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Abstract

In this paper a new maximum a posteriori (MAP) approach based on mixtures of
multinomials is proposed for discovering probabilistic motifs in sequences. The main
advantage of the proposed methodology is the ability to bypass the problem of overlap-
ping motif occurrences among neighborhood positions in sequences through the use of a
Markov Random Field (MRF) as a prior. This model consists of two components, the first
is responsible for modeling a motif and the second corresponds to the background. The
Expectation-Maximization (EM) algorithm is used to estimate the model parameters and
provides closed form update rules. Special care is also taken to produce good initial values
for the motif multinomial model, in order to overcome the known dependence of the EM
algorithm to initialization. This is done by applying an adaptive agglomerative clustering
procedure that provides candidate initial models. Experiments with both artificial and
real sets of biological sequences show the advantages of the proposed approach in discov-
ering qualitatively better motifs, in comparison with the classical maximum likelihood
(ML) approach and the Multiple EM for Motif Elicitation (MEME) method which uses
also an ML-based mixture model.

Keywords: Motif discovering, Markov Random Field (MRF), mixture of multinomials
model, Expectation-Maximization (EM), agglomerative clustering.

1 Introduction

Discovering motifs (or patterns) in biological sequences is an important problem in computa-

tional biology. Given a set of sequences, such as a DNA or a protein sequence, a motif can be

represented as a common substring that is repeated in the set. The motif discovering problem

is related to other problems in Biology, such as the multiple sequence alignment problem, and

can be also found in other application areas apart from Biology. Sequence motifs are focused

on highly conserved residues present in active sites of sequences and can be used to assign

functions to newly sequenced genes or proteins [1, 2]. Motifs can also enclose diagnostic

features for families in the sense of generating rules for classification purposes.

Various methods have been introduced for solving this problem that are distinguished

according to the model of the motif [2, 3]. Under the Bayesian framework, a motif can be
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modeled using independent multinomial distributions for its positions. Gibbs sampling [4],

the MEME [5], the SAM [6], the BioProspector [7], the Greedy EM [8, 9] and the LOGOS [10]

represent statistical methods for discovering shared motifs in a set of (unaligned) sequences.

They all formulate the problem using either mixture models or hidden Markov models, and

use the Expectation-Maximization (EM) algorithm [11, 12] or variational EM schemes to

estimate the model parameters.

The application of statistical methods to discovering sequence-motifs usually forces the

assumption that all the possible starting positions in sequences are independent. Nevertheless,

the problem has the particular characteristic that spatial information should be taken into

account. That is, apart from the content of a subsequence, its location must be also used in

order to determine its posterior probability for matching it as motif given the subsequence.

In other words, it is not desired to identify overlapping motifs. In most of these methods

that discover motifs, the common framework used is the maximum likelihood (ML). Under

this prism, the motif model parameters are estimated by maximizing the likelihood of the

observations, while the spatial constraints are indirectly enforced to the model. This is done

by either renormalizing the estimated posterior probability values during each EM step [5], or

simply by throwing away any overlapping motif samples when using Gibbs sampling strategies

[13]. Therefore, in a sense, there is an inconsistency between the computed motif distribution

and the one defined by the model [10].

In this paper we present a maximum a posteriori (MAP) approach that provides a direct

method to implement these ideas. The basic scheme is a two-component mixture of multino-

mials model, where one component models the motif and the other the remaining non-motif

regions (background). Following this framework, a likelihood term is used to capture the

content information of the data, while a bias term is also used to capture the spatial infor-

mation of the neighborhood locations. This is accomplished by considering the motif labels

of each starting position of sequences through a Markov Random Field (MRF) [14, 15] as

a prior model. This constrains the local characteristics of the sequences and thus provides

useful information to the motif estimation process. Furthermore, we consider Dirichlet priors

for the multinomial parameters that mostly act as smoothers, since they are conjugate. The

EM algorithm is used to estimate the model parameters which provides closed form update

equations for all parameters. Since the EM algorithm is very sensitive to the initial parameter

values, we also present an agglomerative hierarchical clustering scheme for producing candi-

date multinomial models for initializing motifs. Finally, borrowing this technique from the

MEME approach, multiple motifs are discovered by iteratively applying the two-component

mixture model after erasing old motif occurrences. As will be demonstrated in the experimen-
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tal study of this paper, in contrast to the classical unconstrained mixture model the proposed

one overcomes the problem of overlapping subsequences. It also estimates qualitatively better

motif models when treating motifs as diagnostic features for classifying sequence families, as

compared with the ML and the MEME approaches.

Section 2 presents the two-components mixture of multinomials model that is used for

discovering a single motif in two methods: the classical maximum likelihood and the proposed

maximum a posteriori approach. Experimental results are given in section 3 using both

artificial and real sets of sequences, while section 4 presents conclusions and discussion.

2 Mixture models for discovering motifs

Consider a finite set Σ = {c1, . . . , cΩ} consisting of Ω = |Σ| individual characters. An

arbitrary string over the set Σ is any sequence Sj = {sjk}
Lj

k=1 of length Lj , where sjk ∈ Σ

denotes the character at the k-th position of the sequence Sj . Now, let S = {S1, . . . , SN} be

a set of N strings of length L1, . . . , LN , respectively. The motif discovering problem is to find

a common subsequence of length K that is repeated at different sites among the sequences of

set S.

In order to deal with this, we collect all the possible substrings of set S having length equal

to K. This can be done by sliding a window of size K in every sequence Sj , obtaining a set

of Lj −K + 1 substrings of equal length K. Each substring indicates the starting position of

a possible motif occurrence in sequences. Therefore, we finally construct a set of n substrings

X = {xi}n
i=1, n =

∑N
j=1(Lj − K + 1), that constitute the observation data.

The assumption that the observations xi are i.i.d. results in discovering overlapping motifs.

However, by enforcing spatial constraints one avoids this problem and estimates better motifs

[5]. In the next subsections, two mixture model based approaches will be presented: the

classical maximum likelihood without any constraint, as well as, a new proposed maximum a

posteriori approach that also uses spatial information.

2.1 The ML approach

Lets assume that the set X has been generated from a two-component mixture of multinomi-

als. The first component models the motif with a prior probability of π, while the second one

models the background and represents all the subsequences which do not contribute to the

motif, with a prior probability equal to 1 − π. The density function f(xi|π, Θ) of the model

for an observation xi is given by

f(xi|π, Θ) = πp(xi|θ) + (1 − π)p(xi|b) , (1)
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where Θ = {θ, b} is the set of parameters for the multinomial density. To parameterize the

motif we use a position weight matrix [θkl] of size Ω × K, where each value θkl denotes the

probability that character cl ∈ Σ is at the k-th position of the motif. For each position k we

have
∑

l θkl = 1. Parameters b = [b1, . . . , bΩ] of the multinomial background distribution are

represented with a vector of probabilities (
∑

l bl = 1) with dimension equal to the alphabet

size Ω.

Following the multinomial distribution, and assuming independence among positions of

the motif, the probability density function of the motif model is

p(xi|θ) =
K
∏

k=1

Ω
∏

l=1

θδikl

kl , (2)

where δikl is the Kronecker delta function (1 if character cl is at the k-th position of substring

xi, 0 otherwise). Likewise, the density function of the background model is given by

p(xi|b) =
Ω

∏

l=1

b
∑K

k=1
δikl

l . (3)

Based on the above formulation, the model parameters can be estimated through maxi-

mum likelihood (ML). The log-likelihood function is then given by

L(X|π, Θ) =
n

∑

i=1

log f(xi|π, Θ) . (4)

The EM algorithm [11, 12] is an efficient framework to estimate the parameters π, {θkl} and

{bl}. It requires the computation of conditional expectation zi of the hidden variables at the

E-step, which are given by

z
(t)
i =

π(t)p(xi|θ(t))

π(t)p(xi|θ(t)) + (1 − π(t))p(xi|b(t))
, (5)

while at the M-step the complete log-likelihood is maximized over the model parameters.

This gives the following update equations

π(t+1) =

∑n
i=1 z

(t)
i

n
,

θ
(t+1)
kl =

∑n
i=1 z

(t)
i δikl

∑n
i=1 z

(t)
i

∑Ω
l=1 δikl

, (6)

b
(t+1)
l =

∑n
i=1(1 − z

(t)
i )

∑K
k=1 δikl

K
∑n

i=1(1 − z
(t)
i )

.

The EM algorithm is guaranteed to convergence to a local maximum of the likelihood function

and also satisfies all the constraints of the parameters.
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Nevertheless, a significant drawback of the ML approach is the fact that the spatial in-

formation of the subsequences is not taken into account. This results in the estimation of

overlapping subsequences as motif occurrences of the set X, especially in cases where a motif

consists of repeated strings of one or two characters. To avoid this problem, the MEME

algorithm [5] performs a normalization of the posterior value zi of the adjacent sequences.

This is an ”ad-hoc” step so that guarantees in any window of length K the sum of zi values

remains less than or equal to 1. Next, we introduce a new approach that deals with this

problem in a more systematic way by modeling the spatial arrangements of a motif using a

Markov Random Field (MRF) prior.

2.2 The MAP approach

In the proposed model, the labels πi = P (motif |xi), the probabilities that the substring xi

is a motif, are considered as model parameters that satisfy the constraint 0 ≤ πi ≤ 1. By

letting Π = {π1, . . . , πn} be the set of label parameters, this model assumes that the density

function f(xi|Π, Θ) at an observation xi is given by

f(xi|Π, Θ) = πip(xi|θ) + (1 − πi)p(xi|b) . (7)

Spatial constraints for the label parameters Π can be introduced based on prior knowledge.

A suitable prior that captures this knowledge is the Gibbs distribution function [14, 15] which

is given by

p(Π) =
1

Z
exp(−U(Π)) , (8)

where, Z is a normalization constant called the partition function, and U(Π) is an energy

function given by

U(Π) = β

n
∑

i=1

VNi
(Π) . (9)

The parameter β is often called regularization parameter. The energy function is a sum of

clique potentials VNi
over all possible cliques, where a clique is defined as the set of label

parameters {πm} within the neighborhood Ni of the i-th position of a sequence. A similar in

principle spatially-constrained model has been also used for solving the image segmentation

problems [16].

In this study, we consider as neighborhood Ni all the m positions around the position i

whose corresponding substrings xm overlaps with the substring xi. In the general case, there

are 2(K − 1) such sites around each position which are mutually dependent. When a motif is

found at position i (πi ≈ 1), it is desired that all overlapping substrings xm that belong to the
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neighborhood Ni not to be labeled as motifs (πm ≈ 0). A potential function that guarantees

this behavior is the following simple inner product

VNi
(Π) =

∑

m∈Ni

πiπm , (10)

because the inner product of similar subsequences is high.

Moreover, we treat motif model parameters θ as random variables and introduce priors

for them. Since Dirichlet densities are conjugate to multinomial densities, it is convenient to

use them. Thus, for every motif position k we consider a Dirichlet prior of the form

p(θk|αk) =
Γ(

∑Ω
l=1 αkl)

∏Ω
l=1 Γ(αkl)

Ω
∏

l=1

θαkl−1
kl , (11)

where the parameter αk is a Ω-vector with components αkl > 0 and Γ(x) is the Gamma

function. Adding Dirichlet priors in effect introduces pseudo-counts to every character at each

position of a motif. As it will shown later, setting all αkl > 1 regularizes the estimation and

prevents the estimates of θkl from approaching the boundary value 0. During the experimental

study, the Dirichlet prior parameters were the same for every motif position k and were set

equal to 1 + ǫl, where ǫl was some low percentage (e.g. 10%) of the total predefined relevant

frequency of character cl in each examined dataset X.

Given the above prior densities of Eqs. (8), (11) for the model parameters Π and θ, we can

formulate the problem as a maximum a posteriori (MAP) approach. Therefore, the posteriori

log-density function is

p(Π, Θ|X) =
n

∑

i=1

log f(xi|Π, Θ) + log p(Π) +
K

∑

k=1

log p(θk|αk) . (12)

The use of EM algorithm for MAP estimation of the parameters requires at each step t

the computation of the conditional expectation values zi of the hidden parameters during the

E-step

z
(t)
i =

π
(t)
i p(xi|θ(t))

π
(t)
i p(xi|θ(t)) + (1 − π

(t)
i )p(xi|b(t))

, (13)

while in the M-step the maximization of the following log-likelihood function of the complete

data is performed

Q(Π, Θ|Π(t), Θ(t)) =
n

∑

i=1

z
(t)
i {log(πi) + log(p(xi|θ))} + (1 − z

(t)
i ){log(1 − πi) + log(p(xi|b))}

− β
n

∑

i=1

πi

∑

m∈Ni

πm +
K

∑

k=1

Ω
∑

l=1

(αkl − 1) log(θkl) .

(14)
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The function Q is maximized independently for each parameter. Hence, the following update

equation for the motif multinomial parameters is obtained

θ
(t+1)
kl =

∑n
i=1 z

(t)
i δikl + (αkl − 1)

∑n
i=1 z

(t)
i

∑Ω
l=1 δikl +

∑Ω
l=1(αkl − 1)

, (15)

while for the background model the update rules are the same as in the case of the ML

approach (Eq. 7).

In order to maximize the complete log-likelihood function with respect to the label pa-

rameters πi, we set the derivative of Q equal to zero. This gives the following quadratic

expression

Bi(π
(t+1)
i )2 − (1 + Bi)(π

(t+1)
i ) + z

(t)
i = 0 , (16)

where we have substituted for simplicity the contribution of the Gibbs function β
∑

m∈Ni
πm

with the term Bi. It must be noted that this term can also include positions with updated

labels (π
(t+1)
m ), as well as positions whose labels have not yet been updated (π

(t)
m ). The above

equation has two roots

π
(t+1)
i =

(1 + Bi) ±

√

(1 + Bi)2 − 4Biz
(t)
i

2Bi
. (17)

It can be easily shown that only the root with the negative sign is valid, since the other one is

discarded due to the constraint 0 ≤ πi ≤ 1. Therefore, the above equation provides a simple

update of the label parameters πi during the M-step of the EM algorithm and ensures that

the solution is unique and satisfies the constraints.

Looking carefully at Eq. 17 we can make some useful observations. In the case where a

motif occurrence starts from position i, and thus the substring xi has high posterior proba-

bility value (z
(t)
i ≈ 1), the following two things may be happening within the neighborhood

Ni:

• None of sites m ∈ Ni is labeled as a motif, i.e. Bi = β
∑

m πm / 1, and thus, following

Eq. 17, this site will be labeled as motif (π
(t+1)
i ≈ 1).

• There is at least one motif in the neighborhood Ni, i.e. Bi = β
∑

m πm ' 1, and thus,

from the update rule of Eq. 17, the new label value will be approximately π
(t+1)
i ≈ 1

Bi
.

The larger the value of Bi, the smaller the update label values of πi. In this overlapping

neighborhood, only one occurrence will be the most probable to survive, that having

the higher posterior value zi.
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On the other hand, when a substring xi has small posterior value of being a motif (z
(t)
i ≈ 0)

it will continue being labeled as background (π
(t+1)
i ≈ 0), independently of its neighborhood

Ni.

From the above analysis it is clear that the regularization parameter β of the Gibbs

distribution function plays a significant role. Only large values of this parameter (β ≫ 1) are

acceptable in order to discourage overlapping substrings being labeled as motifs. However,

in our experiments, a large range of values of β seems to yield similar behavior. This implies

that the proposed method is not sensitive to the value of this parameter. A typical value that

has been used with success in the experimental study is β = 100.

2.3 An agglomerative clustering method for initialization

The two previous subsections described two model-based approaches for discovering motifs

in sequences based on mixture models: the classical ML approach, and a new spatially-

constrained approach through a MAP framework. Both schemes use the EM algorithm to

estimate the model parameters.

A common problem of the EM algorithm is its dependence on the initial values of the

density parameters. This may cause it to get stuck of local maxima of the likelihood function

[12]. In our study, the problem of poor initialization is concentrated in the selection of motif

multinomial parameters θ, since for the background density we can use the relative frequencies

of each character cl in the dataset X. To overcome this problem a number of different

approaches have been proposed in the literature. The MEME algorithm, for example, uses

dynamic programming which estimates the goodness of many possible starting points based

on the likelihood of the model after one EM iteration [5]. Another method proposed in [8]

applies a divisive hierarchical clustering approach based on kd-trees that generates candidate

motif models. Here, we use an adaptation of the agglomerative clustering (AC) approach

[17, 18] over the set X which is based on a bottom-up generation of a tree-like structure.

This method starts with a set of n clusters (nodes), each one containing one data sample xi

from the set X. Each cluster v that contains nv samples generates a multinomial distribution

ϑv based on their sufficient statistics. In particular, multinomial parameters are estimated as

ϑv
kl = nv

kl/nv, where nv
kl =

∑

xi∈v δikl, and δikl = 1 if the character cl is found at the position

k of the substring xi and 0 otherwise. At each step the algorithm searches the set of current

clusters to identify the two closest clusters (v, u) that are merged into a new cluster denoted

by v ∪ u. This is accomplished by using an intercluster distance D(v, u) that is defined as

[17, 18]

D(v, u) = Lv(ϑ
v) + Lu(ϑu) − Lv∪u(ϑv∪u) , (18)
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where the quantity Lv(ϑ
v) represents the log-likelihood value that characterizes the cluster v

and is given by

Lv(ϑ
v) =

∑

xi∈v

K
∑

k=1

Ω
∑

l=1

δikl log ϑv
kl . (19)

The algorithm terminates when a predetermined number C of clusters (parents) are found.

In our study we used C = n/2. Among the C final clusters, we find then the one v∗ whose

multinomial distribution function differs more than the (global) background b of alphabet

characters distribution, based on the Kullback Liebler (KL) distance metric, i.e.

v∗ = arg max
v∈C

{KL(ϑv||b)} = arg max
v∈C

{
K

∑

k=1

Ω
∑

l=1

ϑv
kl log

ϑv
kl

bl

} . (20)

Thus, we can initialize the motif model parameters θ(0) with those of the multinomial ϑv∗ .

It must be also noted that during the reduced tree construction, it is not allowed to

merge two clusters that contain overlapping substrings xi. Therefore, the merging criterion

is not only the distance measure of Eq. 18, but also the corresponding positions of substrings

between the two clusters examined. This is a modification of the original AC scheme that takes

also into account spatial information. As will be experimentally shown, this strategy is very

efficient for constructing better clusters and independent candidate multinomial densities.

The drawback of the AC method is its large computational complexity (order of n2)

especially when the number of subsequences n is huge. In order to reduce it a possible

solution is to iteratively apply the AC procedure to smaller portions of the set of sequences

S in order to produce candidate multinomial models.

2.4 Discovering multiple motifs

The two previously presented approaches use a two-component mixture of multinomials model

to discover a single motif. We can extend this framework for the identification of multiple

motifs in a family of sequences S. This can be accomplished by iteratively applying the

mixture model to the set of observations, after erasing from S the motifs that were already

found. It must be noted that a similar strategy has been also proposed in [5].

In particular, after convergence of the EM algorithm and estimation of the motif multino-

mial model parameters, all substrings xi whose label parameters πi surpass a threshold value T

(e.g. T = 0.9) are deleted from the set S. A new set S′ is then created, S′ = S−{xi : πi > T}.

Finally, the two-component mixture model is repeatedly applied to the new set of observations

X ′ (constructed from the set S′) to discover other motifs.
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Figure 1: The sequence logos of the DNA motif TATATATATATTTT are shown as estimated
by the three methods.

3 Experimental results

Several experiments were performed using both artificial and real sets of sequences in an

attempt to study the effectiveness of the proposed MAP approach. During all experiments

the AC method was first applied to generate candidate multinomial models used for initializing

the motif model and then the EM algorithm was applied for MAP estimation of the model

parameters. The label parameters πi of the model were all initialized to πi = 0.5.

Comparative results have been also obtained using the ML approach without spatial

constraints, as well as the MEME1 method using the same sets of sequences. The motifs dis-

covered by all three methods were evaluated using information content-based and diagnostic

criteria. It must be noted that the motif multinomial parameters of both the ML and the

MAP approaches were initialized identically.

3.1 Experiments with artificial sequences

For the artificial data used in our experiments, we generated sets of sequences with artificial

motifs of equal length K. Every sequence had a mutant copy of each motif according to a

probability pm for position-specific mutation, while the rest (non-motif) positions were filled

with arbitrary characters using a uniform distribution over the alphabet Σ. In this way,

N = 10 number of artificial sequences were generated in all cases with mean length 100

characters from the alphabet Ω.

At first we examined the capability of the proposed MAP approach to clearly identify

motifs containing repeated characters without estimating overlapping copies of them. For

this purpose we created two such motifs, one from the DNA alphabet (Ω = 4) and the other

from the protein alphabet (Ω = 20). Assuming two values for the mutation probability

pm = {0.1, 0.2}, four sets of artificial sequences were generated, respectively. The results of

1Experiments with the MEME have been made using a related software that can be downloaded from the
site: meme.sdsc.edu/meme/website/meme-download.html
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Figure 2: The sequence logos of the protein motif HIERHIERHIERHIER are shown as esti-
mated by the three methods.

the three methods which are compared are shown in Figures 1,2. They illustrate the logo of

the discovered motif occurrences by each method, using the WebLogo tool [19], which also

shows the information content of a motif. In other words, the size of the plotted charac-

ter is analogous to its information content. As it is clear from these figures the proposed

method achieves the proper identification of the motifs and its results are similar to the

MEME method. On the other hand, as expected, the unconstrained ML approach fails to

distinguishing overlapping copies of motifs in both sets from the two alphabets.

In another series of experiments a set of two motifs was used. Here half of their sites

were identical and thus their discovery is hard. Figures 3, 4 illustrate the logo of the patterns

found by each method in the case of the two alphabets using identical mutation probability

pm values as previously. These results show the weakness of the MEME approach to separate

motifs with high degree of homology, since it discovered only one complex motif obtained

from the synthesis of both. On the other hand, the MAP method manages to estimate both

of them as two different motifs in all cases. Also, the ML approach, although it yields good

performance in the protein case, is failed in the case of DNA motifs where the overlapping is

higher. The different results between the MEME and the (unconstrained) ML approaches for

the protein motifs (even if they use the same model) may be explained by the initialization

strategy used. In all experiments with artificial datasets the agglomerative clustering scheme

seeded both ML and MAP mixture models with a proper motif multinomial model and the

estimation process of the ML approach depended on the degree of overlapping among the

characters of the motif. Finally, similar observations can be made in the logos of Figure 5

that show the results of another experiment, where two protein motifs are used that have

identical odd positions.

3.2 Experiments with real sequences

We have also tested the proposed MAP approach using real biological sequences selected from

the PROSITE database that contains families of protein sequences [20]. Four such datasets
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Figure 3: The estimated sequence logos of two half-identical DNA motifs:
{TATATATATATATTTT, CGCGTATATATACGCG} are shown.
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Figure 4: The estimated logos of two half-identical protein motifs: {HIERARCHICALVIEW,
HIERVIEWHIERVIEW} are shown.
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Figure 5: The estimated logos of two protein motifs that have their odd positions identical
are shown.
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Prosite Family Training Number of motifs found by
family size sequences MAP ML MEME

PS00651 (L9) 83 10 (172 bps) 4 4 3

PS00359 (L11) 215 10 (180 bps) 9 7 7

PS00783 (L13) 66 10 (167 bps) 11 10 8

PS00049 (L14) 92 10 (122 bps) 5 5 3

Table 1: Four PROSITE families used for the experimental study on real sequences.

are summarized in Table 1 that correspond to signatures from different ribosomal proteins.

For each family only a small portion of sequences N was selected as the training set for our

experiments. The MAP approach, as well as the ML and the MEME methods were then

applied to each training set to discover multiple motifs. Here the size of motifs was set fixed

K = 15. The number of the motifs discovered by each method is shown in Table 1. From the

results of this table the capability of the proposed method to identify larger groups of motifs

is apparent.

To evaluate the discovered motifs by each method we used the Motif Alignment and Search

Tool (MAST) algorithm [21] that constitutes a sequence homology searching tool for matching

multiple motifs against a set of sequences. The MAST method uses the multinomial motif

models (log-odds scores) and computes the statistical significance (E-value) of the matches

of the input group of motifs to a target sequences. In our experiments we have used the

whole current set of the SWISS-PROT protein sequences database (number of entries 163200

sequences) as the target set of sequences. By specifying a threshold for the calculated E-

value, all the target sequences having E-values lower than this threshold are considered as

positives. Therefore, for each experiment we measured the number of true and false positives

at several E-value thresholds in order to estimate the sensitivity and specificity of the methods

compared.

Figure 6 illustrates the performance of the three methods in each PROSITE family using

ROC curves (plots of the true positives as a function of false positives for various thresholds).

The classification results show improved performance for the proposed method. In all of these

plots the curves of the MAP approach were equal or higher than those drawn by the other two

approaches. Among the three methods the ML approach showed the poorest performance.

Since the proposed method discovers more motifs in sets of sequences it enhances our ability

to discriminate between biological families. This experimental study also proves the biological

importance of the motifs in classifying sequences. Only a very small training set of sequences

seems to be necessary for the composition of family signatures and the provision of high

homology searching characteristics.
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Figure 6: Comparative classification performance in each experimental PROSITE family
using ROC curves

4 Conclusions

This paper presents a new spatially-constrained approach which uses MRF priors for discover-

ing probabilistic motifs in sequences. The method uses a mixture of multinomials model with

two components for modeling the motif and the background of sequences. The spatial infor-

mation is embodied in the model by treating the labels of the starting positions as random

variables that follow a Gibbs distribution function. The EM algorithm is used for estimating

the model parameters, where it is initialized with an agglomerative clustering algorithm that

provides candidate multinomial models. Multiple motifs can be found by iteratively apply

the basic scheme to the set of substrings after erasing the motif copies found. Experiments

have been performed using artificial and real sets of sequences where we evaluated the pro-

posed method and compared it with the classical ML approach without constraints [1] and

the known MEME approach [5]. The MAP method was able to clearly identify motifs with

repeated characters, similar to the MEME. Moreover, it estimates qualitatively better motif

models with noticeable performance, when considering classification tasks, in terms of the

diagnostic capabilities of the discovered motifs. Further research can be used to design more

complex motif models that can also take into account gaps among sites. This may be useful

in cases of low homologies. Considering also variable length motifs is another interesting topic
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for future study.
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