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Abstract

Perscnalization systems exploit preferences for providing users with
only relevant data out of the huge volume of the information that is cur-
rently available. Such preferences may dependent on context. We model
context as a set of hierarchical attributes, each taking values from hierar-
chical domains. In this paper, we consider relaxing the context associated
with a query, so that there are enough preferences with matching con-
text. A hierarchical attribute may be relaxed upwards by replacing its
value by a more general one, downwards by replacing its value by a set
of more specific values or sideways by replacing its value by sibling values
in the hierarchy. We consider possible expansions of the query context
produced by relaxing one or more of its attributes in any of the above
ways. We also present an algorithm: based on: a prefix-based representa-
tion of context for computing the preferences whose context matches best
the relaxed context of the guery,

1 Introduction

Personalization systems aim at providing users with only the data that is of
interest to them out of the huge amount of avallable information. One way to
achieve personalization is through preferences [5, 7). With preferences, users
express their degree of interest on specific pieces of information. In our previous
work [9, 10}, we have argued for an extended preference model, where preferences
depend on context. Confext is a general term used to capture conditions such
as time or location. We model context as a multidimensional entity, where each
dimension corresponds to one context parameter. Then, in the case of n context
parameters, a context state is & n-tuple with one value from its domain assigned
to each of the n context parameters. To allow more flexibility in expressing
context, we allow context parameters to take values from hierarchical domains.
For instance, a context parameter location may take values from a region, city
or country domain. Users employ context descriptors to express preferences on
specific database instances for a variety of context states.

Each query is associated with one or more context state. The context state
of a query may, for example, be the current state at the time of its submission.



Furthermore, 3 query may be explicitly enhanced with context descriptors o
allow exploratory queries about hypothetical context states. The general goal
is to be able to rank the results of a query differently based on the preferences
associated with a given query context.

Most often the context of a query is too specific to match any of the avail-
able preferences. To handle this issue, we consider hierarchical relazation as
the approach of replacing the value of one hierarchical context attribute by a
corresponding value at a different level of abstraction. Hierarchical attribute
relaxation may be upwards, in which case the value of an attribute is replaced
by a more general value in the associated hierarchy, or downwards. in which
case the value is replaced by a set of more specific values. We also consider
sideways relaxation, by replacing a value of a context attribute by one or more
of its sibling values in the hierarchy. All three relaxation types may differ in
depth, where depth intuitively expresses how far away in the hierarchy is the
initial value from the relaxed one. For instance, relaxing Athens to Greece has
less depth than relaxing Athens to Furope and thus considered closer to it.

Various related context states may be produced by relaxing one or more of
its attributes upwards, downwards or sideways. Such relaxations are ranked
according to their similarity to the original query state. Similarity is defined
based on the number of attributes that are relaxed and the agsociated depth of
such relaxations. We present an algorithm for computing the preferences whose
context states match best the relaxed context of a query. The algorithm uses a
prefis-based representation for the set of context states of both the guery and
the preferences. We also present initial performance results regarding the cost
of relaxation and the size of the produced results.

‘The rest of this paper is structured as follows. In Section 2, we present
our context-cependent preference model. The problem of context relaxation is
introduced in Section 3, while an algorithm for finding the context states that
match the relaxed context of & query is provided in Section 4. In Section 5, we
present some initial performance results regarding the spread of the achieved
relaxation. Section 6 includes a discussion of related work, while Section 7
concludes the paper.

2 The Multidimensional Preference Model

In this section, we present our multidimensional preference model. As a running
example, we consider a simple database with information about points_of interest
such as museums, monuments, archaeological places or zoos. The database
schema consists of a single database relation: Points.of Interest(pid, name,
type, location, open-air, hours_of _operation, admission.cost). We consider three
context parameters as relevant: location, weather and accompanying.people.
Depending on context, users prefer points_of_interest that have specific at-
tribute values. For example, a point-of-interest of fype z00 may be a preferred
place to visit than a point-of-interest of type brewery in the context of family.
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Figure 1: Example Hierarchies.

2.1 Modeling Context

Context is modeled through a finite set of special-purpose attributes, called
context porameters (C;). For a given application X, we define its context en-
vironment C'Ex as a set of n context parameters {C1,Cs,...,Cr}. For in-
stance, the context environment of our example is {location, weather, accompa-
nying.people}. Each context parameter C; is characterized by a contest domain
dom(C};), that is an infinitely countable set of values, A context state w is a
n-tuple of the form (¢1,cp, .. ., ¢n), where ¢; € dom{C};). For example, a context
state may be: (Plaka, warm, friends).

To allow more flexibility in defining preferences, we model context parame-
ters as multidimensional attributes. In particular, we assume that each context
parameter participates in an associated hierarchy of levels of aggregated data,
i.e., it can be viewed from different levels of detail. Formally, an atéribuie hi-
erarehy is a latdice (L, <) L = (L1,...,Lm—1, ALL) of m levels and < is a
partial order among the levels of L such that Ly < Iy < ALL, for every 1 < 1
< m. We require that the upper bound of the lattice is always the level ALL,
so that we can group all values inte the single value ‘wll’. We use the notation
domy,; (C;) for the domain of level L; of parameter C;. Regarding our running
example, Fig. 1 depicts the hierarchies that are used.

For a context value ¢;, we use the notation level{c;) to refer to the levei L;,
such that, ¢; € domy;(C;). The relationship between the values of the context

levels is achieved through the use of the set of cmci’f_' , Li = Ly, functions {12].

A function cmci-: assigns a value of the domain of L; to a value of the domain

of Lj. For instance, ancgi?fm(ﬂaka) = Athens. The function descif is the

inverse of ancﬁf , that is descif (v)y={z € domyp, (Ck): cmcif {z) = v}.

We define the extended domain for a parameter C; with m levels as edom ()
= Uty domp,(Cy). An (extended) context state s is a n—tuple of the form
(C1,Ca0 ..., Cn), Where ¢; € edom(C;). The set of all possible extended context
states called extended world, EW, is the Cartesian product of the extended do-
mains of the comtext attributes: EW = edom(C1) x edom(Ch) x . . . x edom{Chr).

Users can express conditions regarding the values of a context parameter



through context parameter descriptors.

Definition 1 {Context parameter descriptor) A context parameter descrip-
tor cod(C;) for a parameter Cy is an expression of the form: C; € {valuey, ..
valuen,}, where valuey, € edom{Cy), T < k < m.

3

For example, given the contexi parameter location, a context parameter de-
scriptor can be of the form location € {Plaka, Toannina}. A context descriptor
is a specification that a user can make for a set of context parameters, through
the combination of simple parameter descriptors.

Definition 2 {Composite context descriptor) 4 (composite} context descrip-
tor cod is a formula cod(Ci,) A cod{Ci,) A ... Acod(Cy,) where each C;, 1 < j

< k is a context parameter and there is of most one parameter deseriptor per
context parameter Cl, .

Given a set of context parameters Cy, . .., Cy, a composite context descriptor
describes a set of context states, with each state having a specific value for
each parameter. Clearly, one context deseriptor can produce more than one
state. For instance, the context descriptor (location = Plaka A weather €
{warm, hot} A accompanying.people = friends) corresponds to the following
two context states: (Plaka,warm, friends) and (Plaka, hot, friends). I a
context descriptor does not contain all context parameters, that means that
the absent context parameters have irrelevant values. This is equivalent to a
condition C; = all.

2.2 Contextual Preferences

To achieve context-aware personalization, users express their preference for spe-
cific database instances by providing » numeric score which is a real number
between 0 and 1 that expresses their degree of interest. Value 1 indicates ex-
treme interest, while value 0 indicates lack of interest. Interest is expressed for
specific values of non context attributes of the database relations. In particular,
a contertual preference is defined as follows.

Definition 3 (Contextual preference) A contezlual preference is a lriple of
the form cp = (cod, attr.clause, int_score), where cod is a context descrip-
tor, the atir.clause {41818, Asbras, ..., Arbray} specifies o set of atiributes
Al,Az, oo, Ap with their values ay, ag, . .., ap with o; € dom(4;), 6; € {=, <, >
<, _,%} and int_score is o real number between 0 and 1.

The meaning is that in the set of context states specified by cod, ali database
tuples (instances) for which the attributes A, As, . .., Am have respectively val-
1es 1,09, ..., 0m are assigned the indicated interest score. A user can define
non contextual preference queries, by using empty context descriptors which
correspend to the {(all,all,... all) state. In cur reference example, as non-
context parameters, we use the attributes of the relation Peints of . Interest.



For example, consider that a user wants to express the fact that, when she is at
Plaka and the weather is worm, she likes to visit Acropolis. This may be ex-
pressed through the following contextual preference: ep; = ((location = Plaka
A temperature = warm), (name = Acropolis), 0.8},

A profile P is a set of contextual preferences. We define the active domain
adom{C;) for a context parameter C; as the set of context values ¢; € dom{C;)
that appeared in at least one context descriptor in P.

3 Multidimensional Context Relaxation

In this section, we consider the problem of ranking the contextual preferences
in a profile based on how well they match the context of a query.

3.1 Contextual Queries

A contextual query is a query enhanced with information regarding conmbext.
Implicitly, the context associated with a query is the current context, that is,
the context surrounding the user at the time of the submission of the query.
The current context should correspond to a single context state, where each of
the context parameters takes a specific value from its most detailed domain.
However, in some cases, i may not be possible to specify the current context
using one specific value. For example, this may occur, when the values of some
context parameters are provided by sensor devices with limited accuracy. In
this case, a context parameter may take a single value from a higher level of the
hierarchy or even more than one value. Besides the implicit context, we also
consider queries that are explicitly augmented with a context descriptor. For
example, & user may want to submit an exploratory query of the form: “When
I visit Athens with friends this summer (implyirg good weather), what places
should I visit?”. Thus, in general, a contextual preference query @ is a query
enhanced with a context descriptor denoted cod®@.

Let Pe be the set of all context states that correspond to a given profile P
L&t Q¢ be the set of all context states that correspond to a contextual query
(). The context resolution problem refers to the problem of computing the set
PN Qe and returning any related contextual preferences. It is possible that
the set Po N Q¢ is empty or that the preferences associated with its elements
are not enough for achieving an effective personalization of the query. In this
case, the query context needs to be “relaxed”.

In the following, we consider ways of relaxing the context of a query by in-
troducing relaxed context descriptors so that the matching preferences returned
are sufficient.

3.2 Relaxed Context Parameter Descriptors

If there are not enough preferences matching the context of a query, we relax
the context descriptor of the query. To achieve this, we introduce relaxation



operators on context parameter descriptors, that is, on descriptors involving
a single context parameter. A hierarchical context parameter may be relaxed
upwerds in which case its value is replaced by a more general value in the
associated hierarchy, that is, by values at higher levels. Further, a hierarchical
parameter may be relaxed downwards in which case its value is replaced by a
set of more specific values, that is, by values at lower levels. To quantify the
degree of hierarchical relaxations, we define the distance between two levels as
foilows:

Definition 4 (Level distance) Given two levels L; and Ly, their distance
disty (L, Ly) is defined as follows:

1. if o path exists in a hierarchy between Li and Lj, then distg (L, Ly} is the
manimum number of edges that connect Ly and Ly,

2. otherwise disty{l,, L;) = oo.

A context parameter descriptor can be relaxed upwards by aliowing a pa-
rameter to take a more general value:

Definition 5 (Upwards relaxed CoD) Given o context parameter descrip-
tor cod(Cy): C; € 8, for a parameter Ci, upleod(C;), v) is the expression C; €

evel(v'

S where 8 = {v' |V = ancmel(v))(v), v € 8 and distg{level(v),level(v')) =

r}.

For instance, up{{location € {Plake}), 1} is { Athens}, while up((location €
{Plaka}), 2) is {Greece}. A context parameter descriptor can also be relaxed
downwards by allowirig a parameter to take a more specific value. The main
difference is that downwards relaxation may produce sets of values that are
large.

Definition 6 (Downwards relaxed CoD) Given a context parameter deserip-
tor cod(Cy): C; € 8, for a parameter Cy, down(cod(Cs), 7 ) is the expression O
€ 5, where §' = {v/ | v/ = descyrneion(v), v € S and disty(level(v), level (v'))
=T},

For example, down({weather € {good}), 1} is the set of values {mild, warm, hot}.
We call the parameter r in the definitions above relazation depth. The relaxation
depth 7 specifies how many levels up or down the hierarchy should a parameter
be relaxed,

A context parameter may be also replaced by a sibling value. To quantify
this, we use the following definition of sibling value distance.

Definition 7 (Least common ancestor) Given two coniezt velues ¢ and ¢z
e edom{C;), their least common ancestor, lea(cs, ¢2) is value ¢z € edom(Cy)

such that a’ncézziigzﬁ;(q) w2 ancizzzigzzg(@) and there s no value cq € edom{Cs),
such that, ancigj%z%(cl) = anciiiggg‘;;(cz) and level{cs) > level(cq}.



Next, we define the distance between two sibling context values.

Definition 8 (Sibling value distance) The sibling value distance of two con-
text values ¢1 and ¢a € edom(Cy), with level(c:) = level{ca), is defined as fol-
lows:

dists(c,co) = |level{lca(er, ea)}} — level(cy)].

Now, sideways relaxation is defined as:

Definition 9 (Sideways relaxed CoD) Given a conlext parameter descrip-
tor cod(Cy): C; € 8, for a parameter C;, side(cod(Cy), r ) is the expression C;
€ &, where §' = (v | level(v') = level(v), u € § and dists(v',v) = r}.

For example, side((weather € {hot}}, 1) is the set of values {mild, warm, hot}.
Note that using the sibling distance, the distance of two values at the same level
depends on how far up the hierarchy their first common ancestor is located. For
example, dg(hot, warm) = 1, while, ds{hot, cold) = 2.

Having defined the upwards, downwards and sideways relaxed CoD, we de-
fine the overall distance between two context parameters descriptors, as the
minimum possible distance for all directions for all members of a C'ol.

Definition 10 (Overall CoD distance} Given two contest parameter descrip-
tors cod*(Cy): Ci € 81, and cod®(Cy): Ci € S, the distance between the two
contezt parameter descriptors is the minimum distance r such that one of the
following holds:

o cod?(Cy) N uplcod (Cy), 7} # @
o cod?(CY) () doum({cod* (Cy), r) # @
e cod?(Cy) N side(cod™(Cy), r} # @

Assume a query Q with a context deseriptor cod® = cod(C1) A cod{Ca) ...
A cod(Cy), where any missing context parameter descriptor ()} is replaced by
the descriptor C; € {all}.

We can relax () by relaxing upwards, downwards or sideways any subset of
the n context parameter descriptors. Next, we define the distance between the
original cod® and a relaxed context descriptor that results by relaxing one or
more of its constituting context parameter descriptors.

3.3 Relaxed Contextual Preference Selection

In following, we define the distance of two composite context descriptors. Then,
we will define the distance of a composite context descriptor and a context state.
Then, the distance between two context states is straightforward.



Definition 11 (Distance between composite CoDs) Assume two confext
descriptors cody = cod*(C}) A cod (Cy) ... A cod (Cp) end cody = cod®*(C1) A
cod?(Cy) ... A cod?(Cy). Then, the distance between the two composite context
descriptors is the sum of the individuel distances of confext parameter descrip-
tors:

dist(cody, codp) = S, |dist{cod*(Cs), cod*{Ci))i.

To compute the distance between a context descriptor and a state, we nust
simply transform the state to a composite context descriptor. Then, the distance
is defined as in Definition 18.

Definition 12 (Distance between state and composite CoD) Assume a

context descriptor cody = cod(C1) A cod (Cy) ... A cod (Cy), and, o state s* =

(,c,...,c2). Construct a contest descriptor cody = cod®(Cy) A cod?(Cy) ...

A cod?(Ch), s.t., cod?(Cy): Cy = ¢f. Then, the distance between cody and 5% is
dist(cody, so) =dist{cody, codg)

Finally, to construct the distance between two states, we simply need to
construct the appropriate descriptors and measure their distance.

Definition 13 (Distance between states) Assume two states s' = {¢f, ck,
oek) and 8* = (cF,c3,...,c2). Construct two context descriptor cod; =
cod(Cy) A cod (C) ... A codH(Cy), s.t., cod (Cy): Cy=cZ, ie{1,2}, je{l,...,n}.
Then, the distance between s* and s is:

disti{s?, s%) =dist(cody, coda)

3.4 Resolving Ties

To resoive ties between equally ranked states, we use the Jaccard distance func-
tion that expresses the distance between two states. In this case, we compute all
the descendants of each value of a state. For two values of two states correspond-
ing to the same context parameter, we measure the fraction of the intersection
of their corresponding lowest level value sets over the union of this two sets. In
this case, we consider as a better match, the “largest” state in terms of cardi-
nality. Next, we define the Jaccard distance of two values ¢; and ¢ € edom{C}),
when either the one is the ancestor of the other or they are siblings, and use it
to define the Jaccard state distance:

Definition 14 (Jaccard distance} The Joccard distance of twe context val-
ues ¢y and ¢ € edom(Cy) is defined as:

fdescfz‘"’““)(cl) N dcscl:;'d(cz) (e2)1
Edcscﬁ’;’d(cl Her) {J dcsclf;al(ce}(cz)l ’

tevel{es)
lev{;E(Zi)(c )P

. . !
1. disty(er, ) =1- if ey = a”CtZZZiEZS(CZ}
or ¢y = desc

fdescl " (e )| = |desci T ) (o )]

dcscﬁmmm(cx X (Jeafey,e0))

2. distj{cy,00) = +distg{cy, ca), iflevel(ey) =

level{cs),



8. oo, otherwise,

where Ly is the most deteiled level.
Now, we define the Jaccard distance between states.

Definition 15 (Jaccard state distance) Given two states s* = (ci,c3,...,¢cl)
and s = (¢,¢%,...,c2), the Jaccard state distance dist (s, s%) is defined as
dist (st, s2) = S0, 1disty(ch, e2)].

4 Relaxed Context Resolution

The question that arises is which subset or subsets of the context parameters to
relax and how much (i.e., what is an appropriate value for r) so that we have a
large enough set of preferences in profile P that match the relaxed query. In this
section, we highlight an implementation of relaxed context resolution that takes
an exhaustive approach. We assume that the system (or the user) associates a
value k with each query that specifies how many matching preferences should be
returned. Given a contextual query  with a context descriptor cod®, we search
for & contextual preferences in P that match the set of context states specified
by cod%. T cases, where there are not enough preferences, we gradualiy relax a
number of the context parameter descriptors in cod®, by using larger relaxation
depths.

4.1 Data Structures

To store the contextual preferences in P, we use a data structure called a profile
tree proposed in [10]. Let P be a profile and Pz be the set of context states
of all context descriptors that appeared in P. The basic ides is to store in the
profile tree the context states in Fo so that there is exactly one path in the
tree for each context state ¢ € Pp. Specifically, the profile tree for Po is a
directed acyclic graph with a single root node and at most n+4-1 levels. Each
one of the first n levels corresponds to a context parameter and the last one to
the leaf nodes. For simplicity, assume that context parameter C; is mapped to
level 4. Each non-leaf node at level k maintains cells of the form [key, pointer],
where key € adom(Cy) for some value of ¢ that appeared in a state s € Fg.
No two ceils within the same node contain the same key value. The pointer
points to a node at, level k1 having cells with key values in adorn{Cr.41) which
appeared in the same state s with the key. Fach leaf node maintains the part
[oftr clause, ini_score] of the preference associated with the path (state) leading
to it. Fig. 2 depicts the profile tree for an instance of a profile F.

Let Q¢ be the set of context states derived from the descriptor cod® of a
contextual query . As opposed to [10], where we used the profile tree to check
for each individual s in Qc, the proposed algorithm tests for all states in Qo
within a single pass of the profile tree. To achieve this, the context states in Qo
are represented by a dats structure similar to the profile tree, that we call the



warm | all l warm | all

S B TN

[kiﬁisia] | all | l?laka i?lnka

1

Ltr, clause|
int "Bcore

Ftcrﬁclause
int_seore

attr_clause

int _Score int Feore

atyz, clausﬂ

Figure 2: An instance of a profile tree.

Query tree, so that there is exactly one path in the tree for each context state
s € Q¢. Again, there is one level in the query tree for each context parameter.

4.2 A Context Resolution Algorithm

‘We describe first an algorithm that searches for states in the profile tree that are
the same with the states of the query. In particular, given a profile tree whose
root node is Rp and a query tree whose root node is R, Algorithm 1 refurns the
leaf nodes of the profile tree that are associated with the paths whose context
states match the querying context states. The profile tree has n + 1 levels. A
context parameter is assigned to each one of the first n levels, while the last
level holds the associated preferences. Respectively, the query free has n levels,
each for a context parameter. In a breadth first manner, we search for pairs of
nodes that belong to the same level. Each pair consists of a node of the query
tree and a node of the profile tree. Initially, there is one pair of nodes, (Rg, Rp)
(level ¢ = 0). For each value of the query node Rg that is equal to a value of
the profile node Rp, we create & new pair of nodes (Rg — child, Rp — child).
These nodes refer to the next level (¢ +1}. When we check all values of all pairs
at & specific level, we examine the pairs of nodes created for the immediately
next level, and so on. At level n, if a value of a query node is equal to a value
of a profile node, we retrieve from its leaf node the attribute clause with its
relative interest score.

To support upwards, downwards and sideways relaxation, the ContexrtReso-—
lution algorithm is extended as follows. When the query result dees not con-
tain the desired number of answers, we relax the contextual query conditions in
rounds. In particular, we search first for exact match states, then for relaxed
states with distance equal to 1 from the searching states, then for relaxed states
with distance equal o 2, and so on. In each round, i.e., for a specific distance
value, we search first for upwards relaxed states, then, for downwards and fi-
nally for sideways relaxed states. The algorithm stops when the total number
of returned context states is at least equal to the desired number of states.



Algorithm 1 ContextResolution Algorithm
1: Input: The profile free with root node Ep and n + L levels, and the query
tree with root node Ry and n levels.
2 Output: A ResultSet of tuples of the form {(attrname = attr.value,
int.score) characterizing paths whose context states are the same with the

searching context states, i.e., the states of the query free.
SN, SN sets of pairs of nodes.
Initially: SN = {(Rg, Rp)}, SN' = {}

3: Begin

4 forlevel i=0ton-—1do

5 for each pair sn € SN, with sn = (g_node, p.node) do

6 Vx € g.node

7 Yy € pnode

8: i © =y then

R if i <n—1 then

10: SN’ = SN'U {(z — child,y — child)}
11: else if ¢ = n — 1 then

12: attr.clause = y — child.attr clouse
13: int_score = y — child.int_ score

14 ResultSet = ResultSet U (attr clouse, int_score)
15 end if

186; end if

17 end for

18: SN =8N’

19: SN’ ={}

20: end for

21: End

4.3 Implementation Issues

Dewey Encoding To facilitate identifying descendants, ascendants and sib-
lings values, assuming that each context parameter hierarchy is represented by
a tree, we using Dewey encoding. A vector is assigned to each node of the
hierarchy tree, starting from the root node. Fach nede vector is a combination
of its parent vector snd an integer number. If node n is the it child of node
m with vector vy, the vector of n is a concatenation of the vector of m and 4,
and represented as v, = Ui, The Dewey encoding for the context parameter
weather ig depicted in Fig. 3.

Profile Pre-Processing Using Frequent Item Sets We apply a pre-proces-
sing technique to preferences in a profile, before indexing them using the profile
tree. The goal is to determine which context parameter should be mapped to
which level of the tree so that the size of the tree is kept small. Furthermore,
assuming that pre-processing is based on the simple observation that if a pa-
rameter O is mapped to level i, it is useful to map a parameter C; to level
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Figure 3: Dewey Encoding.

i+ 1, if many pairs of similar values (o, ¢;), with ¢; € C; and ¢; € C; appear
in the profile, Thus, to find an appropriate ordering of context parameters, we
are interested in identifying the pairs of context values that are most frequent.
To identify these pairs of values, we use the fundamentsl o priori property of
frequent itemsets that states that every subset of a frequent itemset must also
be a frequent itemset.

First, we identify the most frequent context values grouping them according
to the context parameters that they belong to. Next, we search for the most
frequent pairs of context values (c;, ¢;), with ¢; € C;, ¢; € Cy and &y # €. In
particular, considering that parameter C; is placed to the level ¢ of the profile
tree, we search which parameter to place at level ¢ 4+ 1. So, among the rest
parameters, we select the parameter Cj, if the mimber of pairs of context values
between C; and C; are more than the number of pairs between C; and any other
parameter. In general, we consider that a value or a pair of values is frequent,
if it appears in contextual preferences more times than a threshold value. This
threshold is different for singletons than for pairs of values, expressed as the
percentage of either all single values or all pairs of values.

Statistics For each context value ¢; € adom(C;), we maintain the value
appearances(c;), appearances{c;) = ap(c;)/ap(all), where ap{c;) is the total
number of times that the values of the leaf nodes with root ¢; in the hierarchy
of C; appear in context states of profile P and ap(all) is the total number of
times that all leaf nodes appear in context states. We use these statistics to
select between two context values the one that is more possible to appear in a
context state of a preference.

5 Performance Evaluation

In this section, we present some initial performance results regarding the relax-
ation algorithm. There are three context parameters, each one having a domain
with 100 values. Profiles have various numbers of context states namely, 500,
1000, 3000, 5000, 8000 states. The values of two of the context parameters
are drawn from their corresponding domain using a zipf data distribution with
& = 2.0, while the values of the third parameter are selected using a uniform
data distribution. Input parameters are summarized in Table 1. We stress
out that our experimental results are meant to be indicative of the benefits



Table 1: Input Parameters

Context Parameters Default Value Range
Number of context parameters 3 :
Profile size (context states) 5600 500-8000
Cardinality of domains 100
Hierarchy levels 3
Data distribution
zipf a = 2.0
uniform
Number of query states 20, 50 20, 50, 100
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Figure 4: Size of the profile tree {left), number of cell accesses in exact match
(right). '

of some aspects of the proposed approach rather than forming an exhaustive
performance evaluation.

Profile Pre~Processing In this set of experiments, we study the size of the
profile tree as a function of the size of the profile (i.e., the number of its context
states), when using the pre-processing technigue to map context parameters to
levels. As shown in Fig. 4 (left), using the pre-processing technique results
in reducing storage by around 20% when compared to assigning parameters
to levels randomly. We aiso show the cost of storing the states sequentially
(without using the profile tree).

Context Resolution Using the Query Tree We perform a number of
experiments to compare the performance of searching for matching states for
each state of the query separately versus matching all query states in parallel
using Algorithm 1. Fig. 4 (right) depicts our results for exact match queries
having query descriptors with 20, 50 and 100 states. In each case, we count the
total number of cells accessed. Searching for all states in one pass results in
savings at around 35% on average.



Humber of Paths (States}

- EBEEB882E

o E 16000 é— B upwards! 5O query $tates
14000 - davamvards: 20 quary stales

[4e b dovmwards: 50 quory stales

. sidevenys: 20 query states

i eldaways! 50 quary statns

Mumbar of Cefis

o
£ ]
% .5 3 =5 3

05 K
Distanco Bistanca

Figure 5 Number of returned states {left}, number of cell accesses (right).

Relaxing Contextual Conditions In this set of experiments, we report the
number of returned context states and the associated number of cell accesses,
when we relax query context states. We run these experiments for profiles
with 5000 context states. 75% of context values are considered to be values at
the most detailed level of the hierarchies and the rest 25% are assigned to the
other two levels. Fig. 5 (left) shows the number of returned context states for
upwards, downwards and sideways relaxation, up to a distance 1, 2, 3, when
we search for 20 and 50 states, using the query tree {parallel version of context
resolution), We also report results (Fig. 5, right), regarding the number of cell
accesses in each case. As expected, the upwards direction incurs less costs that
the downwards one. Sideways relaxations incurs higher costs than both.

6 Related Work

The research literature on preferences is extensive. In the context of database
queries, there are two different approaches for expressing preferences: a quan-
titative and a qualitative one. With the gquentilative approach (ie., [, T]),
preferences are expressed indirectly by using scoring functions that associate a
numeric score with every tuple of the query answer. In the qualifative approach
(ie., [2]), preferences between tuples in the answer to a query are specified di-
rectly, typically using binary preference relations. Relaxed context resolution
applies equally to both approaches. There is some recent work on context-aware
preferences. In our previous research [9, 10], we have addressed the problem of
expressing contextual preferences, The model used in [9] for defining prefer-
ences includes only a single context parameter. Interest scores of preferences
involving more than one context parameter are computed by a simple weighted
sum of the preferences of single context parameters. In [10], we aliow contextual
preferences that involve more than one context parameter. Context as a set of
dimensions (e.g., context parameters) is also considered in [8] where the probiem
of representing context-dependent semistructured data is studied. Contextual
preferences, called situated preferences, are also discussed in [3]. Situations (i.e.,
context states) are uniquely linked through an N:M relationship with preferences
expressed using the quantitative approach. A knowledge-based context-aware
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query preference model is also proposed in [11].

Query relaxation has attracted some attention recently. A framework to
relax queries involving numeric conditions in selection and join predicates is
proposed in {6]. In this paper, we focus on categorical attributes with hierar-
chical domains. The relaxation algorithm proposed in [4] produces a relaxed
query for a given initial range query and a desired cardinality of the result set.
To estimate the query size, the algorithm uses multi-dimensional histograms.
Again, this work considers numerical attributes.

7  Summary

In this paper, we consider context-dependent preferences, which are preferences
that depend on context. Context is modeled as a multidimensional attribute
with each of its dimensions taking values from hierarchical domains. Bach query
is also augmented with a set of context states. We comsider the problem of
relaxing the context states of the query, so that there are enough preferences
whose associated context states match that of the query. We consider relaxing
the value of each dimension by either using a more general (upwards relaxation),
a more specific (downwards relaxation) or a sibling (sideways relaxation) value.
Depending on the distance in the associated hierarchy between the original and
the relaxed value, we define different relaxation levels. This results in a large
number of potential relaxations of context by appropriately relaxing different
subsets of its dimensions with various relaxation depths and in any of the three
ways. We present an algorithm that incrementally relaxes the query context,
until a sufficiently large number of results is produced. We also present some
initial performance resulis.
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