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Abstract — In this paper we show structural and algorithmic properties on the class of
quasi-threshold graphs, or QT-graphs for short, and prove necessary and sufficient conditions for
a QT-graph to be Hamiltonian. Based on these properties and conditions, we construct efficient
parallel algorithms for finding a Hamiltonian cycle and computing the Hamiltonian completion
number and a Hamiltonian completion edge set of a QT-graph; for an input graph on » vertices and
m edges, our algorithms take O(log’n) time and require O(n + m) processors on the CREW
PRAM model. In addition, we show that the problem of computing the Hamiltonian completion
number of a QT-graph can also be solved in O(logn) time with O(n + m) processors. This implies
an (logn)-time parallel algorithm for recognizing whether a OT-graph is a Hamiltonian graph. Our
algorithms rely on O(logn)-time parallel algorithms, which we develop here, for constructing tree
representations of a OT-graph; we show that a OT-graph & has a unique tree representation, that is, a
tree structure which meets the structural properties of G. We also present parallel algorithms for
other optimization problems on Q7-graphs which run in O(logn) time using a linear number of
Processors.
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1. Introduction

In this paper we consider finite undirected graphs with no loops nor multiple edges. Let G be such a graph
with vertex set V(G) and edge set E(G). We say that G is a Hamiltonian graph if it has a spanning cycle (as
opposed to the more usual definition which refers to spanning path); such a cycle is called a Hamiltonian
cyele of G. The Hamiltonian completion number of the graph G is the minimum number of edges which
need to be added to E(() to make G Hamiltonian; the set of such edges is called Hamiltonian completion
edge set of G [35, 14]. We denote the Hamiltonian completion number of a graph G as hen(G) and its
Hamiltonian completion edge set as CE((G). If G is a Hamiltonian graph, then hen(G) = 0.

Given a graph G, an edge (x, v} = (v, x) of G can be classified as follows according to the relationship
of closed neighbourhoods [18, 25, 26]: (x, ¥) is free if N[x] = N[¥]; (x v) is semi-free if N[x] < N[yv] (or



N[y] < N[x]); and (x, y) is actual otherwise. Obviously, E(G) can be partitioned into the three subsets of
free edges, semi-free edges and of actual edges, respectively.

A graph G is called a quasi-threshold graph, or QT-graph for short, if every edge of G is either free
or semi-free. Thus G is a QT-graph if and only if for every edge (x, ¥) of G, we have N[x] c N[y] or
Nlx] = N[y); equivalently, G is a QT-graph if and only if G has no induced subgraph isomorphic to Py
or C4 [15, 23, 30, 31]. The class of QT-graphs is a subclass of the class of cographs [10, 11] and contains
the class of threshold graphs [9].

Many researchers have devoted their work to the study of QT-graphs. Wolk [30] called these graphs
comparability graphs of trees and gave characterization of them. Golumbic [15] called them trivially
perfect graphs with respect to a concept of “perfection”. Ma, Wallis and Wu [23] called them guasi-
threshold graphs (QT-graphs) and studied algorithmic properties.

The class of OT-graphs is a subclass of the well-known class of perfect graphs [6, 16, 24]; it is a very
important class of graphs, since a number of problems, which are NP-complete in general, can be solved
in polynomial time on its members. For the class of QT-graphs, Ma et. al. [23] presented polynomial
algorithms for a number of optimization problems. In particular, they gave an O{nm) time algorithm for
the recognition problem, and polynomial algorithms for the Hamiltonian cycle problem and the bandwidth
problem. They also gave a formula for the clique covering number and conditions for a QT-graph to be
Hamiltonian. Yan et. al. [33] stated important characterizations of these graphs and presented a linear-
time algorithm, that is, O(n + m), for the recognition problem. They also gave linear-time algorithms for
the edge domination problem and the bandwidth problem in this class of graphs.

To the best of our knowledge, no parallel algorithms for Hamiltonian problems on Q7-graphs are
available in the literature. On the other hand, a variety of parallel algorithms have been described for
optimization and combinatorial problems on many other classes of perfect graphs; for parallel algorithms
on cographs and threshold graphs, see [1, 3, 12, 19, 22, 26].

In this paper we study the class of QT-graphs in more detail and show structural and algorithmic
properties of its members. We prove that a QT-graph G has a unique tree representation, that is, a tree
structure that meets the structural properties of G; we refer to this tree as cent-tree of the graph G. We also
prove necessary and sufficient conditions for a QT-graph to be Hamiltonian. Consequently, by taking
advantage of these properties and conditions, we construct efficient parallel algorithms for Hamiltonian
problems on QT-graphs. In particular, we construct algorithms for finding a Hamiltonian cycle and
computing the Hamiltonian completion number and a Hamiltonian completion edge set of a QT-graph;
our algorithms take G(logznj time and require Wn + m) processors on the CREW PRAM model. In
addition, we show that the problem of computing the Hamiltonian completion number of a QT-graph can
also be solved in O(logn) time with O(n + m) processors. This implies an O(logn)-time parallel algorithm
for recognizing whether a QT-graph is a Hamiltonian graph. We also present parallel algorithms for other
optimization problems on QT-graphs which run in O(logn) time using a linear number of processors.

Our algorithms run on the CREW PRAM model of computation [4, 20, 28], and use a linear number
of processors on QT-graphs with n vertices and m edges. More precisely, we present the following results:

(i) The cent-tree of a QT-graph can be constructed in O(logn) time with O{n + m) processors.

(ii) A Hamiltonian cycle and a Hamiltonian completion edge set of a QT-graph can be constructed in
O(log2n) time with O(n + m) processors.

(iii) The Hamiltonian completion number of a QT-graph can be computed in O(logn) time with O(n + m)
processors.



(iv) Hamiltonian QT-graphs can be recognized in O(logn) time with O(n + m) processors.

(v) Other optimization problems on QT-graphs can be solved in O(logn) time with O(n + m) processors;
that is, the maximum clique problem, the maximum independent set problem, the clique cover
problem and the coloring problem.

We should point out that, to the best of my knowledge, the study of the Hamiltonian completion number
on QT-graphs has not received much attention. On the other hand, this problem on other classes of graphs
has been extensively studied (see [2, 13, 21, 27]).

The paper is organized as follows. In Section 2 we characterize the class of QT-graphs in detail and
show structural and algorithmic properties on the class of QT-graphs. In Section 3 we prove necessary and
sufficient conditions for a OT-graph to be Hamiltonian. In Sections 4 and 5 we present parallel algorithms
for constructing tree representations of a Q7-graph. Based on these representations and the conditions of
Section 3, we present the main results of the paper in Sections 6 and 7; we design and analyze parallel
algorithms for finding a Hamiltonian cycle and computing the Hamiltonian completion number and the
Hamiltonian completion edge set of a OQT-graph. In Section 8 we show that other optimization problems
on QT-graph can be efficiently solved in parallel. Finally, in Section 9 we conclude with a summary of
our results and extensions,

2. Quasi-threshold Graphs and their Structures

Let G be a graph with vertex set V(&) and edge set E(G). The neighbourhood of a vertex x 1s the set N(x) =
Ng(x) consisting of all the vertices of G which are adjacent with x. The closed neighbourhood of x is

defined by N[x] = Ng[x] = {x} w N(x). The subgraph of a graph & induced by a subset § = W) is
denoted by G[S). Let X and ¥ be two subsets of a certain set. Then X < ¥ means that X is a proper subset of
Y,andif Y X, then let X - ¥ denote X\ Y.

For a vertex subset S of a graph G, we define G - § by G[V(G) - S]. The following lemma
follows immediately from the fact that for every subset § = V(G) and for a vertex x € 5, we have
Ngs)[x] = N[x] n S and that G - § is an induced subgraph.

Lemma 2.1 ([26]). If G is a QT-graph, then for every subset § ¢ W), both G[S] and G - § are also OT-
graphs.

The following theorem provides important properties for the class of QT-graphs. For convenience, we
define
cent(G) = {xe WG) | Nlx] = V(G)}.

Theorem 2.1 ([26]). The following three statements hold.
(i) A graph G is a QT-graph if and only if every connected induced subgraph G[S], § ¢ WG), satisfies
cent(G[S]) # &,
(i) A graph G is a QT-graph if and only if G-cent(G) is a QT-graph.
(iii) Let G be a connected QT-graph. If G-cent(G)# @, then G - cent(G) contains at least two connected
components.

Let & be a connected Q7-graph. Then V) := cent(G) is not an empty set by Theorem 1. Put G| := G, and
G - Vi=G; u Gs u ... U Gp, where each Gj is a connected component of G - V| and r = 3. Then since each



G; 15 an induced subgraph of G, Gj is also a OT-graph, and so let V] := cent(G;) = @ for 2 < i < r. Since
each connected component of Gi-cent(G;) is also a QT-graph, we can continue this procedure until we get
an empty graph. Then we finally obtain the following partition of V(G).

WG =V, + Vo + ...+ Vi, where V,=cent(G;).
Moreover we can define a partial order < on { V), V5, ..., V] as follows:

Vi <

==

if Vi=cenr(Gj) and Vjg VG)).

It is easy to see that the above partition of V(G) possesses the following properties.

Theorem 2.2 ([26]). Let G be a connected QT-graph, and let V(G) = V; + V3 + ... + Vi be the partition
defined above; in particular, V; := cent(G). Then this partition and the partially ordered set ({V;}, <) have
the following properties:

(P1) If V; < Vj, then every vertex of V] and every vertex of V; are joined by an edge of G.

(P2) For every Vj, cent(G[{UV; | V; < Vil = V;.

(P3) For every two V; and V; such that V; sV, G[{UV; | Vs Vi <V}] is a complete graph.
Moreover, for every maximal element V; of ({Vi}, =), G[{UWV; | v, <V, =V}]is a maximal
complete subgraph of G.

(P4) Every edge with both endpoints in V; is a free edge.

(P5) Every edge with one endpoint in V; and the other endpoint in Vj, where V; # Vj, is a semi-free edge.

Figure 1. The typical structure of the cent-tree Tp(G) of a QT-graph.

The results of Theorem 1.2 provide algorithmic and structural properties for the class of OT-graphs. A

typical structure of such a QT-graph G is shown in Figure 1. We shall refer to the structure that meets
the properties of Theorem 1.2 as cent-tree of the graph G and denote it by Tc(G). The cent-tree is a rooted

tree with root Vi; every node V; of the tree To(G) is either a leaf or has at least two children. Moreover,
V; < V;if and only if V; is an ancestor of V;. Thus, we can state the following result.



Corporally 2.1. A graph G is a QT-graph if and only if G has a cent-tree T¢(G).

If V; and V] are disjoint vertex sets of a QT-graph G, we say that V; and Vj are clique-adjacent and denote
Vi=Vjif VisVjor Vi<V

Let G be a QT-graph and let V = V; + V3 + ... + Vi be the above partition of V(G); Vi = cent(G). Let
S = {vg, Vs41s oo V1» --.s Vg| e a stable set such that v € W and ¥, is a maximal element of ({V;}, =) or,
equivalently, V; is a leaf node of T(G), s < 1 < ¢. It is easy to see that § has the maximum cardinality a(G)
among all the stable sets of G. On the other hand the sets { V] | Vi £ V; £ Wi}, for every maximal element
V, of ({V;}, <), provide a clique cover of size x(G) which has the property to be a smallest possible clique
cover of G; that is (G) = x(G). Based on the Theorem 2 or, equivalently, on the cent-tree of G, it is easy
to show that the clique number (G) equals the chromatic number x(G) of G; that is, ¥(G) = el ),

3. Hamiltonian QT-graphs

Let ¥y, Va, ..., Vi be the nodes of the cent-tree T.(G) of a QT-graph G rooted at r, = Vj, and let Vi),
Vi2, ..., ¥ip be the children of the node V; (1 <i < k); note that p = 2 if ¥; is not a leaf of the cent-tree. We
assign a label H-label(V:) to each node V; of the cent-tree T.(G), which we compute as follows:

| V. | -p if V, is the root of the tree,

H-label(V}) = J |V.|=p+1  if V, isan internal node, and

{ 0 if V, is a leaf,

where p is the number of children of the node V; (1 £ i £ k). Figure 2 depicts a node V; of a cent-tree along
with its four children Vi, Vi3, Vi3 and Vig; here we have H-label(V;) = 2 if V; is an internal node or
H-label(V;) = 1 if V; is the root of the tree, H-label(Vy)) = 1, H-label(Viz) = -1, H-label(Vi3) = 0,
and H-label(V,y) = 0. We shall show that G is a Hamiltonian QT-graph if H-label(V;) = 0 for each node
Vi e T(G).

Figure 2. A node of the cent-tree To(G) of a OT-graph along with its four children; the
vertices of each node of T.(G) are denoted by black bullets.

Let Vi1, Vi2, ..., Vip be the children of an internal node V; of the cent-tree T(() such that H-label(V}) = 0,
and let list(Vi) = (Vi1, ...y Vi(p-1)s Vips - Vis) be the list of the vertices of the node Vj, where p 2 2 and



s 2 p-1. Let a-vertices(Vy) = (Vip, Vi(p+1)» ---» Vis); the elements of this list a-vertices(V}) are called available
vertices of the node V;. If V; is the root of the cent-tree then a-vertices(Vi) = (Vip+1)s Vi(p+2)s - Vis)- In
Figure 2, for the internal node V; we have a-vertices(V;) = {u, v}.

Let Vi1y, Vi2), ... Viiry be the left-to-right order listing of the leaves of the cent-tree T.(G), and let Vy;) be
the lowest common ancestor of the nodes Vi) and Viis1), where 2 < (i) € kand 1 <1 < 1-1. We define the
h-sequence of the cent-tree T((Z) to be the following sequence:

h-sequence(T(G)) = (Vii1y, Vaay Ve Vacy o Vi1 Vage-1: Vi. V1)

where V) is the root of the tree T(G) and ¢ is the number of leaves in T(G); the length of the A-sequence
of Gis 2t

By definition there exists no pair Vi), Vi) of elements V1), Vi2), ..., Vi of the h-sequence(T(G)) such
that Vi) = Vigjy for i # j, 1 £, j < 1. On the other hand, may exist elements Vyi1), Vai2), ---» Va(ig) such that
Vaity = Vag2) = ... = Vagig) = Vi, where Vj is an internal node T(G); g is equal to the number of children of
V; minus 1. Let a(il) and a(ig) be the indices of the leftmost and rightmost occurrence of V; in h-
sequence(T(G)), and let a(il) < a(i2) < ... < alig). We say that Vy1) is the first occurrence of Vj, Vyiz) 1s
the second occurrence of Vi, and so on; Vyiq) is the last occurrence of V; in h-sequence(T(G)). Based on
the structure of the cent-tree T.(G) and the fact that each internal node of T.(G) has at least two children
we can easily conclude that each internal node of To(G) appears at least once in the h-sequence. Thus, we

have the following result.

Proposition 3.1. All the nodes of the cent-tree T.(G) of a QT-graph G are appeared in h-sequence(T.(G)).
Moreover, two consecutive nodes in h-sequence(T.(G)) are clique-adjacent.

Let G be a QT-graph and h-sequence(T(G)) be its h-sequence. We next use a depth-first search (dfs)
traversal strategy for searching the graph G and building a spanning tree of . We shall use the h-sequence
for the process of selecting the next unvisited vertex; note that in the standard dfs traversal when we have
a choice of vertices to visit, we select them in alphabetical order. Based on the h-sequence for the selection
process, we describe a dfs traversal, which, hereafter, we shall call h-dfs; it works as follows:

Traversal strategy h-dfs:

(i) Compute the h-sequence (Vi1y, Var1), Vi2)s ---» Vit Vagy = Vi) of the cent-tree To(G);

(i) Select an arbitrary vertex v from Vy) as starting vertex; visit v and mark it visited (initially, all
vertices of & are marked unvisited);

(iif) If v is a visited vertex and v € V), then visit in turn each unvisited vertex of Vi (1 =i < 1),

(iv) Once all the vertices of Vi) have been visited, select an unvisited vertex v; from the node Vi) = Vj of
the h-sequence, 1 < i < t; visit v, mark v visited and if Vi, is the last occurrence of Vj in h-sequence,
then visit in turn each unvisited vertex of Vi) otherwise, does to Vi) and select an unvisited
vertex from this set and visit it.

{(v) Continue until the last vertex u of the rood node V) becomes a visited vertex;



In Figure 3 we show the A-dfs traversal of a cent-tree To(G) on six nodes; its h-sequence is (Vgy, Vi),
Vr(z], Va{zj, Vt‘{:“:)r Va(3], Vﬂ4j. VaH] = Vi). The vertices v and « are the first and the last vertices of the
lists list(Vf1)) and list(V)), respectively.

Vam = Vam . IIi’Far_‘ﬂ =V

Figure 3. The h-dfs traversal of a cent-tree To(G) of a QT-graph G.

It is well-known that if G is a connected undirected graph, then the dfs forest of G contains only one tree.
Moreover, it is obvious that if each node of the dfs tree rooted at v € V(G) has at most one child, then G
contains a Hamiltonian path beginning with vertex v (it is the path from the root v to the unique leaf); G
contains a Hamiltonian cycle if the root of the dfs tree and the unique leaf are adjacent in G. We next
prove the following result.

Lemma 3.1. A OT-graph & is a Hamiltonian graph if H-label(V;) = 0 for each node Vi e TH(G).

Proof. Let Vq, Va, ..., ¥ be the nodes of the cent-tree T(G) of the @T-graph G rooted at Vi, and let
(Vi1ys Vacty V¥2)s ---» Ve Vi) be the h-sequence of To(G). Let g(i) be the number of all the nodes of h-
sequence(T;), say, Vaity, Vagizy - Vagig), such that Vagny = V(i) = ... = Vaiig) = Vi, where V; is an internal
node T ((G); that is, V; is the lca of some pairs of leaves of T.(G). By definition, g(i) is equal to the
number of children of V; minus 1.

Let Vij, Via, ..., Vip be the children of the node Vi and let list(Vi) = (vi1, ..., Vigp-1): Vips -s vis). Then,
g(i) = p - 1. Since H-label(V;) = 0, it follows that the V; contains at least p-1 vertices; note that, it contains
p vertices if ¥ is the root V| of the cent-tree T,(G).

We select a vertex v from Vi1y and we perform an h-dfs traversal to G starting at v. Since each node
Vi contains at least p - 1 vertices (p vertices if Vi = V{) and g(i) = p - 1 (g(i) = p if V; = V] because the last
element of the h-sequence is the root V| of the cent-tree), it follows that after visiting the vertices of the
node Vi) there exists at least one unvisited vertex in Vi) and, thus, the h-dfs always selects the next
vertex from Vi), 1 i < ¢-1; this is also true for the nodes Vi) and V. On the other hand, the nodes Vi
and Viyi41y are clique-adjacent. Thus, the h-dfs tree of G has the property that each node has at most one
child; that is, G contains a Hamiltonian path. Moreover, V1, and V) are clique-adjacent. Thus, G contains

a Hamiltonian cycle. O



We consider now the case where the cent-tree To(G) of a Hamiltonian QT-graph has nodes, say, V; and Vj,
such that Vi = Vj and H-label(V}) > 0 and H-label(V}) < 0. Let u be an available vertex of the node V;. We
define an operation that moves the available vertex u from the node V; to node Vj. We call this operation
vertex-move, or v-move for short.

From the structure of the cent-tree T.(G) of a QT-graph, it is easy to see that if we apply a v-move
operation to nodes Vj and Vj, then the resulting tree has the Property (P3): for every two nodes V; and V}
such that Vi <V, G[{UV] | V. £V; =V,}] is a complete graph. Obviously, if V; is a maximal element
of ({Vi}, 2), then after applying a v-move operation the graph G[{UV] | v, <V; <V,}] may not be a
maximal complete subgraph of G.

Consider the tree that results from the cent-tree T.(G) of a OT-graph after applying some v-move
operations on appropriate nodes so that each node V; of that tree has H-label greater than or equal to 0; we
call such a tree h-tree and denote it by T(G). Then, we prove the following result.

Theorem 3.1. Let G be a QT-graph and let T(G) be the cent-tree of G. The graph G is a Hamiltonian
QT-graph if and only if either H-label(V]) = 0 for each node V; € TJG) or we can construct an
h-tree Th((G) such that H-label(V;) 2 0 for each node Vi € Ty(G).

Proof. The if implication follows directly from Lemma 3.1 since H-label(V;) = 0 for each node Vi
& Th(G). Note that Proposition 3.1 also holds for the A-tree T(G).

Suppose now that there exist nodes in Ty((G) with negative H-labels. Let V; be such a node and let
each ancestor Vj; of V| has H-label(Vjj) = 0; note that the leaves of the tree T4(G) have zero H-labels.
Since H-label(V;) < 0, it follows that there exists no predecessor Vix of ¥ with available vertices; that is,
H-label(Vj,) = 0.

Let Vi1, Viz ... Vip be the children of V; and let g be the number of vertices vi1, vz, ..., vig of Vj,
where g < p - 1 if V; is an internal node and g < p if Vj is the root of the tree Ti,(G). We construct the h-dfs
tree of G rooted at vertex v; recall that the starting vertex v belongs to Viyy. We consider the following
two cases: (i) g < p - 1. It is easy to see that the vertex vjg has at least two children in the h-dfs tree.
(ii) g = p - 1. In this case V; is the root of the tree T},(G); that is, Vj = V], and each vertex in the h-dfs tree
has only one child except, of course, of the unique leaf u. The vertices v and « are not adjacent in G since
they do not belong to the same connected comport of the graph G - V. Thus, in both cases the graph G
does not contain a Hamiltonian cycle. O

4. Construction of the Cent-tree of a QT-graph

The characterizations provided by Theorem 2.2 enable us to describe a parallel algorithm for constructing
the cent-tree of a OT-graph.

Let G be a QT-graph and let T.(G) be its cent-tree with node set { V), V5, ..., V] and root V;. We
have shown that if node Vj is an ancestor of node Vj in the cent-tree of G, then V; and V] are
clique-adjacent. Thus, if (Vy, V5, ..., ¥j) is a path from the root Vj of the cent-tree to a node Vi, then
deg(V)) > deg(Va) > ... > deg(V;), where deg(V;) denotes the degree of the vertices of G that belong to
node V;; recall that all the vertices of (G that belong to node V; have the same degree and each internal
node of the cent-tree of G has at least two children. It follows that if {v;, v2, ..., vp} is a clique in a
OT-graph, then deg(vy) 2 deg(va) 2 ... 2 deg(vp), | p =n; see also [33].



Based on this property, we describe a method that produces a tree representation of a QT-graph; see
also [33]. We call this tree degree-tree of G, or d-tree for short, and we denote it by T3(G). The method is
as follows. First, sort the vertices v, v2, ..., v of G according to their degrees; let D = (vq, v3, ..., v) be
a sequence such that deg(vy) = deg(vz) = ... = deg(vy). Then, construct the tree Ty with vertex set
{v1, v2, ..., v} in the following manner: for every vertex v; € D, 2 < i < n, find the vertex w, if it exists,
such that £ i1s the maximum index satisfying 1 < k <7 and (v, v;) is an edge in G; add the edge (v, v;) into
E(Tg). Finally, root the tree T, at vertex r = vi. The resulting tree is the d-tree T4(G) of the QT-graph G.

We next describe the above algorithm in a more formal and parallel way; it takes as input a QT-graph
(+ and produces the d-tree T4(G).

Algorithm Degree-Tree-Construction (DT_CON):
Step 1. Compute the degree deg(v;) for each vertex v; e V;

Step 2. Sort the vertices vy, v2, ..., vy of G according to their degrees;
Let D = (vy, v2, ..., v) be a sequence such that deg(v)) = deg(v7) = ... = deg(vy);

Step 3. Construct the tree T, with vertex set {vy, v2, ..., vy} as follows:

3.1 Set Tg) & {r=vy,v2, .., ;p}h;
3.2 For every vertex vi € D, 2 <i < n, do in parallel
3.2.1 find the vertex w, if it exists, such that: k is the maximum index
satisfying 1 < k < and (v, ;) is an edge in G;
3.2.2  add the edge (v, v;) into E(Tg);
Step 4. Root the tree T at vertex r = vq; the rooted tree T is the degree-tree T4(G) of G;
end.

Let us now compute the time-processor complexity of the proposed parallel algorithm for constructing the
degree-tree of a QT-graph. We shall use a step-by-step analysis.

Step 1: Let (uy, u2, ..., tig) be the list of vertices adjacent to v;, where d; is the degree of v;. Then, d;
can be computed in O(logd;) time with O(d;) processors on the EREW PRAM model using standard path
doubling techniques on linked lists. Since L,evdi = O(m), this step is executed in O(logn) time using a
total of O(n + m) processors.

Step 2: It is well-known that n elements can be sorted in O(logn) time with O(n) processors on the
EREW PRAM model [4, 20].

Step 3: Let D = (v, va, ..., v) be the sequence computed in Step 2, and let N(v;) = {1y, ua, ..., ug} be
the set of vertices adjacent to v; (1 i < n). For each vertex v; we compute the vertex u, if it exists, having
the following property: u & N(v;) and u is the nearest vertex to the left of v; in the sequence D. This
computation can be carried out through the general prefix computation (GPC, see [4]) in O(logn) time
with O(n) processors on the CREW PRAM. Thus, the whole step is executed in Nlogn) time using a total
of O(n) processors.

Step 4: The problem of rooting the tree T, at the vertex r = v (for each vertex v # r, we determine the
parent p(v) of v when T, is rooted at r) can be solved in O(logn) time with O(n / logn) processors on the

EREW PRAM using the well-known Euler-tour technique [4, 20, 28]. Thus, this step can be performed
within the stated bounds.



Taking into consideration the time and processor complexity of each step of the algorithm we have the
following result.

Lemma 3.1. The degree-tree of a OT-graph can be constructed in O(logn) time with O(n + m) processors
on the CREW PRAM model.

Vi

Vi

Vi

Ve

Figure 4. The degree-tree Ty(G) and the cent-tree To(G) of a QT-graph G.

Based on the structural properties of the d-tree T4(G) of a QT-graph, we next present a parallel algorithm
for the construction of the cent-tree T.(G) of the graph G.

We observe that, a vertex u and its parent p(u) belong to the same node set V; of the cent-tree of G if
and only if u is a unique child of the vertex p(u) in the d-tree T4(G); see Figure 4. Let ua, ..., uy be
the vertices of the d-tree Ty3(G) with the property that their parents have at least two children and let
R = {r=uj uy, ..., ux}, where r is the root of the d-tree. It is easy to see that, the cent-tree T(G) has nodes
Vi. Vo, .., Vyand 45 € Vj, 1 =i = k. The node V; is the root of the cent-tree and the node V; = {i;} has
parent the node Vj = {u;} in To(G) if 1; is the least ancestor of u; in Ty4(G) that belongs to R. The vertex u ¢
R of the graph G belongs to the node set Vj if the least ancestor of u in T4((%) that belongs to R is the
vertex uj, 1 =i < k; see Figure 4.

More precisely, we have the following parallel algorithm; it takes as input a QT-graph G and produces
the cent-tree of the graph G.

Algorithm Cent-Tree-Construction (CT_CON):

Step 1. Compute the d-tree T3(G) with vertex set {r = vy, v3, ..., vy} using Algorithm QT_CON;
Step 2. For each vertex v € Ty(G), 1 =i =< n, do in parallel

If v; is the root r of the tree or its parent p(v;) has more than one child, then

set color(vy) « red; otherwise color(v;) « black;

Let r = uy, ua, ..., 1y be the red vertices of Tg, k21;
Step 3. For each vertex v € T4(G), 2 <i <n, do in parallel

Find the least ancestor uj of vertex v; with read color and set p(v;) «— ujs

Let Ty be the resulting tree; r = u is the root of Ty; we set p(r) « r;



Step 4. For each red vertex u; construct a node set Vi and set V; « {1;}, 1 <i<k;

Step 5. Construct the tree graph T as follows:
3.1 Set Ty« {re=V1, Vo, .., ils
5.2 For each red vertex u; € Ty, 2 <i <k, do in parallel
if w; is the parent of u;, then add the edge (V;, Vj} into E(T);
Step 6. Compute the vertices of each node V1, Vs, ..., Vi of the tree T, as follows:
For each black vertex v; € T'g. 2 i<k, doin parallel
if uj is the parent of vj, then add the vertex v; into node set V;;
Step 7. Root the tree T, at node V;; the rooted tree T, is the cent-tree T.(G) of the graph G;
end.

We next compute the time-processor complexity of the proposed parallel algorithm for the construction of
the cent-tree of a QT-graph. Its step-by-step analysis is as follows:

Step 1: The the d-tree Ty(G) of a graph on n vertices and m edges is constructed in O(logn) time with
O(n + m) processors on the CREW PRAM model using the recognition algorithm QT_CON.

Step 2: Obviously, the parent u of a vertex v; € Ty(G), 2 <i < n, has more than one child if there exist
a vertex vj such that p(v;) = p(vj) = u. Let p(v"1), p(v2), ..., p(v'y) be the sorted sequence of the parents of
the vertices of the tree Ty(G); assume that p(v}) = v|. Then, the vertex v has more than one child if p(v;)
= p(vi.1) or p(v) = p(vi41). Since n elements can be sorted in O(logn) time with O(n) processors on the
EREW PRAM model, this step can be executed within the same time and processor bounds.

Step 3: The tree T, can be computed by using the pointer jumping technique on Ty for each vertex v;
of Ty (1 =i = n) such that p(v) is a black vertex, do the following: p(v;) « p(p(v;)); continue, until plv) is
a red vertex, for every v; e Ty (this is the well-known parallel prefix algorithm [4, 20]). Thus, Ty can be
computed in O(logn) time with () processors on the CREW PRAM model.

Step 4 and 5: It is easy to see that the node sets Vy, V4, ..., Vi, and, thus, the node set V(T¢), can be
computed in O(1) parallel time with O(k) processors on the EREW PRAM model. The pair (V;, ¥j) is an
edge of the tree graph T if the vertex w; € V; has parent the vertex uj € Vj in the tree Ty, Thus, the
computation of the edge set E(T;) can be done in O(1) parallel time with O(k) processors on the EREW
PRAM model.

Step 6: It is easy to see that the elements of the node sets Vi, V5, ..., Vi can be computed from the tree
Tg; the vertex v belongs to V, if the representative u; of the set V; is the parent of v in the tree Ty
Obviously, this computation can be executed in O(1) parallel time with O(n) processors the EREW PRAM
maodel.

Step 7: We apply the Euler tour technique on the tree graph T, to solve the problem of rooting T, at
the vertex Vi; that is, for each vertex V; # V|, we determine the parent p(V;) of V; when T 1s rooted at V).
As we have seen, we can root the tree T, in O(logn) time with O(n / logn) processars on the EREW
PRAM.

Therefore, from the previous step-by-step analysis, it follows that the construction algorithm
CT_CON runs in O(logn) time using a total of O(n + m) processors on the CREW PRAM model of
computation. Thus, we have proved the following:

Theorem 4.1. The cent-tree of a QT-graph can be constructed in O(logn) time with O(n + m) processors
on the CREW PRAM model.



5. Construction of an H-tree of a Hamiltonian OT-graph

Let & be a QT-graph and let To(G) be its cent-tree with nodes Vy, V3, ..., ¥ rooted at V). We have proved
that if G is a Hamiltonian graph then either H-label(V;) = 0 for each node V; € T,{(G) or we can construct
an h-tree Th(G) such that H-label(V;) = 0 for each node V; € T{(G); see Theorem 3.1.

Consider the case where the cent-tree of a Hamiltonian QT-graph G has nodes, say, V9, V72, ..., V3
{(p < k) with H-labels less than zero. In this case, we are interested in constructing an h-tree T,(G) of the
cent-tree T(G). This can be done by moving available vertices from certain nodes of T.(G) to nodes V7,
V%, ..., V] using the v-move operation (see Section 3). Recall that, if a Hamiltonian graph G has a node,
say, Vi, such that H-label(Vi) < 0, then there exists an ancestor Vj of Vj in the cent-tree T(G) such that
H-label(V}) > 0, that is, a node Vi which contains available vertices.

In more detail, an h-tree T,,(G) can be constructed in the following manner: First, we determine the
nodes of the cent-tree T((7) with H-labels greater than zero and the available vertices they contain, Next
we determine the nodes of the cent-tree T(G), say, V1, V2, ..., V3 (p < k), with H-labels less than zero
and compute the number of available vertices we have to v-move to each of these nodes so that H-
labels(V") = H-labels(V?3) = ...= H-labels(V*,) = 0; let ny, na, ..., 0 be these numbers. We add n; dummy
vertices to node V5 (1 =i = p), and we assign to each of these dummy vertices an available vertex; (see
Figure 5(a); the available and the dummy vertices are denoted with grey and white bullets, respectively).
Hereafter, an available vertex which has been assigned to a dummy vertex will be referred to as an
m-vertex. Note that, there is a one-to-one correspondence between the m-vertices and the dummy vertices.
Finally, we move the m-vertices to appropriate nodes of the cent-tree and delete the dummy vertices from
the tree.

It is easy to see that the crucial step of the above construction method is the step in which we assign
available vertices to dummy vertices. This step is efficiently implemented as follows:

(i) We construct the degree-tree T3(G) of the input graph G and paint the available vertices with grey
color; initially, all the vertices of the tree are black. Then, we remove the black vertices (non-
available) from the tree T4(G) using standard pointer jumping techniques. The resulting tree contains
all the available vertices of the cent-tree T(G); we call it available-tree of G.

(ii) Let dv;1, dviz, ..., dvig be the dummy vertices of a node V; and let Vj be the least ancestor of Vj in the
cent-tree such that H-label(V}) > 0; let a-vertices(V}) = (vip, Vi(p+1)» --» Vis). Initially, we assign all the
dummy vertices dvjj, dvi2, ..., dvjg to node vy of the list a-vertices(V}), which in the available-tree has
the longest distance from the root of the tree. We implement this assignment by using the children-
parent relation on the available-tree; more precisely, we make the dummy vertices dv;1, dviz, ..., dvig
to be children of the vertex vij in the available-tree (see Figure 5(b); the available-tres of G along with

its dummy vertices). We mark as m-vertices all the vertices of the available-tree that have children
dummy vertices.

(iii) Then, we check if each of the m-vertices in the available-tree has exactly one dummy child. If so, a
one-to-one correspondence between the m-vertices and the dummy vertices has been achieved.
Consider now the case where there exist m-vertices in the available-tree that have more than one
dummy child. Let v;; be such an m-vertex and let (dvi;, dvia, ..., dvig) be the list of its dummy children,
where d > 1. In this case, we determine d-1 vertices in the available-tree such that they are ancestors
of the m-vertex vj; and have no dummy children; let w3, ..., ujg be these vertices. Then, we make the
dummy vertex dvjj to be a child of the vertex w;j, 2<j < d.



We continue (iii) until we achieve a one-to-one correspondence between the m-vertices and the dummy

vertices in the available-tree.
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Figure 5. (a) Two dummy (white) vertices and their corresponding (grey) available vertices of the
cent-tree of a @T-graph G; (b) The available-tree of G along with its dummy vertices.

We next present a parallel algorithm for the construction of the h-tree T1(G) of the cent-tree of G. Since G
1s a Hamiltonian QT-graph, the algorithm always succeeds in computing the A-tree T4(G).

Algorithm H-Tree-Construction (HT_CON):

Step 1. Compute the cent-tree T.(G) of a Hamiltonian QT-graph & using Algorithm CT_CON,
and the H-labels of each node Vi e T(G), 1 <i < k; note that r. = Vq;

Step 2. If H-label(V;) = 0 for each node V; € T(G), 1 i <k, then
T.(G) is an h-tree; set Ti(G) < TAG) and exit;

Step 3. Compute the degree-graph T4(G) using Algorithm DT_CON,;
Paint the root r of the tree grey and set p(r) + r; initially, all the vertices
of T4(G) are black;

Step 4. For each non-leaf node V; € T(G), 1 <i <k, do in parallel

Let iy, ..., Vjj, ..., Vip be the children of the node Vj, p 2 2, and

let list(V}) = (vi1, ..y Vi(p-1), Vips -+ Vis);

4.1 If H-label(V;) > 0 then
paint the vertex vjj of T4(G) grey, if vj; is an available vertex of the
node set Vi, that is, vj; e a-vertices(Vj);

4.2 If H-label(V;) < 0 then
construct the set D; = {dv;, dvj2, ..., dvig} of dummy vertices, whered=p-s-1;
paint the dummy vertices dvyq, dv;a, ..., dv;g white, and
add them in T4(G) by setting p(dv;j) < vis, 1 £j =d;

Let T, be the resulting tree;



Step 5. For each black vertex u; € T, do in parallel
5.1 Find the least grey ancestor w; of v;, set p(u;) +— wj, and
delete the black vertex u; from T';
Let T, be the resulting tree; it contains only grey and white vertices; that is, T is the
available-tree of G with its dummy vertices; note that, its root r is a grey vertex
but it is not an available vertex.

Step 6. While there exist dummy vertices having the same (grey) parent,
execute Steps 7 through 9;

Step 7. Compute the level function on the tree T rooted at vertex r;

Step 8. For each grey vertex vj € T, do in parallel
8.1 Construct the list (dviy, dvia, ..., dvig) of its dummy children;
8.2 Rank the list (dvj1, dvia, ..., dvig)s
8.3 If g 2 2 then find the ancestor u;; of v; at distance j-1 and
set p(dvij) ¢ w;j for 2 < < g; mark uj; as m-vertex;
B4 If g 21 then mark v; as m-vertex;
Step 9. For each vertex u; € T, such that u; is an m-vertex or p(i;) is an m-vertex, do in parallel
8.1 Find the least grey ancestor w; of u; and set p(i) « wy;
9.2 Compute the set {du;}, duj2, ..., dujg} of the dummy children of vertex u;;
note that, if u; is not an m-vertex (that is, p(i4) is an m-vertex), then this set is empty;
9.3 If g 2 2 then set p(du;;) < w; for2<j<g;
Step 10. Construct the h-tree Ty(G) from the cent-tree T.(G) as follows:
For each set Vj e T.(G) such that H-label(V;) < 0, do in parallel
set Vi « Vi u {p(dvi1), p(dviz), ..., pldvig)}, where dvije D;, 1 =j = d;
delete the vertex p(dv;j) from V; (1 <1 < k), where V, is an ancestor of V; in 7.(G);
end.

In order to determine the time and the number of processors required for the execution of the proposed
parallel algorithm, we shall use a step-by-step analysis.

Step 1. The cent-tree TJ(G) of a OT-graph on n vertices and m edges is constructed in O(logn) time
using O{n + m) processors on the CREW PRAM model; see Algorithms CT_CON.

The number of children Vjj, Vi2, ..., Vip of a node Vi € T(G), 1 =i =k, can be computed in O(log p)
time with O(p / log p) processors on the EREW PRAM. Thus, it is easy to see that the H-label of V] is
computed in ((log 5) time with O(s / log 5) processors on the EREW PRAM, where s is the number of
vertices in Vj. It follows that the H-labels of the cent-tree Tc(G) are computed in O(logn) time with O(n)
processors on the EREW PRAM model.

Steps 2: Obviously, this step is executed in O(logn) time with O(n / logn) processors on the EREW
PRAM model.

Step 3: The degree-tree T3(G) can be constructed in O(logn) time using O(n + m) processors on the
CREW PRAM model; see Algorithm DT_CON.

Step 4: Here, for each node Vi € T.(G), 1 =i <k, either Substep 4.1 or Substep 4.2 is executed.
Substep 4.1. We have computed the number p of the children of each node V; (see the analysis of Step 1).
Then it is easy to see that we can find the available vertices of the node V; by ranking the list(V}) of length
s. It is well-known that the pointer jumping technique can be used to derive an EREW parallel algorithm
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for the list-ranking problem; the corresponding running time is O(log 5) and the corresponding number of
processors is O{s), where s is the number of vertices in V; [4, 20, 28]. Thus, this substep is executed in
O(logn) time with O(n) processors on the EREW PRAM model. Substep 4.2. Obviously, this substep can
be executed in O(1) with O(n) processors on the EREW PRAM model.

Step 5: The tree T can be computed by using the standard parallel pointer jumping technique on 7.
Thus, T can be computed in O(logn) time with O(n) processors on the CREW PRAM model.

Step 6: We can determine whether there exist two (at least) dummy vertices having the same parent
vj € Ty by computing the number g of the dummy children of v;; we have seen that this computation needs
O(logn) parallel time and O(n) processors on the EREW PRAM model.

Step 7: It is well-known that finding the level of each vertex of a rooted tree with n vertices is a
computation which can be done optimally in O(logn) time on the EREW PRAM model [4, 20, 28]. Thus,
this step is executed in O(logn) time with O(n / logn) processors on the EREW PRAM model.

Step 8: This step consists of four substeps which are executed for each read vertex v; € T'y. Substep
8.1. Let dv;y, dvi2, ..., dvjgq be the children of the vertex v; which are dummy vertices. Thus, the list (dv;y,
dvi2, ..., dvig) can be constructed in O(log g) with O(g) processors on the EREW PRAM by sorting its
dummy children in increasing order. Substep 8.2. The list ranking of a list of length ¢ can be done in
O(log g) with O(g) processors on the EREW PRAM. Substep 8.3. The ancestor of each vertex of atree T
with n vertices can be determined in O(logn) with O(n / logn) processors on the EREW PRAM by using
the Euler-tour technique (this computation can also be done using the pointer jumping technique on T
note that in this case the computation needs CREW model). The distance of a vertex from the root of a
tree T can be determined by computing the level function on T. In order to avoid concurrent writes during
the coloring of the ancestor uj; of the grey vertex v;, we implement this substep as follows: for each vertex
ujj € Ty compute the number of its dummy children. If this number is positive then mark the vertex uj; as
m-vertex. Thus, this substep is executed in O(logn) with O{n) processors on the EREW PRAM model.
Substep 8.4. Obviously, this substep needs O(1) time and O(n) processors. Thus, we can easily conclude
that the whole step is executed in O(logn) with O(n) processors on the EREW PRAM model.

Step 9. Having computed the time-processor complexity of Step 8, it is easy to see that this step is
executed in O(logn) time with O(n) processors on the EREW PRAM model.

Step 10: The union of the vertex sets V; and {p(dvi1), p(dvia), ..., p(dvig)}, for all V; such that H-
label(V;) < 0, is executed in (1) time with O{n) processors on the EREW PRAM. The operations of
determining the node set V; such that p(dv;j) € V; and deleting p(dv;;) from V;, 1 <1 < k, requires O(1) time
and O(n) processors on the EREW PRAM model; this computation can be done in constant time since,
during the construction of the node sets Vi, Vs, ..., Vi of the cent-tree T (), we can assign a label, say, i,
in the vertex ve Tgif vbelongsto Vj, 1 i<k

It 1s easy to see than Steps 7 through 9 are executed k times; the value of & is determined subsequently.
We prove the following lemma.

Lemma 5.1. Given a Hamiltonian quasi-threshold graph G, Algorithm HT_CON constructs an h-tree of
; after O(logn) iterations of Steps 7 through 9.

Proof. Let Tg be the tree after an execution of Steps 7 through 9 and let vy, vy, ..., vy, be the read vertices
of T, each of which has at least two dummy children. Hereafter, we shall call these vertices active grey

vertices. The algorithm terminates the execution of Steps 7 through 9 when, after an iteration of these
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steps, the tree T;; remains with no active grey vertices.

We observe that after an execution of Steps 7 through 9 no vertex vy, v, ..., vy remains active. A non-
active grey vertex w; becomes active vertex if Step 8.3 generates vertices i; having at least two dummy
children and the vertex w; is the least read ancestor of u;. If so, then Steps 9.1 makes the vertex u; child of
w;y and Step 9.3 moves all but one dummy child from u; to w;. It is easy to see that, the vertex w; becomes
an active grey vertex if there exist p 2 1 children of w; having a total of m 2 p + 2 dummy children. If this
is the case, then there exists a child of w; having at least two dummy children.

Let u; be such a child of the vertex w;. Since 1; has more than one dummy children, it follows that at
least two of the vertices vy, v4, ..., v are needed for the generation of the vertex w;. Thus, an execution of
Steps 7 thought 9 halves the number of active read vertices in the tree T

The above proves that no active grey vertex exists in the tree T;; after O(logn) iterations of Steps 7
through 9. That is, each grey (available) vertex in T, has at most one dummy child. Thus, the tree T.(G)
that is constructed in Step 10 is an h-tree of the cent-tree T.(G), and, thus, the lemma holds. O

From the previous step-by-step analysis and Lemma 5.1, it follows that the h-tree construction
algorithm HT_CON runs in O(log?n) time using a total of O(n + m) processors on the CREW PRAM
model of computation. Thus, we have proved the following:

Theorem 5.1. An h-tree of a Hamiltonian QT-graph can be constructed in O(log?n) time with O(n + m)
processors on the CREW PRAM model.

6. Finding a Hamiltonian Cycle in a QT-graph

In Section 3 we proved necessary and sufficient conditions for a Q7-graph to be Hamiltonian (see
Theorem 3.1). Based on these conditions, we can construct a parallel algorithm for finding a Hamiltonian
cycle in a Hamiltonian OT-graph.

Let us first describe a sequential algorithm for the problem. Let G be Hamiltonian QT-graph and let
TAG) be its cent-tree with nodes Vy, Va, ..., Vi and root V). If H-label(V;) = 0 for each node Vi e T{G),
then Th(G) := T.(G); otherwise, we construct an h-tree of To(G). Consider the h-sequence (Vi1 Va1ys ---
V1) of the tree T,(G) and construct the h-dfs tree of the graph G using the h-dfs traversal strategy on the
tree Th(G). We select an arbitrary vertex v from the set Vy) as start point. Since H-label(V;) 2 0 for each
node Vj e Ty(G), it is easy to see that each node of the h-dfs tree rooted at v € Vi) has at most one child;
its unique leaf u belongs to node V) and, thus, (v, u) € E(G); see Figure 7. Thus, we can find a
Hamiltonian cycle of the graph & from its h-dfs tree.

We have already described efficient parallel algorithms for constructing the cent-tree and the fi-tree of

a QT-graph G (see Sections 4 and 5). Moreover, it is easy to see that the h-sequence of the graph G can be
also efficiently constructed in a parallel environment; the leaves Vi1, Via), ..., Vi of the cent-tree or the

h-tree of G are computed by using the Euler-tour technique and the nodes Vy(1y. Va2, ... Vaper are
computed by solving the LCA problem [4, 20]. Therefore, it is becoming obvious that we need an efficient
parallel algorithm for the h-dfs traversal strategy, that is, an algorithm for constructing the h-dfs tree of the
QT-graph G. Thus, we will restrict our attention to design such an algorithm. Note that, no efficient
parallel algorithm has been so far developed for the dfs traversal; various graph numberings, including dfs,

where the numbering algorithm is restricted to a particular order of traversal of the edges of the graph
is P-complete [28].
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Next we describe a method for constructing the h-dfs tree of a Hamiltonian Q7-graph G, which leads
to an efficient parallel algorithm for constructing a Hamiltonian cycle on G; it works as follows:

(i) Let V(G) be the vertex set of the input graph. We first construct a directed graph F with W(F) = V(G)
and E(F) = &;

(ii) Then, we compute the h-sequence (V1y, Var1)s ---» Vaqy = V1) of the h-tree T(G), and the list(V;) =
(Vi1s ¥i2, --» ¥is) Of each node V; of the h-tree; we add the edge (vij, vij+1)) in E(F), 1 <j <s-1;

(iii) Let Vi), Vagi). Vigse1) be three consecutive node in the h-sequence. Let V) be the jth occurrence of
Va(i) in the h-sequence and let list(Vyiy) = (Vi1, ...y Vijs -..» Vis). We compute the last vertex v and the
first vertex w, of the lists list(Vgi)) and list(Vgjs1)), respectively. Then, we add the edges (ve, vjj) and
{vij, vn) in E(F), and delete the edge {vi(j.1), vij) from E(F), 1 <j <s.

Let v be the first vertex of the node Vi1 and let T be the underline undirected graph of the resulting
graph F. By construction, the graph T is a tree. We root the tree T at vertex v and let T be the resulting
rooted tree. It is easy to see that T; may contain vertices that have two children (see Figure 6). Thus, Steps
(i)-(ii1) of the above method do not guarantee the construction of the h-dfs tree of the graph G. Figure 6
depicts the results of Steps (i)-(iii).
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Figure 6. The results of Steps (i)-(111) of the h-dfs tree construction of a @T-graph G,

Having computed the directed graph F using Steps (i)-(iii), let us now describe how we can modify the
edge set of F so that the underline undirected graph of the resulting graph F produces the h-dfs tree of the
graph G. We modify the edge set E(F) as follows:

(iv) Let Vy) be an internal node of the h-tree, 1 < i < 1. We first determine the vertex vj; of its list
list(Vy(i)) = (Vits -+.s Vijs - Vis), if it exists, with the property: there are vertices x € Vyj) and y € Vi)
such that {v;;, x) and (vjj, ¥} are edges in E(F);

(v) Then, we delete the edge {vjj, ¥} from E(F), determine the last vertex vis of list(Vyj)) and add the edge
(Vis, ¥) In E(F);
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Let T be the underline undirected graph of the graph F computed by the above method. Steps (iv)-(v)
guarantee that 7 is a tree graph. Again, we root the tree graph T at vertex v and let T be the resulting
rooted tree. It is easy to see that each internal vertex of the tree T;; has now exactly one child, and, thus, T

is the h-dfs tree of the graph G (see Figure 7).
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Figure 7. The structure of a Hamiltonian cycle of a QT-graph G; it is produced using
the h-dfs traversal strategy on the h-tree Ty(G).

Thus, we can produce a Hamiltonian path (v = vy, va, ..., vy = u) of the graph G, using the h-dfs tree
constructed by the above method. The root v of the h-dfs tree belongs to node Vi1 and its unique leaf

belongs to node Vy and, thus, (v, u) € E(G). We add the edge (v, u) in E(F) and take the underline

undirected graph T of the resulting graph; T is a Hamiltonian cycle of G.
We next present in a more formal way the parallel algorithm for the construction of a Hamiltonian

cycle of a OT-graph.

Algorithm Hamiltonian-Cycle-Construction (HC_CON):
Step 1. Compute the h-tree Ty,(G) of a Hamiltonian QT-graph G using Algorithm HT_CON;
Let Vi, V5, ..., Vi be the nodes of the tree Ty, rooted at m, = Vi;
Step 2. Compute the i-sequence of the h-tree T(G); that is,
h-sequence(Ty(G)) = (Vi1), Vacn)s Ve ---» Vi Vawy = V1),
Step 3. Construct a directed graph F with V(F) = V(G) and E(F) = @,
and paint its vertices black;

Step 4. For each vertex Vi e T(G), 1 =i <k, do in parallel
Construct the linked list list(V;) = (vi1, vi2, ..., Vi) and
add the edge (vjj, viij+1)) in E(F), 1 £j <s-1;
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Step 5. For each internal node Vi) € h-sequence(T1(G)), 1 <i <, in parallel
If Vi) is the jth occurrence of Vyj) in h-sequence(Ti(G)), then
5.1 find the jth vertex vjj of the list(Vyi)) = (Vi1, ...\ Vijs -os Vishi
5.2 add {v,, vij} and {vij, vy in E(F), where v, and vy, are the last and
the first vertices of list(Vi;) and list(Vis1) mod o). Tespectively;
5.3 paint v;; read;
Step 6. For each internal node V) e h-sequence(Ty(G)), 1 <i <1, do in parallel
If vij and vj(j+1) are read vertices of Vyj), then delete edge (vjj, vi(j+1)) from E(F);
else if vij 1s a read vertex and vj(j+1) is a black vertex, then
delete (vjj, vy) from E(F) and add {ve, vy} in E(F), where v and v, are
the last and the first vertices of list(Vyi)) and list(Viis1) mod 1), respectively;

Step 7. Construct a spanning cycle C of G as follows:
Set V(C) « V(F);
For every edge (v, v} in E(F), add (v, vj) in E(C);

end.

Let us now compute the time-processor complexity of the proposed parallel algorithm for the construction
of the cent-tree of a OT-graph. We shall use a step-by-step analysis.

Step I: The h-tree Ty(G) of a QT-graph on n vertices and m edges is constructed in O(log2n) time
with O(n + m) processors on the CREW PRAM model using Algorithm HTC.

Step 2: Let h-sequence(Th(G)) = (Viy. Vays Viezys -+ Vi Vaqy)- By definition, the node sequence
Vitrys Vi2ys --» Vi) 18 a left-to-right order listing of the leaves of the tree Ty(G), and the node Vy) is the
lowest common ancestor of the nodes Vi) and Viisq), where 2 £ f(i) £ kand 1 £i £ r-1. It is well-known
that we can optimally compute the left-to-right order listing of the leaves of a tree in O(logn) parallel time
on the EREW PRAM model by using the Euler-tour technique [4, 20]. We can also optimally compute the
lowest common ancestor of two vertices of a rooted tree in O(logn) parallel time on the CREW PRAM
model [4, 20]. Thus, the A-sequence of the h-tree Ty(G) can be computed in O(logn) time with O(n / logn)
processors on the CREW PRAM model; note that the cent-tree has k nodes, where k< n.

Step 3: The directed graph F can be constructed in O(1) time with O(n) processors on the EREW
PRAM model and its vertices can be painted within the same time-processor complexity.

Step 4. The list list(Vi) = (i1, vi2, ., Vis), 1 £ i £ k, can be constructed in O(log 5) time with O(s)
processors on the EREW PRAM model, since its elements can be sorted in O(log §) time with O(s)
processors on the same model of computation. Thus, the whole step can be executed in O(logn) time with
ONrt) processors on the EREW PRAM model.

Step 5: Let list(V;) = (viy, ..., Vij, - Vis) be the list of the vertices of the node Vj e Ty(G), 1 i<k Itis
well-known that the list-ranking of /ist(Vj) determines the distance of each vertex v;; from the first vertex
vj; of the list. The list-ranking problem on a list with 5 vertices can be solved in O(log s) time with
O(s / log s5) processors on the EREW PRAM model. Thus, we can rank all the lists list(V;), 1 i <k, of the
nodes of the tree T,(G) in O(logn) time with O(n) processors on the EREW PRAM model. Then, we can
easily see that all the operations of this step are executed within the same time and processor bounds.

Step 6: It is easy to see that, this step is executed in O(1) time with O(n) processors on the CREW
PRAM model.

Step & Obviously, this step is executed in O(1) time with ((n) processors on the EREW PRAM
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model, since the connected directed graph F has O(n) edges.

Therefore, from the previous step-by-step analysis, it follows that the Hamiltonian cycle construction
Algorithm HC_CON runs in O(logn) time using a total of O(n + m) processors on the CREW PRAM
model of computation. Thus, we have proved the following:

Lemma 6.1. A Hamiltonian cycle of a (T-graph can be constructed in D{logzn} time with {n + m)
processors on the CREW PRAM model.

Corollary 6.1. If the cent-tree of a QT-graph G is an h-tree, then a Hamiltonian cycle of G can be
constructed in (logn) time with Q(n + m) processors on the CREW PRAM model.

7. Finding the Hamiltonian Completion Number of a QT-graph

It is well known that it is NP-complete to recognize whether a graph is Hamiltonian [5]. Based on the
results of Section 3, we can construct parallel algorithms for computing the Hamiltonian completion
number Acn(G) and finding the Hamiltonian completion edge set CE(G) of a OT-graph G. Obviously, if
hen(G) = 0 then G is a Hamiltonian graph. Thus, the algorithm for computing the number hen(G) is also a
recognition algorithm.

Let G be a non Hamiltonian Q7-graph and let T,(G) be its cent-tree. From Theorem 3.1, we obtain
that there are some nodes in the cent-tree T.(G) with negative H-labels and the h-tree of To(G) does not
exist; that is, Algorithm HT_CON fails to construct the h-tree T;(G). That means, we cannot achieve a
one-to-one correspondence between the m-vertices and the dummy vertices of the available-tree of G; see
Section 5.

In this case we are interested in computing the minimum number of edges which need to be added to
E(G) to make the graph G Hamiltonian. To this end, we construct a Hamiltonian OT-graph D from the
graph G by adding a number of vertices in the set W(G) and appropriate edges in the set E(G); we call
these vertices d-vertices. We shall define the graph D through its corresponding h-tree; we call dh-tree the
h-tree of the graph D. The dh-tree is constructed from the cent-tree T(G) of the graph G; the construction
algorithm is as follows.

Algorithm DH-Tree-Construction (DHT_CON):

Step 1. Modify Step 6 of Algorithm HT_CON as follows:
“Fori=1.2..., rlng n | do, execute Steps 7 through 97;
Let T be the available-tree along with its dummy vertices, which is returned
by the modified Algorithm HT_CON;

Step 2. For each m-vertex u; € T, do in parallel
2.1 Compute the number ¢; of the dummy (white) children of vertex i;;

Step 3. For each m-vertex u; € T, such that ¢; > 1 , do in parallel
3.1 Find the node V; of the cent-tree T(G) in which the m-vertex u; belongs;
3.2 Add ¢j d-vertices into node Vj;
end.

The time and processor complexity of the parallel algorithm for constructing the dh-tree of the graph
D can be computed as follows: Step I: The modified Algorithm HT_CON runs in O(log?n) time with



O(n + m) processors on the CREW PRAM model. Step 2: It is easy to see that the available-tree
contains (Nn) vertices, since it contains less vertices than the degree-tree T3(G), which contains n vertices,

and at most n-1 dummy vertices. Thus, the number ¢; of the dummy children of a vertex i; is computed in
(logn;) time with O(n;) processors on the EREW PRAM, where 1 =i < 2n. Thus, this step is executed
in O(logn) total time with O(n) processors. Step 3: Both Substeps 3.1 and 3.2 can be executed in O(1) with
O)(n) processors on the EREW PRAM. Thus, we have the following result.

Lemma 7.1. Algorithm DHT_CON runs in O(log2n) time with O(n + m) processors on the CREW PRAM
model.

The dh-tree, constructed by Algorithm DHT_CON, and the cent-tree T.(G) have the same structures.
Moreover, the dh-tree has the property that H-label(V;) = 0 for each its node Vi, 1 <i < k; note that the
node V; of the dh-tree contains the vertices of the node V; of the cent-tree along with, probably, some other
d-vertices. Thus, the graph D that corresponds to dh-tree is a Hamiltonian QT-graph.

More precisely, let vy, v, ..., v, be the vertices of G and let &'y, s, ..., u'y be the d-vertices added to
T(G) by the dh-tree construction algorithm. Then, the graph D is the following:

{i} V{D) = {Ulr ."IZu freg Vnt u‘]t u’j, EEEEY u’h}, and
(ii) E(D) contains all the edges of G and the edge (", v) € E(D), if " € { u'}, u'5, ..., W'y} withu' e V;

and v e Vj, and either Vj = V| or V] is an ancestor or predecessor of Vj in the cent-tree T(G)

By construction, the Hamiltonian Q7-graph D contains the QT-graph G as an induced subgraph.
Moreover, it is easy to see that if we remove a vertex from D then it is no longer a Hamiltonian Q7-graph.
This proves the following result.

Lemma 7.2. The graph D is a minimum order Hamiltonian OT-graph that contains the QT-graph G as an
induced subgraph.

Let G be a non Hamiltonian QT-graph and let T(G) be its cent-tree. We consider the Hamiltonian Q7-
graph D along with its dh-tree. We have shown that, a Hamiltonian cycle in the graph D can be produced
using the k-dfs tree of D; recall that the A-dfs tree is constructed by the h-dfs traversal strategy on the h-
tree. We prove the following result.

Lemma 7.3. The Hamiltonian completion number hcn(G) of a non Hamiltonian QT-graph G equals the
number of d-vertices added to V(G) by Algorithm DHT-CON; that is, hen(G) = | V(D) | - | V(G) |.

Proof. Consider the h-sequence (V1) Va1, -.., V1) of the h-tree and the h-dfs tree of the graph D. Let v
€ V1) be the root of the h-dfs tree and let HC = (v, ..., v, &', W, ..., v) be the Hamiltonian cycle which is
produced by the h-dfs tree, where u”is a d-vertex. Note that, HC is a cycle on n + h vertices, where n is the

number of vertices in & and h is the number of d-vertices added by Algorithm DHT-CON in the nodes of
the cent-tree T(G). By construction, the cycle HC has the following properties:

(i) If &’ is a d-vertex in HC, then its two adjacency vertices, say, v; and v, are not d-vertices; that is, v;,
v, € VG), and

(ii) ifv; & V; and v, & V. then both nodes V; and V, are leaves in T.(G) and V; # V..
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Thus, if we remove each d-vertex u” from HC and makes the vertices v; and vy to be adjacent, the resulting
structure HC is a cycle on n vertices vy, va, ..., V.

Since the vertices v; and vg belong to deferent leaves in T.(G), it follows that v; and v are not
adjacent in the graph G. Thus, if we add the edges (v, w) in E(G), then the resulting graph G’ is
Hamiltonian and the cycle HC" is a Hamiltonian cycle of it.

We have proved that the number h of d-vertices that need to be added to the nodes of TJG) to
produce the dh-tree is minimum. The graph G* is Hamiltonian, V(G") = V(G), E(G") = E(G) and | EGH |
= | E(G)| + h. Therefore, h = hcn(G) and the lemma is proved. O

The preceding lemma provides a parallel algorithm for computing the Hamiltonian completion number of
a QT-graph on n vertices. Moreover, it provides a parallel algorithm for computing the Hamiltonian
completion edge set CE((G); that is, the set of edge which need to be added to E(G) to make G
Hamiltonian. Note that, | CE(G)| = hen(G). Thus, we have the following theorem.

Theorem 7.1. The Hamiltonian completion number of a OT-graph G on n vertices and m edges can be
computed in O(log?n) time with O(n + m) processors on the CREW PRAM model. Moreover, the
Hamiltonian completion edge set of G can be computed within the same time bound.

The algorithms we have previously described for computing the number hen(G) and constructing the edge
set CE(G) of a QT-graph are based on the computation of a Hamiltonian cycle of the graph D and
construction of the d-tree of D.

It is possible, however, to obtain a much simpler parallel computation for the Hamiltonian completion
number of a QT-graph G, if we make use of the structural properties of the cent-tree T(G) and the
H-labels of its nodes. This computation is described in the following algorithm; recall that this algorithm
can also be served as a recognition algorithm for Hamiltonian QT-graphs.

Algorithm Hamiltonian-Completion-Number (HCN):

Step 1. Compute the cent-tree T(G) of G using Algorithm CT_CON;
Let Vi, V5, ..., Vi be the nodes of the tree T.(G) and let r. = Vj be its root;

Step 2. Make the cent-tree T((G) binary as follows:

Replace each node V; having more than two children, say, Vi, Vi, ..., Vip,

with a balanced binary tree whose leaves are the children of Vi;

the root of the balanced binary tree is the node V; and its internal

nodes Vip+1)s Vigpe2)s s Vip are empty sets;

Let Ty, be the resulting binary tree and let Vi, Vs, ..., Vi be its nodes, &' = k;

Step 3. For each node Vi e Ty, (1 =i < k), compute the label H-label(V}) as follows:

H-label(Vj) « | V; | - 2, if Vi is the root of the tree,

H-label(V:) « | Vi | - 1, if V; is an internal node, and

H-label(V;) « 0, if V; is a leaf;

Step 4. Contract the binary tree T, into a three-node binary tree, using the rake operation;
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When a node V; is subject to rake operation, we adjust the H-label either of the
node p(p(V;)), that is, the parent of the node p(V;) or of the node sib(V}), as follows:
If H-label(p(V;)) < 0 then
H-label(p(p(V;))) < H-label(p(p(V;))) + H-label(p(V}));
else
if sib(V;) is an internal node then
H-label(sib(V;)) <~ H-label(sib(V})) + H-label(p(V}));
Let Vi be the root of the resulting three-node tree and let Vj;, V)3 be the
children of Vq;

Step 5. Compute the Hamiltonian completion number hen(G) of G as follows:
If H-label(V]) <0 then hen(G) | H-label(Vy) + H-label(V)) + H-label(V|2) ]
else hen(G) « 0; that is, & is a Hamiltonian QT-graph;
end.

We next compute the time-processor complexity of the proposed parallel algorithm for recognizing
Hamiltonian Q7-graphs, using a step-by-step analysis.

Step I: The cent-tree T(G) of a quasi-threshold graph on n vertices and m edges is constructed in
O(logn) time with O(n + m) processors on the CREW PRAM model using Algorithm CT_CON.

Step 2: The cent-tree T(G) can be made binary by replacing each node V; having more than two
children, with a balanced binary tree whose leaves are the children of Vj. It is easy to see that this
computation can be done in O(logn) time with O(n) processors on the EREW PRAM.

Step 3: The H-label(V;) of a node V; is computed in O(logn;) time with O(n;) processors on the EREW
PRAM, where 1 =i < k' and k' = O(n). Thus, this step is executed in O(logn) total time with O(n)
Processors.

Step 4: Tt is well-known that we can shrink a binary tree into a three-node binary tree by successfully
applying the rake operation which merging a leaf with its parent; the parallel tree-contraction algorithm
can be implemented on the EREW PRAM model in O(logn) time using O(n / logn) processors [4, 20].
Since k' = O(n), this step is executed in O(logn) time with O(n / logn) processors on the same
computational model.

Step 5: Obviously, both steps are executed in C(1) sequential time.

From the previous step-by-step analysis, we conclude that the recognition algorithm HCR runs in O{logn)
time using a total of O(n + m) processors on the CREW PRAM model of computation. Thus, we have
proved the following result.

Theorem 7.2. The Hamiltonian completion number of a OT-graph on » vertices and m edges can be
computed in O(logn) time with O(n + m) processors on the CREW PRAM meodel.

Corollary 7.1. It can be decided whether a QT-graph on n vertices and m edges is a Hamiltonian graph in
O(logn) time with O(n + m) processors on the CREW PRAM model.

8. Coloring and other Optimization Problems

The algorithmic properties of the QT-graphs, which we have shown in this paper, allow us to efficiently
solve other optimization problems on such graphs in parallel. Specifically, we can solve the coloring
problem, the maximum clique problem, the maximum independent set problem and other problems in
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O(logn) time using a linear number of processors on the CREW PRAM model.

Let G be a OT-graph and let V;, V5 , ..., Vi be the nodes of the cent-tree T. of G. We have shown in
Section 2 that for every two nodes V, and V, such that V; < V}; that is, V is an ancestor of V| in T, the
graph G[{UV; | Vi < V; <V;)] is a complete graph. Moreover, for every maximal element V, of ({V;}, ).
the graph G[{UV; | V; <V; <V;}] is a maximal complete subgraph of G.

Based on these properties, it is easy to see that the height of the tree Ty of the graph G, which is
constructed by the Algorithm QTR, equals the clique number (G) minus 1; recall that a leaf vertex of the
tree Ty has height 0. Moreover, the vertex set which contains the vertices of the ith level of the tree T,
induces a stable graph. Since w(G) = 3(G), we can color the graph G by computing the level I{v;) of each
vertex v; of the tree T and setting color(vi) = l(vj), 1 £i < n; assuming that I(r) = 1, where r is the root of
the tree 7.

Let u be a leaf of the tree T such that (1) = @(G) and let MC be the set of vertices of the path from the
root r of Ty to vertex u. Then, the vertex set MC is the maximum clique of the graph G. Thus, we can
easily compute the set MC using the parallel pointer jumping technique on the tree 7.

Let § = {vs, vs41, - Vi --» Vg) be a stable set such that v, € V; and V; is a maximal element of ({Vi}, <)
or, equivalently, V; is a leaf node of T, s < t < g. It is easy to see that § has the maximum cardinality a(G)
among all the stable sets of G. It is also easy to see that S is the set leaves vertices of the tree T;. We have
seen that we can find the leaves of the tree T, using the Euler-tour technique on 7.

Taking into consideration the above discussion, the complexity of the algorithms for constructing the
trees T and Ty, and the complexity of some standard algorithmic techniques for computing the level
function, the set of the leaves and certain paths on the tree Tg, we state the following results.

Theorem 8.1. The problems of coloring a QT-graph G on n vertices and m edges and finding the

maximum clique and the maximum independent set of G can be solved in O(logn) time with O(n + m)
processors on the CREW PRAM model.

9. Concluding Remarks

In this paper we showed structural and algorithmic properties on the class of QT-graphs and proved
necessary and sufficient conditions for a QT-graph to be Hamiltonian. We also showed that a QT-graph G
has a unique tree representation, that is, a tree structure, we called it cent-tree, which meets the structural
properties of G.

By taking advantage of these properties and conditions, we constructed efficient parallel algorithms
for finding a Hamiltonian cycle and computing the Hamiltonian completion number and the Hamiltonian
completion edge set of a QT-graph; our algorithms run in O(Ingjn} time and require (N(n + m) processors
on the CREW PRAM model, where n is the number of vertices and m is the number of edges of the input
graph. We showed that the problem of computing the Hamiltonian completion number of a OT-graph can
also be solved in O(logn) time with O(n + m) processors, which, in turn, implies an (logn)-time parallel
algorithm for recognizing whether a QT-graph is Hamiltonian. We also presented parallel algorithms for
other optimization problems on QT-graphs which run in O(logn) time using a linear number of processors.

Based on the structure of the cent-tree of a QT-graph, we also designed O(logn)-time parallel
algorithms for some other well-known optimization problems on QT-graphs. For example, we showed
that the maximum clique problem, the maximum independent set problem, the clique cover problem and
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the coloring problem can be solved in O(logn) time with linear number of processors.

Different problems can be foreseen for further research. An interesting optimization problem is the
construction of a Hamiltonian cycle of a OT-graph G in the weighted case: each vertex and/or edge of
G has certain weight and we wish to minimize the total weight of edges in a Hamiltonian cycle (for results
on “heavy"” paths and cycles in weighted graphs, see [34]). A second problem that is worth studying is the
weighted version of the Hamiltonian completion edge set problem: we wish to minimize the total weight
of the edges (with respect to the weights of its end-vertices) of the set CH(G). We pose these as open
problems for algorithmic study.

A topic for further research is the study of problems on the line graph of a QT-graph (for results on
line graphs, see [7, 8, 29, 32]). One can work towards the identification of structural and algorithmic
properties of such graphs, which may lead to parallel and/or sequential algorithms for the Hamiltonian
problems we consider here as well as for other combinatorial and optimization problems.
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