HOLE AND ANTIHOLE DETECTION
IN GRAPHS

Stavros D. Nikolopoulos and Leonidas Palios

15— 2002

Preprint, no 15-02 /2002

Department of Computer Science
University of loannina
45110 loannina, Greece

Hole and Antihole Detection in Graphs

Stavros D. Nikolopoulos and Leonidas Palios
Department of Computer Science, University of loannina
P.O. Box 1186, GR-45110 loannina, Greece

e-mail: {stavros, palios}@cs.uoi.gr

Abstract: In this paper, we study the problems of detecting holes and antiholes in general
undirected graphs, and we present algorithms for these problems. For an input graph G on
n vertices and m edges, both algorithms run in O(n+m?) time and require O(nm) space; we
thus provide a solution to the open problem posed by Hayward, Spinrad, and Sritharan in
[7] asking for an O(n*)-time algorithm for finding holes in arbitrary graphs. The key element
of the algorithms is a special type of depth-first search traversal which proceeds along Pis
(i.e., chordless paths on four vertices) of the input graph. We also describe a different
approach which allows us to detect antiholes in graphs that do not contain chordless cyeles
on 5 vertices in O(n + m?) time requiring O(n + m) space. Our algorithms are simple and
can be easily used in practice. Additionally, we show how our detection algorithms can be
augmented so that they return a hole or an antihole whenever such a structure is detected
in G&; the augmentation takes Ofn + m) time and space,

Keywords: hole, antihole, weakly chordal graph, co-connectivity.

1 Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph and let
Up, 1, -, Vk—1 be a sequence of k distinct vertices such that there is an edge from v; to v 1y mod &
{foralli =0,...,k — 1), and no other edge between any two of these vertices; we say that this is
a chordless cycle on k vertices. A fhole is an induced chordless cycle on five or more vertices; an
antihole is the complement of a hole.

Holes and antiholes have been extensively studied in many different contexts in algorithmic graph
theory. Most notable examples are the weakly chordal graphs (also known as weakly triangulated
graphs) [1, 4, 5], which contain neither holes nor antiholes, and the perfect graph conjecture [4],
which states that a graph is perfect if and only if it contains no holes and no antiholes on an
odd number of vertices. Thus, finding a hole or an antihole in a graph efficiently is an important
graph-theoretic problem, both on its own and as a step in many recognition algorithms.

Several algorithms for detecting holes and antiholes in graphs have been proposed in the litera-
ture. The definition of holes and antiholes implies that such algorithms can be applied without error
on the biconnected components of the input graph and of its complement, respectively, instead of
the entire graph. Although this approach may lead to the fast detection of holes and antiholes in
graphs with small biconnected components, it does not yield any gain in the asymptotic sense,

The problem of determining whether a given graph on n vertices and m edges contains a hole on
k or more vertices, for some fixed value of k > 4, is solved in O(n*) time (Hayward [6]). Spinrad [12]
reduced the time complexity of the problem to O(n*—*M), where M ~ n®3"® is the time required
to multiply two n x n matrices. Note that the problem of determining whether a graph contains

The neighborhood N(xz) of a vertex x € V(&) is the set of all the vertices of & which are adjacent

to 2. The closed neighborhood of z is defined as N|[z] := {z}UN(z). The neighborhood of a subset A
of vertices is defined as N(A4) := (|J,- 4 N(z)) — A and its closed neighborhood as N[A4] :== AUN(4).
The notion of the neighborhood can be extended to edges: for an edge e = zy, the neighborhood
(elosed neighborhood) of e is the vertex set N({z,y}) (resp. N[{z,y}]) and is denoted by N(e) (resp.
Nle]). For an edge e = zy, we define the following three sets:

Afe;z) = N(z) = N(y),

Ale;y) = N(y) — Niz),

Ale) = N(z) N N(y);
clearly, these sets form a partition of the neighborhood N(e) of the edge e.

We close this section by describing the co-connectivity problem which plays a crucial role in
the antihole detection algorithm for graphs that do not contain a Cs, which we propose in this
paper. The co-connectivity problem on a graph G is that of finding the connected components
of the complement G the connected components of G are called co-connected components (or co-
components) of G. The co-components of a graph G on n vertices and m edges can be computed in
O(n + m) time and space [3, 8, 9].

3 Detecting Holes

The hole detection algorithin relies on the result stated in the following lemma.,

Lemma 3.1. An undirected graph G contains a hole if and only if G contains a cycle ujua. .. ug,
where k > 5, such that wyuguisies for each i = 1,2,...,k — 3, and up_suz_1upu; are Fis of
G.

Proof: (=) Suppose that G contains a hole; then the vertices of the hole induce a cycle meeting
the conditions of the lemma.

{+=) Suppose now that G contains a cycle as described in the lemma; let vyva ... vp be the shortest
such cycle. Then, this cyele is a hole:

a) by definition, it is of length at least equal to 5;

b) it is chordless. Suppose for contradiction that there existed chords. With each chord viv;, we
associate its length, which is defined as length(vv;) = |j — i]; let vevy, where k < £, be the
chord with minimum length. Note that £ > k+4; this follows from the fact that £ > 5 (because
v vat3ty is a Py) and the fact that ve_gve_sve_qvs is & Py. Then, vy_gvevevk isa Pyin G
because it is a path in G, vs_svy € E(G) (note that vi—sve—sve_1ve is a Py), and vzve—2 € E(G)
and wpve_y € E(G) for otherwise these would be chords whose length-value would be smaller
than that of the chord vevy, in contradiction to the minimality of length{vgve). Additionally,
wtitigovipa is a Py foralli=k,k+1,...,£ — 3. Thus, the cycle vptper ... vy would meet
the conditions of the lemma and would be shorter, which would contradict the fact that the
cvele vyvs . .. Uy is the shortest such cyvcle. Hence, the cycle vyva ... vy is chordless.

Therefore, G contains a hole. g

Qur algorithm for the detection of holes applies Lemma 3.1. In particular, it uses a special
type of depth-first search traversal, which we will call P;-DFS: the Fy-DFS traversal works similarly
to the standard depth-first search [2], except that, in its general step, it tries to extend a P3 abc
into Pys of the form abed, then, for each such Py, it proceeds extending the P bed into Fys of the
form bede, and so on. Unlike the standard depth-first search, the P;-DFS traversal may proceed to
a vertex that has been encountered before; however, it does not need to proceed to a Py that has
been encountered before. If the Py-DFS has at a given moment has proceeded to traverse a sequence

It is important to observe that the description of the procedure process() guarantees that
from a P; abc we proceed to a Py bed only if abed is a Py of the input graph G. Before returning,
the procedure sets the corresponding entries of the array not_in hele[], thus preventing a second
call to the procedure on the same P;. Additionally, a call process(a, b, c) does not cause, for any
depth of recursion, another call process(a,b,¢) or process(c,b,a), because, for this to happen,
the vertex a (respectively, ¢) should be encountered again; then, the condition of the if statement
in Step 2.2 of process () would be found true and the algorithm would instantly terminate. Thus,
the procedure process() is called exactly once for each Py of G.

The correctness of the algorithm follows from Lemmas 3.1 and 3.2 and the following result.

Lemma 3.3. If for a P abe of the input graph G, the entry not_in holel(a,b),c] is set to 1, then
the Py abe does not parficipate in a hole of G.

Proof: For the entry not_in_hole[(a.b),c] to be set to 1, a call process(a,b,c) or process(e,b,a)
needs to have been made: suppose without loss of generality that this is process(a, b, ¢). The proof
applies induction on the number of calls to the procedure process() that have returned before the
assignment “not_in_hole[(a,b),c] «— 17 in Step 4 of the call process(a, b, c).

For the basis step, let us suppose that no calls to process() have returned. Then, no entry
of the array not_in hole[] has been set to 1. Hence, no Py of the form abed exists in G; if if
existed, either the algorithm would have terminated (if d belonged to the P;-DFS path) or a call
process(b,c,d) would have been made, which should have returned for the control to proceed to
Step 4. Therefore, since no P; abed exists in G, the Py abe does not participate in a hole of G.

For the inductive hypothesis, we assume that the statement of the lemma is true for Fys for
which the corresponding entries of the array not_in_hole[] have been set equal to 1 after fewer
than iy > 0 calls to the procedure process() have returned. For the inductive step, we assume
that the entry not_in.hole[(a,b),c] corresponding to the Py abc has been set equal to 1 after ig
calls to the procedure process() have returned, and we show that the lemma holds for the Fj abe.
Suppose, for contradiction, that this is not the case; then, abe participates in a hole of G, which
implies that there exists a vertex r such that aber is a Py of the hole. Clearly, this vertex x has been
considered in Step 2.2 of the execution of process(a,b,¢). It must be the case that in path[z] is
not equal to 1, for otherwise the algorithm would have terminated. Thus, if not_in hole (b,), =]
is equal to 0, a call process(b, ¢, z) is made; if not.in hole[(h, ¢),x] is not equal to 0, then it
must have been set to 1 by a preceding call process(b, ¢, x) or process(z,c,b). In either case,
this call to process() was completed before the execution of Step 4 of process(a,b,c). Thus,
the assignment “not_in_hole[(b,c),z] +— 1" has been made after fewer than i calls to process()
have terminated; by the inductive hypothesis, we conclude that the Py bexr does not participate in
any hole of G. This comes into contradiction with the fact that the Fy aber is a Fy of a hole of
(. Therefore, the P; abc does not participate in a hole of G. Our induetive proof is complete; the
lemma follows. g

Time and Space Complexity. Let us first assume that the input graph G is connected; then,
n = O(m). Before analyzing the time complexity of each step of the algorithm, we turn to the
procedure process(). We note that the procedure is called exactly once for each P; of G, lLe.,
O(nm) times, and that, if we ignore the time taken by the recursive calls, a call process(a,b,c)
takes O(|N(c)| + 1) time by using the adjacency list of the vertex ¢ to retrieve ¢'s neighbors, and by
using the matrix A[] to answer adjacency tests in constant time. Therefore, the time taken by all
the calls to the procedure process() is O(m?), since each quadruple of vertices a, b, ¢, d where abe
is a P3 and d is adjacent to ¢ is uniquely characterized by the pair of edges ab and cd of the graph G.

Step 1 of the main body of the algorithm clearly takes O(nm) time. If the time taken by the calls
to the procedure process () is ignored, Step 2 takes O(nm) time; again, the adjacencies are checked
in constant time by means of the adjacency matrix A[] of G. Step 3 takes constant time. Thus, the
time complexity of the algorithm for a connected graph on n vertices and m edges is G{m?). The

Then, for the next value of ¢, the condition of the while loop is no longer true, and the procedure
get. hole() reports that the vertices ug, ug, U4, Us, Us, u7 form a hole, which is correct. It must be
noted that the hole reported is not necessarily the shortest hole in the graph of Figure 1.

The correctness of the computation follows from Lemma 3.4.

Lemma 3.4. The vertices printed by procedure get_hole() induce a hole in the inpuf graph G.

Proof: Clearly, these vertices induce a cycle. Moreover, its length is at least equal to 5; note
that h > i + 4, which implies that {42 = fmin + 4. Finally, we show that the cycle is chordless.
Suppose for contradiction that there existed a chord and suppose that it was incident on the vertices
pathvertex[f] and pathvertex[r], where imim = £ < & < {mqer and at least one of £ # imin and
T % lmar holds, which implies that r—§ < i0r —fmin- LThe definition of the Pyi-DFS traversal implies
that every four consecutive vertices in the array pathvertex[]; form a Py, and thus r—£ = 4. Then,
¢ < r—4 < {nar — 4, which, along with the fact that the value of imq never increases, implies that
the while loop of the procedure get hole() has been executed for i = £. Since £4+4 < r < iy, the
condition of the if statement would be found true; then, i5,n would have been set to £ and i, to an
integer not exceeding r. This, however, is a contradiction, in light of the fact that r—¥F < 00 —fmin
for the final values of {4, and i,.. and that the value of i, and of {m.; never decreases and
never increases respectively. 1

It is not difficult to see that the certificate computation requires O(n + m) time; note that all
vertices in the array pathvertex[] are distinet, their neighbors can be accessed in constant time
per neighbor using the adjacency list representation of the input graph, and that finding whether
a vertex belongs to the current Fy-DFS path and its position in it takes constant time using the
(modified) array in_path[]. The space required is linear in the size of the input graph. Therefore,
we have the following result:

Theorem 3.2. Let G be an undirected graph on n vertices and m edges. The hole detection algorithm
presented in this section can be augmented so that it provides o certificate that G contains a hole,
whenever it decides so of G. The certificate computation takes Oln+m) time and O{n+m) space.

4 Detecting Antiholes

Since an antihole is the complement of a hole, one can use the algorithm of the previous section
on the complement of a graph in order to determine whether it contains an antihole. Such an
approach may however necessitate ©(n*) time, where n is the number of vertices of the graph,
since the complement may have as many as ©(n?) edges. Below, we present an algorithm for the
detection of antiholes which for a graph on n vertices and m edges takes O(n+m?®) time and O(nm)
space; the algorithm applies the Py-DFS traversal on the complement of the input graph without
however computing the complement explicitly, and takes advantage of the fact that a Fs abe in the
complement of a graph & is equivalent to the pair (ac,b), where ac is an edge of & and b is not
adjacent to a nor to b in G.

Antihole-Detection Algorithm
Input: an undirected graph & on n vertices and m edges.
Output: yes, if G contains an antihole; otherwise, no.

1. Initialize the entries of the arrays not_in_antihole[] and inpath[] to 0; compute the
adjacency matrix of G;

2. For each vertex u of G do

2.1 in_path[u) + 1;

(ii) the vertices in the current F;-DFS path are stored in a stack pathvertex[];

(iii) if the algorithm concludes that G contains an antihole, then the condition in Step 2.2 of
the procedure process() during the execution of a call, say, process(a,b,c, k), is found
true for some vertex d; suppose that d is located in the j-th position of the current Fy-DFS
path. Then, the vertices located in positions 7, 7 + 1, ..., k of the path form a cycle in &
satisfving the conditions in the statement of Lemma 3.1. To isolate an antihole, we call the
following procedure get_antihole(j, k) before terminating in Step 2.2 of process(a, b, o k);
the procedure uses an auxiliary array mark[1..n] and computes the range [imin, tmaz] of indices
of the array pathvertex[] which store the vertices inducing an antihole in G.

get_antihole()
imin +— 53 imaz + k;
fori=1,2...,ndo
mark[i] — 0; {initialize to 0}
i = {min;
repeat

for each vertex xr adjacent to the vertex in pathvertex[i] in & do
if inpath[z] >0 {note that = pathvertex[inpath[z]]}

then mark[inpath[z]] — 1; {mark neighbors in path}
ho—i+4d;
while h < i0: and mark[h] =1 do
h—h+1;
if h<ings
then imin — i -

for each vertex x adjacent to the vertex in pathvertex[i] in & do
if in_pathlz] >0

then mark[in path[z]] « O {elear array mark[]}
ie— i+ 1;
until £ > {mer — 4
print the vertices in the entries fmm, tmin + 1, .. . s Imax Of the array pathvertex[];

The vertices printed induce an antihole in G,

It is not difficult to see that the body of the repeat-until loop for each value of i locates the smallest-
index entry of the array pathvertex[] corresponding to a non-neighbor of pathvertex[i]; note
that, at the beginning of each iteration of the repeat-until loop, the entries of the array mark([] are
all equal to 0. The correctness of the procedure get_antihole() follows from an argument similar
to that used to prove Lemma 3.4; as in the case of holes, the value of 4,4, never decreases, whereas
the value of imqy never increases. The procedure requires O{n 4+ m) time:

The initialization assignments take O(n) time. During the execution of the repeat-until loop for
a vertex, say, u, stored in pathvertex[i], the for loops take O{N(u)) time (thanks to the adjacency
list representation of G, so does the while loop as well (since it stops at the first non-neighbor of u
encountered), while (1) time suffices for the remaining assignments. Since all the vertices in the
array pathvertex[] are distinct, it follows that the procedure get_antihole() takes O(n + m)
time. The space required is linear in the size of the input graph. Therefore, the following theorem
holds:

Theorem 4.2. Let G be an undirected graph on n vertices and m edges. The antihole detection
algorithm presented in this section can be augmented so that if provides a certificate that G contains
an antihole, whenever it decides so of G. The certificate computation takes O(n + m) time and
O(n +m) space.

Figure 2

1.2 for each edge € = zy of G such that z,y & N[u] do
1.2.1 {mark the co-components of G[Ny ;| containing a verter in Ale;x)}
for each vertex w £ N, ;. do
markl [w] — O;
for each vertex w € Ny . — N, 4 do
markl [cc(N, i u)] — 1; {mark the representative}
1.2.2 {mark the co-components of G[Ny,,]| containing a verter in Ae;y)}
for each vertex w € N, , do
mark2[w] — 0;
for each vertex w € Ny, — Ny - do
mark2 [co(N, ,;ud] — 1; {mark the representative}
1.2.3 for each vertex v € Ny o NNy 4 do
if markl[ce(Ny2iv)] =1 and mark2[ce(Ny 0] =1
then print that & contains an antihole; Stop;

2. Print that & does not contain an antihole.

The correctness of the algorithm follows from Lemma 5.1 and from the fact that for an edge e = xy
of G and a vertex u € V(&) — Nle the following held:

(i) Ale;z) N N(u) = Nuz — Nuy, Ale;y) N N(u) = Ny — Ny 2, and Ae) N N(u) = Noe N Ny g

(ii) the condition “if markl[cc(Ny ;v)] =1 and mark2[cc(N, ,:v)] = 17 along with the fact
that the vertex v belongs to N, ; NN, , implies that in the complement of [N, -] there exists
a path from v to a vertex in A(e;z) and that in the complement of G[N, | there exists a
path from v to a vertex in A(e; y); thus, in the complement of the subgraph of G induced by
N{u) N N(e) there exists a path from a vertex in A(e:z) to a vertex in Ale; y).

Time and Space Complexity. We will show that the above mentioned antihole-detection
algorithm runs in O(n +m?) time; it suffices to show that this time complexity holds for connected
input graphs. Step 1.1.1 can be completed in O(n) time, while the construction of G[N,] and
the computation of its co-components (3, 8, 9] can be done in O(|Nyy|?) time. Since |Ny.| <
min{|N(u)|, |N(v)|}, we have that |N,.|> < |N{(u)|- |N(v)|; thus, for a vertex u of G, Step 1.1.2
takes O(n)+Y_, O(|N(u)|-|N{v)|) = O(m |N(u)|) time. (Note that working on the subgraph G[N, .]
requires re-indexing of vertices; this can be done in constant time per re-indexing request using two

11

a certificate that G contains an antihole, whenever it decides so0 of G. The certificate computation
takes O(n + m) time and space.

Hemark. Since an antihole is the complement of & hole and the complement of a Cs is also a
(s, one can detect whether a graph G, which does not contain a Cs, contains a hole by applying
the above algorithm on its complement G. This however results into an O(n*)-time and O(n?)-
space algorithm. The time complexity can be improved if the operation of the algorithm on G is
interpreted in terms of G so that G is not constructed explicitly.

In general terms, the algorithm processes all the Fys of G; for each such Ps zuy, it tries to determine
whether there exists a vertex w that is not adjacent to u, x, or y, and there exists a path from w in
G[M,] to a vertex adjacent to y and a path from w in G[M,,] to a vertex adjacent to z, where
M, . (resp. M, ;) is the set of vertices which are adjacent neither to u nor to = (resp. neither to u
ner to y), L.e., My z = (V(G) = N[u]) N (V(G) — N[z]) and My, = (V(G)— N[u]) 0 (V(G) = N[y]).
Note that such a vertex w exists iff there exists a chordless path vyvs ... v, where & = 3, such that
v € N(y) — (N(u) U N(2)), vk € N(z) — (N(u) U N(y)), and v; & N(u) U N(z) U N(y) for all
i=2,...,k— 1: this is equivalent to the vertices z,u,y,v1,...,vx inducing a hole of length at least
equal to 6.

In detail, the algorithm is given below. It is a variant of the antihole algorithm presented earlier in
this section, where all the “adjacencies” have been replaced by “non-adjacencies” and vice versa.

Hole-Detection Algorithm for Graphs not containing a Cs
Input: an undirected graph G on n vertices and m edges which does not contain a Cj,.
Output: ves, if G contains a hole; otherwise, no.

1. For each vertex u of &G do

1.1 for each vertex v adjacent to u in & do
1.1.1 compute the set M, , = (V{(G) = N[u]) n (V(G) — N[v]);
1.1.2 compute the connected components of G[M, .):
1.1.3 store the set M, ,, as a list of vertex records, ordered by vertex index, where each
vertex w € M, , is associated with the representative comp (M, ,; w) of the compo-
nent to which it belongs;

1.2 for each vertex x adjacent to u in G do
for each vertex y adjacent to v and not adjacent to ¢ in G do
{mark the conn.components of G[M,, .| containing a neighbor of y in G}
for each vertex w € M, . do
markl [w] — 0
for each vertex w € My » — M,y do
if w is adjacent to y in G
then marki[comp(M, ;w)] « 1; {mark the representative}
{mark the conn.components of G[M,] containing a neighbor of x in G}
for each vertex w € M, , do
mark?[w] « 0;
for each vertex w € My, — My - do
if w is adjacent to ¢ in G
then mark2[comp (M, ;;w)] — L; {mark the representative}
for each vertex v € My - N My, do
if marki [comp(M, z;v)] =1 and mark2[comp (M, ,:v)] =1
then print that G contains a hole; Stop;

2. Print that & does not contain a hole.

13

References

[1] A. Berry, J-P. Bordat, and P. Heggernes, Recognizing weakly triangulated graphs by edge
separability, Nordic J. Computing 7, 164-177, 2000.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd
edition), MIT Press, Inc., 2001.

[3] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical modular decomposition,
Proc. 8th ACM-SIAM Symp. on Diserete Algorithms (SODA97), 26-35, 1997,

[4] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs Academic Press, New York,
1980,

[5] R.B. Hayward, Weakly triangulated graphs, J. Comb. Theory Ser. B 39, 200-208, 1985.

[6] R.B. Hayward, Two classes of perfect graphs, PhD Thesis, School of Computer Science, MeGill
University, 1987.

[7] R.B. Hayward, J. Spinrad, and R. Sritharan, Weakly chordal graph algorithms via handles,
Proc. 11th ACM-SIAM Symp. on Discrete Algorithms (SODA 2000), 2000.

[8] H. Ito and M. Yokoyama, Linear time algorithms for graph search and connectivity determi-
nation on complement graphs, Inform. Process. Lefters 66, 209-213, 1998,

[9] S.D. Nikolopoulos and L. Palios, A co-connectivity algorithm with application to the parallel
recognition of weakly triangulated graphs, Technical Report 32-01, Department of Computer
Science, University of Ioannina, 2001.

[10] 5.D. Nikolopoulos and L. Palios, Recognizing Py-comparability graphs, Proc. 28th Intern.
Workshop on Graph Theoretic Aspects of Computer Science {WG'02), 2002.

[11] D.J. Rose, R.E. Tarjan, and G.5. Lueker, Algorithmic aspects of vertex elimination on graphs,
SIAM J. Computing 5, 266-283, 1976,

[12] J.P. Spinrad, Finding large holes, Inform. Process. Letters 39, 227-229, 1991.

[13] J.P. Spinrad and R. Sritharan, Algorithms for weakly triangulated graphs, Discrete Applied
Math. 59, 181-191, 1995.

[14] R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,

test acvelicity of hypergraphs, and selectively reduce acyclic hypergraphs, STAM J. Computing
13, 566-579, 1984

15

