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Abstract. It is widely recognized that the boosting methodology pro-
vides superior results for classification problems. In this paper, we pro-
pose the Boost-clustering algorithm which constitutes a novel clustering
methodology that exploits the general principles of boosting in order to
provide a consistent partitioning of the dataset. The Boost-clustering
algorithm constitutes a multi-clustering method. At each boosting itera-
tion, a new training set is created using weighted random sampling from
the original dataset and a simple clustering algorithm (eg. k-means) is
applied to provide a new data partitioning. The final clustering solu-
tion is produced by aggresating the multiple clustering results through
weighted voting. Experiments on both artificial and real-world data sets
indicate that Boost-clustering provides solutions of improved quality.

1 Introduction

Unlike classification problems, there are no established approaches that com-
bine multiple clusterings. This problem is more difficult than designing a multi-
classifier system: in the classification case it is straightforward whether a basic
classifier (weak learner) performs well with respect to a training point, while
in the clustering case this task is difficult since there is a lack of knowledge
concerning the label of the cluster in which a training point actually belongs to.

In [1] a multi-clustering fusion method is presented based on combining the
results from several runs of a clustering algorithm in order to specify a common
partition. Another multi-clustering approach is introduced in [2], where multiple
clusterings (using k-means) are exploited to determine a co-association matrix of
patterns, which is used to define an appropriate similarity measure that is sub-
sequently used to extract arbitrarily shaped clusters. Model structure selection
is sometimes left as a design parameter, while in other instances the selection of
the optimal number of clusters is incorporated in the clustering procedure [3, 4]
using either local or global cluster validity criteria [3].

The present work, proposes a new cluster ensemble approach based on boost-
ing, whereby multiple clusterings are sequentially constructed to deal with data
points which were found hard to be clustered in previous stages. The key fea-
ture of this method relies on the general principles of the Boosting classification



algorithm [6] which proceeds by building weak classifiers using patterns that
are increasingly difficult to classify. The very good performance of the Boosting
method in classification tasks was a motivation to believe that boosting a simple
clustering algorithm (weak learner) can lead to a multi-clustering solution with
improved performance in terms of robustness and quality of the partitioning.
Nevertheless, it must be noted that developing a boosting algorithm for cluster-
ing is not a straightforward task, since there exist several issues to be treated as
discussed in the next section. The proposed method is general and any type of
basic elustering algorithm can be used as the weak learner.

2 The Boost-Clustering Method

We propose a new iterative multiple clustering approach, called Boost- Clustering,
which iteratively recycles the training examples providing multiple clusterings
and resulting in a common partition. At each iteration, a distribution over the
training points is computed and a new training set is constructed using random
sampling from the original dataset. Then a basic clustering algorithm is applied
to partition the new training set. The final clustering solution is produced by
aggregating the obtained partitions using weighted voting, where the weight of
each partition is a measure of its quality. The algorithm is summarized below.
Algorithm Boost-Clustering

Given: Input sequence of N instances: (x1,...,2n), o5 € Rii=1,...,N, a basic
clustering algorithm, the number of O clusters to partition the data set and the
values of parameters T and 5.

1. Initialize W2 = 1/N fori=1,...,N. Set t = 1.

2. Iterate while t < T

- Produce a bootstrap replicate of the original data set aceording to the proba-
bility W for every instance ¢ by resampling with replacement from the original
data set.

- Call the basic clustering algorithm H', to partition the bootstrap training
data.

- CGet the cluster hypothesis Hf = (k! hia,... . hiz) forall 4,4 = 1,.... N,
where h; ; i5 the membership degree of instance i to cluster j.

- Renumber the cluster indexes of H* according to the highest matching score,
given by the fraction of shared instances with the clusters provided from the
Boost-Clustering until now.

- Calculate the pseudoloss:
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3. Output the final cluster hypothesis:
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It is clear that the approach has been developed following the steps of the boosting
algorithm for classification. We assume a given set X of N d-dimensional instances
x4, a basic clustering algorithm (weak learner) and the required number of clusters O
The number T of Boost-Clustering iterations will be considered fixed, although this
parameter could be determined automatically using an appropriate stopping criterion
{e.z. a validation set). The clustering obtained at iteration ¢ will be denoted as H*,
while H, will dencte the aggregate partitioning obtained using clusterings H” for
+ =1,...,t. Consequently, for the final partitioning H/ produced by the clustering
ensemble it will hold that HY = HZ,. The basic feature of the method is that at each
iteration t a weight W} is computed for each instance z; such that the higher the
weight, the more difficult is for x; to be clustered. In accordance with the boosting
methodology the weight W} constitutes the probability of including ; in the training
set constructed at iteration ¢ 4+ 1. At the beginning the weights of all instances are
equally initialized, ie. W) = 1/N.

At each iteration ¢t = 1,...,T, first a dataset X, is constructed by sampling from X
using the distribution W* and then a partitioning result H* is produced using the basic
clustering algorithm on the dataset X;. For each instance z; we get a cluster hypothesis
Hf = (ki hia,...,hic) for all 4,i = 1,..., N, where h;; denotes the membership
degree of instance 1 to cluster j (we assume that Zf‘;l hi; = 1 for all £). It must be
emphasized that, although the basic clustering method may be parametric, the boost-
clustering method is non-parametric in the sense that the final partitioning is specified
in terms of the membership degress h; ; and not through the specification of some model
parameters (e.g. cluster centers). This fact gives the flexibility to define arbitrarily
shaped data partitions and makes necessary the use of non-parametric cluster validity
measures as described in the next section.

In the above methodology the most critical issue to be addressed, is how to evaluate
the “good” (h{ joea) and “bad” (h{.q) clustering of an instance z; for the partition
H*. In our implementation, we computed h{ good 88 the maximum membership degree
of z; to a cluster and Af ;.4 as the minimum membership degree to a cluster. Based
on these quantities, at each iteration f the pseudoloss €. is computed using (1)

Then, in analogy with the classification case, the weight distribution W;™! for the
next iteration is computed using (2), where § = 1 is a predefined constant. Using this
formula, we reduce the weight of a well-clustered data point {ie. that belongs to a
cluster with a high membership degree) and favour the sampling of badly-clustered
data points. Thus, in analogy with the general principle of the Boosting classification
algorithm (where specialized classifiers are serially constructed to deal with data points
mizclassified in previous stages), the Boost-Clustering algorithm clusters in every iter-
ation data points that was hard to be clustered in previous iterations,

A second important issue is related with the cluster correspondence problem. This
means that in order to define the H* at iteration t we have to assign an index | £
{1,...,C} to each of the C partitions and this indexing must be consistent with those
in previous iterations. In particular, we have to decide the one-to-one correspondence
between a cluster in partitioning H® with a cluster in the partition Hi;'. This cor-
respondence is specified by computing the common patterns between a cluster in H



and the clusters in H:;'. Then, according to the highest matching score, given by the
fraction of common samples, the cluster indexes of H* are renumbered.

In the proposed method the agerezate clustering result at iteration ¢ is obtained by
appl:,rmg for every instance x; a weighted voting scheme over the cluster subhypotheses
hi., k = 1,...,C using (3), where log(1/8;) is the weight of the contribution of
h{k to the a,g,gregat.e decision. In analogy with the classification case, the weight of

a subhypothesis h? , is defined as log(1/;) so that a greater weight is assigned to
subhypotheses with lower error .

3 Experimental Results and Discussion

In the experiments with the Boost-Clustering method, we considered two types of basic
clustering algorithms, namely the k-means and the furzy c-means. The resulting Boost-
Clustering method with k-means as the basic clustering algorithm will be referred to
as Boosi-k-means and with fuzzy c-means Boost-FOM, respectively. As mentioned in
the previous section, a membership degree h; ; for every instance i to cluster j must be
produced using the basic clustering algorithm on the dataset. In our implementation
the memberhip degree for both types of basic clustering algorithms, k-means and fuzzy
c-means, is given based on the Euclidean distance d:
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where #; € IR? is a training sample and & € IR? corresponds to a cluster center.

In the experimental study, we compare Boost-k-means with the simple k-means
algorithm and Boost-FCM with the simple FCM algorithm. To accomplish that, non-
parametric cluster-validity measures must be specified as noted in the previous section.

his = i=1,...,N j=1,...,C (4)

3.1 Non-parametric Cluster-Validity Measurements

Several cluster-validity measures have been proposed in the literature. Most of them
compare inter-cluster versus intra-cluster variability and tend to favour configurations
with bell-shaped well-separated clusters. In our experiments we considered two non-
parametric indices, isolation and connectivity [7|, which can be used for measuring the
validity of arbitrarily shaped clusters.

Isolation is measured by the k-nearest neighbour norm (NN-norm). In particular,
for fixed k (whose specific value is not very critical), the k-nearest neighbour norm vy (x)
of an instance z is defined to be the fraction of the & nearest neighbours of = that have
the same cluster label as x. A measure of the homogeneity of the total clustering is
computed by averaging over all N points in the data set: IS = & 3 _w(z). In our
experiments we used k= 0.01N,

Connectivity relates to the fact that for any two points in the same cluster, a
path should always exist connecting the two points, along which the density of the data
remains relatively high. In our implementation, connectivity is quantified as follows:
we randomly select K pairs of points (a;, &) (i = 1,..., K, called anchor-points, such
that the points of the same pair belong to the same cluster. Then for each pair (g:, b},
we consider the middle point g; = (g + b)/2 and compute the local density flui) by



convolving the dataset with a unimodal density-kernel of width o:

1 o 1\ e—aui/ae?
fW=52 (mg) e (5)

Then the connectivity measure CN (also called C-norm) is computed as: ON =
# 7%, f(u). In our experiments we chose K = 0.05N.

A major drawback of the isolation index, is that it does not notice whenever two
clusters are merged, even if they are well-separated [7). In fact, grouping all samples
together in one big cluster, will result in an optimal score for this criterion. For this
reason connectivity must be considered as a second criterion to penalize solutions that
erroneously lump together widely separated clusters. However, since there is a trade-
off between connectivity and isolation, the two validity indices should be combined to
provide a single cluster-validity index described in Sect. 3.3.

3.2 Experimental Methodology

In order to demonstrate the performance of the Boost-Clustering algorithm we con-
sidered both artificial and real-world datasets. In the following, we describe the ex-
perimental methodology used to compare the Boost-k-means with the simple k-means
algorithm. Note that the same methodology was followed to compare Boost-FCM with
simple FCM.

In particular, for each data set and for a specific number of clusters C' (the number
of clusters for each problem varied from three to six) we applied the following steps:

1. Split the data set into training and testing set of fixed size.

2. Run the simple k-means algorithm 20 times, each time with different initialization,
to partition the training set in € clusters. For each of these runs compute the
isolation and connectivity value in the testing set.

3. For the 20 runs of the simple k-means compute the average values of isolation
{I5a) and connectivity (CNaw). Also, the values of isolation (ISpese) and connec-
tivity (CNpest) indexes are taken concerning the best of the 20 runs of the k-means,
ie. the one yielding the smallest clustering error in the training set.

4. Apply the Boost-k-means algorithm with specific values of T and § on the same
trajning set and compute the values of isolation (ISg(T,d)) and connectivity
(CNg(T,5)) on the test set. Three cases for (T, §) were considered: (10, 1}, (20, 1), (10, 5).

3.3 Combination of Cluster-Validity Measurements

In order to make the two cluster-validity measurements directly comparable, we com-

pute their Z-scores [7]. The Z-score of an observation £ in a sample £1,..., £ is defined
as:

_ & —median(£)
where £ = {£1,..., & represents the whole sample and M AD stands for median abso-

lufe dewiation:
MAD(E) = median{|€; — median(£)] i =1,...,1} (M

Now, let us consider 18 = {[Say, [Sbese, J56(20,1), I58(10,1), I5g(10,5)} be
the sample of isolation values and CN = {CNaw, CNoesr. CNg(20,1), CN&(10,1),



CNg(10,5)} the sample of connectivity values for the methods we want to compare:
1)Average k-means, 2) Best k-means, 3) Boost-Clustering(10, 1), 4) Boost-Clustering(20,1)
and 3) Boost-Clustering(10,5), respectively. Then, the (robust) Z-score for the i-th
method is defined as:

Zy = Z(IS8{i}) + Z(CN{i}) i=1,2,3,4,5 (8)

and we consider as the best clustering result the one which maximizes this robust
Z-score in the test set.
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Fig. 1. The Banana data set. Fig. 2. The Six-Gauss data set.

3.4 Experimental Results and Discussion

Four data sets were used to demonstrate the performance of Boost-Clustering: the
Clouds and Phoneme data sets from the ELENA project [8], and the Banana and Six-
(Gauss which are artificial two-dimensional data sets. The Banana (see Fig. 1) data
set consists of two banana shaped clusters while the samples of the Six-Gauss (see
Fig. 2) data set have been drawn from a mixture of six Gaussian distributions with
unit covariance. All datasets are two-dimensional except for the Phoneme which is
five-dimensional.

Table 1 contains the test set experimental results using the simple k-means and the
Boost-k-means algorithm. The Z-score (Eq. B) index is illustrated for each of the five
compared cases. In each row in Table 1 the best Z-score {maximum value) iz highlighted
indicating the best partition result. Similarly, Table 2 contains the test set experimental
results comparing the simple fuzzy c-means with the Boost-FCM algorithm.

Running a basic clustering algorithm (such as k-means or FCM) many times (each
time with different initialization) one comes up with several partitions. In this case,
the best he can do is to get the best clustering solution, e.g. the one yielding the
smallest clustering error in the training set. So, it make sense to compare the Boost-
clustering result with the best clustering result produced by many applications of the
basic clustering algorithm.

The experimental results in Table 1 indicate that Boost-k-means(10,1) gave the
best clustering results in 8 out of 16 experiments compared to best k-means. Also,



Table 1. Experimental results for simple k-means and Boost-k-means.

Dataset [Clusters Best) Average| Boost-k-means(T,8)
k-means|k-means| (10,1)[(20,1}] (10,5)
Clouds
3 0 0 2|-8.711{-40.105
4 -2.83]  0.511) 1.286 -1{ -0.464
5 1] -1| -1.571] 501 74.286
6 0.215 -1 0] 1.08] 0.37]
Phoneme
3 0.549 0| -0.284( -2.8] -3.468
4 -0.859 0.595 -2 0] -0.643
a2 1 1] 1.431[-1.832 -3.5
i} 2 0.5 -4.492| -3.57| -7.922
Banana
3 =11 0.19% -3.3-0.592| 0.461
4 -0.386 0 2.409 1}-31.208
3 2566 -2.024 1 0.2 T.37
B -1.516] -3.593 0] 2.065 12|
Six-Gauss|
3 0] -15.951)-12.183| 2.114 3.5
4 0.1 -48.443 -1 1[-24.987
i -3 23.288 1 -1 -1.749
[ 1 -106 2 i 0




Table 2. Experimental results for simple fuzzy C-means and Boost-FCM.

Dataset |Clusters| Best[Average| Boost-FCM(T,d)
FCM| FCM| (10,1)](20,1)] (10,5)
Clouds
3 2 2| -0.214| -0.25] -2.762
4 2078 -2.078 2.204 0 2
b -0.534( -0.534 =3| 1.534[31.995
[ -3 -3.264| 0.299 0] 2.293
Fhoneme
3 -0.94 -0.94 1l =15 1
4 0] -0.005 3.155 0] 1.715
L] -0.868| -0.B68] -3.975(2.965] 0.702
G -2.5058| -2.558| 5.837| 0.439| -1.441
Banana
3 0 -0.25| 2.597| 2.458| -0.02
4 3.811| -3.511] 1.109] -2.2|/12.947|
5 -1 -1.01| 2.332| -1.5| 5.481
[ -1 -1.5] 1.379(-1.804 —4.?'-53__
Six-Gauss ]
3 0.54% 0.542 2|-0.542 -49.654
4 -3 -T.055 -1.5| 1.354] 3.175
o -3 5.66T|22.644| 1.828 2
i 2 -1 2 2 1




Boost-k-means(20,1) outperforms the best k-means in 11 over 16 cases and Boost-k-
means(10,5) in 9 cases. Similarly, the experimental results in Table 2 indicate that
Boost-FCM(10,1) outperforms the best FCM in 12 out of 16 experiments. Also, both
Boost-FCM(20,1) and Boost-FCM(10,5) algorithms outperform the best FCM in 11
CAsEs.

One important conclusion that can be drawn is that in most cases the Boost-
clustering alogirthm provides better partition results (in 27 of total 32 experiments)
than a simple clustering algorithm. This strongly indicates that boosting a basic clus-
tering algorithm for & small number of iterations can give better results than running
many times the basic clustering algorithm and selecting the partition of best run ac-
cording to the minimum value of the objective function.

Also, the obtained results show that in the 23 out of 27 cases that Boost-clustering
gave the best partition result, only T = 10 iterations were used. The Boost-clustering
performance degradation that sometimss occurs by Inereasing the number of itera-
tions is in accordance with analogous results reported in the literature concerning the
AdaBoost method and its variants when applied to classification problems [6, 9). In
the case of the Boost-clustering algorithm, overtraining may be observed after many
iterations, especially for data sets with noisy patterns or cutliers which are hard to
be clustered. Ancther reason for the Boost-clustering performance degradation after
many iterations is the distortion of the overall structure of the original data set (es-
pecially for small data setz) due to the resampling, so an early stopping criterion for
Boost-clustering is critical.

There exist several directions for future work with the boost-clustering algorithm.
The most important direction deals with the development of criteria for early stopping
(specification of the optimal number of iterations T'). Another interesting issue is the
specification of alternative ways for the evaluation of how well a data point has been
clustered. Finally, a more thorough experimental evaluation of the method is needed
using many high-dimensicnal datasets as well as real problems (eg. image segmentation)
and considering several types of basic clustering algorithms.

References

[1] Frossyniotis D., Pertselakis M., and Stafylopatis A. A Multi-Clustering Fusion
Algorithm. In Procesdings of the Second Hellenic Conference on Artificial Intelli-
gence (SETN2002), LNAI 2308, pages 225-236, Thessaloniki, Greece, April 11-12
2002, Springer-Verlag,

[2] Fred A. Finding Consistent Clusters in Data Partitions. In Proceedings of the
Second International Workshop on Multiple Classifier Systems (MCS 2001 ), LNCS
2006, pages 309-318, Cambridge, UK, July 2-4 2001. Springer.

[3] Smyth P. Clustering Using Monte Carlo Cross-Validation. In Proceedings Knowl-
edge Discovery and Data Mining, pages 126-133, 1996.

[4] Fisher D.H. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.

[3] Halkidi M., Batistakis Y., and Vazirgiannis M. Clustering algorithms and validity
measures. In Procesdings of the SSDBM conference, Virginia, USA, July 2001.

[6] Freund Y. and Schapire R. Experiments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth Mmiternafional Conference on Machine Learming, pages
148-156, Bari, Italy, 1996.



[7] Pauwels E. and Frederix G. Finding salient regions in images: Nonparametric
clustering for image segmentation and grouping. Computer Vision ond fmage
Understanding, 75:73-85, 1999,

[8] ESPRIT Basic Research Project ELENA (no. 6891).
[ftp:/ /ftp.dice.ucl.ac.be/pub/neural-nets /ELEN A /databases], 1995,

9] Wickramaratna J., Holden 5., and Buxton B. Performance degradation in boost-
ing. In Proceedings of the 2nd International Workshop on Multiple Classifier
Systems MOS2001, volume 2006, pages 11-21. Springer, 2001.



