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ABSTRACT

We have developed an automatic arrhythmia detection system, which is based on heart rate
features only. Initially, the RR interval duration signal is extracted from ECG recordings and
segmented into small intervals. The analysis is based on both time and time-frequency
features. Time domain measurements are extracted and several combinations between the
obtained features are used for the training of a set of neural networks. Short time Fourier
transform, and several time-frequency distributions are used in the time-frequency analysis.
The features obtained are used for the training of a set of neural networks, one for each
distribution. The proposed approach is tested using the MIT-BIH arrhythmia database and
satisfactory results are obtained for both sensitivity and specificity (87.5% and 89.5%,
respectively for time domain analysis and 90% and 93%, respectively for time-frequency

domain analysis).



1. INTRODUCTION

Arrhythmia is a collective term for any cardiac rhythm, which deviates from the normal sinus
rhythm. Arrhythmia may be due to a disturbance in impulse formation or conduction, or both,
but it is not always an irregular heart activity [1]. Respiratory sinus arrhythmia is a natural
periodic variation in RR intervals, corresponding to respiratory activity. Impulse formation
may be sinus or ectopic, the rhythm regular or irregular and the heart rate fast, normal or slow
[2,3]. Therefore, the detection of abnormal cardiac rhythms and automatic discrimination
from the normal heart activity became an important task for clinical reasons. Most of the
studies address the detection and identification of life threatening arrhythmias and
specifically ventricular and atrial fibrillation and ventricular tachycardia. Various detection
algorithms have been proposed, such as the sequential hypothesis testing [4], the multiway
sequential hypothesis testing [7], the threshold-crossing intervals [5], the auto-correlation
function [5], the VF-filter [5] and algorithms based on neural-networks [6,8,12]. Time-
frequency analysis [9] and wavelet analysis [10,11] have also been used. Recent approaches
utilize complexity measure [13] and multifractal analysis combined with a fuzzy Kohonen

neural network [14].

Heart Rate Variability (HRV) refers to the beat-to-beat heart rate alterations. HRV believed
to be a good marker of the individual’s health condition and heart diseases [15]. Therefore,
HRYV analysis became a critical tool in cardiology for the diagnosis of heart diseases. Time
domain analysis of the RR intervals includes the calculation of several common statistical
indices [16,17] and the graphical representation of the RR interval duration signal [16,18].
Frequency analysis provides with the power spectrum density of the RR interval duration
signal using Fourier transform and autoregressive techniques [16,19-23]. Time-frequency (t-

f) analysis is based on the use of short time Fourier transform, time-frequency distributions



and wavelet analysis of the RR interval duration signal [24]. Other approaches for the HRV
analysis include methods from nonlinear mathematics and chaos theory, such as fractal [24,

25] and approximate entropy [16, 25] analysis.

More specifically in the time — frequency analysis Wigner Ville (WV) distribution [26,27]
and improved forms of WV, such as pseudo Wigner Ville (PWV) [28-31] and smoothed
pseudo Wigner Ville (SPWV) [36-38], discrete Fourier transform and selective discrete
Fourier transform [32-35], cone shaped kernel distribution [9], Choi-Williams distribution

[39] and other exponential distributions [40] have been used.

In this paper we explore time and t-f analysis of the RR interval duration signal in order to
detect arrhythmic segments of ECGs [41]. Initially, the RR interval duration signal is
extracted from the ECG. The extracted signal is segmented into small intervals. The obtained
signal is analyzed using both time and time-frequency features. For the time domain analysis
selected time features are extracted. A set of neural networks is trained for all possible
combinations among these features. Each combination of features is used for the training of
one of the neural networks. Three decision rules are used to combine the outputs of all neural

networks to obtain the final decision.

STFT and a number of TFDs such as WV, PWV, SPWV, Rihaczec, Page, Margenau-Hill,
Bon Jordan and Zhao-Atlas-Marks distributions, are also applied and the obtained t-f
characteristics are used for the training of a second set of neural networks. Each neural
network corresponds to one of the above methods (STFT and TFDs) used. Finally, we apply

three decision rules on the outputs of the set of the neural networks. In both cases the final



normal or arrhythmic outcome for a segment of the signal is not based on the result of a

single identifier but on the combined outputs of a set of neural networks.

2. MATERIALS AND METHODS

Our analysis is carried out in four stages. First a preprocessing procedure is used to extract
the tachograms from the ECGs. The tachograms are segmented into small segments. Each
segment contains 32 RR intervals. In the second stage time domain or time-frequency
methods are applied to extract the corresponding features. In the third stage the extracted
features are used for the training of a set of neural networks. In the forth stage detection of
arrhythmias is carried out using decision rules which are fed with the outputs of the neural

networks.

A. Preprocessing

Preprocessing is carried out in two steps. In the first step we extract the tachograms from the
ECG recordings. The dataset used in our study is the MIT-BIH arrhythmia database [45,46].
The database consists of 48 ECG recordings. The length of each recording is 30 minutes,
which results to a total of 24 hours of recordings with 112,568 RR intervals. All RR intervals
are used expect those close to the start or end of each recording which are excluded during
segmentation. Each beat in the database is annotated with a character annotation (N, L, R, A,
a,],8,V,F,[L,],e,j,nand E, P, f, p, Q, |, +, s, t and ~) . The beat annotations are explained
in the database documentation [45]. The RDNN software, which accompanies the MIT-BIH
database, is used for QRS detection. Then the RR interval duration signal (tachogram) can be

obtained.



In the second step the tachograms are cut into small segments of 32 RR intervals each, and
each segment is characterized as normal or arrhythmic using the MIT-BIH beat annotation.
This results to 3,456 segments. For each RR interval the characterization of the second beat
15 used for its characterization. RR intervals with beat annotation N, P, f, p, Q. |, +, s, t and ~
were characterized as “Normal”™ and RR intervals with beat annotation L, R, A, a, ], §, V, F,
[ . ] e j, n and E were characterized as “Arrhythmic”. A 32 RR interval segment is
characterized “Normal” if it contains more than 95% “Normal” RR intervals, otherwise is

characterized “Arrhythmic”. The preprocessing scheme is shown in Fig.1.

B. Time domain analysis

We apply time domain analysis on the segmented dataset. Time domain analysis results in
indices and markers obtained from the tachogram, such as mean and standard deviation of
RR intervals, mean and standard deviation of differences between adjacent RR intervals,
difference between the longer and the shorter RR interval etc. The standard deviation of all

normal - to - normal RR intervals (SDRR) is the simplest feature that can be extracted from

i=l

the tachogram.
N
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where N is the total number of the RR intervals, RR; is the duration o f the i™ RR interval and

u is the mean value. The root mean square of successive differences of all normal - to -



normal RR intervals (r MSSD) and the standard deviation of successive differences of all

normal - to - normal RR intervals (SDSD) are also widely used indices.
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where du is the mean value of successive differences of the RR intervals. The percentage of
intervals presenting time duration difference between adjacent normal-to-normal RR intervals
greater than 50msec (pNIN50) is another HRV characteristic. In many studies this percentage

is used with different time threshold, such as Smsec (pNN35) or 10 msec (pNN10), i.e.

number of time duration differences of succesive RR intervals > x msec
pNNx = N1 . (6)

The normal-to-normal RR intervals are all intervals between adjacent QRS complexes

resulting from sinus node depolarization [15].

We use all possible combinations among the above mentioned time analysis features (each
combination contains 1, 2, 3, 4, 5 or 6 features) to create the pattern set for the classification
stage. This leads to a total of 63 feature combinations, which are shown in Table 1, with

3,426 patterns each. In the third stage (classification stage) we train a feed-forward back-



propagation neural network, for each feature combination. We use 1,426 patterns randomly
chosen from the total of 3,426 patterns as training set. Several neural network architectures
have been tried and we have chosen the one that performs better: N inputs (number of
features used in the specific combination), one hidden layer with 20 neurons and one output,
being a real number between 0 and 1. The final “Normal™ or “Arrhythmic™ classification is
made with 0.5 threshold on the networks’ output. The training of the neural network ends
when the square error is less than 0.0]1 or the training epochs are more than 2000. The
procedure followed for the time domain features is shown in Fig. 2. Finally, we result in a set
with 63 neural networks (one for each combination). The outputs of the neural networks are

fed into a set of decision rules as it is described below (forth stage).

C. Time-frequency analysis

STFT and various time-frequency distributions (TFDs) is used for the time-frequency
analysis of the segmented dataset. For STFT the signal x(u) is pre-windowed around a time

instant t, and the Fourier Transform if calculated for each time instant t.

STFT(t,f) = |x(t)h(z-t)e ™ dz (7

-0

where h(t) is a short time window, localized around t = 0 and f= 0, and x(t) the signal. STFT
suffers of trade-off between its window length and its frequency resolution. The TFDs used
in our study belong to the Cohen’s class of distributions [42,43] and are given by the

following formula
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where s(t) is the time signal, s’ (1) is its complex conjugate and g(v,t) is an arbitrary

function called kemnel. The kernel is different for each TFD. Table 2 shows selected TFDs

which are used in our study and the corresponding kemels [42-44,48.49].

For each 32 RR interval segment STFT and all TFDs are applied (totally 19 methods). The
Power Spectrum Density (PSD) is computed and normalized in the [-1.1] interval for
amplitude. This represents the fractional energy of the signal in time t and frequency f (Fig.
3a). We obtain horizontal slices from the PSD for amplitude = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0
which contain the corresponding PSD trace (Fig. 3b). The areas between adjacent slide traces
are calculated (Fig. 3c and 3d). These areas are the time-frequency features. Six features for

each TFD are computed. They are used for the training of the neural networks.

For STFT and each TFD we train a feed-forward back-propagation neural network, using
1,426 patterns randomly chosen from the total of 3,426 patterns as training set. The
architecture is similar to the one used in time-domain analysis: six inputs, one hidden layer
with 20 neurons and one output being a real number in the interval [0,1]. The analysis based
on time-frequency features is presented in Fig. 4. Finally, we result in a set with 19 neural
networks (one for each method). The outputs of the neural networks are fed into a set of

decision rules (forth stage), which is common for both procedures.



D. Arrhythmia Detection

For both time domain and t-f analysis we use the remaining 2,000 segments of the segmented
dataset as test set. The outputs from all neural networks trained for each approach (63 for
time domain analysis and 19 for t-f analysis) are fed into the following decision rules to

obtain the final decision for each segment (normal or arrhythmic).

e Average: For each segment we calculate the average of the outputs of all neural networks

and a threshold 0.5 is used for the final decision. i.e.

M
z}“i
Normal (0) if IT <0,5

T = : . (9)
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Arthythmic(1) if JF'N—>n 5

?

where T is the final decision, N is the number of the neural networks and y; is the output

of the ﬂ neural network

e Vote: For each segment all neural networks vote if it is arrhythmic, with threshold 0.5,

ie.

A=

0 if ;<05
1 if y,>05

where y; is the output of the i neural network and A, the vote of the i neural network. If

more than half votes are accumulated then the decision is “Arrhythmic”, otherwise

“Normal”, i.e.

N
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e Decision Vote: Each neural network “decides™ if it will vote using
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where y; is the output of the i"™ neural network and '¥; the vote of the i" neural network. If
all neural networks vote 0 for a segment then the vote is calculated as:

Y. =¥ (12)

The average of all votes is used with threshold 0.5 for the final decision, i.e.

N
D
Normal (0) i o5
T= N : (13)

M
S

Arthythmic(1)  if %} 0.5

The architecture of the neural networks used is shown in Fig. 5. The transfer function used
among the layers is the hyperbolic tangent sigmoid function. The training function is the
Levenberg-Marquardt back propagation method [47]. We use the mean squared error
performance function, which measures the network's performance using the mean of squared

CITOTS.

3. RESULTS

The corresponding sensitivity and specificity for each neural network is computed. The
results for sensitivity and specificity, for the 63 neural networks trained with time feature
combinations and the 19 neural networks trained with time-frequency features, are reported
in Tables 3a and 3b, respectively. The results for a single neural network are not satisfactory
(average sensitivity and specificity: 74% and 72% for neural networks trained with time

features and 74% and 78% for neural networks trained with time-frequency features).

10



Therefore a single neural network cannot be used for arrhythmia detection. We have

observed the following:

1. Each neural network results in high sensitivity and specificity for signal segments for
which the output is less than 0.3 or higher than 0.7. This is because the output of the
neural network can be viewed as a possibility function that decides if a segment is
normal (result 0) or arrhythmic (result 1).

2. Each neural network results in low sensitivity and specificity for signal segments for

which the output was near 0.5 (i.e. in the interval [0.5 — k. 0.5 + k] with k < 0.2). This

is an uncertainty interval with high error rate.

3. A number of neural networks detected correctly almost all signal segments with
output outside the uncertainty interval [0.45, 0.55] (i.e. k=0.05). When the uncertainty
interval is larger (i.e. k= 0.1. 0.15 or 0.2) the number of neural networks which detect
the same number of segments correctly is reduced. In this case for some segmenis
there are no neural networks with output outside the uncertainty interval. We have

used various uncertainty intervals and the best choice is [0.4, 0.6] (i.e. k=0.1).

The above observations lead us to use multiple identifier combined with decision rules. The
results for sensitivity and specificity when we use the decision rules on the neural networks’
outputs are presented in Table 4. For each decision rule the Receiver Operating Characteristic
(ROC) curve is computed. The ROC curves are shown in Fig. 6. Using the ROC curves the

Area Under Curve (AUC) marker is calculated and the results are presented in Table 5.

11



4, DISCUSSION - CONCLUSIONS

We have developed an automatic procedure for the detection of arrhythmias using ECG
recordings. The method comprises of four stages. In the first the ECG signal is transformed
to the RR interval duration signal which is segmented into small segments of 32 RR intervals
each. In the second features of those segments are extracted. In the third a set of neural
networks is trained. In the forth the outputs of the neural networks are fed into decision rules.
The outcome of the method is the classification of segments in normal or arthythmic.

The method is based on time analysis and time frequency analysis features which are
obtained in the second stage. If time features were chosen then their combination leads to 63
neural networks. If time frequency analysis was followed then we result into 19 neural
networks. We have proven that a single neural network does not provide with satisfactory
results in terms of sensitivity and specificity and this imposed the use of decision rules. One
of the advantages of the method is that using only heart rate features can lead to the
identification of arrhythmic intervals in ECG recordings. This is independent of the type of
arrhythmia. In the past several researchers have addressed similar problems, as it is shown in
Table 6, but they have identified only some types of arrhythmia and in smaller datasets. The
obtained sensitivity and specificity refers to the whole MIT-BIH database which in our

analysis has been segmented into 3,426 segments of 32 RR intervals.

For the time domain approach the average and vote decision rules result in low performance
for both sensitivity and specificity (81% and 78%, respectively). This is expected since in
both cases the neural networks’ outputs inside the uncertainty interval have high error rate.
The sensitivity and specificity for decision vote are 87.5% and 89.5 %, respectively. Average
and vote decision rules for the time frequency features resulted in 87% sensitivity and 8§9%

specificity. The decision vote results are better (90% sensitivity and 93% sensitivity).

12



In our study besides the QRS detection and the extraction of the RR interval duration signal,
there is no other processing of the ECG recording (such as P wave or T wave detection which
will make the process more complicated and time consuming). Therefore, noisy data can be
analyzed because QRS detection algorithms perform well. The exclusive use of the RR
interval duration signal leads to a high reduction of input and processing data, compared to
other ECG analysis methods.

Moreover, the final decision is not based on a single identifier but on the combined results of
a set of identifiers. Therefore, the system is expected to have high generalization capability.
Due to the short processing time and the generalization capability of the method we believe
that the proposed approach can be used in real time arrhythmia detection systems. In
addition, RR. interval duration features can be used for the classification of detected

arrhythmic segments into several arrhythmia types.
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FIGURE 6 (a,b)
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FIGURE LEGENDS

Figure 1. Preprocessing of the ECG signal

Figure 2. Time domain analysis.

Figure 3. a. Time-frequency distribution, b. Horizontal slices, c. Traces, d. Features for time-

frequency methods

Figure 4. Time-frequency analysis.

Figure 5. Architecture of the neural network.

Figure 6. a. ROC curve for decision rules for neural networks trained with time features

b. ROC curve for decision rules for neural networks trained with time-frequency features



Table 1. Combinations of time domain features.

Feature Combination  Features

1 1 SDNN

2 2 r MSSD

3 12 SDNN, r MSSD

4 3 SDSD

5 13 SDNN, SDSD

6 23 SDNN, r_ MSSD

7 123 SDNN, r_MSSD, SDSD

8 4 pNN35
60 3456 SDSD, pNNS5, pNN10, pNN50
61 13456 SDNN, SDSD, pNNS5, pNN10, pNN50
62 23456 r_MSSD, SDSD, pNNS5, pNN10, pNN50
63 123456 SDNN, r MSSD, SDSD, pNN5, pNN10, pNN50



Table 2. Time-frequency distributions.

Distribution Kemel ( g(v.1))
1 Born-Jordan el
mwT
1
N.Mu.1 =0
2 Butterworth [ v Jm( T ]IM
1+ — —
Yy ¥
E— —(mvt) *
3  Choi-Williams e 20 o : scaling factor
sin[ 27{01.1] o : scaling factor
4 Generalized rectangular MH a - disegnmet T
s s —— m] e
5 Margenau-Hill cos(mot)
6 Pseudo Margenau-Hill h(t) cns(mn] h(t] window function
7  Margenau-Hill-Spectrogram hm cus(m]t] A (u ) o .
A (v,7) : Ambiguity function
8  Page oIl
9  Pseudo Page h(1) ™ h(t) : window function
10 ngIIEI-VIHﬂ 1
11 Pseudo ngner-Vl]le h(7) h(t) : window function
12 Smoothed Pseudo Wigner-Ville G(v) h(z) h(t) : window function
13 Rihaczek e ™"
14  Reduced interference (Bessel window) ‘ﬁt}e'jh"“dt h(t) : Bessel window
15 Reduced interference (Hanning window) h(t}e =84t h(t) : Hanning window
16 Reduced interference (Binomial window) h[t}e Jh'“dt h(t) : Binomial window
17 Reduced interference (Triangular window) h(t}e'jm“dt h(t} Tnangula.r window
18  Zhao-Atlas-Marks h( e TE 5‘“(““"} h(r} - window function




Table 3a. Results for sensitivity and specificity for neural networks trained with time

features.
Combination  Sensitivity ~ Specificity Combination Sensitivity ~ Specificity
1 74% 62% 6 85% 47%
2 60% 86% 16 T4% 66%
12 77% 76% 26 T4% 76%
3 60% 86% 126 T7% 80%
13 76% T4% 36 73% T7%
23 69% 7% 136 79% 75%
123 7% 75% 236 2% 76%
4 74% 44% 1236 80% T7%
14 2% 65% 46 81% 49%
24 69% 76% 146 74% 65%
124 74% 75% 246 75% 75%
34 62% 84% 1246 77% 77%
134 17% 75% 346 76% T6%
234 68% 79% 1346 79% 7%
1234 76% 71% 2346 73% 75%
5 83% 40% 12346 75% 78%
15 69% 69% 56 79% 49%
25 1% 73% 156 73% 67%
125 73% 76% 256 72% 78%
35 68% 9% 1256 75% 79%
135 T5% TT% 356 T6% T3%
235 69% 81% 1356 77% T7%
1235 79% T6% 2356 73% 76%
45 81% 40% 12356 78% T78%
145 69% 67% 456 76% 53%
245 70% 2% 1456 73% 70%
1245 75% 4% 2456 T4% 75%
345 66% 77% 12456 30% 2%
1345 76% 5% 3456 T7% 72%
2345 71% 78% 13456 73% 7%
12345 78% 1% 23456 75% T4%
123456 78% 2%



Table 3b. Results for sensitivity and specificity for neural networks trained with t-f features.

Distribution Sensitivity Specificity
Born-Jordan 72% 74%
Butterworth 71% 78%
Choi-Williams 76% 73%
Generalized

T4% 80%
Rectangular
Margenau-Hill 73% 76%
Pseudo

T74% 76%
Margenau-Hill
Margenau-Hill 80% 82%
Page T4% 84%
Pseudo Page 80% 84%
Wigner-Ville 69% 76%
Pseudo Wigner-Ville  70% 84%
Smoothed pseudo

75% 82%
Wigner-Ville
Rihaczek 75% 80%
Reduced Interference

76% 79%
(Bessel Window)
Reduced Interference

75% 72%
(Hanning Window)
Reduced Interference

71% 76%
(Binomial Window)
Reduced Interference

73% 76%
(Triangular Window)
Zhao-Atlas-Marks 80% 78%

STFT 70% 13%



Table 4. Results for sensitivity and specificity for decision rules.

Time domain analysis

Decision Rule Sensitivity — Specificity

Average 80.68% 78.18%
Vote 82.60% 78.43%
Decision Vote  87.53% 89.48%

Time-frequency analysis

Decision Rule Sensitivity — Specificity
Average 87.64% 88.65%

Vote 86.84% 89.25%

Decision Vote ~ 89.95% 92.91%



Table 5. AUC marker results for decision rules.

AUC marker
Decision Rule Time t-f
Average 85,91% 85,91%
Vote 86,32% 36,32%

Weight Vote 93,46% 93,46%



Table 6. AUC marker results for decision rules.

Author Dataset Results
Sens. Spec.
Thakor — Zhu 170 records (8 sec) 100% identification
Pan after 7 sec.
Clayton -Muray 70 extracts (4 sec) Threshold Crossing Intervals ~ 46% T2%
Campbell Autocorrelation Function 67% 38%
WF Filter Leakage 77% 55%
Signal Spectrum Shape 53% 93%
Clayton - Muray 70 extracts (4 sec) Neural Networks 84% 59%
Campbell
Yang - Device 3080 ECGs 92% 93%
MacFariane
Khadra 45 ECGs Ventricular Fibrillation 91,7%  83,3%
AlFahoum §NR, 12 VF, 13 VT, 12 AF Atrial Fibrillation 91,7%  91,7%
AlNashash Ventricular Tachycardia 84,6%  92,3%
Normal Rhythm 87,5% 87.5%
AlFahoum 158 ECGs Ventricular Fibrillation 100%  100%
Howitt 37 NR, 49 VF, 49 VT, 20 AF Atrial Fibrillation 95,2%  B5,7%
Ventricular Tachycardia 100% 100%
Normal Rhythm 92,5%  97,5%
Minami 700 QRS Ventricular Fibrillation 92% 02%
Makajima 150 VT, 250 VF, 300 NE. Ventricular Tachycardia B0% 6%
Toyashima Normal Rhythm 99% 08%%
Zhang - Zhu 170 records (48 sec) 100% identification
Thakor - Wang 85 VT, 85 VF, 34 NR after 7 sec.
Wang - Zhu 180 records (6 sec) Ventricular Fibrillation 098.3%  96,7%
Thakor - Xu 60 VF, 60 AF, 60 VT Ventricular Tachycardia 935% 99 2%
Atrial Fibrillation 98.3%  100%
This work MIT-BIH Arrhythmia All types included in 87,53% 89,48%
database MIT-BIH §9,95% 9291%

48 ECGs 30 min. length
112,568 beats




