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Quantitative Validation of an Automatic Segmentation
Method for Identification of the Regions of Interest in

Intravascular Ultrasound Images

Abstract

We have developed a new automatic border detection method for the fast and accurate
detection of lumen, media — adventitia and stent borders in coronary arteries from
Intravascular Ultrasound (IVUS) images. The method is based on the use of
deformable models whose energy is minimized using a Hopfield Neural Network.
The detection of the borders is accompanied by several correction techniques to
overcome problems related to the quality of IVUS frames. We validate the developed
method against two expert observers in a dataset of 80 IVUS frames. We estimate
several metrics including the interobserver variability of our method for area and
perimeter, parameters of linear regression analysis (slopes, y — interceptions,
correlation coefficients) and the Williams Index (WI) for area, perimeter, non-
overlapping areas, Hausdorff distance and mean distance. Our results demonstrate that
the proposed method is reliable, accurate and capable to identify rapidly the regions of

interest in sequences of [IVUS frames.
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1. INTRODUCTION

Intravascular ultrasound (IVUS) is a relatively new method, which generates cross —
sectional images of coronary arteries with high temporal and spatial resolution. The
method is used for the evaluation of vessel wall morphology and dimensions (De
Feyter et al. 1991; Hodgson et al. 1190; Gerber et al. 1994; Mallery et al. 1990;
Neville et al. 1989; Nishimura et al. 1990; Nissen et al. 1991; Potkin et al. 1990)
Furthermore, IVUS provides data about the composition of the atheromatus plaque
(Flank et al. 1995). This is useful in the prognosis of coronary artery disease, as
lesions prone to rapture can be identified. During the past decade IVUS has become

an important tool in both clinical and research applications.

IVUS requires the insertion, within the coronary artery, of a catheter with a transducer
on its tip. The transducer transmits a high frequency (20 — 40 MHz) ultrasound signal
perpendicular to the catheter axis. The catheter is attached to a motorized pullback
device in order to be moved with a constant speed on a stable pullback path, which is
determined by the vessel’s curvature. Cross — sectional images are generated due to
the attenuation of the signal while it is passing through the vessel wall. Subsequently,
a sequence of [VUS images is obtained. In each image, lumen (e.g. lumen cross
sectional area), external elastic membrane (e.z. external elastic membrane cross
sectional area — in the text the term media — adventitia border is used), atheroma (e.g.
plaque burden), calcium, stent (e.g. stent cross sectional area) and remodeling (e.g.

positive remodeling) measurements can be made (Mintz et al. 2001).

However, there are several IVUS artifacts, which reduce the ability to identify vessel
wall layers and influence the accuracy of the obtained measurements. Those artifacts
are: (a) ring —down, blood speckle and near field artifacts, (b) transducer obliquity

and vessel curvature and (c) spatial catheter orientation.

Border detection in IVUS images is done manually. This process is laborious, time
consuming and can be unreliable in the hands of an inexperienced operator (Meier et
al. 1997). As a result these problems have restricted its clinical application. To

overcome these drawbacks and enhance IVUS utilization, we developed a novel



method, which identifies accurately and quickly the different layers of the vessel wall
(Plissit et al. 2001). The aim of the present study is to validate this novel method.

2. MATERIALS AND METHODS
Intravascular Ulrasound

The IVUS images were obtained using a 30-MHz catheter (Avanar F/X, Endosonics,
USA, catheter size 2.9 F, length 150 cm). Sequential imaging was obtained with the
IVUS catheter been connected to a motorized pullback device operating at a speed of
0.5 mm/sec. IVUS images were acquired at a standard rate of 10 frames/sec and were
digitized in DICOM format. The calibration markers, displayed on the digitized
images, were used to derive the pixel size of 0.017mm, which was used to calculate

the cross — sectional areas and the perimeters of the different regions of interest.
Study Group

We analyzed sequences of images from coronary artery segments of 10 patients, who
underwent IVUS examination for clinical purposes. The analyzed segments located in
the left anterior descending artery (3), right coronary artery (5) and left circumflex
coronary artery (2). In 5 out of 10 assessed coronary arteries stent implantation

preceded the IVUS examination. From each IVUS examination 60sec were digitized.

From the digitized IVUS examination 80 randomly selected IVUS frames, spaced >
1.5mm between each other, were finally used for the validation of our method. As a
condition for inclusion, frames had to belong in angiographically relatively straight
coronary artery segments without side branches and no calcification encompassing

>30° of the arterial circumference.



Automated IVUS Border Detection Method

The acquired IVUS images are preprocessed to remove noise. A 3x3 median filter
was applied to eliminate the effect of artifacts and speckles. A linear filter was used

for image enhancement.

The automated segmentation method was based on the principles of deformable
models (snakes). Initially an expert observer provided an estimation regarding the
regions of interest of the first IVUS image of each sequence of images. The lumen
and media — adventitia borders in the following frames of the sequence were

automatically extracted using information from the previous image.

The position of the snake is represented parametrically by v(s) = {x(s), }'(s}], and its

energy functional can be written as:
1

Esnake = I(Eint (v{s))'i' Eimage [V{S}}}J'S : (1)
0

where E. represents the internal energy of the snake due to bending and Ejq...is

derived from the image data (Kass et al. 1987). As in most conventional snake
models, the internal energy is a function of the first and second order derivatives of

the curve, and can be expressed as:

v ’ T 2
Ejp = a(s)v (5}|1 + Bl ()" @)
Emage forces the snake to be attracted to image features, and it is defined as:
2
Eimage = —}'{s)l‘?’ﬂ ) (3)



where Ivj’i' is the image gradient.

In the discrete domain the energy functional of the snake takes the form:
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where N is the number of points of the snake and g; is the image gradient at the

point i of the image.

In order to construct a searching space where the snake can deform, the center of the
curve drawn by the expert observer is determined and N points from the curve are
selected at equal angles of 15°. Then perpendicular to the curve line segments
consisted of M points are drawn at each sample point. The points that construct those
line segments are the candidate points of the final contour. At each line segment, the

point that minimizes the energy function of the snake is selected.

The energy of the snake is minimized using a Hopfield neural network. A typical
Hopfield network consists of a single layer of neurons. Each node has a bias [ and is
connected with every other node. The connections are bi-directional and symmetric

and a specific weight T}; is assigned to each connection. The state u; of the i neuron

depends on the input it receives from other neurons and is expressed as:

N
u; = XTjo; +1;, (3)
j=1

where N is the number of neurons and o; each neuron’s output, which takes the

values 0 or 1 (firing or not firing). The Hopfield network converges when the energy

functional reaches a local minimum. The total energy functional is given as:
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In our case the network consists of one layer of NxM neurons. Each neuron

(i, /)(1<i< N,1< j<M) represents a candidate point of the final curve.

The energy of the snake that will be finally minimized is:
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where x,y are the coordinates of a point, ¢ is the output of a neuron and g is the
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image energy. The interconnective strengths are given as:

Ty = (4 +128)5; - (20 +85)5,1; — (2@ +88)5,1j + 286,12, + 255,55 -
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where:

1ifiei
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Since the weight and the bias of each connection are computed, the above relations
determine the state and output of each neuron. The state of a neuron, which is
considered as a firing neuron, is acceptable only if the total energy of the network is
diminished. The neurons, which are considered as firing neurons, define the borders

of the regions of interest.



In many cases the proposed method is difficult to detect the regions of interest due to
the quality of the [IVUS images. To improve the efficiency of the method, we consider
more appropriate to detect smooth edges that separate large regions, which contain

pixels of similar intensity. Thus, the gradient for each pixel of the image is defined as:

g =v@ -5 )+ -7F . ©)

where @i;,b;,l; and 7; are the mean values of the intensity of the pixels in the upper,

bottom, left and right neighborhood of the pixel i, respectively. With this modification
the network converges at points that minimize the total energy of the snake and define

the boundary of the region of interest.

In addition, for the correct detection of media — adventitia border a smooth initial
estimation is needed. We calculated the convex hull of the final points of the snake. In
this way, we avoided abnormalities in the specification of the searching area, which
are caused by small distortion in the shape of the detected contour in the previous

frame.

The above method was applied twice for each sequence of IVUS frames in order the

lumen initially and the media - adventitia border afterwards to be detected.

Method of Validation

Ideally, in order an IVUS boundary detection method to be reliable the borders that
the method detects should be the same with the “real” borders. However, the “real”
location of these borders is not known. Previous studies have shown that histology

cannot provide accurate information regarding the borders’ location, due to the



shrinkage of the tissues and the inability to determine the precise correspondence
between IVUS images and histological slices (Mallery et al. 1990). Therefore, only
by comparing the region of interest that a method identifies with those been detected
by expert observers the accuracy of a border detection method can be ascertained.
For this purpose, usually two expert observers trace twice the IVUS images and the

average of area and perimeter values is utilized as the golden standard.

In our case, 2 expert observers examined the 80 randomly selected frames used for the
validation of our method and the lumen, media — adventitia borders were traced.
Forty of the examined frames were obtained from stented coronary artery segments
and as a result the experts, although they were traced the stent, were unable to detect
the media — adventitia border in 22 of them. The IVUS frames were examined twice

and with a month’s interval between each one of the examinations.

The regions of interest (lumen, media — adventitia border, stent) computed by our

automated method were compared with those been traced by the experts.

The reliability and reproducibility of manual tracing was assessed by estimating the
inter — and intra — observer variability for area and perimeter of the regions of interest.

Inter - and intra — observer variability were defined as (Kovalski et al. 2000):

Inter variability:

_1mz|i+2l (10)
2

where A, and A, represent the values of area/perimeter obtained from the first and

second tracing, respectively, and NV is the number of IVUS images.

Intra variability:

s |A—B]
Veiro IIJDZ TR (11)

2

ﬂ=% and B=% .

where



Several ways were used to evaluate the performance of the proposed method:

a) The automated method was considered as an independent observer and the
interobserver variability between manual tracing (average) and automated border

detection was computed. This interobserver variability was defined as:

A+B
ml"tcalg_[ 2 }l
V,, =100 — ¥ (12)
3

where C,,, is the area/perimeter computed by the proposed method.

b) Linear regression analysis was also used (Bland et al. 1986). Correlation
coefficients, slope and y — interception were computed to compare the areas and
perimeters estimated by the automated boundary detection method and the average of

the two experts.

c) The proposed automated boundary detection method was judged in the context of
interobserver variability and the Williams Index (WI) (Chalana et al. 1997) was

computed for perimeter and area. The WI was defined as:

1n 1
_.Z_._._._
“.f:inﬂ.j
WI= 3 5 (13)
”'lff"fﬂj,j'

where n is the number of observers, D; . is the average disagreement between

5
observers and Dy ;- is the disagreement between our method and each observer. The

average disagreement between the two observers is defined as:

D; p =t Fe(xyoxi) (14)
s m— Y e X, Xin),
L Y = i

where x;; is a vector observation on subject i by an observer j, N is the number of

subjects, and the function e(x,y) is a distance metric between observations, x and
y.  The distance metric in our case is defined as the difference between the

measurements of area or perimeter of the two observers.

10



d) Further, to make a direct comparison of area and perimeter measurements we
performed nonoverlapping area analysis (Bland et al. 1986). This type of analysis
leads to the redetermination of inter -, intra — and manual vs. automatic variability. In

addition, we have computed the Williams Index for nonoverlapping areas.

¢) Hausdorff and mean distance were utilized to determine a difference metric
between the manual and the automated computed contours. The Hausdorff distance

was defined as:

Dyjqyssa = max d; (13)
']
and the mean distance as:

Dean =1Zd.-, (16)
L

where d; =J (x; = x'; ' +(y; =¥, )*  denotes the distance between corresponding

points and n denotes the number of corresponding points.

Artificial correspondence between points in the manual traced and computer obtained
contour was established using an object — based method, originally used for inter-slice
interpolation between consecutive tomographic images (Coshtasby et al. 1992;
Protopappas 1999). In this method, each point (x,y) of the first contour (defined as
reference contour) corresponds to a point {x',y'} in the second contour (defined as
target contour), which best matches it, using minimization of a vector cost function.
This function takes into account the gradient magnitude and direction as well as the

distance between the points. The function was defined as:

Clx,y.x.y) =u[D(x,y)-D (X ,y i +1,[0(x, ) -6 (x, y j +tt (x—x )* + (y—y )k
(17)

where D(x,y) and &(x,y) are the gradient magnitude and direction, respectively, and
up,u5,uy are weights that specify the relative importance of the above three function
components. Searching in a small neighborhood, in the target curve, we obtained the
best matching point. Swapping the reference and the target curves and applying the

above-mentioned procedure, we discarded all the incorrect matches and established

11



the final comesponding points. The average curve was then determined by plotting a

contour at the mid-distance of the displacement between the corresponding points.

3. RESULTS

The inter - and intra — observer variability of the two experts for the lumen, media -
adventititia border and stent based on the values of area and perimeter are shown in

Tables 1 and 2, respectively.

The interobserver variability for our method for area and perimeter is given in Table
3. Applying linear regression analysis to the automatically obtained contours of the
lumen, media — adventitia border and stent vs. the manual reference yielded slopes, y-
intercept and correlation coefficient shown in Table 4. In addition, the linear
regression analysis for the media — adventitia area is depicted graphically in Fig. 1.
The Williams Index for area and perimeter is shown in Table 5. To compute the 95%
WI confidence interval the jack — knife technique was applied (Bland et al. 1986).

The results obtained for the nonoverlapping area analysis are outlined in Table 6. The
Williams Index for nonoverlapping areas is given in Table 7. The Williams Index for

Hausdorff and mean distances are shown in Table 8.

4. DISCUSSION

In this paper, the validation of a novel automatic method for the lumen, media —
adventitia and stent border detection from IVUS images was presented. The detection
method is based on the principles of deformable models. The user interacts with the
first frame in a sequence of IVUS frames to provide with an initial estimation of the
border and the method can automatically extract the borders in all following frames.
To minimize the deformable model energy a Hopfield Neural Network is utilized.
The automatic contour detection method fails to identify the correct media —
adventitia border in the IVUS frames where large side branches or calcified plaques

are depicted. However, the deformable model is reinstated without manual

12



intervention in the IVUS frames, which follow, where these disorientating factors are
not pictured. The proposed method proves to be very efficient and fast compared

with manual intervention, which is slow, tedious and non-reproducible.

The clinical application of the method can be questioned as there is no previous
knowledge of its accuracy and reliability. For this purpose we performed validation
of the proposed method. Two experts traced twice 80 IVUS images and the obtained
contours were compared with the ones obtained by the application of our method.
Several metrics have been such as the automated method interobserver variability, the
Williams Index for area and perimeter, Hausdorff and mean distance of curves. This
has been achieved applying direct comparison, linear regression analysis and
nonoverlapping arca analysis. The analysis indicates that the accuracy and reliability

of our method is high.

The reliability of the two observers is assessed using inter - and intra — observer
variability. Intra — observer variability for area ranges from 1.59 % - 2.84 %, for
perimeter from 1.04 % - 2.22 % and for non-overlapping areas from 1.57 % - 2.72 %.
The above values compare well with others reported in the literature (Kovalski et al.
2000; Meier et al. 1997).

Linear regression analysis results indicate that the method is accurate. The slopes are
close to unity, the y — interception confidence interval includes always zero and the
correlation coefficient is higher than 0.98 in all cases. The worst performance
according to linear regression is obtained for the perimeter of the stent. The proposed
method will deviate more in regions (e.g. stent), which are easily detected by the

observers. However, the performance of the method is good enough.

The automated method was considered in our validation approach as an independent
observer and the Williams Index can provide with a qualitative measure of the
accuracy of the method. Williams Index values close to unity indicate that the
method is accurate. WI for area ranges from 0.67 — 0.91 and for perimeter from 0.73
- 0.84. WI for area is low for the media — adventitia border and high for lumen. For

the perimeter the lowest value is obtained for stent and the highest for lumen. This is

13



due to the fact that observers can easier detect the media — adventitia border and stent.
WI for non-overlapping areas ranges from 0.79 — 0.91. The lower value is obtained
for media — adventitia border followed by the stent. WI for Hausdorff distance ranges
from 0.88 — 0.90 and the WI for mean distance from 0.82 — 0.90. The later indicates
that statistically our method is accurate. In general, the lumen detection using the

proposed method is more accurate than the detection of media — adventitia and stent.

The obtained WI for the lumen is higher than the WI obtained for the stent. This is
contrast with the interobserver variability, which for the proposed method is higher
for the lumen. This can be due to the low intra — observer variability (2.01%+1.56)

which affects more the Williams Index.

Inter — observer variability has not been taken into account in previous studies. In our
case its value is low, which implies that the WI value is low. The obtained for our
method high values of WI index under these circumstances indicate that the proposed
method is highly reliable. This must be taken into account in the media — adventitia

border detection (case of low WI).

The task of identifying the regions of interest in IVUS images is a challenging issue.
Several algorithms have also been developed to trace the lumen and media-adventitia
borders (Hagenaars et al. 2000; Klingensmith et al. 2000; Kovalski et al. 2000;
Mojsilovic et al. 1997; Shekhar et al. 1999) and several attempts to examine their
reliability have been presented. The validation results for our underline its high
performance designate the proposed method as one of the most efficient and accurate
method for IVUS segmentation. We have not validated our method in terms of
computer time needed for border detection, but it seems that it is fast need, since no
more that 45 min is requested for a sequence of 600 IVUS frames on Pentium 4, 1.2
GHz.

However, the proposed method has several limitations, which must be addressed in
the future. One of these is that the algorithm fails to identify the lumen and media —
adventitia border in the IVUS frames in the presence of side branches or echogenic
calcified plaque. Our automated method includes also three — dimensional

reconstruction of the coronary arteries and its validation will be presented in a future
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communication. Three-dimensional reconstruction makes it feasible to assess fast and
accurately in the same arterial segment, changes in the lumen and plaque volume and
to estimate the influence of intervening treatment or pharmacological agents in the

regression of atherosclerosis.

B CONCLUSIONS

IVUS provides tomographic views with precise morphology and geometry of arterial
segments, which is not possible with contrast angiography or any other image
modality. For fast and accurate extraction of the regions of interest in IVUS frames,
an automatic method was developed. In this paper we have described a validation
methodology, which thoroughly estimates the accuracy and the reliability of the
proposed method. The results confirm its efficiency in determining lumen and media-
adventitia border and nominate our method as one of the most robust methods for

IVUS segmentation.

Thus, the automated method may have clinical use. Up to date the IVUS
segmentation has been restricted as it involves manually tracing which is tedious non-
reproducible and time consuming. The proposed method overcomes the

aforementioned difficulties and extends the clinical applicability of IVUS imaging.
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Table 1:

presented as mean = standard deviation

Lumen, media adventitia border and stent area variability. Results are

Variability Media - Lumen Stent
Adventitia
N= 58 N=80 N=40
Inter observer (1) 2.06%1.67 3.61+£3.64 2.88+2.06
variability (%)
Inter observer (2) 1.50+1.10 2841264 | 2.862.37
variability (%)
Intra observer 1.59+1.58 2.84+2 81 2.08+1.63
variability (%)
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Table 2: Lumen, media adventitia border and stent perimeter variability. Results
are presented as mean + standard deviation
Variability Media - Lumen Stent
Adventitia
N= 58 N=80 N=40
Inter observer (1) 1.23+1.17 2.16£1.90 1.86£2.36
variability (%)
Inter observer (2) 1.15£1.56 1.96+1.33 1.84+2.19
variability (%)
Intra observer 1.04£1.10 1.69+1.67 1.16+1.59
variability (%)
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Table 3: Interobserver variability of the proposed method. Results are presented as

mean =+ standard deviation

Media - Lumen Stent
Adventitia
N= 58 N=80 N=40
Area 2.22+1.60 2.80+292 2.34+1.70
Perimeter 1.2140.81 1.88+1.53 1.47+1.16
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Table 4: Slope, 95% confidence interval of slope, y — interception, 95% confidence

interval of y — intercept and correlation coefficient for areas and perimeters.

Slope CI(95%) |y intercept | Correlation
(95%) coefficient
Media — Adventitia | 1.03 (1.00,1.06) | -0.08 mm" | (-0.77,0.61) 0.99
(area) mm?
Media — Adventitia | 1.03 | (1.00,1.06) | -0.26 mm | (-0.29,-0.23) 0.99
(perimeter) mm
Lumen 0.97 | (0.92,1.02) | 0.14 mm* (-0.09,0.37) 0.99
(area) mm-
Lumen 0.97 | (0.91,1.03) | 0.14 mm (-0.22,0.50) 0.99
(perimeter) mm
Stent 0.99 | (0.94,1.04) | 0.07 mm® | (-0.09,0.23) 0.99
(area) mm?>
Stent 094 | (0.83,1.05) | 0.28 mm (-0.37,0.93) 0.98
(perimeter) mm
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Figure 1: Linear regression analysis of the automatic media — adventitia area vs.

manual tracing.
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Table 5: WI and 95 % confidence intervals for area and perimeter.

WI CI(95%)

Media - 067 | (0.64,0.70)
Adventitia
(area)
Media - 0.81 (0.78,0.84)
Adventitia
(perimeter)
Lumen 0.91 (0.89,0.93)
(area)
Lumen 0.84 (0.82,0.86)
(perimeter)
Stent 0.82 (0.78,0.86)
(area)
Stent 0.73 (0.69,0.77)
(perimeter) L
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Table 6:

are presented as mean * standard deviation

Inter - and intra — observer variability for non-overlapping areas. Results

Variability Media - Lumen Stent
Adventitia
N= 58 N=80 N=40
Inter observer (1) 3.88+1.38 6.64+3 .88 5.16t£2.16
variability (%)
Inter observer (2) 3.6210.92 5.95+2.47 5.58+2.12
variability (%)
Intra observer 1.57+1.59 2. 7212 80 2.01+1.56
variability (%)
Interobserver 4.11+2.81 6.031£4.45 4.99+1.39
{Automated
method)
variability
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Table 7: WI and 95% confidence intervals for the non-overlapping areas.

WI CI (95%)
Media — Adventitia 0.79 (0.77,0.81)
Lumen 0.91 (0.90,0.92)
Stent 0.82 (0.81,0.83)
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Table 8 WI and 95% confidence interval for Hausdorff distance and mean distance.

WI CI (95%)

Media - Adventia 0.88 (0.87,0.89)
(Hausdorff distance)
Lumen 0.88 (0.87,0.89)
(Hausdorff distance)
Stent 0.90 (0.88,0.92)
(Hausdorff distance)
Media — Adventia 0.89 (0.88,0.90)
(mean distance)
Lumen 0.90 (0.89,0.91)
{mean distance)
Stent 0.82 (0.81,0.83)
(mean distance)
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