear
equations
Ry = H;V; + Ny, (7)

where R;, V;, N, are vectors of rewards, value functions and residualsecesp
tively. H, is a matrix of sizgt — 1) x ¢, given by

1 —v 0 - 0
0 1 —y - 0

H = | T . ®)
o o0 - 1 -z

By considering the above equation as a Gaussian Process-mean Gaus-
sian prior is assumed over the value functidnsi.e., V; ~ N(0, K;), where
K, is a kernel covariance matrix over states. Also, the resdiais assumed
to be zero-mean GaussiaN; ~ N (0, Y;), where the covariance matrix is cal-
culated ass; = ¢2H;H,'. When visiting a state, we decide according to the
posterior distribution of the value function, which is alGaussian} (s)|R; ~

~

N(V(s),pi(s)), where

V(s) = ki(s) ey, ap = H] (HKH, + %) 'Ry,
and  p,(s) = k(s, s) — ki(s) " Cike(s), Cy=H(H,K.H +%,)"H,.
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A limitation to the application of the GPTD is the computat complexity that
increases linearly with timeé To solve this problem, an on-line kernel sparsifica-
tion algorithm has been proposed in [3] which is based on ¢mstcuction of a
dictionary of representative statd3, ; = {s1,...,54,_,}. An approximate lin-
ear dependence (ALD) analysis is performed in order to exanvhether or not a
visited states, must be entered into the dictionary. This is achieved adogrih

a least squares problem, where we test if the image of thddatedstateo(s;),
can be adequately approximated by the elements of the ¢wlictionary [3], i.e.

2

<v, 9)

0, = min
a

D> 49(55) = 6(s)

wherev is a positive threshold that controls the level of sparsiiye sparse on-
line version of GPTD makes further approximations for ckting the kernel
matrix K, where it uses only the dictionary members for this purpsemore
details see [3].

3 TheProposed Method

We present here an advanced methodology to the task of tdedrming that
employs the Relevance Vector Machine (RVM) [14] generathaxel for value
function approximation. We start our analysis by takingiatcount the station-
arity property of the MDP, which allows us to rewrite the disated return of Eq.
1 at time steg as

D(sy) = R(st) + 7" D(s14x,), (10)

whereR (s;) = ng}l v R(s4 ) is thepartial discounted return of a state-reward
subsequence. The tefindenotes the time difference between two states that have
been observed. According to the Eq. 5, the discounted reanrbe decomposed
into its mean and a zero-mean residual. Considering thisgsson, we substi-
tute the Eq. 5 into the Eq. 10 leading to the following rule:

R(st) =V (st) = 7"V (st4k,) + N(st, St (11)
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whereN (sq, si4r, ) = AV (s;) — " AV (s¢41,) is the residuals difference.
Thus, assuming a dictionary efstatesD, = {3, ..., 5,}, we obtain a set of
n — 1 equations:

R(gz) = V(§z> — ’}/le(gH_l) -+ N(gz, §i+1), fori = 1,...,.n—1, (12)
which can be written more concisely as

whereR,, = (R(51),...,R(En))", Vi = (V(51),...,V(5,))" and N,, =
(N(31,32), ..., N(3,_1,3,)). The matrixH, is of size(n — 1) x n and has
the following form

1 —k 0 0
0 1 _,ykz R 0

H,=]|. ) . (14)
0 0 1 —kn

Moreover, we assume that the (hidden) vector of the valuetims is de-
scribed with the functional form of a linear model

V,=&,w,, (15)

wherew,, is the vector of the: unknown model regression coefficient®,, =
[T ... @1 is a kernel ‘design’ matrix containing basis functiongp;, where the
values of their components have been calculated using alemmctione;(s;) =
k(5:,5;). It must be noted that during our experimental study we hansidered
Gaussian type of kernels governed by a scalar parametere(kerdth). Thus,
Eqg.13 can be written as

R, =H,®,w, + N,, (16)

that can be further simplified as:

Vo =®,w, +e,. a7



The above equation describes a linear regression modditthtite modified ob-
servations y,, = (H,' H,)"'HR,. The terme, plays the role of the stochastic
model noise and is assumed to be a zero-mean Gaussian waiiBipne3,,, i.e.
e, ~ N(0,5;1I). Under this prism, the conditional probability density bét
sequencg,, is also Gaussian, i.e.

(Yl Wa, B) = N (yu|®ywy, 8, 1). (18)

An important issue is how to define the optimal order of thevabegression
model. Sparse Bayesian methodology offers an advancetiosola this problem
by penalizing large order models. This is the idea behindRékevance Vector
Machines (RVM) [14]. More specifically, a heavy-tailed prébstribution,p(w,, ),
is imposed over the regression coefficiewtsto zero out most weights,,; after
training. This is achieved in an hierarchical way: First,eaczmean Gaussian
distribution is considered

p(Wpla) = N(w,|0, A1) = H/\/(wm|0,a;}), (29)
=1
where A4,, is a diagonal matrix containing theelements of the precision vector
a, = (Qn1,-..,an,)". At a second level, a Gamma hyperprior is imposed over
each hyperparameter,,;,

plo,) = H Gamma(ayila,b). (20)
=1
It must be noted that both Gamma parametets are a priori set to zero in order
to make uninformatve priors.

This two-stage hierarchical prior is actually a Studentsstribution that pro-
vides sparseness to the model [14], since it enforces moiseégfarameters,,; to
become large and as a result the corresponding weightsre set to zero. In this
way, the complexity of the regression models is controlletbanatically, while
at the same time over-fitting is avoided. Furthermore, weaddain the marginal



likelihood distribution of sequencg, by integrating out the weighte,,. This
gives a zero mean Gaussian:

Pl tn, Ba) = / P(¥alWos B (Wl )dw = N'(0,Cr), (21)

where the covariance matrix has the fofin= ®, A 1®| + 8,11,
From the Bayes rule, the posterior distribution of the wisgian be also ob-
tained as [14]:
P(WalYn, 0, B) = N (Wi |, 25), (22)

where

The maximization of the log-likelihood function of Eq. 2&ads to the fol-
lowing two update rules for the model parameters [14]:

(g = 2, (24)
Foni
671 — ”yn - (I)nll‘n
" n—31%
wherey; = 1 — «a,;[%,];; and[X,,]; is the i-th diagonal element of the matrix
Y.. Thus, Equations 23, 24 and 25 are applied iteratively aotivergence. The
mean values of weightg,,, are finally used for the value function approximation
of a states, i.e. V(s) = ¢(s)",,, whereg(s) = (k(s,51), ..., k(s,5,))7.

I

(25)

3.1 Incremental Optimization

The application of RVM in large scaling problem is probleimagince it requires
the computation of matriX;,, in Eq. 23. In our case this is happening when the
size of the dictionaryr() becomes large. To deal with this problem we can follow
an incremental learning algorithm that has been proposéti5lh The method
initially assumes that all states in the dictionary (allibdanctions) have been
pruned due to the sparsity constraint. This is equivaleassmming that,,; = oo,

Vi = {1,...,n}. Then, at each iteration a basis function is examined whethe
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to be either added to the model, or removed from the modele-@stimated.
When adding a basis function, the value of the hyperparametds estimated
according to the maximum likelihood criterion.

In particular, itis easily to show that the term of the maagiikelihood of Eq.
21 which referred to the single parameteg is [15]

1 qr;
Ua) = 3 (log Qi — log( o + Spi) + P Sm) , (26)
where s 0
nZ — n n ’ nZ — n n ’ 27
§ Qg — Snz ¢ Apg — Snz ( )

andsS,,; = ¢, CL,, Qui = ¢, Clyn, d; = (¢:(51), ..., 6:(3,))". Note that with
this manner the matrix inversion is avoided by using the Vifoog identity [15].
It has been shown in [15] that the log-likelihood has a simgéximum at:

82

Opg = q2‘ _nis K if qzu > Sni, (28)

i = 00, if qu- < Spi. (29)

Thus, a basis functio, is added (and so the corresponding state of the dictionary
becomes active) in the case@f > s,;. In the opposite case this basis function
is removed.

3.2 Working in episodic tasks and unknown environments

So far we have focused on solving continuing tasks, wheregfeat is placed
initially to a random state and then is let to wander-off iimigely. Since most of
the RL tasks are episodic, a modification to our approachedee to meet these
requirements. During episodic tasks the agent will reactrainal state within
a finite number of steps. After that, a new episode (epochinbday placing the
agent to a random initial position. An absorbing state maghioeight as a state
that only zero-rewards are received and that each actigs plarole. In this case,
the partial discounted retufR(5s,,) of the last inserted statg,() in an episode, is
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actually the discounted returB(s,,), itself. Also, the discount factoy for the
subsequent dictionary stat&,( ;) will be set to zero. Thus, the matri,, . ; will
take the following form

1 —Ak 0 0 0
0 1 —Ak 0 0
Hppr= |1 : - (30)
0 0 - 1 —ko0
_O 0 0 1 O_

This new form of the above matrii is the only modification to our approach in
order to deal with episodic tasks.

Finally, in our study we have considered transitions betwstate-action pairs
instead of single states, since the model environment iptiely unknown. This
is achieved by determining the kernel function as a prodfictate kernelk,
and action kernek,, i.e. k(s,a,s’,a’) = ks(s, s')kq(a,a’) (legitimate kernel [9,
1]). Therefore, we have considered the approximation obihtenal state-value
function(.

4 Experimental Results

We have studied the performance of our model (called as RVM® Beveral sim-
ulated and real environments. In all cases we have used talaation criteria:
the mean number of steps, as well as the mean return withategpepisodes.
Comparison has been made with the on-line GPTD algorithm [Bmust be
noted that both methods use the same criterion for addingvastage to the dic-
tionary (Eqg.9) with the same threshold parametehlso, the proper value for the
scalar parameter of the Gaussian kernel in any problem wasifexperimentally.
However, in some cases (mostly on simulated environmdmsyensitivity of the
performance of both approaches to this parameter was sigmifi Finally, in all
cases, the decay parametanas set td).99.
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Figure 1. Experimental results with the mountain car sinaula

4.1 Experimentson Smulated Environments

The first series of experiments was made using two well-knbemchmarks
The first one is the mountain car [7], where the objective &f task is to drive
an under-powered car up a steep mountain road from a valleyptall, as il-
lustrated in the Fig. 1(a). Due to the force of gravity, the cannot accelerate
up to the tophill and thus it must go to the opposite slope tpuaie enough mo-
mentum, so as to reach the goal on the right slope. The emagotal states
consist of two continuous variables: the positign € [—1.5,+0.5]) and the
current velocity (; € [—0.07,0.07]) of the car. Initially, the car is standing mo-
tionless (, = 0) at the positionp, = —0.5. At each time step, it receives a
negative reward = —1. Three are the possible actions: +1 (full throttle for-
ward), -1 (full throttle reverse) and 0 (zero throttle). Apisode is terminated
either when the car reaches the goal at the right tophillhertbtal number of
steps exceeds a maximum allowed value (1000). The statelkierwas set
ask, = k(s,s) = exp (— Yo, (si — 5})2/(20?)), wheres? = 5 x 102 and
o3 = 5 x 1071 On the other hand we have used a simple action kernel of type:
when the actions are the sandej when differs by one and otherwise. Finally,
the parameter that specifies the sparsity of our model was set te- 0.001,
resulting in a dictionary that contains about 150 states.

!Both simulators have been downloaded from http://www.dasym.es/jam/download.htm
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Figure 2: Experimental results with the cart pole simulator

Another test environment is the famous cart pole shown in B{@), where
the objective is to keep the pole balanced and the cart withimits by applying
a fixed magnitude force either to the left or to the right. Ttages consists of four
continuous variables: the horizontal positi@r) and the velocity i) of the cart,
and the anglé¢) and the angular velocit§d) of the pole. There are 21 possible
discrete actions from -10 to 10, while the reward receivedhgyenvironment
takes the form = 10 — 10/106|> — 5|z| — 106. The cart is initially positioned in
the middle of the track having zero velocity, and the polesisafiel to the vertical
line having velocityd = 0.01. An episode terminates when either the cart moves
off the track, or the pole falls, or the pole is successfuliyalnced for 1000 time
steps. Similarly, we have considered a Gaussian statelkeithadifferent scalar
parameter{?) per variable:o? = 2, 02 = 0.5, 02 = 0.008 ando? = 0.1. The
action kernel was also Gaussian with variance= 1. Finally, the parameter
was set to 0.1. This resulting to a dictionary of size 100.

The depicted results on these problems are illustratedys. Biand 2, respec-
tively. As it is obvious our method achieves to find the samempmroved policy
in comparison with the online GPTD. However, our approachtha tendency to
convergence to the optimum solution much faster than GPHpeéially in the
case of the cart-pole, only a few episodes were capable oirggthe optimum
policy with a smaller in size dictionary. It is interestirgrote that, although both
approaches converged to the same optimal policy, the GPTihaueequired a
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Figure 3: The mobile robot and the 2D-grid maps used in oueerpents. These
are two snapshots from the simulator with visualizationhaf tobot’s laser and
sonar range scanner.

larger dictionary (almost double size), as well as highecexon time.

4.2 Experimentson a Mobile Robot

We have also studied the performance of our method to a Fgofaheobile robot,
shown in Fig. 3, which is based on the robust P3-DX base. Bh&éswheeled
mobile robot occupied with advanced tools for communicgtibrough the ARIA
(Advanced Robot Interface for Applications) library andaingh various sensors,
such as sonar, laser and a pan-tilt camera. In this work, thelonar and laser
sensors were used for obstacle avoidance. There is aldatdeahe MobileSim
simulation environment built on the Stage platform whichnages to simulate
the real environment with satisfactory precision

We have selected two different grid maps (stage worlds)nduour experi-
ments, as shown in Fig.3. Note that the first one was obtaigeddpping our
laboratory using the PeopleBot robot and the MobileEyesvswé. In this study
the objective is to find a steady landmark (shown with a regiéar box in both

’more details can be found at http://robots.mobilerobots/eiki/MobileSim
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Figure 4. Plots of the mean return as estimated by both mstinagvo maps.

maps of Fig.3) starting from any position in the world witte itminimum number
of steps. The robot receives a reward of -1 per time step péxdeen it finds an
obstacle where the reward is -100. In our study we have dizetkthe action into
the 8 major compass winds, while the length of each stepOnwas. Also, the
maximum allowed number of steps per episode was set to 10@llysiwe have
used a Gaussian type of kernel for the environmental stakeanscalar parameter
values? = 1. The action kernel takespossible values: 1 (when actions are the
same), 0.6 (when differ$5°), 0.3 (when differ00°), O (otherwise). Note that,
while we have used the same state kernel for both methodbeicdse of the
online GPTD we have adopted the action kernel function desdin [3], since it
gave better performance.

The experimental results of the two worlds are shown in Figvhich gives
the plots of the mean returns received by the agent in thed@&episodes. Ob-
viously, the proposed method manages to discover a morealppolicy in a
higher rate in comparison with the GPTD. This is more apgarehig. 5, where
we show the estimated trajectories following the learneicp@f each method
during studying the stage worsl (Fig. 3b). In the proposed method, the robot is
close to the optimal path between any start point and dégtin@arget), and as a
result it reaches the destination reliably and faster. Wi the same performance
behavior with the other stage wofd of Fig. 3.
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Figure 5: Learned policies by both comparative methodserctdse of test world
S.

5 Conclusions

In this paper we have proposed an advanced methodology fdelrfi@e value
function approximation using the RVM regression framewaskthe generative
model. The key aspect of the proposed technique lies on thedurction of the
partial discounted returns that are observed during crgatidictionary of states.
This sequential data of rewards is modeled using a sparsesiayframework as
employed by the RVM method that incorporates powerful miodeproperties.
We have also applied an incremental learning strategy ttel@rates the opti-
mization procedure and makes the method to be practicalfge Iscale problems.
As experiments have shown, our method is able to achieverlpstformance and
to learn significantly more optimal policies. A future resgmadirection to our
study is to further improve the regression method and thedkatesign matrix
specification, by incorporating a mechanism for adaptirgsitale parameter of
the Gaussian kernel function [16]. Another interestingddpr future study is
to work on different schemes for the on-line dictionary domgion that allowing
the dictionary to be dynamically adjusted during learning.
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