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Abstract

We examine the electromagnetic scattering of spherical waves by a buried spheroidal perfect
conductor. The proposed analysis is based on the integral equation formalism of the problem and
focuses on the establishment of a multi-parametric model describing analytically the scattering process
under consideration. Both the theoretical and the numerical treatment are presented. The outcome of
the analysis is the determination of the scattered field in the observation environment along with its

multivariable on several physical and geometric parameters of the system.
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1. Introduction

This paper addresses the three-dimensional direct scattering problem of electromagnetic spherical
waves by a prolate spheroidal perfect conductor, which is embedded in a semi-infinite dielectric
medium. The interference of electromagnetic waves with inaccessible scatterers (as the buried object
case) constitutes an area of great scientific interest from the theoretical and the application point of
view. Indeed, there exist numerous applications having as fundamental prerequisite the implementation
of non-invasive techniques for the localization and reconstruction of non-accessible structures. In the
past several researchers have studied the problem of the localization of buried metallic objects

{ordnance, mines, etc) [1-8].

Within the framework of arbitrary scatterer’s shape, the suggested techniques for handling the direct
scattering problem belong almost totally to the numerical regime [9-12]. In fact, the validity of all these
methods strongly depends on the electrical size of the scatterer. Nevertheless, in the case that we have a
priori information concerning the geometric features of the scatterer, it is possible to develop analytical
methods facing the scattering problem and leading to the establishment of multi parametric models
describing the studied process. It is mentioned here the application of the localized nonlinear
approximation [13], which constitutes a method for the investigation of the low-frequency behavior of

the scattering problem from an ellipsoidal body in the half-space earth.

The present work is subsumed into the general framework of integral equation formalism [14,15], it is
frequency independent and examines the case of the prolate sphercidal scatterer, which simulates

perfectly a convex body that lacks symmetry in only one direction,

The paper is organized in five sections. Section 2 provides the mathematical formulation of the
scattering problem under consideration. The main outcome of this section is the establishment of
appropriate integral representations for the electric fields in the two half-space media. In section 3 we
expand the electric field in the scatterer’s region in terms of the spheroidal vector wave functions and
force this expansion to satisfy the boundary condition on the scatterer's surface. Exploiting
orthogonality arguments of the underlying spheroidal functions we obtain a set of algebraic equations

with unknowns the electric field expansion coefficients. The handling of the integral representation for



the electric field in the host medium via the aforementioned spectral decomposition in spheroidal
coordinates is presented in section 4. A lot of analysis is dedicated to encounter the coexistence of the
cylindrical with the spheroidal geometry in order to obtain analytical expressions for the above integral
representation. Based on these expressions, we arrive at algebraic equations resulting from the
investigation of the electric field in the asymptotic regime. These equations are combined with those
originated from the boundary condition satisfaction and met in section 3 in order to form the final non-
homogeneous algebraic system whose solution provides with the spectral decomposition coefficients.
Actually, the knowledge of these coefficients is equivalent to the determination of the scattered electric
field in the scattering region-above the interface-as it is explained in section 5. Finally, in section & we
present some numerical results, which are based on the numerical solution of the above algebraic

system.

The main outcome is the determination of the scattered field for representative values for some of the
parameters entering the system. A more systematic exploitation of these results would serve as the
basis for the development of a methodology towards the solution of the inverse scattering problem.
This is mainly due to the fact that all the features of the process are incorporated in the method as
specific parameters and therefore their influence to the scattering mechanism is expected to be

recovered,

2. Formulation of the problem

We consider two separate subregions characterized by different electric permittivities &,,i =(1.2).
separated by a flat infinite interface S; on which suitable transmission conditions are satisfied (Fig. 1),
The media occupying the two half-spaces V,i= (1.2] are isotropic, homogeneous and non-magnetic,
having magnetic permeability g;. The upper half-space is the region where we can stimulate or

measure electromagnetic fields. In contrast, the lower half-space corresponds to the propagation

environment, where we usually do not have access or we cannot make any measurements.



A prolate spheroidal scatterer, with surface §_, . is embedded in subregion (2). The scatterer has

semiaxes aq,by (ag > by ), focal distance a, it is orientated vertically with respect to the interface S

and its center is located at a distance & from the boundary 5;. The origin of the coordinate system

coincides with the center of the spheroidal object.

A short electric dipole (i.e. a Herizian dipole) emanating time-harmonic electromagnetic spherical
waves is located in region (1), at a position @' with cylindrical coordinates {pﬂ.lﬁmz@]. The
electromagnetic field generated by the current source constitutes the incident field, the interference of

which with the interface S; along with the spheroidal surface § leads to the creation of the

iph *
scattered wave. This interference depends on the boundary conditions on the scatterer’s surface. For the
problem under discussion we assume that the spheroidal body constitutes a perfect conductor. The
scattered wave encodes all the information concerning the physical characteristics of the scatterer along
with the relevant geometric features of the system. The total electromagnetic field is formed by the

superposition of the incident field with the scattered onme and is denoted by the vector pairs
{E;,E, } i =(1.2) in each region, where E, and I-I, are the electric and magnetic field in region i,

respectively. These fields satisfy the non-homogeneous Maxwell's equations
VxEilr)=iopHilr), (1)

VxHilr)=T:)-iog EilF), 2)
v-leElr)-=0, 3)

V-l Hilr)=0, Fev.i=(2), )
where we have suppressed the harmonic time dependence exp{- ior} with @ standing for the angular
frequency of the current source. The current distribution },{;} which corresponds to the excitation of
the short eleciric dipole located at r =ro and orientated in the direction of a , is given by

0 i=2



where &(r—-ro) denotes the three-dimensional delta function and Ia denotes the magnitude of the

current moment of the source expressed in terms of its length a and its constant amplitude 1 [16],

which is normalized such that imugyla =1, Eliminating the magnetic fields from Maxwell's equations

we infer that the electric fields satisfy the following vector wave equations
VxVxElr - k2E )= iomp T [r). Tev, )

WV x ?XEQ{;}“kggﬁ(;}=E, ;E Vi, (7)

@ . ; i :
where k; = i L (1,2) are the wave numbers in the two media, respectively.
i

On the interface 5, , the electric fields satisfy the following transmission conditions

ix[Ef)-E:(r))-70, (8.2)
ix [V Eilr)-VxEalr)|=0, Tes; (8:0)

Furthermore, the tangential component of the total electric field on the spheroidal surface S,

vanishes, i.e.

AxEalr)=0, reS,, (9)

where R is the cutward unit normal vector to the scatterer's surface.

In addition, the electric fields satisfv the radiation conditions

lim [V < Eilr)- it 7 < B[] =0, 7ev,i=(12). (10)

r=p

The partial differential Egs. (6)-(7) along with the boundary conditions (8)-(9) and the radiation
conditions (10} constitute a well-posed boundary value problem. Its solution will be obtained following

the integral equation formalism of the problem. In this framework we evoke the theory of dyadic



Green's functions, presented briefly in Appendix A, since the sought integral representations require

dyadic kernel functions.

=] —
The free-space dyadic Green function Gelr, r') [Appendix A] must be exploited suitably in order 1o

obtain dyads incorporating the boundary conditions on the interface §; . This is necessary in acquiring

integral representations only on the scatterer’s surface, avoiding the undesirable infinite flat surface.

To this end we first apply the scattering superposition method to solve the scattering problem of dyad

incidence in the absence of the spheroidal scatterer obtaining
i) —y =) —y =i} —
G, F,r‘}=G,u nr’)+G“ Gr] (11)
m={2) ey =21
G, [rnr)=Ge (7). (12)

where the double superscript notation I[r_;} ij= (],2] denotes that the field point is located in region

(i) and the source point is located in region (j) while the subscript is used to denote the scattered (3}

=11} =(21)
or the incident (0) part of the corresponding dyadic field. Afterwards, we expand G.; . G.; interms

of the cylindrical vector wave functions [Appendix B], imitating the construction of the free-space

dyads met in Appendix A and taking into account the outgoing character of the waves, L.e.

Gu G.7)= [ar 3 cOLT T ) 550 0] 252 (13)
0 m=0
EE'](F.FF?dAi f:{”LE{—hz]F(h]}ur AN (-h )W (hy )}z <2 (14)
il m=0

The dyads satisfy similar boundary conditions on §; with those satisfied by the electromagnetic fields,

which means that



z;{?XEE]](F.F)HWEEM}(F.F]-I
d

=0,

(15)

ref;. {16)

=1}
Using the specific form of G.o (Eq. (A7) for z < ') and Eqgs. (13)-(14) we conclude that Egs. (15)-

(16) are satisfied if the unknowns a,b,c,d are

—hy eihe
+hy

a =

=

2
nh—hy ik
n1h| 'i'h:;

2Ry -ilt-m)e
by +hy '

s 2nky £—r'[hl—ﬁl:':k51

nzh, +hy

fa G G
where n =—=1s the refractive index.
1

(17.a)

(17.b)

(17.c)

i(17.d)

Similar results are obtained in the case when a hypothetic current source is located in region V;. In

fact, for z > ', we have

P =] e e Sl

e e B e |

Geo o7 J‘ch“}[a M (= 1y M (= iy )+ B'N(= by IN'( m]] ; (18.¢)

_{22}

m=l)

7).

{18.a)

(18.b)

=[12::|
Gﬂ T IdiXCiz]cM{h]}H{uﬁz}-r d'N (k)N (h)]4>z’. (18.d)
where

ﬂ':hz-h] P2k {lg_a}

Ry + Ry

2
' hﬂl_ﬂ 'hl (2R {lgb}

nehy + by



' 2 2 —!{i’.L J.h:lﬁ

19.c
h1+}:2 (122

d' = ﬂeﬂ.[hl_'ﬁiﬁ !

19.d
n’hy +hy .

The integral representations are based on the application of the second vector dyadic Green's theorem

according to which, for every vector P and dyad @ we have
M [F-WWE—(WWF]E} dv=—jﬂ{ﬁxvxﬁ}-z+{ﬁxﬁ}-\?x3] ds . (20)
v 5

—_ — == —[]
We apply the above theorem for (i) P= E|(;), 0=0G, fr r] with rr-_'l-"] and (i1} P Ez{—}

_{zn =
(_ } with reV,. Using Egs. (6)-(7), the corresponding partial differential dyadic equations

valid for the underlying Green's functions [16], the boundary conditions (8)-(9), (15)-(16) and the
radiation conditions (10) we infer that

()= iouq j 7:[r) _[“(_ )av + _[[,.xvxgz{_J EEH(_ 7 )ds . 1)

¥ fy

Similarly for the pairs (F,E] = [E;{{;}. EEEE}G, F}J, re V, and (E] {-} EE]E]F, r )J r eV, we obtain
\

— - = =l 1"‘1 - _ —U..]
Exlr)=iong _[ h(rhGe (rr)av + Ivax E:lr (r.7)ds . (22)
¥
Exploiting reciprocity theorems concerning the aforementioned dyads we obtain the more appropriate
final integral representations for the electric fields

Ef)=iaw [ 567V TE) av [ EIER v Bl as, Tev, 0

v - N

Bal)=iamo [ Go G7)TE) avie [ Go G ixvxEalr) asp Teve @)

UI Ss{!b

In the sequel, our aim is the exploitation of the above integral representations in order to determine the

electric fields from the knowledge of the physical and geometric characteristics of the scatterer.



3. Spectral decomposition in spheroidal geometry and boundary conditions investigation

The electric field in region (2) is expressed in terms of the spheroidal vector wave functions [Appendix
B], which constitute a basis in the space of Maxwell's equations solutions. This spectral representation

is expected to fit suitably to the boundary conditions imposed on the spheroid §,, . Consequently, it

holds that

4]

E)-303 5[40, 79, 0)- 89,70, (] 7ev.. -

j=3 m'=0n"=m"'"

We force representation (25) to obey the boundary condition (9). Projecting the resulting vector
equation on the tangential unit vectors é@ of the spheroidal system with g, being the specific value
of the coordinate g . which defines the sphercidal surface we obtain the following scalar relations

iii[’*[ﬂ,. [*P ”[3]: {_]}fﬂiﬂ [¢ 'v{,’:',, )ﬂ s (26)

j=3 m'=(n'=m o
SE S FLE A TLE] o e
) o e

J=3m’=0n"=m’

In order to obtain fully algebraic equations, we project Egs. (26)-(27} on the complete set of functions

P™(cos E)‘{S nE:mﬁ'f’]} j m=012,..nzm in  the 8, ¢ -space with  weight  function
1 fi"il-

w = (cosh? ,r.:,;,--n:u::as2 siné. In this analysis specific “‘inner” products arise, i.e. the products

{a-A, P™(cos@)sin 8 C_DS[mé} y with @ = [_g'_i} A =[H[j], ,,N[,"} ] which give birth to simple g-
sm(m @‘J} amal o m
inner products along with several & -inner products denoted as ‘:'Fi‘r‘]: i=1,...18. The latter quantities

are derived and presented in [20]. Finally, we obtain the following set of algebraic equations for

everym=0,12,...;n = m, which is equivalent to the boundary condition on S,



4 w _ ) iF
Z Z {A'U ) -{—Tﬁnm }sinh Lty cosh ,::URL{E', (cosh ggicy JR™ —sinh ,uURHH:', (cosh gy, }Eﬂgfl

£,
J=3 p'am
2 (sinh® g —1) A
+BU) 2 (a2 RU) (cosh pig: ¢, ) +sinh prg cosh gy RU) (cosh g e IR
" kaa sinh g :
-— L RL:'H} (cosh ggie, ]_2'-37[ 1':‘ +‘Hi'f, +E'Fii‘:}]}} =1
sinh g - ' '

(28)

4 L T 1 F
Z z { ’ﬂ'iI,L. ({1 =&, Isinh g, cosh #QRER]. (cosh gg: 5 )‘J’lﬁ’: —sinh ,u(}RER]. (cosh gg:cs }Iﬂij:'.]

Jj=3n'=m

_ inh 2 o y o
R = (-mx [M Ri”“}, (cosh gg;c, )+ sinh ug cosh gﬂﬂiﬁ (cosh gy, JIRE™

£.man kza sinh .Iul}

et : Rﬂ{ccshpmcﬁiiﬁi';‘- + R L RIM <,
sinh uy ' h '

(29)

&

=]

Z Z{Aiﬂm. (mz ) cosh yQREfﬂl (cosh ug:c, Nsinh? gy RE™, +2sinh? g7 + R

nn . nn

j=3n'=m

= BE[{?]JF, - :5']‘" } {[sinh? ,uu(sinh 2y - I}R,[;',],{ccrsh HoiCa ]+ sinh * iy cosh puﬁiﬂ, {msh Hoicy IR ::
i ,a . .

+sinh? 4o HRE;L}' (cosh pg:c3 )+ cosh g an’lﬂ} (cosh gy:c5 IR ET

nn’

2 '
+sinh? .uu[[kiza} sinh? g Rfﬂ. (cosh gig;¢a )+ 2 cosh gy RIE;': (cosh gy, IRE™

2
koal”
+ [%] RE} (cosh gscp 2 sinh? prp®R 3:%:? +3 Er':'n !

+R["}[cnsh o€ Nsinh? uuiﬁﬁ:’: +ﬂﬁ’." +2£Ft::;t’." —sinh? ,unﬂilf_';f']}}=(}.

ma'

(30

4 ]
Z z {AEI‘L, (= ma ) cosh ,u.;,Rr[,i]. (cosh pg3c, Nsinh® R 1™, +2sinh? #niﬁi'} +RI7]}-

j=3n'=m
27(1-6,)

24

{[sinh? pu(s-irlh - My — ]}R‘[‘i ) (cosh gy; ¢4 )+sinh* p, cosh ,;.:DRL':. {cosh HpiCs JiR -

mn' nn

B
+sinh? g HRH?' (cosh pg:c5 )+ cosh pg Ri;ln} (cosh gg: e, IR ?.:?
2
k , : L .
+sinh” ;:GI[%&) sinh #03}553' (cosh gy e5 )+ 2cosh pﬂRLﬂ. (cosh g }]‘:Hfl'j:
kaa g
+[%] RE;'H}'. [cc:sh Ly 12 sinh yﬂﬂ-tf:.“ + iﬁf;’,"]

+R££. (cosh gig;c, Ysinh? grg®3% +RIST + 2RI —sinh? pe® "1} =0,
(31)

where &, =2 if m=0 and gﬂm =1 otherwise,
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These equations will be combined with the corresponding non-homogeneous ones resulting from the

integral representation (24), after being amenable to asymptotic analysis in the far-field region.

4. Determination of the electric field in the host environment
4.1, Investigation of the integral representation in the scatterer’s region

The integral representation (24) is characterized by the fact that its surface integral involves functions
expressed in different geometric coordinate systems. As a matter of fact, the electric field “lives” in

spheroidal geometry, since it is expressed via the spectral decomposition (25), while the kernel dyadic

=12
Ge F r’) is expressed in cylindrical coordinates. It is then apparent that a lot of techniques based on

addition theorems, referring to these two geometries, have to be applied in order for this integral

representation to be handled.

More precisely, in view of Egs. (18.a), (18.c) and (A.8) (for z<z'), the surface integral of

representation (24), denoted as [, can be written as

I =szic{2}ﬁ[-h2];, +E{uh2]f2], (32)
0

m=[l

where

RN Y P

wh

L= [ W) oW m)x Bl s a4
S

The substitution of the spectral decomposition (25) of the electric field Ez[?) {with unprimed
argument there) in the surface integrals [,,/; leads to corresponding surface integrals, incorporating

simultanecusly vector wave functions in the spheroidal and the cylindrical coordinate system. Extended

use of several vector analysis arguments helps in manipulating the integrands of the aforementioned

11



integrals. Following these arguments and performing the azimuthal integration we transform Egs. (33)-

(34) into the following form

I,=i1(afﬂn,,ﬁf£“,.hz] ZZIA{J’ 10 e t2)+ B 5 (), (35)

J=31n"=m

I;=12(AE;£HH3£}] ] izmm § 7. - (r }4_3{;1:{!2‘1““ ()} . (36)
=3 n'=m
The appeared & -integrals 'I{{:z-i EJM, in Eqgs. (35)-(36) can be decomposed as
1 0)= ka3 (10)+ 0101, (- o). 37
If:_.imﬂ'{hl}=k?["rl.z{hﬂ}-'-ar‘jl.l(_h?}]’ (38)
iy ,m-{hz]=kz[-fz.l{f'z}"'f"-fz_u{'hz]]‘ (39)
‘J: ,.m 1["’22 )+b0;5 5=y ]1 (40)

The terms J, ;(h),i,j=(L2) are expressed via a plethora (38 terms) of structural @ -integrals by the
following relations

Jya(hy = J05 () + 03 (hy = 02 () = T 5 (), (41)

¥y m}:ki["rll.lll{h}+"l]-ﬁm+“rﬁl’i-‘ﬂ*‘fﬂ1](ﬁ)+inl'u"(hh-flz.f'z‘u"[h} -

i 11zzc{h}_”r[ilil{h}+;”3{h}+_flz_i“(h}+.f {h}+1;|(ﬁl]
Fyah) =I5 )+ TE2 () + TR )+ Iy + I = TR - I 22y, (@3)

212

J“{h}——[J.,1{h}+.f2!(h}+JM(&}+J§f'(&}+J2|'{.&}+J§:l(h‘}+J§le{h] S ¥t 1.1

2,2.2.2h

+JIEERE (Y £ SRR () + I () + S R+ I )+ T35 R+ T3 ().

(44)
These integrals are of “mixed-type’” in the sense that their integrands constitute products of scalar
functions expressed in different coordinate sysiems; the sphercidal and the cylindrical one. The
analytical treatment of these & -integrals is based on the investigation and handling of suitable addition
theorems connecting the two geometries and actually constitutes the most demanding part of the
analytical burden of this work. The exact values of all these terms are given in [20]. Here we discuss

the treatment of one representative of them. In particular, the first one of the terms is defined by

12



2
J ]]:]! {hz )= —[%] sinh g, cosh ,un{mz} -.1 Rr”' ) (cosh uy; c-z:'
(45)

i Splcosier 0, (e sinoer).
4 sin a dp

where the appeared quantity D, steaming from azimuthal integration, is assigned the values (1)

depending on the chosen branch while it vanishes for any other choice. Using Bessel functions

properties we obtain

I ()= —i;'-[%} sinh g, cosh #g{mﬁ}Df_::{_‘ﬂR“} (cosh pgics)

) {46
| f{—-lﬁsmn-{wse';cz}iim_]{m-i,,.u{Ap'}]e“’ﬁ' sin 0d0'}.

5N
0

Crucial role to the treatment of the above integral plays the following addition theorem [17]

E

Jef"“:'..’m (10" )P (cos8')sin 88" = mi P (cos 8y )j, (kry ). (47)
=

0

where

cosly =— hy cosh o : (48.a)

-,III A% sinh® g + b3 cosh® g

kry = .;. A sinh? pg +42 cosh? 41y . (48.)
The hasic ingredient in the analysis of all the aforementioned integrals is the effort to render equal the
order of the cylindrical Bessel functions with the azimuthal order of the associated Legendre functions.
Thereby, mobilizing suitable recurrence relations [20] to fulfill the indices coincidence we obtain

A g e
Falh, )= _E(%] sinh g cosh ug [mrr}D [ ) :’RE;’J (cosh pg; €5 }Z dr" (e,)

k=01

I b2 |
DI I

((2m+2k -4l -1) J‘P,,f"ﬂ sislcos oW, (20 )™ sin 64d8")

[k (49)
@m+i)e-A-20 o 4y ) [P cos O s (30 )™ sin o6}
i}

-

i (2m+k = 20)k!

x
= f {2m+ki 51[: a Fm-rk [ {COSH :Urv'-tl{)p k"’*") sin #d o’ ]
'le-a-k—z[EDtk! 0 "

—.I

13



The first two integrals are treated using the addition theorem (47), while the third one disposes a

peculiar recurrence expansion, as it is explained in [20], and therefore is treated separately. Finally, we

obtain that
ifaY
J:1-;{h1}=—3[5] sinh s, coshﬁﬁ{mzlﬂ _.;_‘”R{"} (cosh g: f:z}z i ()
Py
k
2
1
A {(2m+2k- ‘“—1]1 = Prei-21-1(00864 )i mag-2i- (kg b
1=0
A, (50.a)
= (2m+k)k-20-2 | - :
§ 2. {{zm}i—ﬂﬁH}(zm 2k -4!- }3,._k =Pt 211 (05 8g Vg a1y (kg
2m+k)
| 2m+k-2[—ﬂ!k!
\ 2
where
.|’ ra+] =2 ¥ \'
“Z( J T A (T R (]
= L (m - F"'?-}:?’m I+1 k =even
1 2™ m! : 1 . .
[+u—:;—’”{ﬁ] (cos)js(kry )+~ tcos(¢)- o+ & P eos o)k )
()
Ly =1 il ol -
Zl[’zj m! Y m i P (cos ) (kr, )}
- -_ - _ m={+2 Y0 M m=l+2\0
(2m+1), =2 " (m—1+2) ypy (2m—21+3) k =odd
2"mly 1. . Hreap
HT:TJ;—:[f sin(¢)—i¢ o lkn, :]']
(50.b)

(am)!

and we have set for simplicity u = i%sinh Ho, & = hzgcush ty and ¥, = o

mt
Coming back to the integral representation (24) and observing that the volume integral is handled
easily since it includes the “Dirac™ current distribution (3), we obtain the final form of this

representation

14



Zz Z[AE”. ; {;r}r r{_) B[.r] t"} {_

J=3 m'=0n"=m'

oSO IS 3 U 1)+ B )

J=3n"=m

(51)
+N(- ’szZﬂ‘i’,f«f )+ B 12 (1)

-3 n=m

i J'ﬂzcﬂnc.w O ()34 dN(- 1y N [u}{]}-ﬁ},z{nﬂn{zw}1

m=[}
where the superscript (0) indicates reference to the source position vector ro. We notice that Eq. (51)
is valid for z<min{z,,;}. given that we have used the corresponding expansion of the free-space

Green's dyad. The motivation for this hypothesis stems from the necessity to examine the asymptotic
behavior of the above representation in the far-field region of the host environment. We have then the
opportunity to apply stationary phase arguments and thus to avoid the A -integral, which owes its

existence to the implication of the cylindrical geometry.

Indeed, applying stationary phase techniques [16] and using the asymptotic behavior of Bessel
functions we obtain

4 el

Z Z z { [l:u:: n l;i'al'{—) EE‘L{, : HH.'U:'.E (-}}kjr}::]

j=3 m'=ln'=m'

rJi:-.r

= ,,1 cos(mg)
g 2 &k foior)

. AL 1 2 do)+ B 1, (k) 6

|'J=H‘I

o

DAL 1 o, ) B 1 (ko 20)) 0

r'=im Ag=k,sind
by ==k cosd

ikyr =
= iapylla) : cosé Z [eg e {':F"S(mfj'} -

drrsinOyk? —kZsin®0  moo sin(mg) |

i

(52)

e 3

+

i
b

i)

2 R O O A R —

; z{mm{ mh}

where

—plgin? —r'k;!r-q]uﬁ*sinjﬁ'mcns{l‘l_ﬁ
c{ﬂ}:ﬂf L il (33.a)

yl-n® sin® @ —ncos@

15



21“_”2 5i1'|2 8 —Ik,[\ll—nzsinlﬂ‘m:mﬁ]&

df)z —————-¢ . (53.b)

r:\lll—nz sin’ 8 —cos#@

which results from Eqgs. (17.c)-(17.d) with

hy =1,|||klz-—ic§ sinlﬁ'} (54)

hy ==k, cosd

Moreover, in view of Egs. (37)-(40), it is readily seen that similar expressions are valid for the

coefficients a,b defined in Egs. (17.a)-(17.h). We remark that asymptotic analysis reveals as primitive

coordinates the spherical ones, i.e. (r,0,8). It is also noticeable that the restriction z <min{z, }

implies that & & {%,:r]_

Expression (52) must be in accordance with the spectral representation (25) of the electric field in the
asymptotic realm. To assure their coincidence we need to acquire first the asymptotic behavior of the

spheroidal vector wave functions for large arguments [Appendix B] as it results from the corresponding

behavior of the spheroidal “radial” functions RHE.{cush HiCa ] and their derivatives. Indeed, we obtain

() (—);_I-et r-Z(o+1)sgnlj+1)
mr' k

{——’"'"'if:f”‘"*]{m"’;?j}’;f]}&+sma€ [f-‘usé':cg){ [{m ‘ﬁ}?} é)+ 0[ ] .
N, {_) o or -5 Dbe 1 gn(11)
el o Sl b 1),

where sgn[_,r'-.—l]:] if j=3 and sgnU+|]=_1 if j=4.

Inserting the asympiotic expressions (35.a)-(35.b) in Eq. (52) we conclude that
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i Jk»rsgnhﬂ]'z Z ~i§{n'+1Jsgrl j+1)
k r

j=3 e o
() Suy(cosdsc,) [-m'sin(m’ é) ” ~\[cos(m'g)] -
1A Hat A sind {m cos[m é] g S Rty sin(m'ﬁ]} ]
+isgn( '+1}B{J'] [~sin 5}, (cos@:c cos(or'd) 7 +M i) é1)
enlJ Smin’ = " sin(m'g) sin & m' cos(m'é)
o et Jcos(mg)
* e, rsind mz:_u (Z_JDI_:}W {sin{mé}
4
5 30D, 18 o e B, (b 200
J=3n'=m
4 =
D IO N VLI O RN B U Lo (RN T
J=3n"=m r Ag=k, sin
hy =—ky cosd

= iay 1a) A W {““5(”""’@“]}

4arsin ﬂJklz —ki" sin” @ =0 Sin{mﬁﬂ

{ c(el[ﬁf“‘{m1-5}5+a{e][ﬁ‘“’{m-a]é} . z<minfz,, }

b=y ki -k3 sin’ @

(56)

It can be proved that the case j=4 is not allowed in our spectral representation given that, in the
framework of harmonic time dependence :xp{— mr}, all the waves corresponding to the above choice

constitute incoming propagation waves. Asymptotic analysis of the spherical Hankel functions of the

ikqF
second kind { j =4 ) proves that these incoming modes behave like

on a large sphere of radius
e

r. Hence, the total incoming energy of these terms would be of order 47 no matter how large the
radius r was. However, this incoming energy owes its existence to the secondary sources located on
the interface S, which remain outside the large sphere. In other words, the inward propagating energy
would remain, if j=4 was accepted, constant although the responsible sources would diminish further

and further. Thus, we restrict our analysis to the case j=3.

Taking now the projections of Eq. (56) on the unit vectors 8.9 and projecting then functionally on the

os(mg)

azimuthal functions { { }} m=0012,..., we obtain, for every index m, four scalar equations,
sinlmg

which depend on the coordinate QE(%,?!], Our aim is to combine these eguations with those

originated from the boundary condition satisfaction on §_, . i.e. Eqs. (28)-(31). However, the new



equations are functions of & and this is a qualitative difference. It would be desirable to project them

g ; b ; o
on a complete set of functions in the interval = < @ < 7. Nevertheless, we realized that this increases

significantly the technical complexity due to the very cumbersome form of the integrated functions.

Thus, we suggest an alternative “projection” resembling the “discrete analogous”

of the

aforementioned integration multiplying with basis & -functions and averaging over a dense partition of

the interval [%.;T] . Consequently, for every pair of indices (m,n) with m=10,12,...

5. I (e - 5 K )

=
o 1 .
e Z E(_:}MH {Aii]m K:J:m h +B:33m K::‘In N}

=¢'mwa(la}?z{ i (@),

Z g i _l”A':} A= mrr}K

& i’

B (- 86 K2, |

o

1 : m
i Z E{I_E{JI—{}MH { pi K::«..Hn N +B£3:{w| K:Tﬂ N}

R'=m

= oo (1a)2 (1= )-1)"1115 4 @),

i it ﬁ]{‘d*ﬁm (ﬁm}Kif N ”Biqram {MH}K” i "‘r}

=i

-

Z % {)’R {‘ALESH:!II'I K‘ir:n N +E£?1rKS:gn N}

n—m

- :wu{la]—{—f}m 122,

3 N (al1- 8 +iBEL (el )
z - & I_f}m {A[a} Kf‘-rr N Erjm Kj:"i‘ N}

=sm{na}-‘;—( — 8o X-i)" 12 (@),

where

N

“ N —lz {5,,,,, (cos8:;c,)P, {mséﬁ}},

18

;n = m, we obtain

(37)

(58)

(39}

(60)

(61}



N
K2y = bin 8Spilcostyicy )Pl cost), 62)

=l
N

m 1 m
o B =FZ {zgmhﬂ,(hg.fto]ﬁ, {cosaé}],-ﬁg:ﬁ:ml, (63)

i=l

K toan N :_Z b"l"’-jﬂm {hl A‘U} M{CGSH }L -Jnsmﬂ‘ 1 (64)

1-—£- o

AN z b] MEILTS {hﬂ ’aﬂ {"-_059 }]z.g—.bi:ma ' (63)

r-] 5 ol
£ N Z [I| I:3}l.u|..|1 {hz ‘R‘ﬂ {C'L‘?S g }}.‘..;,—L- sml‘i‘a L] ':6&'}
H —
JJ.rII:N[ﬁ]=lZ ——Cmgfd{g’.} |:J"-’[.n}I {hl}'ﬁ-! P (cos8,) . (67)

N 1 2 . 2 m | n 1
im = y - [—
=l | ki —k3 sin® N rare ey

i JM[ {0}(h1] al Pm{cosﬂ] . (6E)

&‘

2 . 2
\m - by = ki =kcf sin® 8,

4.2, Formulation of the linear algebraic spectral expansion coefficients system

In this section, our goal is the construction of the linear algebraic non-homogeneous system whose
solution are the expansion coefficients of the spectral decomposition (25). We have already commented

that the arising equations have two origins: the boundary condition on S, and the asymptotic

treatment of the integral representation in V,. What we have mainly accomplished is the “projection”-
continuous or discrete according to the comments of the previous section-of these equations on the

cus{m:;ﬁ]

complete set of functions P [co E?){ { qﬁ}} =0,12....;n 2m. This remark implies the optimal
sinim

sorting of these equations in order to maximize the acquired information when a specific truncation 15
imposed for the numerical treatment of the resulting system. More precisely, we have to project all the

considered equations to a specific member of the function basis, before proceeding to the projection on

the next basis component.
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The above remarks lead to the following classification of Eqs. (28)-(31), (37)-(60), for every particular

pair (m,n) with m=012,....n2m

L f
z HP,L {753.:.,,! [sinh gy cosh o R (cosh ;¢ JR" ~sinh 1oRY), (cosh gg; ¢4 I s
2[??1::} {sinh?® g —

1 L
- ) REH]. [n:cssh JIR }+ sinh u, cosh ,;:.JREH]. I:cush HoiCa ]]‘:'Fi]'"“ (69)
kza sinh w

na

+ Bﬂm

1 . G
e e % Rﬁ:‘. (cosh gg: ¢, IZEHL. - il-tf;_n. + m:.n' 111=0,

L i r
Z lAEL. ({1~ &, )sinh g cosh o R (cosh gg; ¢, JR* —sinh #DRE.-:.I’ (cosh ugicy RET]

2= inh? u, -1 ;
+50),, 2omm) (h o D) pi5) o e, ) sinh iy cosh rpRE) feosh e I

e
kqa sinh iy w0
+——— R (cosh rgic, J2RIT + 3T + M)} =0,
sinh ' ¥ i
L
Z {AE;;'M. [mp:}{cush FDRE} [cc:sh yiCa ][:;inh4 #a‘:ﬂﬁ':' +2sinh? ,uaiﬂ:‘l:. & ﬂ::‘. 11
n=m
2|5 , . ; '
- Bﬁ'ﬂ (}r fm }{ [sinh? g, (smh2 H —]}Rﬂ, (cosh pg; ¢ )+sinh* g, cosh yﬁREE. (cosh gies }]iﬁ:;f

klﬂ
+sinh? g [4R ') (cosh ey e )+cosh g RE) (cosh pg: e, 1B
2
. k , %
+sinh? ,Ug[(%a] sinh® g, Rm (cosh gy ¢4 )+ 2 cosh g, RE;!’. (cosh gy e, IR ﬂ-;',

2
k
*[%’] R (cosh rgs ey Y2 sinh? R 4 1S ]

3 = X i a.m C L
- R;u. (cosh gy, Ysinh® y,;,EH:’:. +£Rfﬂ'," + E‘Hi‘_”, —sinh? gﬂﬂ-‘[ﬁ. 111=0,

(71)
L £
Z {AE.JL' (= mx){cosh #URE.;]- (cosh gg: ¢, Isinh* ,ugfﬂl_'z. +2sinh? W i’: +9 zf 1}
2xll-& : : !
- Bﬂm* %{ [sinh? ,u,;,{smh * g - I}Rm (cosh gg;c, )+sinh* gy cosh g, RE;Z’. (cosh gep; o IR
2
+sinh® i [4RE} {cosh iy ¢ )+ cosh ,u.;,RE]I'f (cosh gy; €4 ]'I]‘Rﬁ‘:
2
k r
+sinh* Hu[[%a) sinh? 41, RE}! (cosh pg3 e )+ 2 cosh g REL (cosh pg: e, IR .
k,a) g
+ [%] RY (cosh g5, N2sinh? g R 4 @15m
+ RO} cosh pgsc Ysinh® R + ST + 2R —sinh? g M0 1)) =0,
(72)

20



Z{Aﬂﬂ[ iy K3 1+ AR (Y )R ]

Bij.r?i.ll.[ }m l eann’ N ( [}El(ﬁ;um r.n' J"f]} {?3}

-ﬂma{f'ﬁ} L(-if" 1 @),

Z{A?}M [{ I}" l "I?I}KLH N] E.l]ml[z{ ]ﬂl*l{] & }Keu ", "-I

# B i (1= Ky~ (=80 K2R 1) (74)

-ﬂMa{Ia}—{ i (1- 6, 0 v (3).

szﬂ; P (ebn K27 +5 (- KER ]
+'B£3] I_{-l}mKenn \']+B.E13m [{ i}ﬂ {mK}KHH N (75)

(S i A )

= —apy(la ]'Tl

z{:“l{}] [ I]”l {l—au}}Kir:m E{_f}mu_aﬂ}Kﬁf:.n'.N]

+ BOL A=) (-me ) N1+B{?L—Ll{—r']’”{ 80 JKy w1} (76)
——"”Fcu{ld} ( ‘]mt{ ~& Jom ,,I:E]
Consequently, for every pair (m,n) we obtain eight equations involving all the unknown coefficients

corresponding  to the specific azimuthal parameter m. We remark that, for every pair

(3}

(m,n'), " =m,m+1,..., four unknown coefficients must be determined, i.e. Afﬂn s P ={e.0).In

other words the coefficients are grouped in sequences of four, labeled by the parameter n', for specific
azimuthal dependence. We deduce that after selecting the truncation level L in the appeared
summations, we need to consider k& blocks of type (6%)-(76) (corresponding to n=12,...% ) so that
4 L—m+1) =38k . This last relation assures the acquisition of a finite number of linear equations with
equal number of unknown coefficients.

In the sequel, the notation pliks i=12,...8;5=(A,.A,.B,.B,) is used for the coefficients of the

Ml R
unknowns AEJ Al gl pla) g, Egs. (6%)-(76) while d,'E:j},,,s=1,z,...3 . denotes the right-hand

ﬂmm" emn.‘ 0.mer

sides of these equations. Hence, Eqgs. (69)-(76) can be written as
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m+2k-1

Z EE”:L A= mh = d-'l;:ljn * Jr.:-lﬁ:;;-sl....,md—l ' (??}
where
£, =[ptx pWx pOs piz], (78)
(0. (is)=(1.4,).0,8.)(4,4,).(4.8,))
DE_;}I-*" = D‘ {E S} = {2‘ "G'd }'{2* Br.l )’{3 "4?}’ {3" Eﬂ} ] (?9)
0 {j-‘j]={5‘Br:l[ﬁ‘ﬂe}'(?’ﬁd}’{sﬁﬂr]
and
-l a9 B BT e

The resulting non-homogeneous linear system of equations is

Alm) cln) —glm) p 2123 (81)
where
!_ Em,m,m Em.mf'l.m Em_m+2.m e Em~m+1ﬂ.-—l.m )
ﬁl:m} . Em.n:a,m-r] Em.m:rl.m+1 Em,mil-l.m-l-] Em.mﬂ‘k—l.mﬂ (82)
\‘E’m,m,m+k—] EM.H.H‘-LN‘HJC-] Em,m+ Tmek-1 EM.M +2k=1mek-1
T
T T A T 3 T 5 T T &) T s 7
Em.n'..ll =|:§ELJ:|'.1: '£E2'.n ‘_.Eﬂn M Eiﬂ:: M ’-—-Emg " m’.n ‘EEME'.H ’El:m-i'..'l :| 3 {83)
nr T T T T
f } Lm.nf Emmel  Emmez - Err!.n!+21?—|:| ' (84}
and
T -
d[ﬁ“} Em.m EL..&H[ dim-ﬁ" iz.nﬁk—!] ! {Ejj
where
b o 00 a¥ 4@ 48 40 (56)

5. Determination of the electric field in the scattering region

Once the electric field Ez[;} is determined (through the calculation of the spheroidal expansion

coefficients), the determination of the electric field Ei F] in the scattering region is possible through

22



the integral representation (23). Notice first that the volume integral of this representation constitutes

the incident wave and is independent of the specific scatterer. Thus we focus on the surface integral of

representation (23), which stands for the scattered wave Efr{;} and encodes all the information

concerning the spheroidal scatterer.

Substituting the known spectral spheroidal expansion of the electric field Ez(;] in the surface integral

af (23) and exploiting the dyadic relations (18.b), (18.d) we obtain that

e J‘JAZC“}{cM[-‘t A M v <Eafr)] asi
=) (87)
+d"N(,) J' (=) L, xV’ XE?(_)] dS g}

In Eq. (87) we recognize spheroidal surface integrals of the same kind with those encountered in the

treatment of the electric field 751{;} Following similar manipulations we conclude that

jd,lzur:[ﬂ (M { AR 1y C i)+ B 12 )

n'=m

(88)
+d'ﬁ(ﬁ,}Z{A‘” LA e - h2}+33 I )
where
*F;A;;]w{ Iy) = kody (= hy). (89}
f;.?{ﬁ:lmn'[_h2}=k1“r].3|:_h1}- {90
fﬂ{ﬂm«{'hz}=k1-’2.1{‘311}= (91)
féi(;‘]ﬂ“-{—h‘z]:kz-fz.z{'hz}- (92

When k;r>>1, we are in a position to apply stationary phase arguments [16], which lead to the

following representation of the scattered field in spherical coordinates
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th.r =
. g Wil cos{mgi]
Eir)=- cos8 Y (2-8,N-i) { }
b) drarsin ByfkZ — k2 sin? 0 ; : sin(mg)
Zl‘d‘hj 'Fm[i]mﬁ[ hy, "'1']}"' B{ :I Lo |4{31,,- { hl”i’]]}& 5 (93)

n'=m

Z{Aiﬂ ,';;ﬁ{ :lm-'i h2!111}+3[3} I'l * (2)mn’ { h!"zl}}é

4=k sing

hy -~.||k§ —klsin® g

where @ = (0, ?‘T] and ¢'(8),d'(6) are given by Egs. (19.c)-(19.d) with

fy =k cos@
. (94)
hy = k2 —k2sin? @
Equation (93) is now of the form
s g e
Er (r]=Tf{EZ-‘.¢'a}, (95)

where ?{6’ !ﬂ is the vector scattering amplitude and therefore it can be used to compute the differential

—8 2
rt EL{ . (96)
Eﬂ

where E, denotes (in general) the amplitude of the incident wave.

scattering cross section, which is defined by

a(6.6)=

6. Numerical solution-results

The numerical solution of the system of equations is a time consuming numerical task due to the
structure of the multiple infinite summations appeared. We have obtained the angular distribution of
the differential scattering cross section introduced in Eg. (96) for two indicative cases: (a) the
perturbed sphere and (b) the spheroidal scatterer. In both cases we consider that the electric dipole 1s
orientated towards the positive z-axis (a=Z2) and is located on the symmetry axis of the perfect

conducting object at z5=8+4, where &is the depth and A,is the wavelength in region 2. The

refractive index is n =1.9. Fig. 2 shows the differential scattering cross section «(£,0) for a perturbed



sphere (ay /by = 1.0001) with k,a, =3 and § =4.54,. Fig. 3 shows the differential scattering cross

section for a spheroidal scatterer ( a, /by = 1.5) with ka, =3 located at § =1.54,.

7. Concluding remarks

Wave propagation and scattering processes in a half-space environment constitute scientific areas of
great importance and applicability. The complexity introduced by the medium interface gives rise to
significant difficulties in the analytical and the numerical treatment of the problem. Given also that the
imbedded scatterer has a complicated geometric structure, such as the spheroidal one, the problem

becomes even harder.

In this work we have followed a rigorous analytical approach, avoiding any restrictive assumptions on
the geometric or physical characteristics of the problem. We have implemented a systematic approach
for the solution of the direct scattering problem. Numerical results have also been presented. It is noted
that the numerical treatment is a rather slow process due the involvement of multiple infinite
summations in the developed theoretical model, requiring a considerable computation time. The
generalization of these results and the development of a parametric analysis constituting the basis of the

inverse scattering problem are in due course,
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Appendix A: Dyadic formulation

We consider an isotropic homogeneous medium with electric permittivity £ and magnetic

permeability g . The free-space solutions to the Maxwell’s equations in dyadic form are the free-space

electric and magnetic dyadic Green functions [16], given by

Geolr.7 )—|f+—w]cﬂ{" ), (A1)
Gmolr.7)= vx[m{,(— ]} VG, [r. 7 <1, (A.2)

where

A
Cry (r, r'): (A3)

422'?—?] I
is the free-space Green function of the scalar Helmholtz equation, k = e,/ue is the wave number of

the medium with @ standing for the angular frequency and [ is the three-dimensional identity dyadic.

Using methods described in [16] we find an eigenfunction expansion for Gmo through the cylindrical

solenoidal vector wave functions [Appendix B], as follows

j'au, J'dhzi—i(j”—)[w (mM(-n)+ MEN(-R), A4

w =l
where x% =A% +h* with A,h being two continuous eigenvalues and the primed functions are defined
with respect to (p'.¢',2") of the position vector 7. Furthermore, we have used a condensed notation

for the four dyadic pairs contained in the brackets of (A.4), for example M (h) = Hgm (h).

For a problem involving two isotropic media separated by a flat infinite interface, the Fourier integral

in (A4) can be evaluated with the aid of the residue theorem in the h-plane. The integral

representation of G.o inthe upper half-space (1) is obtained using the dyadic Maxwell equation

VxGmolr.7')=18{r -7 )+ K2Galr. 7). (A5)
and the dyadic boundary condition that describes the discontinuity of the magnetic dyvadic Green

function at z = z" plane, considering that a current source is located at +' in medium (1),
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ix{ Gt 17)-Gnt (7,7 _)]=F;6(;—FJ, (A6)

b

=(l}= =(l- =
where Gpo isfor 2>z, G isfor z <z, I denotes the two-dimensional identity dyadic defined

by [;=[=2z and J{E—F} is the two-dimensional delta function.

=il)
Hence, the expression for Geg can be written as
=':.|.:| |;]:| ¥ T s T =t
Guolr. 7 -~—zza{'~r ij{c (M (&0 M F i )+ N N FR Y, 222, (A7)

={l]
where the superscript in G indicates that the function is defined with respect to the propagation

constant k; =A% +h? in medium (1) and €V =(2-8,)/4zih, with 8, =1 if m=0 and &, =0 if

m =0, Similar results are obtained in the case of a current source located at 7' in medium (2). It holds

Gaolr.7)=-

2

_?}"‘ Jd Z C[EJEM (£ M Fhy )+ N m W (F 1}, 222, (AB)
0 m={

where &, = 1{'23 + h% and C[ﬂ - {'2 -& ]I,."ri-:zrﬂ.h2 1
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Appendix B: Cylindrical and spheroidal wave functions
Cylindrical geometry-cylindrical wave functions

Let us consider the scalar Helmholtz equation
Vidb+k‘d=0. (B.1)
The method of separation of variables for the cylindrical coordinate system (p, ¢.z) leads to the

following scalar solutions

@, (0.0.2)= @){LDS{mﬁ e’ (B.2)

sin mqﬁ

The corresponding solenoidal vector wave functions that satisfy the vector Helmholtz equation are

ziven by

M;m{h]=vx[¢r, (p.6.2)2]

500N o

ol (B.3)
—ﬂJ:,,{lp}fiLm{mﬁ] thz

[sin[mgﬂ )

E;m{hl=iww[¢ (0.6.2]

SR e\ S I i gl S Wil

(B.4)

where the prime in the functions above denotes derivative with respect to their argument and

k= 'u',ll +h? is the wave number.

Spheroidal geometry-spheroidal wave functions

The connection between cartesian and prolate sphercidal coordinates and the metric coefficients of the

spheroidal system are given by the relations

4 | ("cos ¢ 1 .
=— h & : z=—acosh tcosd, B.5
[}.] 53 sinh wsin Lsm ¢J 3 L (B.5)

h#=h{, =%a1fcosh1y—cnslﬂ. h,,:%asinhysjni?, (B.6)
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where the spheroidal coordinates range over the intervals y =0, 02f<r, 0£4 <27,

The case w=10 corresponds to the line interval connecting the two foci of the sphercidal system

1 |
| wd t = — and =_——n.
oca at I a Z a

Applying separation of variables techniques to the scalar Helmholtz equation for the spheroidal

coordinate system (.6, ¢) we conclude that

1‘?;[:]1:.-1 = Rm?{ﬁ;f}sm {fm){::{(;ﬂ}, 7= Cos &, g = cosh A (B.7)

It is praved [17], that the functions §, R are given by the relations

3 ORR ) n=mms .. }
S (i) = Zd“'“{c Prilm)=1 *° . (BS)
L de] P:,::HH{ }, n=m+lm+3, .

miE
RHQ[?:C]J—H:—’%[l IJ Zi“‘”{zmk} )z (ed). (B.9)

{n+m. Py

where four alternatives for the spherical Bessel functions Z‘[J ]k exist

jm-&k(c"fl -FI:I
)’m+k{c'§l j=2

zl) )
P10, ()= e rnsled) J=3
hfjj_ {":é} Jm;k{fé} Yms ﬂ:[: F}" Jf: 4

with ¢ -lka P"(n) are the associated Legendre functions of the first kind and the symbol Z
£=0,1

indicates summation over even or odd indices, depending on the starting index, while the coefficients

d™(c) satisfy suitable recurrence schemes [18] and play a vital role in the numerical treatment of the

spheroidal functions.

The construction of the sphercidal vector wave functions Il:';]m, E}'[,ﬂﬂ “Nm{j}

o’ which satisfy the

P

vector Helmholiz equation is based on the following definitions
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L) =wel) (B.10)
£ Hin o i
m —vwl) 7 (B.11)
a ﬂm
=i} 1{.=H {i) sz
NS =;(1L;m+(?-v]Z:m+k ‘Fg‘:ﬂnr]. (B.12)

and their representations in spheroidal coordinates are given in [19].
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Figure 2: Differential scattering cross section 0{49, U} for a perfectly conducting perturbed sphere
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Figure 3: Differential scattering cross section o(6,0) for a perfectly conducting spheroid
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