MULTI-CLASS PROTEIN SEQUENCE CLASSIFICATION
USING NEURAL NETWORKS

K. Blekas, D.l. Fotiadis and A. Likas

23— 2002

Preprint, no 23 -02 /2002

Department of Computer Science
University of loannina
45110 loannina, Greece






Multi-class protein sequence classification using neural networks

Konstantinos Blekas, Dimitrios I. Fotiadis and Aristidis Likas
Department of Computer Science and Biomedical Research Institute - FORTH
University of Ioannina
45110 Ioannina, Greece

Abstract

We present a system for multi-class protein classification based on neural networks.
The basic issue concerning the construction of neural network systems for protein classi-
fication is the sequence encoding scheme that must be used in order to feed the neural
network. To deal with this problem we propose a method that maps a protein sequence
into a numerical feature space using the matching scores of the sequence to groups of
conserved patterns (called motifs) into protein families. We consider two alternative ways
for identifying the motifs to be used for feature generation and provide a comparative
evaluation of the two schemes. We also evaluate the impact of the incorporation of back-
ground features (2-grams) on the performance of the neural system. Experimental results
on real datasets indicate that the proposed method is highly efficient and is superior to
other well-known methods for protein elassification.

1 Introduction

Protein sequence classification constitutes an important problem in biological sciences for
annotating new protein sequences and detecting close evolutionary relationships among se-
quences. It deals with the assignment of sequences to known categories based on homology
detection properties (sequence similarity). In several studies, protein classification has been
examined at various levels, according to a top-down hierarchy in molecular taxonomy, consist-
ing of superfamilies, families and subfamilies (7). In this paper we will use the term family or
class to denote any collection of sequences that are presumed to share common characteristies.

Various approaches have been developed for solving the protein classification problem.
Most of them are based on appropriately modeling protein families, either directly or indi-
rectly. Direct modeling techniques use a training a set of sequences to build a model that
characterizes the family of interest. Hidden Markov models (HMMs) are a widely used prob-
abilistic modeling method for protein families [9] that provides a probabilistic measurement
(score) of how well an unknown sequence fits to a family. Indirect techniques use direct mod-
els as a preprocessing tool in order to extract useful sequence features. In this way, sequences
of variable length are transformed into fixed-length input vectors that are subsequently used

for training discriminative models, such as neural networks.



In protein sequences, motifs or patterns enclose significant homologous attributes, since
they correspond to conserved regions in protein families holding useful structural and func-
tional biological properties. They can be considered as islands of aminoacids conserved in
the same order of a given family. Therefore they can be seen as local features characteriz-
ing the sequences. Motifs can be either deterministic or probabilistic [6, 23]. Deterministic
motifs follow grammatical inference properties in order to syntactically describe conserved
regions of homologous sequences. The PROSITE database [13] represents a large collection
of such motifs used to identify protein families. On the other hand, probabilistic motifs
are more flexible models and they provide a probabilistic matching score of a sequence to a
motif. The BLOCKS database [11] is an example of ungapped probabilistic motifs. In any
case, motif-models are suitable for constructing efficient similarity score functions that can
be subsequently used as local features for protein classification. An example is presented in
[21, 25] where motif-based local features are produced based on the minimum description
length (MDL) principle for the case of deterministic motif models.

The background information also constitutes another source for extracting features from
sequence data. The determination of the background features, also defined as global features,
is usually made by using the 2-gram encoding scheme that counts the occurrences of two
consecutive aminoacids in protein sequences [25]. In the case of protein sequences (generated
from the alphabet of the 20 aminoacids), there are 400 possible 2-grams, that produce a
large feature space. A recent approach (1] proposes a scheme for globally encoding sequences,
where each aminoacid character is initially represented as a unique binary number with n bits
(n = 5 for the 20 aminoacids) and then each sequence is mapped into a position inside the
n-dimensional hypercube.

In this paper, we focus on building efficient neural classifiers for discriminating multiple
protein families by using appropriate local features that have been extracted by efficient
probabilistic motif models. As motifs constitute family diagnostic signatures, our aim is to
exploit this information by constructing a neural network scheme that exploits motif-based
(local) features.

The proposed method can be considered as combining an unsupervised with a supervised
learning technique. Starting by applying a motif discovery (unsupervised) algorithm, we
identify probabilistic motifs in a training set of multi-class sequences. This can be achieved
in two alternative ways: applying the algorithm for motif discovery either to each family
training set separately (class-dependent motifs), or to the whole dataset of training sequences
(class-independent motifs). The discovered motifs are then used to convert each sequence to

a numerical input vector that subsequently can be applied to a typical feedforward neural



network. Using a Bayesian regularization training technique, the neural network parameters
are adjusted and therefore a classifier is obtained suitable for predicting the family of an
unlabeled sequence.

The next section provides a brief overview of statistical and neural techniques proposed for
classifying biological sequences, while Section 3 describes the proposed method. Experimental
results obtained using several sets of protein families are presented in Section 4, along with a
comparison with other known protein classification approaches. Finally, Section 5 summarizes

the proposed classification scheme and specifies directions for future research.

2 Protein Classification Methods

One class of methods for protein sequence classification work directly with sequence infor-
mation and establish classification criteria based on sequence homology properties. In the
general scheme, a representative set of sequences is selected for each protein family and used
to build an appropriate model for each family. The classification of an unknown sequence is
made by selecting the family that best matches according to the model homology mechanism.
This can be considered as a simple nearest neighbor scheme that ranks sequence similarities
and selects the best ranking.

The popular BLAST tool [2] represents the simplest nearest neighbor approach and ex-
ploits pairwise local alignments to measure sequence similarity. The BLAST technique com-
pares protein queries with a protein database of labeled sequences and produces normalized
alignment scores for each comparison by calculating the corresponding expectation values
(E-values). The classification procedure is based on the selection of the label of the sequence
that produces the best pairwise alignment score (i.e. minimum E-value).

Another type of direct modeling methods is based on hidden Markov models (HMMs)
[9, 18]. After constructing an HMM for each family, protein queries can be easily scored
against all established HMMs by calculating the log-likelihood of each model for the unknown
sequence and then selecting the class label of the most likely model.

The Motif Alignment and Search Tool (MAST) [4] is based on the combination of multiple
motif-based statistical score values. According to this scheme, groups of probabilistic motifs
discovered by the MEME motif discovery algorithm [3], are used to construct protein profiles
for the families of interest. The MAST algorithm successively estimates the significance of
the match of a query sequence to a family model as the product of the p-values of each motif
match score. This measure (called E-value) can then be used to select the family of the
unknown sequence.

Neural network schemes for protein classification consist of two stages: the encoding stage,



where discriminative numerical features are computed for each training sequence and the de-
cision stage where the created feature vectors are used as input vectors to a neural network
classifier. Various encoding schemes have been proposed in the literature that produce nu-
merical features in the encoding stage based on the calculation of background features (global
sequence homology) and local features (locally conserved family information) embedded in
motifs. In the decision stage feedforward neural networks have been used trained either
through backpropagation [26] or using Bayesian regularization [21, 25]. These approaches
are characterized by the enormous size of the extracted input vectors, the imbalance between
global and local features (more emphasis on global features) and the need for large training
sets (since the number of network inputs is very large). For example in [21, 25] only one
feature was responsible for carrying local information, while all the others were produced by
the 2-grams encoding scheme (background features).

Support vector machines (SVMs) [24] have been also applied to protein homology detection
problems. Such an approach, which has been introduced in [20], feeds probabilistic score
values from all motifs available (nearly 10000) in the BLOCKS database [11] into an SVM
classifier. Obviously, this scheme uses only local features but the dimensionality of the input
space is extremely high. Another method has been proposed in [16, 17] that combines hidden
Markov models (HMMs) and SVMs for detecting remote protein homologies. In particular,
an HMM is first trained to model a protein family, and then the observed probabilities (in
the log space) of each sequence with respect to each parameter of the HMM are calculated.
The obtained gradient-log-probability vectors are applied to an SVM to identify the decision
boundary between the family and the rest of the protein universe.

3 The proposed method

This paper studies the problem of classifying a set of N protein sequences 8 = {S;,i =
1,...,N} into K classes. The set S is a union of positive example datasets S), from K
different classes, i.e. 8 = { 8, U...U Sk }, and can be seen as a subset of the complete set
of all possible sequences over the aminoacid alphabet (S C T*).

Figure 1 illustrates the architecture of the proposed protein classification scheme. It
consists of a search tool (unsupervised learning) for discovering probabilistic motifs in a
set of K protein families, a feature vector generator that converts protein sequences into
feature vectors, and a decision module (neural network) for assigning a protein family to each
input sequence. The following subsections describe in detail the major building blocks of the

proposed architecture.
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Figure 1: The architecture of the proposed classification scheme.

3.1 Using motifs for feature generation

Consider a finite alphabet consisting of set of characters £ = {ai,...,an} ( = 20 for
protein sequences). We can probabilistically model a contiguous (ungapped) motif M; of
length W; using a position weight matrix (PWAM;) that follows a multinomial character
distribution. Each column (I) of the matrix corresponds to a position ! in the motif sequence
(l=1,...,W;), where the column elements provide the probability of each character of the
alphabet p,. i (£ =1,...,82) to appear in that position.

Let s, = ap)...apw,; denote a segment of a sequence S beginning at position p and
ending at position p + W; — 1. This represents a subsequence of length W;. Totally, there
are L — W; + 1 such subsequences for a sequence S of length L. Then, we can define the
probability that s, matches the motif M;, or alternatively, has been generated by the model
PW M; corresponding to that motif, using the following equation:

W
P(sp|M;) = [ [ Payot - (1)
=1

A major advantage of using the probabilistic matrix PWM; is the ability to compute
the corresponding position-specific score matrix (PSSM;) in order to score a sequence. The
PSSM; is a log-odds matrix calculating the logarithmic ratio r, ¢, of the probabilities p,
suggested by the PWM; and the corresponding general relative frequencies of aminoacids pa,
in the family’. According to the definition of PSSM;, the score value f;(s,) of a subsequence

'The general relative frequencies of aminoacids indicate the background information in a protein family
and can be presented as a probabilistic vector p of size 2 = 20.



sp of a sequence S can be defined as:

W

Wi
filsp) = S log(Peztdy = S, 2)
I=1

Yap,i =1

At the sequence level, the score value of a protein sequence S against a motif M; can be

determined as the maximum value among all scores of the possible subsequences of 5, 1.e.:

fi(8) = fi(sp) - (3)

max
1<p<L—W,;+1

It must be noted that it is possible to adopt other definitions for scoring a sequence, such as
setting scores below a certain threshold equal to zero [4].

If we assume that we have discovered a group of D motifs in the set of sequences S, we can
generate a D-dimensional numerical feature space and map each sequence 5; into a vector x;
in the D-dimensional feature space by calculating the score values z;; = f;(S;) (7 =1,...,D)

for each of the D) motif models.

3.2 Finding probabilistic motifs in protein sequences

Several approaches have been proposed for discovering probabilistic motifs in a set of un-
aligned biological sequences. The CONSENSUS [12], Gibbs sampler [19] and MEME [3] are
examples of such methods that identify multiple shared motifs in protein families. We have
selected the MEME approach for the motif identification component of our strategy, since it
has been widely used in biological applications and directly extracts position specific score
matrices. Below we briefly describe this algorithm and propose two ways to integrate it in
our classification system.

The MEME algorithm follows an iterative procedure, which applies at each iteration a
two-component mixture model to discover one motif of length W. In the two-component
model, one component describes the motif (ungapped common subsequences of length W)
while the other component models the background information. Multiple motifs can be found
by sequentially fitting the two-component model to the set of sequences that remain after
removing the sequences containing occurrences of the already identified motifs.

In particular, MEME uses the Expectation Maximization (EM) algorithm [8] to maximize
the log-likelihood function of the two-component mixture model [3], i.e. to estimate the
elements of the corresponding position weight matrix?. Furthermore, MEME provides with

a strategy for locating efficient initial parameter values in order to prevent the EM algorithm

*The model used in our experiments assumes that there are zero or more non-overlapping occurrences of
the motif in each sequence of the dataset. Alternative models that can be used are the exactly one oceurrence
per sequence and the zero or one cccurrence per sequence.



from getting stuck in local optima [3]. The D motif models PWM; (j = 1,..., D) discovered
by MEME can be of either fixed or variable length W;. In our experimental studies both
types of motifs will be examined to evaluate the impact of this decision on the performance
of the neural classifier.

In order to discover a group of motifs from a multi-class training set of sequences (contain-
ing sequences of K classes) two alternative approaches can be followed. The first approach is
to apply the MEME algorithm K times, seperately to the training sequences of each protein
family. Then, putting all the discovered K family profiles together we can form the final group
of D motifs. An alterantive approach is to apply the motif discovery algorithm only once to
the total training set 8 ignoring class labels. In this way, we do not allow the algorithm to
directly create K protein family profiles, but rather to discover D class-independent motifs.

The advantage of the second approach is the ability of taking into account local similarity
measurements in the whole training set, without restricting the search procedure to a single
class. Therefore, possible partial homologies among sequences from different families can be
defined that may prove helpful for the classification task. On the other hand, a disandvan-
tage of the class-independent approach is that the D discovered motifs may not be equally
distributed among the K families. This may result in insufficient modeling of some families,
thus leading to performance deterioration. During expriments both motif discovery strategies

will be considered and evaluated.

3.3 Construction of a neural classifier

After dicovering D motifs and constructing the D-dimensional feature space, the last stage
in our methodology is to implement and train a feed-forward neural network that will be able
to map the input vectors into the protein classes of interest. A typical network architecture is
illustrated in Figure 1. To construct the neural classifier we use the training set X = {x;, t;},
i=1,..., N consisting of positive examples x; from the set of K protein families. The target
vector t; is a binary vector of size K indicating the class label of input x;, i.e. ty =1 if
X; corresponds to a sequence S; belonging to class k., and 0 otherwise. The output of the
classifier is represented by the K-dimensional vector y; where component y;;. corresponds to
class k. Based on this scheme, the predicted class h(x;) of an unlabeled feature vector x;
corresponding to a query sequence S; is given by the index of the output node with the largest
value y;., i.e.

h(xi) =c¢: yic= max y;y . (4)

Setting a threshold value # (€ [0,1]), we can restrict the classifiers’ decision only to those

input vectors whose maximum output value surpasses this threshold. In this case we can



write:

h(x,0) =c: yic = Max Y A Yic 2 8. (5)

Parameter & can be used to specify the sensitivity of the classifier.

In order to train the neural network we used the Gauss-Newton Bayesian Regulariza-
tion (GNBR) learning algorithm [10]. This algorithm applies Bayesian regularization and
implements a Gauss-Newton approximation to the Hessian matrix of the objective function.

In the Bayesian regularization framework the objective function is formulated as the
weighted sum of two terms: the sum of the squared errors (Ex) and the sum of squares
of the network weights (Ew ). Using Bayes' rule, the posterior probability distribution for the

weights w of the network given a training set X can be written as follows:

_ PXIW)P(w)

P(wiX) = =5 (6)

By properly choosing the prior distribution P(w) and the likelihood function P(X|w), we
can obtain the following expression for the posterior distribution [5, 10]:

P(W[X) = - exp(~5Ex — aBw) = 5= exp(~F(w)), )

-

where the Zp corresponds to the normalizing factor that is independent of the weights.
Maximizing the above posterior distribution is equivalent to minimizing the regularized

objective function F(w):

A Nx o W
F(Wi':'gzl{}'i—ti}z-!-EZiwf, (8)
i= j=

where Nx and Nw represent the number of input vectors and network parameters, respec-
tively. In order to estimate the normalizing factor Zp a Gaussian approximation can be
used for the posterior distribution [22] as obtained by the Taylor expansion of function F(w)

around the minimum value of the posterior, wysp. This gives the following estimation: [5]:
Zj (e, B) = exp(—F(warp)) (2r)"W /2 H| 72 (9)

where H corresponds to the Hessian matrix of the regularized objective function and, there-
fore, optimal values for parameters a and 8 at the minimum point wysp can be computed as

follows:

ot 5 ¥Nx
— and = 10
Y Rl Y v ey (10)

The quantity v represents the effective number of network parameters w and can be defined

b=

using the eigenvalues of H~! as v = Ny — 2aTrH™!. In cases where the number of effective

parameters is equal to the actual ones (y = Nw), more hidden units must be added to



the network. Furthermore, the GNBR algorithm follows a Gauss-Newton approximation
method [10] for calculating the Hessian matrix of F(w) at the minimum point wjsp, using the
Levenberg-Marquardt optimization algorithm [5]. It must be noted that in our experiments,
the best results for the GNBR algorithm were obtained by scaling the network inputs in the
range [—1,1].

4 Experimental results

Several experiments were conducted to evaluate the proposed method. The classification
accuracy was measured by counting the sensitivity and specificity rates. In all K-class clas-
sification problems, each protein family &; (k = 1,...,K) was randomly partitioned into
training and test sequences, with the training set being only a small percentage (5 - 10%) of
the family dataset. Using the training datasets experiments have been carried out using the
MEME algorithm to discover groups of motifs. Two cases were considered: in the first case,
the MEME algorithm has been applied seperately to each training set providing a group of
Di. = 5 class-dependent motifs for each family S,*. In the second case the MEME algorithm
was applied only once to the total training dataset (ignoring the class labels) to provide a
group of D =5 x K class-independent motifs.

In any case, the obtained final group of D motifs were used to transform each sequence
of the dataset into a dataset with numerical D-dimensional feature vectors, denoted X,
for the class-dependent case and X, for the class-independent case. Furthermore, we also
experimented with the effect of the length W of the discovered motifs to the performance of
the proposed classifier, by applying the MEME algorithm with either fixed or variable motif
length. We selected W = 20 for the first case and the range [10,30] for the second case.
In summary, we have considered four distinct cases considering the application of MEME:
discovering either class-dependent or class-independent motifs with either fixed or variable
motif length. Therefore, for each classification problem four distinct neural classifiers will be
constructed and tested.

To evaluate classification performance ROC (Receiver Operating Characteristic) analysis
was used. More specifically, we used the ROCsg curve which is a plot of the sensitivity as
a function of false positives for various decision threshold values until 50 false positives are
found.

For our experimental study three real datasets were selected. In particular we have used
protein families from the PROSITE database [13], which is a large collection of protein fam-

ilies together with their characteristic (deterministic) motifs. Two datasets with K = 6

*Experiments with greater number of motifs did not yield better classification performance.



| Problem: PROSITE 1 (K = 6) I Problem: PROSITE 2 (K =7) |

PROSITE | Positive Training set PROSITE | Positive Training set
family data (avg length of seqs) family data | (avg length of seqs)
PS00030 302 20 (370) PS00070 129 15 (558)
PS00038 289 20 (359) PS00077 155 15 (502)
PS00061 317 20 (299) PS00118 168 15 (127)
PS00198 | 300 20 (284) PS00180 | 123 15 (408)
PS00211 574 31] (478) PS00215 123 15 (321)
PS00301 386 0 (517) PS00217 148 15 (490)
PS00338 173 15 (212)

Table 1: The two PROSITE families used in the experimental study.

[ Problem: GPCR (K =7)

GPCR Class A | Positive | Training set
subfamily data (avg length of segs)
Amine 306 20 (485) |
Peptide 654 30 (383)
Hormone 325 20 (317)
Rhodopsin 270 20 (358)
Olfactory 58 10 (348)
 Prostanoid 43 10 (721)
Nucleotide-like 43 10 (378)

Table 2: Seven families from the GPCR class A used in the experimental study.

and K = 7 classes from the PROSITE database [13] were selected, summarized in Table 1.
Moreover, experiments have also been conducted on a dataset of G-protein coupled receptors
(GPCR) [14], that is a superfamily of cell membrane proteins. The GPCR database is hier-
archically classified into five major classes and their subfamilies [14]. We studied the problem
of classifying subfamilies within the class A, since it dominates the whole GPCR database.
As indicated in [17], the difficulty of recognizing GPCR subfamilies arises from the fact that
the classification of the subfamilies has been made based on chemical properties rather than
sequence homology. Therefore, members from different subfamilies may share strong homol-
ogy thus making their discrimination hard. Among 15 subfamilies consisting class A, seven
of them have been selected in our experimental study described in Table 2. The remaining
eight subfamilies are of very small size and it is difficult to construct an effective system for

their discrimination.
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Problem Ny D
Z-gram features | motif-based features

PROSITE 1 174 bx6=230
PROSITE 2 285 ExT=2358
GPCR 152 Sx7T=35

Table 3: The number of the extracted motif-based (D) and 2-gram (N,) features that corre-
sponds to each dataset.

4.1 Local versus global features

In this series of experiments we assessed the impact of using 2-grams (background features)
on the performance of the proposed classification scheme. For a sequence S; with length L;
we define the feature value g;; for each 2-gram g with respect to this sequence as:
N(q|5;

ga= L) (11)
where A (g|5;) denotes the number of occurrence of the 2-gram feature g in the sequence S;.
As it is obvious, the above equation gives the relative frequency of a 2-gram feature in a
sequence. In a training set S = {51,53,...,5n} of N sequences we can ignore redundant 2-
grams and consider only the N, features g;; that correspond to the most frequently occurring
2-grams. We select the N, 2-grams occurring in at least half of the training sequences and
by computing the corresponding giy (g =1,..., N;) values for each sequence S;, we construct
the corresponding feature vectors to be fed in the neural classifier.

Table 3 presents the dimensionality of the feature spaces obtained using 2-grams and motifs
for each dataset used in the experiments. It must be noted that we can further reduce the
dimensionality of the 2-gram feature vectors using standard dimension reduction techniques,
such as principal component analysis (PCA). To assess the impact of the several feature types

on the performance of the classification system we have considered five different datasets:
e X,: D motif-based features separately identified for each family (class-dependent),
o X.: [} motif-based class-independent features,
e X;UG: D motif-based class-dependent features along with Ny 2-gram features,
¢ XU G: D motif-based class-independent features, along with N, 2-gram features
e G: N, 2-gram features.

The neural network architecture had one hidden layer of either 10 (for the cases X; and X,)

or 20 nodes for the other three cases®.
We have used the trainbr network training function of the Neural Network Toolbox of Matlab v. 6.1,

11
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Figure 2: ROCzg curves illustrating the performance of the neural classifier on the three
datasets using the five different feature vectors.
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Figure 3: The seven class regions in the GPCR dataset in the case of class-dependent and
class-independent features. The data have been projected in two dimensions using PCA.

Figure 2 displays the ROCsp curves obtained after training the five neural classifiers in
each of the three classification problems respectively. For each problem two different graphs
are presented concerning motifs of fixed length (W = 20) and of variable length W € [10, 30].
As it is obvious, motif-based features itself constitute an excellent source of information
able to generate significant features and lead to the construction of efficient classifiers. In
all cases, the neural networks trained by mixed features (e.g. NN(X, U G)) exhibit lower
classification accuracy compared to the corresponding classifier trained with only motif-based
features (e.g. NN(X,)). Furthermore, the 2-grams features alone (case NN(G)) do not seem
to contain significant discriminant information.

Another observation that can be made from the ROCsq curves in Figure 2 is related to the
performance of the neural classifier with class-dependent motifs (network NN(X,)) compared
to that obtained with class-independent motifs (network NN(X,)). In almost all cases we
obtained better classification results with the network NN(X,). One explanation for this
behaviour is that, when searching for a specific number D of motifs in the whole training
set (ignoring class labels) the algorithm may focus on some of the of families and leave the
other families explored only partially. This possibly affects the satisfactory modeling of some
families, since the discovered class-independent motifs may not be sufficient for describing
them (only a few individual motifs dedicated to this family). Experiments in the X, datasets
with MEME have shown that the allocation of motifs in most cases was not equal for all the
K families.

An example is shown in Figure 3 that illustrates the constructed feature space of the

13



Xs and X, datasets in the case of the GPCR problem (seven classes), after projecting the
35-dimensional numerical to a two-dimensional space using PCA. It can be observed that in
the case of class-dependent motifs the protein classes exhibit less overlap while in the reduced
feature space of class-independent motifs there is a significant overlapping among class regions,
thus making the discrimination harder. A selection of higher values of D probably would lead
to better results for the class-independent case, but would simultaneously result in larger

feature spaces or to the overestimation of some families.

4.2 Comparison with other approaches

We have also compared the neural classifier (with class-dependent motif-based features) with
two other protein classification methods, namely the MAST homology detection algorithm [4]
and the profile HMMSs built using SAM [15]. In both MAST and SAM each protein family is
transformed (indirectly or directly) into a probabilistic model-profile and the test sequences
are classified using the class of the profile with the best score value.

More specifically, the MAST procedure [4] initially uses the MEME algorithm to discover
groups of motifs separately for each one of the K protein families. For each sequence in
the testing set, the MAST algorithin combines the calculated p-values and estimates the
significance of the observed match (called E-value) of the sequence to each of the K groups
of motifs®. Then the query sequence is assigned to the class with the minimum E-value. The
SAM method [15] works in a similar way by building an HMM for each one of the K protein
families instead of discovering groups of motifs®.

Figure 4 provides comparative results from the application of the proposed neural classifier,
MAST and SAM to the three datasets. We have created five ROC curves for each method
(number of false positives versus sensitivity for several threshold values) until 25 false positives
were found (ROCgs). The performance of the neural classifier and MAST was given by two
curves respectively” concerning motifs of fixed (W = 20) and variable length (W = [10,30]),
while the last one corresponds to SAM performance. In the case of MAST and SAM methods,
ROC curves were obtained by setting several E-value thresholds. When the lowest estimated
E-value for a query sequence was greater than the threshold then the test sequence was
considered unclassified.

The superior classification of the proposed neural approach is obvious from the plotted

curves in all problems, offering greater sensitivity rates with perfect specificity (zero false

*We use the meme and mast commands from the available MEME package v.3.0.4,

“We used the buildmodel and hmmscore commands from the available SAM package v.3.3.1,

"The curves for the neural classifier performance were the best plots from the corresponding ROCyy diagrams
in Figure 2.
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positives). For the GPCR dataset which is more difficult to discriminate, the classification
improvement is more clear: a sensitivity rate of 99.30% was measured with only 11 false posi-
tives, while the corresponding results for MAST and SAM are (95.76%, 25) and (95.38%, 25),
respectively. It is also important to stress the higher accuracy that the neural scheme achieves
compared with the MAST (dot lines). Although these two methods use the same groups of
motifs, our method seems to offer a more efficient scheme for combining the motif match
scores compared to the combination of their p-values as suggested by MAST. In addition,
the neural classifier achieves less false positives with higher sensitivity rates in all datasets
concerning either fixed or variable motif length. Again the improvement is more clear in the

plots corresponding to the GPCR dataset.

5 Conclusions

In this paper we have presented a neural network approach for the classification of protein se-
guences. The proposed methodology is motivated by the principle that in biological sequence
analysis motifs can provide major diagnostic features for determining the class label of the
unknown sequences. The method is implemented in two steps, where a pre-processing step
{based on the MEME algorithm) is initially applied for discovering a group of probabilistic
motifs appearing in the sequences. We have suggested and evaluated two alternative ways
for motif discovery in a set of K-class sequences dependinding on whether the class labels are
taken into account or not. Using the discovered motifs a numerical feature vector is gener-
ated for each sequence by computing the matching score of the sequence to each motif. At
the second stage of the proposed method, the extracted feature vectors are used as inputs
to a feed-forward neural network trained using the Gauss-Newton Bayesian Regularization
algorithm that provides the class label of a sequence.

Experiments were conducted on real datasets (using very small training sets) and com-
parisons were made with the MAST and SAM probabilistic methods. ROC diagrams were
used as a performance indicator and the experimental results clearly illustrate the superiority
of the neural system. In addition we have shown that background features do not constitute
a useful source of information for the classification task since they do not lead to performance
improvement.

In what concerns our future work, more extensive experiments could be conducted to
assess the performance of the method on specific protein superfamilies of important biological
functions, as was the case with the GPCR dataset. Also, alternative methods could be
implemented and tested, both in the classification stage (mixture models, SVMs etc) and in

the motif discovery stage.
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