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The continuum theory, previously developed to quantitatively account for the large deformations
observed in gels endowed with electric properties, is extended to magnetic field sensitive gels (fer-
romagnetic or diamagnetic in origin}. The derived analytical formula for the dependence of the gel
displacement on the magnetic field, can be applied, either to control recently developed biomimetic
valves and possible artificial muscles constructions, or to interpret similar phenomena in biophysics.

PACS numbers: 46.25.Hf, 75.50.Mm, 75.80.4+q, 82.70.Gg, 83.80.Gv, 85.70.Eec, B7.G8. 4z

Piezoelectric, magnetostrictive and shape memory al-
lovs have for long been used in industrial and medical ap-
plications. There is an increasing need nowadays for new
materials, with biomimetic functionalities, that combine
low cost and high efficiency. Hydrogels with thermoelec-
tromagnetic or chemical properties are good candidates,
since they combine more efficient actuation or sensory
mechanism (large deformations) along with minimum in-
vestment on expensive rough materials. Phenomenologi-
cal models have been proposed by the authors, to control
medical applications of magnetic fluids in and drug de-
livery and eye surgery [1, 2]. Experiments on: pH [3],
thermo- [4] and electromagnetic [5-8] sensitive gels have
been performed recently, confirming their capability to
mimic muscle contraction (artificial muscles). The chal-
lenge for theory is to express the observed nonlinear de-
formations as a function of the applied fields. Attempts
in that direction are the models developed in [9-11] for
magnetic gels in nonuniform and uniform magnetic fields,
when hysteretic effects are present in the magnetoelastic
constitutive laws, and in [12] by us, for electrogels in uni-
form electric fields. Our work on electrogels succeeded in
determining both the initial slope of the strain-electric
field relation, as well as the saturation effects at high
electric fields. It is the aim of the present work to extend
the results of our previous effort [12] to magnetic gels,
either ferromagnetic (ferrogels) or diamagnetic in origin.
We discuss also the possibility of the present approach to
control the operation of biomimetic valves (3] and explain
similar diamagnetic deformations in biophysics [13].

We begin by summarizing the general continuum the-
ory of mapnetoelasticity. The formulation is analogous to
our previous work [12] and is based on that of Toupin [14].
Hereafter, bold and double bold characters will denote
vector and tensor felds, respectively. We consider that
the ferrogel deforms as a continuous body, which in the
reference (undeformed) configuration cccupies a region
0 C 8, of the whole space S, inside the closed surface 811
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The material points are identified by their position vec-
tors X in £, with Cartesian coordinates X4 (A =1,2,3).
After the deformation, the ferrogel oceupies the region Oy
and a point originally denoted by X is deformed to the
position =, with coordinates =; (i = 1,2, 3) and defor-
mation gradient F = Vx @ x(X). For a uniform static
applied magnetic field Hy, the equilibrium problem is
described by the partial differential equations:

Vx 84+ F, =0, in 0 (1)
VaRa=1n in & (2)
VxH =0, in & (3

and the jump conditions
8T +J (F'T.) IN =0, on 80 (4
[B]-» = 0, on 98y (5)
t[H[ =1 on 90 (6)

in the reference configuration. Here
Fn=Vx-(JF ' 'Tn)=Ju (M-V}H, (7)
is the magnetic body force with
T =B®H — g H21/2, (8)
the Maxwell stress tensor, due to Einstein and Laub [14],
§=JFIT, (9)
is the nominal stress tensor [17),

B=u (H+M), (10}
is the mapnetic induetion, §lz) = 1 for @ € §; and
dlx) =0for e e & -0y, [A]l = Aour — Ain, H is the to-
tal magnetic field, H = Hy+ H p, with H 5 the demag-
netizing field, M is the magnetization vector per unit
volume, J = detF, T is the Cauchy stress tensor, Vx
and ¥ are the gradient vector operators in the reference
and present confizurations, respectively, pg is the mag-
netic permeability of vacuum, [ is the identity tensor, &
and - denote tensor and inner product. respectively, t is



the unit tangential vector on 90y and N and n are the
outward unit vectors on 80 and 91, respectively, with

n=J(F Y N. (11)

If we decompose the magnetic fleld H in tangential and
normal components on 90, neglect mechanical surface
tractions and make use of the definitions (7-11) and the
jump conditions (53-6), the balance of magnetomechanical
surface tractions (4) reduces to:

STN=pM*n/2, M,=M-n, ondQ (12)

The BVP (boundary value problem) (1-6) is derived from
an energy variational principle [14]. The derivation is
not unique and depends on the form of the magneto-
static energy. Thus, many equivalent, but not identical,
formulations are used in the literature. The interested
reader should consult the footnotes in [15] for this con-
troversial issue, in the analogous electromechanical prob-
lem. The variational principle imposes constraints on the
form of the constitutive relations, which in our case read:
S(F, p) = 8W/OF and H(u, F) = 8W/5u. The free en-
ergy depends both on the strain and the magnetization,
W = W(E, u), where E = (FTF —I) /2 is the Green fi-
nite strain tensor and g = M /p is the magnetization vec-
tor per unit mass. p is the density in 14, which is related
to the density pp in € through the equation pnp = Jpo.
The exact forms of the above constitutive laws are also
determined by the material symimetry and the second law
of thermodynamics [16]. For small concentration of the
magnetic micro- or nanoparticles (diluted ferrogel), the
magnetization contribution to the free energy density W
is negligible and the constitutive equations become:

s ~ S(F)= 22 (13)

M M(H). (14}

Henceforth, we will restriet our attention to diluted ferro-
gels, with constitutive equations of the form (13-14) and
vanishing mechanical surface traction. If we introduce
the magnetostatic potential & in (2-3) with H = —V&,
and express the nominal stress tensor 2 in terms of the
Biot stresses t'il}, té”_. té‘” (the principal values of the
Biot stress tensor, TV = (SR + RT8™)/2, [17]), where
R is the finite rotation tensor, we obtain a complicated
but well posed preblem. Even for relatively simple pre-
scribed deformation modes, that satisfyv (1), the nonlin-
earities involved in (13-14), make the resultant potential
problem a formidable task. Before any effort to solve the
BVP (1-6), the difficult to prove issues of existence and
unigueness of solutions, should be addressed. Neverthe-
less, we will construet our model upon the general the-
ory, without complete rigour on the satisfaction of BEVP
(1-6), by introducing simplifications, guided by the ob-
served geometry of deformation, as well as from physical
considerations,

It

(R

FIG. 1: Problem geometry.

The following model can be applied, either to deter-
mine the magnetic field dependence of the deformation
of a single ferrogel, or of a pair of diluted ferrogels, placed
symmetrically between the poles of a magnet, in such a
distance apart that do not interact with each other in the
absence of the external magnetic field, In the presence
of a uniform applied magnetic field Hy, the pair of fer-
rogels admit symmetrical deformations, with respect to
the middle parallel plane to the poles of the magnet, that
are L. distance apart (see figure 1). We consider that the
ferrogels are homogeneous, isotropie and diluted, in the
form of rectangular blocks of cubic cross-section, of width
¢ and height L. Though the further analysis is performed
for paramagnetic gels or ferrogels (positive magnetic sus-
ceptibility), it ean be applied also to diamagnetic gels,
just by changing the sign of the magnetic susceptibility
and considering deformations in the opposite direction
from the one shown in figure 1. Experiments of this kind
with plants, have been announced recently [13]. Due to
the prescribed symmetry of the deformation for the pair
of ferrogels, we restrict our discussion to a single ferro-
gel (the right ferrogel of figure 1) and we will recall the
presence of the second ferrogel only when the condition
for valve operation will be derived. We assume that the
ferrogel admits plane deformations of the form

r=f(&1), #=g(Xz), ==Xy, (13)
shown in figure 1. Then the displacement field
u=X—xX) (16)

corresponds to the bending of the dashed rectangle, of
figure 1, into a section of a circular disc, with radius
difference Ar = {. The ferrogel is kept fixed at points
X = (rm,0) and (ry, + ¢, 0}, that is:

w(rm, 0) = wir, + £, 0) = 0. (17)

Due to the incompressibility constrain, ferrogel's volume
v remains invariant, during the magnetically driven de-
formation, v{f1) = v{Qs). This condition determines the



maximum deflection angle @, in terms of geometrical pa-
rameters:

The principal stretches A;, i = 1,2,3 are given, due to
{15) by the relations:
A= f(X1), e = f(X1)g'(Xa),

where the prime denotes differentiation with respect
to the argument. The incompressibility constraint
A1 Az Az = 1 results, due to (19), after separation of vari-
ables, to the solution:

r=+/24, X1 + A3, B=2Xaz/A; +As. (20)

The unknown constants A;, 1 = 1,2,3 are determined
from the conditions (17)
.-4.1 = T+ {.‘Ig = Ll'lrgm1
Ay = =t (rm + ) = (£/2)* — (L/0m)%,  (21)
Ay = 0.

As=1,  (19)

In order to simplify the magnetostatic mathematical
analysis, without sacrificing the physics of the problem,
we assume that the magnetization vector M and the
magnetic feld H, either inside or outside the ferrogel,

are constant and collinear to the external uniform ap-
plied field Hy :

H, = xy Ho, (22)
Hgy = Hy, (23)
M = xm Hin = xm xt Ho, (24)
Ho=-HE,, H=const. >0, (25)

where v g and vy, are dimensionless functions of the mag-
netic field H and the shape of the ferrogel L/{, and E,
and &;, {i = 1,2) are the unit vectors in the reference and
present confizuration, respectively. The above assump-
tions are valid for the bulk of the ferrogzel but not close
to the boundary 80}, The solution (22-25) satisfies the
magnetostatic problem (2-3), while the jump condition
{5) reduces to

(1-x)Hp-n=0, on 80, (26)

with ¥ = ¥(H, L/{) = x5 (1 4+ xm) the magnetic sus-
ceptibility. In general, H;, < Haw. due to the presence
of demagnetizing effects, so 0 < yg = 1 and xm > 0.
Due to the assumptions (22-25), f,,, = 0 from equation
(7). Then, due to the constitutive laws (13-14), the equi-
librium problem (1} reduces to the pure mechanical one:

Vx-§=0. (27)

By following an analvsis identieal with the one presented
in [12] we can solve (27) in terms of the Biot stresses

i = 7(A) = €1 A and 1" = —A%7(\) with
A= Byfr = [20m X0 /L + 6%/ (4L%) - 1) 7%, (28)

and A; = 1/X2 = A In accordance with our assumption
for a diluted ferrogel, the balance of the magnetomechan-
ical surface tractions (12) results, due to the solutions
(22-25) to T{A) = po M2/2, or equivalently to:

92X — A% (1 — yu)? cos® 8 =0, (29)

with h = H/H,, H, = (2C1/po)"*, on the boundary
X =rm =+ Since Hg-n # 0 on 8%y the condition {26)
implies that Hy, = Hoys or x = 1. In order to preserve
the positive definite character of the strain-energy fune-
tion W{A) = €} A?/2 we must have C) > 0. Notice that
equation (29) does not hold for every # on 8(2, but since
our primary concern is to model available experimental
data, we just have to satisfy (29) only for the maximum
deflection angle 8, since what is measured in the exper-
iments is the displacement of the upper free part of the
ferrogel, for given H and L/, Then, from (28} and (29)
we obtain, for X1 =rmm+Cand #=46,,:

h2(1 = x5 [1+ CBn/(2L)] cos? B = 2. (30)
If we solve (30) for #,, and substitute the result in
=ty T+ ) =1—costhy, (31)

we derive the displacement u, as a funetion of the ap-
plied field h and its shape L/{, provided that the func-
tion xg = xm(h, L/¢) will be specified. Unfortunately,
the solution #,, of (30) and thus u of (31) are singular
at h = 0, for a diluted ferrogel, xx(0,L/{) = 0, and
thus they do not correspond to the expected vanishing
of the deformation in the absence of applied magnetic
field u(h = 0) = 0. This singularity is a consequence of
isotropy, collinearity and especially homogeneity intro-
duced in (22-25). Since the main physical mechanisms,
ohserved in the experiments, are present in our model, we
can overthrow the singularity at h = 0, by neglecting {18}
and replacing the geometrical definition of A (28}, with
a suitable function of h and L/, Thus, if we substitute,

A= (1+xm)/(1+vxH) (32)

with v = 1 and Ay = A%(1 - x,:;}z /2, in {29) and solve
for cos #,,, the displacement (31) reduces to

w o tig (w4 O) = 1 = [(1+xu)/ (0 +vxa)] 2. (33)

The longer is the surface of the ferrogel, that is exposed to
the uniform external field, the larger the demagnetization
effects induced on it and as a consequence the smaller the
total magnetic field inside. In order to take into account
this shape dependence of the constitutive law (24) we
admit for y g the simple power law:

xg =a(Li0)* ke, (34)

where all @, 2 and + are dimensionless constants, Al
though the form (32) has the drawback that A(h =0) =
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FIG. 2: The normalized displacement . /{rw + ¢} and mag-
netization M/ {pp Hp), as functions of the normalized applied
magnetic field H/H,, for varying length L of the ferrogel.

0, compared to the expected Alh = 0) = 1, it recovers
the observed ulh = 0) = 0, due to (34). Due to (24} and
(26) the magnetic constitutive relation reads

_Jh(1=xpn) for h < hsa )
= { Maat for A = bt (35}
with m = M/H, and
My = .':? hsn:!flllil + ,B]s [36}
heat = (/L) (1 +8)]71/2. (37)

The response {displacement) of the ferrogel to the ap-
plied magnetic field, is depicted in figure 2, according to
the model (33-34), fora >0, 8=2,v> 1, rm +{ = L,
and varying L, such that 0 < yy < 1. The magnetic
constitutive law [35-37) is also enclosed in the same fig-
ure. Due to the flexibility on the selection of the di-
mensionless parameters a, 2, v, our model can estimate
correctly both the initial slope, as well as saturation ef-
fects of the displacement-magnetic field behavior. Notice
that increase of the length L of the ferrogel leads, as
expected from demagnetizing effects, to higher displace-
ment and smaller magnetization for the same applied
magnetic field. Unfortunately, though equation (35) is
nonlinear for 3 # 0, it corresponds to unit initial suscep-
tibility, xini = m'(0) = 1, since ¥ = 1. This drawback
can be restored, in a particular experiment, by replacing
(1=xp)in (35) with (x —xg) and assuming that x > 1.

Returning to the case of a pair of ferrogels, that be-
have as a biomimetic valve, and due to the symmetries
considered, we can determine the critical magnetic field
for valve operation (shaded deformed state of ferrogels
in figure 1) as the one that corresponds to d = 0, or
equivalently to rm = ra, 8m = 8., where

d="7m(l—costy) —re(l—cosf). (38)

Notice that in general v, = rm(H, L}, but we have to
be cautious about the form that we will assign to this

function, in order to preserve the monotonicity of the
displacement function, with respect to H and L.

In summary, we have developed the theoretical frame-
work for studving large deformations in ferrogels, when
hysteretic effects are not present in the constitutive laws.
Our model includes all the information for quantitative
interpretation of magnetic field dependent deformations
and valve operations, since it comprises the main physi-
cal mechanisms and the geometrical attributes of the de-
formation (magnetic microparticle concentration, nonlin-
earities on constitutive laws, maximum deflection angle,
aspect ratio). The effect of an inhomogenecus applied
magnetic field can also be studied, with the cost of com-
plicating the solution procedure. Due to its generality,
the present analysis easily conforms with similar abserved
mechanisms in biophysics (paramagnetie, 0 <y < 1, or
diamagnetic, ¥ < 0, elastic responses of plants and bi-
ological tissues in magnetic fields [13]), as well as with
prototypes in the rapidly developing field of microelec-
tromechanical systems (MEMS), and their medical coun-
terparts, biomedical microdevices (Bio-MEMS). Exten-
sion of the approach to pure elongation of the ferrogel, in
suitably applied magnetic fields is straight-forward, with
direct application to artificial muscle modelling,
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