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Abstract: In this paper we propose a linear-time algorithm for determining the number
of spanning trees in cographs; we derive formula for the number of spanning trees of a
cograph G on n vertices and m edges, and prove that the problem of counting the number
of spanning trees of G can be solved in O(n+m) time. Qur proofs are based on the Kirchhoff
matrix tree theorem which expresses the number of spanning trees of a graph as a function
of the determinant of a matrix that can be easily construct from the adjacency relation of
the graph. Our results generalize previous results regarding the number of spanning trees.
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1 Introduction

We consider finite undirected graphs with no loops nor multiple edges. Let G be such a graph on
n vertices. A spanning tree of G is an acyclic (n — 1)-edge subgraph. The problem of calculating
the number of spanning trees on the graph G is an important, well-studied problem in graph theory.
Deriving formulas for different types of graphs can prove to be helpful in identifying those graphs that
contain the maximum number of spanning trees. Such an investigation has practical consequences
related to network reliability [11, 15].

Thus, for both theoretical and practical purposes, we are interested in deriving formulas for the
number of spanning trees of a graph based on its time complexity in order to calculate the formula.
Many cases have been examined depending on the choice of G. It has been studied when G is a labelled
molecular graph [2], when G is a circulant graph [20], when G is a complete multipartite graph [18],
when  is a cubic cycle and quadruple cycle graph [19], when & is a threshold graph [7] and so on
(see Berge [1] for an exposition of the main results; also see [4, 9, 12, 13, 14, 16, 17, 18]).

The purpose of this paper is to study the problem of finding the number of spanning trees and
propose a fast algorithm regarding the number of spanning tree of a cograph G. A graph G on n vertices
is called a tree graph if it is a connected (n — 1)-edge graph; G is called a cograph, or complement
reducible graph, if it contains no induced subgraph isomorphic to Py [6). A cograph & has a unique
tree representation T(G) called cotree. Qur proofs are based on a classic result known as the Kirchhoff
Matriz Tree theorem [8], which expresses the number of spanning trees of a graph & as a function
of the determinant of a matrix (Kirchhoff Matrix) that can be easily construct from the adjacency
relation (adjacency matrix, adjaceney lists, ect) of the graph 3. Calculating the determinant of the
Kirchhoff Matrix seems to be a promising approach for computing the number of spanning trees of
families of graphs (see [1, 4, 5, 12, 18]). In our case, we compute the number of spanning trees of a
cograph G, using standard techniques from linear algebra and matrix theory. Our ideas and techniques
will be formalized and further clarified in the sequel.
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2 Definitions and Background Results

For an n % n matrix A, the ijth miner is the determinant of the (n — 1) % (n — 1) matrix M;; obtained
from A deleting row i and column j. The ith cofactor denoted A; equals det(Mj;).

Let G = (V, E) be a graph on n vertices. Then the Kirhhoff matriz K for the graph G has

d; ifi=3j,
kij=4-1 ifisjand(i,j) € E,
0  otherwise,

elements, where d; is the number of edges incident to vertex v; in the graph G. The Kirhhoff Matrix
Tree Theorem is one of the most famous results in graph theory. It provides a formula for the number
of spanning trees of a graph G, in terms of the cofactors of its Kirhhoff Matrix.

Theorem 2.1. (Kirchhoff Matrix Tree Theorem [8]) For any graph G with K defined as above, the
cofactors of K have the same value, and this value equals the number of spanning frees of G.

The complement reducible graphs, or so-called cographs, are defined as the class of graphs formed from
a single vertex under the closure of the operations of union and complement. More precisely, the class
of cographs is defined recursively as follows: (i) a single-vertex graph is a cograph; (i) the disjoint
union of cographs is a cograph; (iii) the complement of a cograph is a cograph.

Cographs themselves were introduced in the early 1970s by Lerchs [10] who studied their structural
and algorithmic properties. Lerchs has shown, among other properties, the following two very nice
algorithmic properties: (i) cographs are exactly the P; restricted graphs, and (ii) cographs admit a
unigue tree representation, up to isomorphism, called cotree [3].

(2) (b)

Figure 1: (a} A cograph on 6 vertices and (b) the corresponding cotree,

Let G be a cograph, and let T(G) be its corresponding cotree. We define the following nodes/vertices
sets on the cotree T(G):

o L;, which contains the 0(1)-nodes of the ith level of T(G), 1 <i < h, and
o chlu;), which contains the children of the 0(1)-node u; e T(G), 1 i < k.

The parent of a node/vertex z in T(G) is denoted by p(z). The root of the cotree is a 1-node and
denoted by r. Figure 1 features a cotree T(G) with the corresponding level sets.
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3 The Number of Spanning Trees

Let G be a cograph on n vertices and m edges and let L,, Ls, ..., Ly be the nodes sets of its cotree
T(G). In order to compute the number of spanning trees of the graph G we make use of Theorem 2.1;
that is, we delete an arbitrary vertex v of the set V(@) and all its edges incident to vertex v. Now the
vertex set V(@) of the resulting cograph G and the leaves of the cotree TG is of size n — 1.

We set s(v) := d, for every vertex v € V(G), where d, denotes the degree of the vertex v. This
labeling of the vertices iz called s-labeling,.

We define a function which we call Replace-Update and contracts the cotree T(G) into one vertex
tree. Let w; be a 0(1)-node of T{G) such that the set chlu;) = {v1,vq2,...,vp} contains leaf vertices of
T(G), 1 < i < k. The function Replace-Update is applied to the node u; and works as follows:

o It changes the s-labels s(v1), s{vz), - .., s(vy) of the vertices vy, va, ..., Up, respectively, in the case
where u; is a 1-node,

o computes specific values for the s-labels of the vertices up_; and up,
o delete the vertices vy, vs,..., v, from the cotree T(G), and replace the node u; with vertex .

Figure 1 shows the application of the function Replace-Update on node uy on a cotree T(G). The
formal description of the function Replace-Update is as follows:

Replace Update(u, T({))

1. Compute the vertex set eh(u) = {vy,ve,..., 0}
2. for every vertex v; € ch(v) do
if uis l-node then s(v;):= s(v)+1;
e
3. Compute e ;= —
g 2 s(vi)

4. Update the s-label s(vy—1) as follows:
#(vp—1) == 8(vp—1) - (1 + 5(vp) - &);
5. Update the s-label s(vp) as follows:

o s(vp)
f 0 T o -
if uis O-node then sivg) T afu) e
s{vg)-(1—g)—1
l= ) 1= —— :
slse  sloy) 1+s(u)-e
6. Delete vertices vy, vs,...,vp from T(G) and replace node u € T with vertex vy;

7. Return the s-labels s(v;), s(vz), ..., s(vp—1) and the resulting cotree T'(G);
If u is the root of the cotree T(G) return the s-label s(vy,);

Algorithm 1: Replace Update(u, T{G))

We next describe an algorithm which computes the number of spanning trees 7(&) of a cograph G;
it works as follows: First it computes the graph G := G — v, where v € V(@), and constructs it
cotree T((); the resulting graph G has n — 1 vertices. Then, it computes the degree d; of each vertex
v; € T(G) (ie., v; is a leaf of T(G)) and assigns s(vy) :=di, 1 £ i £ n— 1. Next, it repeatedly
applies the function Replace-Update{u, T(G)) to each node u with the property that all its children
are leaves in T(G), and computes the s-labels s(v:), 8(v2), ..., 8(vp-1) of the vertices of T'(G). Finally,
it computes the number of spanning trees (&) = H?_-_11 s{1;). The formal description of the above
described algorithm is as follows:



MNumber_Spanning Trees

Input: A cograph G on n vertices and m edges;

QOutput: The number of spanning trees 7(G) of the cograph G;

1. Set G:=G — v, where v € V(G) and let vy, vs,...,v,—1 be the vertices of G;
Construct the cotree T(G) of the cograph G
3. Compute the sets Ly, La, ..., Ly such that:
L; contains the (-nodes and 1-nodes of the ith level of T{G), 1 <i < Ay
4. for each leaf v; of T(G) do
s(wy) = dy;
5. for i=h—-1ldowntol do
for every O-node or 1-node u € L; do Replace Update(u, T, chiu});
n—1
6. Compute 7(G) := H s(ug);

i=1

Algorithm 2: Number_Spanning.Trees

Given a cograph G = (V, E) we construct its corresponding cotree T(G). We partition the vertices of
the cotree T{G) according to L-function. Afterwards, we apply function Replace Update(u, T, ch(u))
on each node of level Ly_; and calculate values s(v), for vertices v € Ly, until we get level L,. At the
end we compute the product of the final n — 1 values s(v) which expresses the number of spanning
trees 7(G) of cograph G.

4 Correctness and Time Complexity

The correctness is established thought Theorem 2.1, and, thus, we construct the Kirhhoff matrix and
calculate one of its cofactors.

Let G be a cograph, and let T(G) be the rooted cotree of G. Let Ly, Lg, ..., Ly be the level sets of
the cotree T(G) and let vy, vs,..., v, and uy, usg, ..., u; be the vertices (leaves) and the 0(1)-nodes of

T(G), respectively. Then, we form the Kirhhoff n % n matrix K of the cograph G; it has the following
form:

-4, &, s
(%) dp (—1)
dp+1 (=)2
) (#)2 d, :
(=1)y d; (#)e
(*)k dn |




where, according to the definition of the Kirhhoff matrix, d; is the degree of the vertex v; of the cograph
7. The off-diagonal positions in every block (#); is -1 if u; is a 1-node and 0 otherwise, 1 < i < k. The
entries (—1);; and (—1);; of the off-diagonal position (i, 7) and (j,7) are both —1 if the vertices v; and
vy are adjacent in G and () otherwise, 1 €14, j < n.

Starting from the upper left part of the matrix, the first p rows of the matrix correspond to the p
vertices vy, v2, ..., U, with the same parent u; € Ly_; in cotree T(G); the next g — p rows correspond
to the g — p vertices with the parent node us and so forth., Moreover, leaf vertices v; and v; of cotree
T(G) with the same parent p(v;) = p{v;) have the same degree on cograph G, d; = d;.

From the Kirchhoff Matrix Theorem the value of any ecofactor of matrix K eguals the number of
spanning trees of cograph . Arbitrary, we focus on the cofactor A, of matrix K. Recall that the
nn-th miner is the determinant of the (n — 1) » (n — 1) matrix M, obtained from K deleting the last
row and the last column. Substituting the values &'(v;) = d;, 1 <1 < n —1 the form of matrix My,
becomes:

FS) () '
G ) (s
&' (Vp41) (*)2
Mpn = (#)2 | s'(vy)
Uy " e ()
- (o) |

Thus, we focus on the computation of the determinant of matrix My, as it is clear from Theorem 2.1
that

{G) = det(Mpy). (1)

In order to compute the determinant det(M,,), we start by focus on the first p rows and p columns.
We multiply by -1 the p row and add it to rows 1,2,...,p— 1. Now all the non-zero off-diagonal
elements in the first p — 1 rows lie on the column p. Thus, our gain is to eliminate these elements.

In the case where u; is a 1-node we multiply column j, with value = zsjﬂ and add it to column p,

for 1 < § < p— 1. Similarly, in the case where u; is a (-node we multiply column j, with value ﬂ%ﬁl
and add it to column p, for 1 < j <p-1. Now, inrows 1,2,...,p— 1 only the diagonal positions are
non-zero elements. So expanding in terms of the p — 1 rows the determinant of matrix M, becomes:

s(vp) (=1)jes
8'(Vp41) ()2
gy (*)2 s'(vg)
det(Mnz) = [] s(vi) - . (@)
i=1 e
(=1)ey s'(ve) (#)k
{*]k SJI:'Un_ljl




where

s(vi) slu)+1, 1<i<p
r—1 1
& =it oy
; s(vs)
#(vp=1) s(vp=1) - (1 + s{vp) - €)
: glvg)(l—€)—1
3(p) 1+ s(vp)-e
if u; i3 a 1-node, and
s(v;) sw), 1<i<p
g
e
; slug)
#{vp—1) s(vp_1) - (1 + s(vy) - €)
5':1'::]'
3(vp) 1+ s(vg)-e
if uy is a O-node.
Applying the above operations to other blocks of nodes us, . .., ug, we can compute the determinant

of matrix M. Thus, the results of this section are the following:

Lemma 3.1. The algorithm Number_Spanning. Trees correctly computes the number of spanning frees

of a cograph G.

Theorem 3.1. The number of spanning trees of a cograph G on n vertices and m edges can be

computed in O(n +m) time.
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