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Abstract

In this paper, we present two new blocking universal constructions. The first one, called
CC-BSim, is very efficient in systems that support coherent caches (CC), while the second one,
called DSM-BSim, is more efficient in cache-less NUMA machines (where processors do not have
caches). CC-BSim performs at most O(h + t) remote memory references (RMR), where h is
an upper bound on the number of operations that a process may help, and t is the size of the
part of the object’s state that it should be accessed in order to execute these h operations.
DSM-BSim performs at most O(hw) RMR, where w is the number of memory words accessed
by the sequential version of an operation applied on a sequential data structure. DSM-BSim
is better suited in a distributed shared memory (DSM) model. Algorithm CC-BSim uses just
one Swap object in addition to read-write registers, thus exhibiting a performance advantage
in machines that support Swap objects. On the other hand, DSM-BSim uses CAS, Swap, and
read-write registers.

Our experiments show that CC-BSim and DSM-BSim outperform state-of-the-art synchro-
nization techniques, like Sim (SPAA 2001), flat-combining (SPAA 2010), and others. We also
present and experimentally analyze common shared data structures (like shared stacks and
queues) based on CC-BSim and DSM-BSim. Our experiments show that these implementations
have very good performance in practice.



1 Introduction

Nowadays multicore processors are used in any computing device. In such systems, processes
communicate by (concurrently) accessing shared objects. Designing efficient shared objects from
simpler that are provided by the hardware is therefore of crucial importance. However, this is not
always an easy task. Using universal constructions, the design and implementation of shared objects
is significantly simplified. A universal construction is a shared object that is able to simulate any
shared object given the sequential implementation of the object. A universal construction supports
just one operation called ApplyOp which takes as a parameter the sequential implementation of
the operation that a process wants to apply to the simulated object (and its arguments). Universal
constructions have been studied extensively in [1, 2, 6, 10, 11, 13, 14, 15]; however, most of them are
mainly of theoretical interest. Recently, Hendler et. al presented in [13] a synchronization technique,
called flat combining. This technique was used in [13] to get a blocking universal construction that
achieves good performance in practice. Fatourou and Kallimanis [11] presented a wait-free universal
construction that exhibits the nice performance properties of flat combining [13] although it ensures
the strongest progress property of wait-freedom.

In this paper, we present two blocking universal constructions. The first, called CC-BSim, is
suitable for cache coherent (CC) shared memory systems where accesses to shared objects are per-
formed via cached copies of them. An access to a shared object is a remote memory reference
(RMR) if the cached copy of this object is invalid. The great majority of modern parallel architec-
tures follow the CC shared memory model. The second universal construction called DSM-BSim is
better suited for the distributed shared memory (DSM) model. In systems that support this model,
processors do not have access to local caches, so any access to a shared object that is allocated in
a part of the shared memory residing on another processor is a remote memory reference (thus, it
is expensive to serve it).

CC-BSim and DSM-BSim exploit the combining technique where one of the threads undertakes
the task of applying the operations of many active processes (in addition to its own). This technique
has been successfully applied in past in several cases [11, 13, 20, 21, 23]. The high level idea of CC-
BSim and DSM-BSim is that a linked list is maintained containing information about the currently
active operations. Each active process is assigned one of the nodes of the list (where the operation
of the process has been announced). The active process (let it be q) that owns the first node of
the list is the process that undertakes the responsibility of modifying the state of the object by
applying on it its operation as well as the operations of processes that it helps; more specifically,
q traverses the list and applies the operations announced in its nodes to the shared object. Newly
activated processes add nodes to the tail of the list. An application of ApplyOp at CC-BSim
performs O(h + t) RMR, where h is an upper bound on the number of operations that a process
may help, and t is the size of the part of the object’s state that it should be accessed in order to
execute these h operations. CC-BSim uses just one Swap object in addition to read-write registers
and its space complexity is O(n+ s), where s is the size of the simulated object’s state. CC-BSim
combines and extends ideas from the CLH spin lock [8, 17] and flat combining [13]. Similarly, DSM-
BSim combines and extends ideas from the MCS spin lock [18] and flat combining; it also employs
a similar helping technique to that of CC-BSim. A process executing an ApplyOp on DSM-BSim
performs O(hw) RMR. In contrast to CC-BSim, DSM-BSim uses CAS registers in addition to one
Swap object and its space complexity is O(n+ s).

Fatourou and Kallimanis have presented in [11] some efficient wait-free universal constructions.
The first one, called Sim, has constant time complexity, but it is only of theoretical interest since
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it uses unrealistically large registers; a practical version of Sim, called P-Sim, is also presented
in [11]. P-Sim performs O(n+s) shared memory accesses, while its space complexity is O(n2+ns).
P-Sim exhibits good performance in practice; it can been used to implement very efficiently shared
objects of small size. In [11], efficient concurrent stack and queue implementations, based on P-
Sim, are also presented and experimentally analyzed. However, P-Sim does not efficiently cope with
shared objects whose state size is large, since it copies the entire object’s state locally. In contrast,
the blocking universal constructions presented in this paper efficiently handle even shared objects
whose state’s size is large or even unbounded since the unique process that applies the updates can
do so directly on the shared data structure. Non-blocking universal constructions that cope with
large objects are presented in [1, 3, 4, 6]. However, their performance have not been evaluated in
practice.

Hendler et. al have presented in [13] a blocking universal construction, called flat-combining.
In flat-combining there is a global lock that protects the shared data structure. Also, a list of the
processes that wish to execute operations is maintained. The process that acquires the global lock
traverses the list and applies the operations listed there to the shared data structure. A process that
initiates a new operation is added at the head of the list using CAS. The lock owner cleanups the list
periodically keeping in it only the processes that have recently initiated an operation. The number
of RMR that an operation may perform in flat combining is unbounded (a really slow process that
tries to insert itself to the list may be blocked by faster processes that perform continuous cleanups
and additions in the list).

We experimentally compare CC-BSim and DSM-BSim with some of the state-of-the-art syn-
chronization techniques, like P-Sim [11], flat-combining [13], CLH spin locks [8, 17], and a simple
lock free technique. Our benchmarks (Figures 1 − 8) show that CC-BSim significantly outperforms
all other algorithms in many cases. More specifically, there are cases that CC-BSim is up to 2.5
times faster than the fastest of the other algorithms (Figure 7). DSM-BSim also outperforms all
algorithms other than CC-BSim. DSM-BSim has the advantage over CC-BSim that it is efficient
even in machines that support the DSM model and it can be efficiently employed in applications
that run on machine architectures that are not known to them (i.e., by general scope applications
that should run efficiently on a lot of different architectures). It is worth pointing out that P-Sim
is still valuable in cases that stronger progress guarantees are needed, while flat-combining is useful
in systems that Swap registers are not provided.

We used CC-BSim and DSM-BSim to implement efficient shared stack and queue implementa-
tions. Our stack implementation based on CC-BSim, called CC-BStack, outperforms state-of-the-art
shared stack implementations (like the wait-free stack implementation, called SimStack, recently
presented in [11], the linked stack implementation based on flat-combining [13], and the stack im-
plementation based on CLH spin locks [8, 17]). DSM-BSim also outperforms all implementations
other than CC-BSim. We also use CC-BSim and DSM-BSim to get two highly efficient shared queue
implementations, called CC-BQUEUE and DSM-BQUEUE. More specifically, the two-locks queue
implementation presented in [19] is enhanced by simply replacing the ordinary locks either with
CC-BSim or with DSM-BSim. These implementations were experimentally compared to the wait-
free queue implementation presented in [11] (called SimQueue), the two-locks implementation [19],
and the queue implementation based on flat combining presented in [13]. The queue implementa-
tion based on CC-BSim performs up to 2.5 times faster than the queue implementation of [13] and
outperforms SimQueue by a factor of up to 2.2. The good performance levels achieved by our queue
implementation makes it suitable for applications that are heavily based on shared queues, like the
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hierarchical lock implementation that has been recently presented in [9]. In such applications, we
expect that, by employing our queue implementation, we would observe a significant performance
speed-up (however, implementing and experimentally analyzing this has been left for future work).

Many hardware manufactures have been influenced by the universality result [14], and they have
equipped their machines with the strongest atomic primitives (like CAS and LL/SC). As shown in
[11], machines that additionally support Fetch&Add instructions, can have important performance
advantages, while it is additionally possible to ensure wait-freedom. Our experiments show that
machines that support Swap objects have significant performance benefits as well. Fortunately,
Swap instructions are already supported by a large variety of machine architectures (x86, sparc,
etc.). Weak atomic primitives, like Swap, can be implemented much easier and more efficiently.
More specifically, a CAS may fail to modify the register, thus a loop that repeatedly executes CAS
operations is usually employed; in contrast, Swap always succeeds, thus causing less contention.
Furthermore, the execution of a CAS includes the evaluation of a condition in the cpu microcode,
so it is expected to be slower than executing a simple Swap instruction.

We note that CC-BSim, similarly to Sim [11] and flat-combining [13], cannot be efficiently applied
in data structures such as search trees, where m lookups can be executed in parallel performing just
a logarithmic number of shared memory accesses each. In such cases, it is expected that CC-BSim
will not perform the same well, since like most previous universal constructions [6, 10, 11, 13, 14, 15],
it performs each operation sequentially. More efficient implementations of such data structures can
possibly be obtained by using many instances of CC-BSim in a way similar to the enhanced two-lock
queue implementation (Section 5).

This paper is organized as follows. Section 2 presents the model. CC-BSim is presented in
Section 3 and DSM-BSim in Section 4. Section 5 presents the experimental evaluation of CC-BSim
and DSM-BSim.

2 Model

There are n asynchronous processes p1, . . . , pn running in the system. The processes communicate
by accessing shared objects. Each shared object stores some information and offers to the processes
the capability to access and modify the stored information using atomic operations that may be
executed by the processes concurrently.

The most basic shared object is a read-write register which is provided by the hardware in
all systems. A read-write register R, stores a value v from a set V and supports two atomic
operations, read(R) and write(R, v). Operation read(R) returns the current value of register
R, while write(R, v) stores value v to R and returns ack. A CAS register stores a value from a
set V and supports two atomic operations, read(R) and CAS(R, vold, vnew). Operation read(R)
returns the value stored in register R. Operation CAS(R, vold, vnew) stores v to R if the current
value of R is equal to vold and returns TRUE, otherwise the contents of R remain unchanged and
CAS(R, vold, vnew) returns FALSE. A Swap register stores a value from a set V and supports two
atomic operations, read(R) and Swap(R, v). Operation read(R) returns the value stored in register
R. Operation Swap(R, v) returns the current value of R and stores v to R.

We consider shared memory systems where parts of the shared memory are associated to each
processor, so every shared object is allocated (and resides) in the shared memory part associated
with some processor. We consider two memory models. In cache-less NUMA machines (this model
is also known as DSM), a process p performs a remote memory reference (RMR) if it accesses a
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shared object residing in the shared memory part of some processor other than that where p resides;
all other memory accesses by p are called local. In cache-coherent (CC) machines, accesses in shared
memory are performed on cached copies of the data items. In this case, a memory reference is called
remote if the cached copy of the accessed data item is invalid. Then, a cache miss occurs and a
valid copy of the data item should be locally fetched first before it can be accessed. It is worth
pointing out however that once this occurs and as long as the data item is not updated by other
processors, all future accesses to the data item by the processor are local. This is not the case in
the DSM model, where every access to a data item that resides in a remote memory is remote. We
remark that since an RMR is significantly more costly than a local memory reference, our goal is
to design algorithms that perform as few RMR as possible.

A universal object simulates any other concurrent object. It supports an operation, called
ApplyOp(op-eration op), which simulates the execution of operation op on the simulated object;
ApplyOp returns the return value of operation op. An implementation of an object from basic
shared objects (like read-write registers) provides, for each process, an implementation of ApplyOp
using the basic shared objects.

A configuration C is a vector containing the states of the processes and the values of the shared
objects at any point in time. At the initial configuration, each shared object has an initial value
and each process is at an initial state. A process completes the execution of a computation step,
each time it accesses a primitive shared object, i.e., a step may include the execution of code on
local variables. An execution is a sequence of execution steps by processes.

An implementation is blocking if a process may have to wait for some event caused by other
processes in order to complete the execution of its operation. In blocking implementations, the
time complexity of an operation is the maximum number of remote memory references that a
process performs to complete any instance of the operation in any execution. The time complexity
of an implementation is the maximum between the time complexities of its operations. The space
complexity of an implementation is determined by the number, the type, and the size of the primitive
shared objects used by the implementation.

Let α be any execution of an implementation of a (high-level) object from base objects. Lin-
earizability [16] ensures that for each operation op on the simulated object in α, there is some point
within its execution interval, called linearization point, such that the response returned by op in
α is the same as the response op would return if all operations in α were executing serially in the
order determined by their linearization points; when this holds, we say that the response of op is
consistent. An implementation is linearizable if all its executions are linearizable.

3 An efficient blocking universal construction for the CC model

In this section we present CC-BSim, a blocking universal construction for the CC shared memory
model which has O(h+ t) time complexity.

CC-BSim combines some ideas from CLH locks [8, 17] and flat-combining [13] to get a highly-
efficient algorithm for CC systems. More specifically, a process p that wants to execute an operation
appends a node at the end of a linked list. A pointer, called Tail, points to the last element of the
list. Each node in the list other than the last one, contains information about some operation; the
last node in the list is empty and it will be used by a process (let it be q) in the future to announce
its operation. The new node that q will append in the list will play the role of the new empty node
of the list. Thus, the last node in the list is always empty. Initially, the list contains an empty node
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which will be used by the first process that wants to perform an operation for its announcement.
We say that a node is assigned to the process that has initiated the operation recorded in it. Once
q appends its node, it spins on the locked field of its assigned node.

In contrast to the CLH algorithm where the list is implicit (i.e., no next pointers are maintained
in each node of the list), the list maintained by CC-BSim is explicit. The process at the head of
the list, has the lock. However, in contrast to what CLH does, this process does not give up the
lock when it applies its operation. It rather continues accessing other elements of the list (by
traversing the next pointers of the list nodes) and helps the processes spinning on these nodes by
executing their operations and then setting the locked fields of these nodes to false to stop them
from spinning.

We now give a more detailed description of CC-BSim (Algorithm 1). Pointer Tail is a Swap

object which initially points to the empty node that is initially inserted in the list. Whenever
process pi wants to execute some operation op, it executes a Swap operation to Tail (line 6) in
order to read the pointer to the empty node pointed to by Tail and update Tail to point to a new
empty node pointed by pi’s local variable nexti. Once this has been performed, pi has been assigned
the node that was previously pointed by Tail, so it first announces its operation by recording op in
the op field of the node (line 7) and then it sets the next field of the node to point to the new empty
node (line 8). This results in the expansion of the shared linked list by one node which is empty
and is pointed to by Tail. After that, pi starts spinning on field locked of its assigned node until
this field becomes FALSE. When pi reads FALSE in locked, either its operation has been executed by
some other process q or pi is the first process in the list and therefore it has the lock. So, it should
modify the simulated object’s state by applying the operations currently recorded in the list on it.
Thus, pi applies its operation to the shared object and starts traversing the list to help any other
pending operation.

We remark that the list could grow forever while pi traverses it (a process may add a node at
the end of the list more than once after its operation has been applied by pi). In order to prevent pi
from traversing a continuously growing list, an upper bound h (line 14) on the number of operations
that pi can help is employed; once pi helps h other operations, it stops helping and returns. Our
experiments show that the choice of this parameter does not significantly impact the performance
of the algorithm in practice. More specifically, setting h to a value equal to cn, where c > 0 is a
small constant, is a good choice in terms of performance.

The total number of nodes used by the processes to maintain the list are 2n+ 1, two nodes for
each process plus the empty node that is initially in the list. These nodes are recycled applying
a similar technique than that of CLH. More specifically, each process uses the two nodes it has
allocated for its first two operations, and then it uses the nodes it was assigned in its last two
operations for future operations. We explain below why it is not enough to have each process pi use
just one list node instead of two. Assume first that every time that pi wants to allocate a new node,
it simply reuses the node it has last been assigned in the list. Let q be the process that currently
has the lock. Suppose that q helps pi by applying its operation but delays its execution before
executing line 19. If pi wants to immediately apply another operation, it may initialize its node
again and exchange it with the empty node pointed to by Tail. Then, q continues by executing
line 19, it sees that it’s at the end of the list and it finishes its operation. Thus, q never sees the
pending operation of pi and it never helps pi to finish its operation, so pi spins forever. To avoid
this bad scenario, every process maintains two nodes and uses them in a round robin manner.

Time and Space complexity. By the pseudocode (Algorithm 1), it follows that each process
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Algorithm 1 Pseudocode for CC-BSim algorithm.
struct LockNode {

LockNode *next;
Operation op;
RetVal ret;
boolean locked;
boolean completed;

};
shared LockNode *Tail = ⟨null,⊥,⊥,FALSE, FALSE⟩; // Initially points to an empty node

// Process pi owns a private copy of this variable
private LockNode *nodei[0..1] = {⟨null,⊥,⊥,FALSE, FALSE⟩, ⟨null,⊥,⊥,FALSE, FALSE⟩};
private int togglei = 0; // Takes values form set {0, 1}

RetVal applyOp(Operation op) { // Pseudocode for process pi
LockNode *p, *cur, *next node;
int counter = 0;

1. next node = nodei[togglei]; // a new recycled empty node is pointed by next node
2. togglei = 1 - togglei; // pi toggles its toggle variable
3. next node → next = ⊥; // the new empty node is initialized (lines 3− 5)
4. next node → locked = TRUE;
5. next node → completed = FALSE;
6. cur = Swap(Tail, next node); // Tail points to a new empty node, the returned node is now owned by pi
7. cur → op = op; // pi announces its operation
8. cur → next = next node; // next field points to the new empty node, also pointed by Tail
9. nodei[togglei] = cur; // node pointed by cur will be re-used in a next operation
10. while (cur → locked == TRUE) // process spins until its operation is applied or until unlocked

nop;
11. if (cur → completed == TRUE) // pi’s operation has been applied by some other process
12. return cur → ret; // pi returns its returned value
13. p = cur;
14. while (p → next ̸= null AND counter < h) {
15. counter = counter + 1; // counter is increased by one, since another operation is applied
16. apply p→op to object’s state and store the return value to p → ret;
17. p → completed = TRUE; // announce to the spinning process that its operation is applied
18. p → locked = FALSE; // unlocks the spinning process
19. p = p → next; // proceed to the next node

}
20. p → locked = FALSE; // unlocks the next the owner of the next node (if any)
21. return cur → ret; // process returns
}

pi completes its operation either on line 12 or on line 21 of the pseudocode. In case that pi completes
op on line 12, it follows that pi executes a constant number of RMR. Assume now that pi completes
op on line 21 of the pseudocode. By the pseudocode (line 14), pi executes at most h iterations of
the while loop (lines 15− 19). Lines 17− 19 contribute just a constant number of RMR, and line
15 is a local operation. Thus, pi executes O(w) RMR at each iteration of the loop (to apply each
operation). However, different operations may access the same part of the state of the object, which
once fetched in pi’s cache, accessing it does not cause any further RMR. So, the time complexity
of CC-BSim is O(h+ t), t is the size of the part of the object’s state that it should be accessed in
order to execute these h operations. It is worth-pointing out that the amortized time complexity
is O(t); thus, the amortized time complexity of CC-BSim is as good as the time complexity of the
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sequential version. The space complexity of CC-BSim is O(n+s), since each process has to allocate
just two structs of type LockNode at most.

4 An efficient blocking universal construction for the DSM model

CC-BSim performs an unbounded number of RMR in the DSM model. In this section, we present
DSM-BSim, a blocking universal construction which performs O(hw) RMR in the RMR model.
DSM-BSim (Algorithm 2) is an extended version of the MCS spin locks [18] to support combining.
Some of the techniques of CC-BSim are also employed. In contrast to CC-BSim, DSM-BSim uses CAS
objects in addition to the Swap objects. Experiments show (Figures 1 − 8) that CC-BSim achieves
slightly better performance than DSM-BSim.

DSM-BSim maintains a list of operations to be executed in a manner similar to that of CC-BSim.
In contrast to CC-BSim, the list is initially empty and its last node is a valid (not an empty) node.
Each process q maintains two list nodes; q announces each operation it performs in one of these
nodes, and then performs spinning on it. Notice that a process that appends its node to the list
has to update the next field of the previous node to point to the new node. A process q helps all
the operations recorded in list nodes up to the second last element in the list (see condition of the
if statement of line 19). It does so to avoid arriving to a node where its next field has not yet been
updated although this node is not the last node in the list any more. Thus, q will execute lines
22− 25 only if its node is the only node in the list. In this way, q performs a bounded number of
remote memory accesses (whereas spinning on the last node of the list on line 25 would cause an
unbounded number of memory accesses).

Time and Space complexity. DSM-BSim performs O(hw) RMR, i.e. w RMR for each of the
h operations that an operation helps. These RMR are performed during the execution of line 16.
The only extra piece of code that may cause DSM-BSim to perform more RMR is that consisting
of lines 22− 25. However, as explained above a process q executes these code lines only when the
node it inserts is the single node of the list. So, if these lines are executed, q’s local variable called
p is equal to mynode, and therefore spinning on p → next on line 25 is local. The space complexity
of DSM-BSim is the same as that of CC-BSim.

5 Performance evaluation

We evaluate CC-BSim and DSM-BSim in two different multiprocessor machine architectures. The
first machine is a 32-core machine consisting of four AMD opteron 6134 processors (Magny Cours).
Each processor of the Magny Cours machine consists of 2 dies and each die contains 4 processing
cores. Communication among the cores of the same die is achieved with a fast L3 cache. Dies
are communicating with Hyper-Transport links creating thus a complex topology that resembles
a hypercube [7]. The second machine is an 128-way Sun machine consisting of 2 UltraSPARC-T2
processors (Niagara 2). Each processor in Niagara 2 machine consists of 8 processing cores, each
of which is able to handle 8 threads. All experiments in the Magny Cours machine were performed
using the gcc 4.3.4 compiler; all experiments in the Niagara 2 machine were performed using gcc
4.5.1. In order to avoid bottlenecks in memory allocation, the Hoard memory allocator [5] was used.
The full code of CC-BSim and DSM-BSim is provided at http://www.cs.uoi.gr/˜nkallima/bsim.

In order to evaluate CC-BSim’s and DSM-BSim’s performance, we compared them with state-
of-the-art synchronization techniques simulating a simple Fetch&Multiply object and common
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Algorithm 2 Pseudocode for DSM-BSim algorithm.
struct LockNode {

LockNode *next;
ArgVal arg;
RetVal ret;
Operation op;
boolean locked;
boolean completed;

};

shared LockNode *Tail = null; // initially the list of active processes is empty

// process pi owns a private copy of these variables
private LockNode MyNodesi[0..1] = {⟨null, ⊥, ⊥, ⊥, FALSE, FALSE, ⟩, ⟨null, ⊥, ⊥, ⊥, FALSE, FALSE, ⟩};
private int togglei = 0; // takes values form set {0, 1}

RetVal applyOp(Operation op) { // pseudocode for process pi
LockNode *p, *mynode;
int counter = 0;

1. togglei = 1 - togglei; // pi toggles its toggle variable
2. mynode = &MyNodesi[toggle]; // a new empty node is pointed by mynode
3. mynode→locked = TRUE; // pi initializes its node (lines 3− 6)
4. mynode→completed = FALSE;
5. mynode→next = null;
6. mynode→op = op; // pi announces its operation op
7. MyPred = swap(Tail, mynode); // Tail points to a new empty node, the returned node is now owned by pi
8. if (MyPred ̸= null) { // in case that some node already exists in the list
9. MyPred→next = mynode; // set the previous node of the tail to point to my node
10. while (mynode→locked == TRUE) // pi spins until its operation is applied or until unlocked

nop;
11. if (mynode→completed == TRUE) // pi’s operation has been applied by some other process
12. return mynode→ret; // pi returns its returned value

}
13. p = mynode;
14. while(TRUE) { // pi executes this loop at least once to apply its operation
15. counter++; // counter is increased by one, since another operation is applied
16. apply op to object’s state and store the return value to p→ret;
17. p→completed = TRUE; // announce to the spinning process that its operation is applied
18. p→locked = FALSE; // unlocks the spinning process
19. if (p→next == null or p→next→next == null or counter ≥ h)
20. break; // pi has helped h processes or less than two nodes are left in the list
21. p = p→next; // proceed to ne next node

}
22. if (p→next == null) { // pi is at the end of the list of active processes
23. if (CAS(Tail, p, null) == TRUE) // replace the tail of the node with null (in case of success the list is empty)
24. return mynode→ret;
25. while (p→next == null) // some process is adding a new node, it waits until it finishes its operation

nop; // this loop is only executed on pi’s node, it doesn’t cost additional RMR
}

26. p→next→locked = FALSE; // Unlocks the next the owner of the next node (if any)
27. p→next = null;
28. return mynode→ret; // Process returns
}
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Figure 1: Absolute performance of the CC-BSim and DSM-BSim in Magny Cours machine (left) and relative
performance of CC-BSim and Sim against flat-combining (right).

Figure 2: Absolute performance of CC-BSim and DSM-BSim in Niagara 2 machine (left) and relative perfor-
mance of CC-BSim and CLH spin locks against flat-combining (right).

concurrent data structures like shared stacks and queues. Our first experiment is a synthetic
benchmark (Figures 1, 2), where a simple Fetch&Multiply object is simulated using several state-
of-the-art synchronization techniques. This object is simple enough to exhibit any overheads that
a synchronization technique may induce while simulating a very small shared object. CC-BSim
and DSM-BSim are compared with Sim a wait-free universal construction presented in [11], flat-
combining [12, 13], the CLH spin-locks [8, 17], and a simple lock free implementation. Since the
Niagara 2 machine does not support Fetch&Add instructions which are necessary for the good per-
formance of Sim, no experiment was performed in the Niagara 2 machine for the Sim algorithm. The
lock free simulation of the Fetch&Multiply object was implemented using a CAS object. Whenever
a thread wants to apply a Fetch&Multiply instruction, it repeatedly executes CAS instructions
until it succeeds. All algorithms were carefully optimized and for those that use backoff schemes,
we performed a large number of experiments in order to choose the best backoff parameters. We
used the flat-combining implementation that was provided by its inventors [12, 13] and we choose
its parameters very carefully in order to achieve the best performance.

In the first experiment (Figures 1, 2), we measure the time that is needed for each of the
synchronization techniques to perform 106 Fetch&Multiply instructions . The experiment was
executed for many different values of n. Each thread executed 106/n Fetch&Multiply instructions.
In order to make the experiment more realistic, some small random work was added between the
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Figure 3: Absolute performance of the CC-BSim and DSM-BSim in Magny Cours machine (left) and rel-
ative performance of CC-BSim and Sim against flat-combining (right). Random work between consecutive
Fetch&Multiply instructions is 512 at most.

Figure 4: Absolute performance of the stack implementation based on CC-BSim in Magny Cours machine
(left) and the relative performance of CC-BSim’s stack implementation and SimStack against flat-combining
(right).

execution of two consecutive Fetch&Multiply instructions to avoid unrealistically low numbers
of cache misses and long runs. A similar strategy has been followed in [11, 19]. This random
work consists of dummy loop iterations, which are at most 64. The horizontal axis of Figures 1 − 8
represents the number of processes n. In Figure 1 (left) and Figure 2 (left), the vertical axis displays
the time that each synchronization technique needs to complete the experiment. In Figure 1 (right)
the vertical axis shows the relative performance of CC-BSim and DSM-BSim compared to that of
flat-combining, i.e., it illustrates how much faster/slower CC-BSim and Sim are compared to flat-
combining (where the performance of flat-combining is always considered equal to 1.0). Similarly,
Figure 2 (right) shows the relative performance of CC-BSim and CLH spin locks compared to
flat-combining in the Niagara 2 machine.

In the experiments performed in the Magny Cours machine (Figure 1), CC-BSim outperforms
all other synchronization techniques. More specifically, CC-BSim is up to 1.71 times faster than
flat-combining and up to 3.3 times faster than CLH locks. Furthermore, CC-BSim outperforms
Sim by a factor up to 1.52. The lock free implementation of the Fetch&Multiply object is slightly
slower than Sim and flat-combining. DSM-BSim performs also very well and its performance is
close to that of CC-BSim, albeit it is better suited in machines following the DSM model.
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Figure 5: Absolute performance of the stack implementation based on CC-BSim in Niagara 2 machine (left)
and the relative performance of CC-BSim’s stack implementation and SimStack against flat-combining (right).

Figure 6: Absolute performance of the stack implementation based on CC-BSim in Magny Cours machine
(left) and the relative performance of CC-BSim’s stack implementation and SimStack against flat-combining
(right). Random work is 512 at most.

Similarly to the experiments performed on Magny Cours machine, CC-BSim outperforms all of
other algorithms (Figures 2) in the Niagara 2 machine. More specifically, CC-BSim outperforms
flat-combining by a factor of up to 1.70 and CLH spin locks by a factor of up to 1.57. Notice
that CLH spin locks are more competitive in the Niagara 2 machine, since the Niagara 2 machine
consists of a few cpus but each of them handles a lot of threads (so communication among these
threads is very fast). The lock free implementation of the Fetch&Multiply object is much slower
than Sim and flat-combining in most of the cases. It is worth-pointing out that implementing the
appropriate backoff scheme has a significant impact on performance of the lock free implementation
in the Niagara 2 machine. DSM-BSim exposes almost the same performance to flat-combining in
the Niagara 2 machine. As shown in Figures 1, 2, all algorithms perform faster in case n = 1 in
the Magny Cours machine than in cases where n > 1, while in the Niagara 2 machine they perform
faster when n > 1. This is probably due to the fact that the Magny Cours machine consists of few
but very fast processing cores, while the Niagara 2 machine is able to handle a lot of threads but
its processing cores are much slower.

At the experiments presented in [11], the random work was at most 512. In this paper, a lower
random work was chosen since greater values led to very low contention in the experiments executed
in the Niagara 2 machine. Thus, the experiments presented in [11] are not directly comparable to

11



Figure 7: Absolute performance of the queue implementation based on CC-BSim in Magny Cours machine
(left) and the relative performance of CC-BSim’s queue implementation and SimStack against flat-combining
(right).

Figure 8: Absolute performance of the queue implementation based on CC-BSim in Niagara 2 machine
(left) and the relative performance of CC-BSim’s queue implementation and SimStack against flat-combining
(right).

that presented in Figure 1. However, directly comparable experiments to that of [11] for the Magny
Cours machine are presented in Figure 3. As expected, performance advantages of CC-BSim and
DSM-BSim are similar to that presented on Figure 1.

In order to investigate the performance advantages of CC-BSim and DSM-BSim, we implemented
a shared stack based on them and we compared the performance of these implementations with
the state-of-the-art shared stack implementations. Specifically, the shared stack implementations
based on CC-BSim and on DSM-BSim were evaluated against the wait-free stack implementation
called SimStack presented by Fatourou and Kallimanis in [11], the lock free stack implementation
presented by Treiber in [22]1, a stack implementation based on CLH spin lock [8, 17], and a linked
stack implementation based on flat-combining [12, 13]. In order to evaluate these shared stack
implementations, 106 pairs of push, pop operations were executed with each thread executing
106/n pairs. Random work (at most 64) was added between the execution of two consecutive stack
operations.

1In the experiments performed in the Magny Cours machine, the lock free implementation of a stack presented
in [22] performed poorly; for this reason, we decided not to include results for it in the diagrams (Figure 4) for the
Magny Cours machine.
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Figure 9: Absolute performance of the queue implementation based on CC-BSim in Magny Cours machine
(left) and the relative performance of CC-BSim’s queue implementation and SimStack against flat-combining
(right). Random work is 512 at most.

As it is shown in Figure 4, the shared stack based on CC-BSim, called CC-BStack, performs up
to 1.68 times faster that the linked stack based on flat-combining in the Magny Cours machine,
and up to 1.59 times faster than SimStack. The stack implementation based on CLH spin locks
did not perform well in the Magny Cours machine. The stack implementation based on DSM-BSim
algorithm performs worse than CC-BSim but it is better than all other algorithms. Experiments
with random work at most 512 for the Magny Cours machine are illustrated in Figure 6. In
the Niagara 2 machine the shared stack based on CC-BSim performs 1.79 times faster that the
linked stack based on flat-combining (Figure 5). The stack implementation based on DSM-BSim
algorithm performs worse than CC-BSim but it is again better than all other algorithms. CLH
spin locks perform worse than flat-combining and their performance is up to 2.4 times slower than
CC-BSim.

In our final experiments, we implement and experimentally analyze a shared queue based on
CC-BSim and DSM-BSim. More specifically, the two locks queue implementation presented in
[19] is enhanced by replacing the ordinary locks either with CC-BSim or with DSM-BSim. Our
queue implementation based on CC-BSim or DSM-BSim was compared with the wait-free queue
implementation presented by Fatourou and Kallimanis in [11], the lock free queue implementation,
and the two locks implementation presented in [19]2, and the queue implementation based on
flat-combining [12, 13]. The queue experiment is similar to that for stacks.

As illustrated in Figure 7, SimQueue exhibits better performance than any algorithm other
than CC-BQUEUE and DSM-BQUEUE in the Magny Cours machine, as it was expected [11]. It is
worth pointing that, in this machine, CC-BQUEUE performs up to 2.53 times faster than the queue
implementation based on flat-combining (Figure 7). Furthermore, CC-BQUEUE performs 2.1 times
better than SimQueue. On the other hand, DSM-BQUEUE algorithm performs a little worse than
CC-BQUEUE but its better than all other algorithms. Experiments with random work at most 512
for the Magny Cours machine are illustrated in Figure 9.

As illustrated in Figure 8, flat-combining performs better than all algorithms other than CC-
BQUEUE and DSM-BQUEUE in the Niagara 2 machine (recall that SimQueue has not been imple-

2In the experiments performed in the Magny Cours machine, the lock free implementation of a queue presented
in [19] performed poorly; for this reason, we decided not to include results for it in the diagrams (Figure 7) of the
Magny Cours machine.
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mented in this machine). It is worth pointing that CC-BQUEUE performs up to 1.8 times faster
than the queue implementation based on flat-combining. It is also noticeable that the performance
gap between the queue implementation based on flat-combining and the two locks queue is smaller
in the Niagara 2 machine. This is due to the fact that the CLH spin locks perform very well in this
machine and the parallel use of two different locks (one for enqueues and one for dequeues) gives a
performance boost in the two locks algorithm. Again, DSM-BQUEUE performs slightly worse than
CC-BQUEUE but its better than all other algorithms in the Niagara 2 machine.
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