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Abstract

This paper studies the problem of discovering subsequences, known as motifs, that are
common to a given collection of related biosequences, by proposing a greedy algorithm for
learning a mixture of motifs model through likelihood maximization. The approach adds
sequentially a new motif to a mixture model by performing a combined scheme of global
and local search for appropriately initializing its parameters. In addition, a hierarchical
partitioning scheme based on kd-trees is presented for partitioning the input dataset in
order to speed-up the global searching procedure. The proposed method compares fa-
vorably over the well-known MEME approach and treats successfully several drawbacks
of MEME. Experimental results indicate that the algorithm is advantageous in identify-
ing motifs with significant conservation and leads to the development of larger protein
fingerprints.

1 Introduction

In protein sequence analysis motif identification is one of the most important problems cover-
ing many application areas. It concerns the discovery of portions of protein strands of major
biological interest with important structural and functional features. For example, conserved
blocks within groups of related sequences (families) can often highlight features which are
responsible for structural similarity between proteins and can be used to predict the three
dimensional structure of a protein. Consequently, the motifs are biologically informative in
the sense of modeling efficiently sequences and holding useful information about biclogical
families. Therefore, the proteins belonging to a family can be considered as sequences of
motifs separated by an arbitrary number of randomly selected characters which indicate the
background information. The last observation is also associated with the problem of multiple
alignment of sequences where motif occurrences represent the alignment regions that can be
visualized more easily compared to the background information. A detailed discussion about

motif discovery applications can be found in [17].



Instead of using them for extracting conservative information and identifying structurally,/
functionally important residues, the notion of motifs can also be used for characterizing bi-
ological families and searching for new family members [6]. Motifs may enclose powerful
diagnostic features, generate rules for determining whether or not an unknown (not charac-
terized) sequence belongs to a family and thus define a characteristic function for that family.
This leads to the development of diagnostic signatures (fingerprints) that contain groups of
conserved motifs used to characterize a family. The PRINTS (or PRINT-S) database [1] is
an example of protein fingerprints database containing ungapped motifs that will be used in
OUr experiments.

Usually, patterns or motifs can be distinguished into two general classes: deterministic
and probabilistic [6, 7]. A deferministic motif encloses grammatical inference properties in
order to describe syntactically a conserved region of related sequences using an appropriate
scoring function based on matching ecriteria. Special symbols, such as arbitrary characters,
wild-cards and gaps of variable length can be further used to extend the expressive power of
deterministic patterns allowing a certain number of mismatches. The PROSITE database [10]
consists of a large collection of such patterns used to identify protein families. On the other
hand, a probabilistic motif is described by a probabilistic model that assigns a probability to
the match between the motif and a sequence. The position weight matriz (PWM) provides a
simplified model of probabilistic ungapped motifs representing the relative frequency of each
character at each motif position. The ungapped mode suggests that the motif contains a
sequence of statistically significant characters (contiguous motif) and corresponds to local
regions of biological interest. Examples of more complicated probabilistic motifs (allowing
gaps, insertions and/or deletions) are profiles and Hidden Markov models [9].

Many computational approaches have been introduced for the problem of motif identifi-
cation in a set of biological sequences which differ according to the type of motifs discovered.
In the literature there exist excellent surveys [6, 17, 7] on topics related to motif discovery
techniques. The SAM approach [11], Gibbs sampling [12], MEME [3] and probabilistic suffix
trees [5] represent probabilistic methods for finding multiple shared motifs within a set of un-
aligned biological sequences. Among those, the MEME algorithm fits a two-component finite
mixture model to a set of sequences using the Ezpectation Mazimization (EM) algorithm [8],
where one component describes the motif (ungapped substrings) and the other describes the
background (other positions in the sequences). Multiple motifs are discovered by sequentially
applying a new mixture model with two components to the sequences remaining after erasing
the occurrences of the already identified motifs.

In this paper we present an innovative approach for discovering significant motifs in a set



of sequences based on recently developed incremental schemes for Gaussian mixture learning
[13, 22]. Our method learns a mixture of motifs model in a greedy fashion by incrementally
adding components (motifs) to the mixture until reaching some stopping criteria or up to a
desired number of motifs. Starting with one component that models the background, at each
step a new component is added which corresponds to a candidate motif. The algorithm tries to
identify a good initialization for the parameters of the new motif by performing global search
over the input substrings together with local search based on partial EM steps for fine tuning
of the parameters of the new component. In addition, a hierarchical clustering procedure
is proposed based on kd-tree techniques [4, 20, 21] for partitioning the input dataset of
substrings, which can reduce the time complexity for global searching and therefore accelerate
the initialization procedure.

In analogy to the MEME approach, our technique discovers motifs when neither the
number of motifs nor the number of occurrences of each motif in each sequence is known.
However, as it will be experimentally shown and discussed in more detail later, the main
difference with MEME technique is the way that the mixture models are applied. Although
both methods treat the multiple motif identification problem through mixture learning using
the EM algorithm, our approach is able to effectively fit multiple-component mixture models.
This is achieved through a combined scheme of global and local search, which overcomes
the problem of poor initialization of EM that frequently gets stuck on local maxima of the
likelihood function. This results in exploring the input dataset efficiently and the discovery
of greater number of motifs. The experiments with the PRINTS database verify this feature
of our method which is of biological importance since it may lead to the discovery of larger
protein fingerprints.

On the other hand, the inability of efficiently handling a mixture model with g compo-
nents (g > 2) causes the MEME algorithm to reduce the multiple-component problem to the
iterative application of a two-component mixture model. Each time a new motif is discovered
the occurrences of this motif are erased, pruning in such way the input dataset. Therefore
the MEME approach does not allow the parameters of this motif to be reestimated in fu-
ture steps, and thus future discovered motifs cannot contribute to possible re-allocation of
the letter distribution in the motif positions. This drawback becomes significant in the case
where they exist motifs that partially match, since these motifs are recognized by the MEME
algorithm as one "composite” motif that cannot be further analyzed due to the removal of
the motif occurrences.

The outline of this paper has as follows. In section 2 the proposed greedy mixture learning

approach for motif discovery in a set of sequences is presented, together with a novel technique



for partitioning the data space in order to reduce the time complexity of global searching.
Section 3 presents experimental results considering both artificial and real biological datasets
to evaluate the performance of our method in motif discovery problems. The comparative
results indicate the superiority of the proposed greedy EM approach and establish its ability
to generate more powerful diagnostic signatures. Finally, section 4 summarizes the proposed

method and addresses directions for future research work.

2 Greedy EM algorithm for motif discovery
2.1 The mixture of motifs model

Consider a finite set of characters £ = {ay,...,an} where ! = |E|. Any sequence § =
a1as...ar, such that L > 1 and a; € I, is called a string (or segquence) over the character
set . The sequence S starts from position 1 and ends at position L = |S|. The consecutive
characters a; ... a;+w—1 form a substring r; of S length W, identified by the starting position
i over the string 5. There are n = L = W + 1 such possible substrings of length W generated
from sequence S.

We assume a set of N unaligned sequences S = {S;,...Sx} of length L,..., Ly, respec-
tively. In order to deal with the problem of motif discovery of length W we construct a new
dataset containing all substrings of length W in S. Since for each original sequence S; (of
length L;) there are my; = Ly — W + 1 possible substrings of length W, we obtain a training
dataset X = {z;,...,zn} of n substrings (n = Zf: 1 M) for the learning problem.

A mixture of motifs model f for an arbitrary substring z; assuming g components can be

written as:

g
f(Ii?'I’g)=ZWj¢j(Iﬁ?3j).~ (1)

j=1
where ¥, is the vector of all unknown parameters in the mixture model of gy components,
ie Wy =[m1,...,7g-1,01,...,8)]. The mixing proportion 7; (m; = 0,¥j=1,...,9) can be
viewed as the prior probability that data x; has been generated by the jth component of the
mixture and they satisfy Z_,EJ-':I 7 =L

Each one of the y components corresponds to either a motif or the background. A motif
j can be modeled by a position weight matrix PWM; = Lpfk] of size [Q2 x W], where each
value pflk denotes the probability that the letter a; is located in motif position k. Although
the general model considers motifs of variable length W}, in the sequel we assume motifs of
constant length W. On the other hand, a background component j is represented using a
probability vector BPM; (of length (1), where each parameter value gf denotes the probability

of letter oy to occur at an arbitrary position. The probability that a substring z; = a1 . . . agw,



where a;x € £ (k= 1,...,W) has been generated by the component j is

if j is motif
ostai0y) = { Miza P 17 .~ @)
Hk_ 1 95'1 . i j is background
where the probability matrix PWM; (or BPM;) corresponds to the parameter vector #;.
The log-likelihood of the observed dataset X corresponding to the above model is

= log f(i: ¥y)- 3)

i=1
Formulating the problem as an incomplete-data problem [15], each substring z; can be con-
sidered as having arisen from one of the g components of the mixture model of Equation 1.
We can define the parameters z;; = 1 or 0 (missing parameters) indicating whether z; has
been generated by the j-th component of the mixture (i=1,...,n;j=1,...,¢9). Then, the
complete-data log-likelihood L£° is given by

.

g
LEWg) =D zj{logm; + log o;(xi; 65)}- (4)
i=] jm=l
The EM algorithm can be applied for the log-likelihood maximization problem by treating
the z;; as missing data. The following update equations are obtained for each component j
(16, 2, 3]
w0 ;(z; 07)

I{=+1] (t) =
z; = Pr(zj=1]z;, V') = (5)
: flz Y
(1) {t+]}
D) n; ), ©)
g if 4 is motif
9;“‘1.1-' — pjk EE—I 1.k / ) (7)

gj' —HL-— if j is background .

where the elements E‘{,ﬁ: {E’f ) correspond to the observed frequency of letter oy at position k of

motif j occurrences (at background j arbitrary positions) and can be formally expressed as

Ef e =T 28 V1(a, 1) if j denotes motif

= E+1] Ek=1 I{a;;, 1) if j denotes background .

The indicator I(a;;, ) denotes a binary function which takes value 1 if the substring x; contains
letter oy at position k and 0 otherwise, i.e.

1 ifag=o
0 otherwise

I(aw,l) = {



Equations 5-7 can be used to estimate the parameter values ¥, of the g-component mix-
ture model which maximize the log-likelihood function (Equation 4). Since it has been shown
that the application of the EM algorithm to mixture problems monotonically increases the
likelihood function [15], these EM steps ensure the convergence of the algorithm to a local
maximum of the likelihood function. However, its great dependence on parameter initializa-
tion and its local nature (it gets stuck in local maxima of the likelihood function) do not allow
us to directly apply the EM algorithm to a g component mixture of motifs model.

To overcome this problem of poor initialization of the model parameters several techniques
have been introduced [15]. The MEME approach for example uses a dynamic programming
algorithm which estimates the goodness of many possible starting points based on the like-
lihood measurement of the model after one iteration of EM [2, 3]. Our method provides a
more efficient combined scheme by applying global search over appropriate defined candidate
motifs, followed by a local search for fine tuning the parameters of a new motif. In the fol-
lowing subsection we describe a procedure for adding a new motif that ensures the proper
initialization of its parameters and it is shown how the monotone increase of the likelihood

can be guaranteed.

2.2 Greedy mixture learning

Assume that a new component ¢y.1(xi;0;41) is added to a g-component mixture model
fl(zi: ¥y). The new component corresponds to a motif modeled by the position weight matrix
PWM,., denoted by the parameter vector f34,. Then the resulting mixture has the following
form

f(l'i; 'I"gJ.-l] = (1 —a)f(z: ’l'g]' + ﬂ¢g+1{Ii§ Bg+1:|r (8)

with @ € (0,1). The vector ¥, specifies the new parameter vector and consists of the
parameter vector ¥, of the g-component mixture, the weight a and the parameter vector

fy+1. Then, the log-likelihood for ¥, is given by

EE'P_-;'+1} = Z log f(zi; Wgs1) = Z lug{(l — a) f(z:; ‘]l'g:l + ﬂ{-i"g+1|:-rl:. Bg+1 :']’ (9)

i=1 i=1
The above formulation proposes a two-component likelihood maximization problem, where
the first component is described by the old mixture f(z;; ¥,) and the second one is the motif
component @g.1(xi;fgr1) with 6,51 = Epf}';l] (I=1,....,% k= 1,...,W) describing the
position weight matrix PWM,, . If we consider that the parameters ¥, of f(z;; ¥;) remain
fixed during maximization of £(¥;.1), the problem can be treated by applying searching
techniques to optimally specify the parameters a and #;.; which maximize £(¥z.).



An efficient technique for the specification of 6y, is presented in [22] which carries out
a combination of local and global searching. In particular, an EM algorithm performs local
search for the maxima of likelihood with respect to a and f,.;. where the learning procedure is
applied only to the mixing weight a and the probabilistic quantities pﬂ'l of the newly inserted
component (motif-model). Following Equations 5-7 and assuming that the new component

models is a motif, the following update procedures can be derived

aWgr1(zs 55[,?,1}

(t+1) i s it) 3 BRI
Z Pr Z; =1|x; :B FRELY e ' 1
igrl = Prizighy = lzi, g1y, 0™) (1 —a®) f(zi; ¥,) + a{t}:ﬁng{ﬂ?i;ﬁﬁl} o
@Hn=liﬁﬁ%” (11)
ﬂ-i=1 i-,g-rl-'

+1
g+l — 15 +1] Y ﬁy-'rl - cg (12)

L e adll = 1Cf

where
Y el ()

i=1

The above partial EM steps constitute a simple and fast method for local searching the
maxima of £(¥,.;). However, the problem of poor initialization still remains since this
scheme is very sensitive to the proper initialization of the two parameters a and ,4,. For
this reason a global search strategy has been developed [22] which facilitates the global search
over the parameter space. In particular, by substituting the log-likelihood function, Equation
9, and using a Taylor approximation about a point a = ap, we can use the resulting estimate
to search for the optimal 8,4, value. Therefore we expand L£(¥,;;) by second order Taylor
expansion about ag = 0.5 and then the resulting quadratic function is maximized with respect

to a. This results into the following approximation

[£(¥g21]a0)]?

£(Wg11) = L(F51]a0) — == 1
{ _rc;.ljI { g lluﬂj Qﬂ{q'gaﬂan}

(13)
where ﬁ('l’g_l} and EE‘FQH) are the first and second derivatives of £(¥,41) with respect to
a. It can be shown [22] that, for a given parameter vector 6., a local maximum of £(¥g41)

near ap = 0.5 is given by

" h ol t-‘,ﬁ'- m, A 119_ 2
ﬁ(eTJ—leag i 9”;*’“{: ;E 1 J{L gf]} (14)

and is obtained for
i 1 1 E 15(1‘1 r]'
it —. 1
‘ 2 221—15 {33 . l: 5}



where
flzi; W) — @g41(zi;67)
fzi; Ug) + Ogaa(zis07)

If the estimated value of a falls outside the range (0, 1) then we can initialize the partial EM

5(x:,8.) = (16)

with the approximation @ = 0.5 for g = 1 and & = 2/(g + 1) for g = 2, according to [13].
The above methodology has the benefit of modifying the problem of maximizing the
likelihood function (Equation 9) to become independent on the selection of initial value for
the mixing weight a. In addition, this procedure reduces the parameter search space and
restricts global searching on finding good initial values é. of the probability matrix 8541
(probabilities pf; ' composing the position weight matrix PWM,;;) characterizing the new
component (motif-model). The last observation is made clearer from Equation 14 where
L£(6,;) depends only on @g+1(xi; 8-), while f(z; ¥,) remains fixed during optimization. The
only problem is now the identification of a proper initial value #; so as to conduct partial EM
steps. Therefore we need to find candidates for the initialization of the motif parameters.

2.3 Candidate selection for initializing new model parameters

A reasonable approach of initializing motif parameters ;.1 is to search for candidates directly
over the total dataset of substrings X = {z.}, (r = 1,...,n), where z; = a1 ...a,w. For
this reason we associate with each substring z. a position weight matrix #, constructed as

follows

A if Q- = Qq

g. = [v7.1. wh T o= .
: [Pur]. where ppp { ﬁ otherwise

(17)
The parameter A\ has a fixed value in the range (0,1), where its value depends on the £
alphabet size (2) and must satisfv A > 1/Q (e.g. A = 0.05 for protein sequence data where
) = 20). Therefore, the (local) log-likelihood £(f,) is determined by selecting among the 6,

matrices (r = 1,...,n) the one which maximizes the right hand size of Equation 14, i.e.
§y+1 = arg néax j-F'{"'r:’.‘]'-

In order to accelerate the above searching procedure the following quantities &, ; for each

substring x; = ay; ... a;w can be computed

=
Eri(= dgs1(2i:07)) = [] Payss (18)
k=1

which substitute for the ¢g41(z:;#;) in Equations 14 and 16. Following this observation, the
searching is made over these quantities £;; which maximize Equation 14. The constructed
matrix = with elements &-; can be calculated once during the initialization phase of the

learning algorithm and will be applied each time a new component is added to a g-component



mixture, in order to identify the initial probabilistic matrix for the new applied motif. Similar
techniques that use the same approach for searching for global solutions over the parameter
space have been proposed in [19, 22] (for Gaussian mixture models).

The drawback of searching for candidates over all substrings n of the dataset is the in-
creasing time complexity ((n?)) of the search procedure. Indeed, @(n?) computations are
needed since the likelihood of every substring under every such candidate parameterized model
must be evaluated. In order to reduce the complexity, we perform a hierarchical clustering
pre-processing phase based on the notion of kd-trees. Original kd-trees [4] were proposed
in an attempt to speed-up the execution of nearest neighbor queries by defining a recursive
binary partitioning of a k-dimensional dataset, where the root node contains all data. Most
such techniques partition the data at each tree level using an appropriate hyperplane perpen-
dicular to the direction which presents major variance of the data [20, 21]. Efficient kd-tree
techniques for the specification of candidate components have been presented in [14, 21] for
the case of Gaussian mixture models.

In our approach we propose a modified approach in order to deal with sequential data.
Starting with a root node that contains the total set of substrings X, at each step we partition
the set of substrings at each node using an appropriate criterion based on maximum variance.
In particular, after calculating the relative frequency values fi; of each character o; at each
substring position k (of length W) in the subset of substrings containing that node, we identify
the position ¢ that exhibits the greatest variance over the alphabet E. The above procedure
can be formally described as

g=arg, max A Z {mﬂx{fzk — fix)?}h
,1'4 k}D

where max, cx(fi ) indicates the maximum relative frequency value among characters in
position k. After identifving the position ¢ with the maximum wvariance, the partitioning
procedure is implemented by initially sorting the characters aq in that position among the
substrings according to their relative frequency values f;, and then labeling them as odd or
even. Finally, the set of substrings in the node can be partitioned into two subsets (left and
right) which are successively filled with the substrings that contain the odd (left) and the
even (right) characters in the position g. An example is shown in Figure 1 where the third
position that has the greatest character variance is selected for partitioning.

The above recursive procedure builds a tree with several nodes and the partitioning for a
node is terminated (leaf node) when the number of included substrings is lower than a fixed
value T. We refer to this as T-size kd-tree scheme. Every node of the tree contains a subset

{cluster) of the original set of substrings and each such cluster is characterized by its centroid

9



position

I 2 3 4 5 Character variance in position 3

y=4A B CID E Sormed characters
L= A BraIE D | A (f,,=31=043) odd
%2=D A, A, DD ' )
’51.: A B :C :E- E e (fCJ:Z"'J':D.ZQ]I EVEn
=D B:D:E E | B (fﬂ;{=i."T=D,l4‘J odd

= A B.A,D E Y o (fhz=17=014)  even
»=D A B E E ;

left subset right subset

odd characters (A, B) even characrers (C, D)

i s
%,=AB'A'ED %= ABICiDE
%=D A1ADD %= ABC EE
X%=AB,A,DE %= DB D EE
%=DA'B'EC

Figure 1: Partitioning occurs in the third position that presents the maximum character
variance

(consensus substring). Therefore, the total set of leaf nodes consists of C' centroids and their
corresponding position weight matrices (obtained by Equation 17) constitute the candidate
motif parameters used in global searching. Experiments have shown that this partitioning
technique drastically accelerates the global search procedure without affecting significantly
its performance.

Except for the T-size, another scheme for terminating the partitioning can be derived
by considering a distance threshold among the substrings included in the subset of a node.
Using as distance d(x;,z;) between two substrings z;, =; the Hamming distance (degree of

dissimilarity),
3
1 W

d(zi, z5) = 7 > (1 — Law, azx)),
k=1

where
1 if dip = Q4
0 otherwise

Laik. ajk) = {
we find the substring z; which has the lowest average distance value among all T' substrings
included in a node, i.e.

T
ik
- S R Y

t=arg min {7 gl (i, 23)}

By specifying a distance threshold value n (0 < 7 < 1) we decide whether to partition that

node according to whether all distance values d{z;, ;) (or the average value) are lower than

the threshold n. In positive case this node is considered as a leaf node, otherwise it is further

10



Substrings of length W=4

x, =AB C D
% =BC DA
N x3=CDAC motif occurrence
Posiions 1 2 3 4 5 6 7 8 910 x3=DACD neighborhood
Swing A B C DACD!B&C xs=ACD B (K=2)
* ¥ =CDBA
motif occurrence x,=DB AC

Figure 2: The neighborhood of a motif occurrence

partitioned as in the T-size scheme. We call this partitioning scheme as n-distance threshold.

The above two schemes for terminating the expansion of a kd-tree on a string domain can
be also applied in a hybrid mode allowing the criterion of distance to have higher priority over
the T-size.

Another problem we must face concerns the occurrence of overlappings with the already
discovered motifs during the selection of a candidate motif instance. Therefore when a new
motif is discovered, substrings which correspond to positions next to the motif occurrences
in the original set of sequences (determining the neighborhood of motif occurrences) contain a
portion of the discovered motif. If any of these overlapping substrings were used as a candidate
motif model for initializing a new component of the mixture model, it would probably lead
(as the performance of the EM algorithm depends very much on the initialization of the
parameters [8, 15]) to the discovery of a new motif that would exhibit significant overlap
with another one already being discovered. An example is illustrated in Figure 2, where the
substrings x;. ... r7 of length W = 4 overlap with the discovered motif occurrence z4 =
DACD and these substrings should not be subsequently considered as candidates for the
discovery of additional motifs.

In order to avoid this inconvenience, a binary indicator value = is introduced for each leaf
node (r=1,..., C), whose value indicates the occurrence of a significant portion of a motif
already being discovered (@, = 1) in the subset corresponding to that node. A parameter
K (K < W) is used to define the neighborhood N; of a motif occurrence z; as the set of
substrings x; (j =1 — K,...,1 + K) which match at least K contiguous characters with z;,
and thus are derived from K left and K right starting positions from the starting position i

{in the original set of sequences) that corresponds to x;, i.e.
Ni={z;},i=i-K,...,i+ K.

For example, setting K = 2 the substrings z; (j = 2,...,6) in Figure 2, are included in the
neighborhood of the motif occurrence 4 = DACD. Initially we set w, =0 (V¥r =1,...,C),

11



and whenever a new motif g is found and its motif occurrences x; are identified ', the leaf
nodes 7 that contain substrings belonging to the neighborhood A of one of the z; are excluded
(w, = 1) from the set of candidate motifs used in the global search phase. Best results
obtained for K < W/2.

The above strategy eliminates the possibility of overlappings among the motifs discov-
ered and ensures proper specification of candidate motif models, while at the same time it
iteratively reduces further the time complexity of the global search. In comparison with the
MEME approach where substrings that correspond to the neighborhood of motif occurrences
are deleted from the dataset, in our scheme the overlapping substrings are only excluded from
the set of candidate motifs used in the global search phase. This constitutes a significant ad-
vantage over the MEME approach.

The proposed greedy EM algorithm
Summarizing the above ideas we have the following algorithm for learning a mixture of motifs

model for the motif discovery problem.

Lthe motif occurrences x; are determined by the z;, values (Equation 5) that are near to 1 {e.g. 2y > 0.9}

12



Start with a set of N unaligned sequences § = {S;} with length L, = |Ss| (s = 1,..., N},
taking values from alphabet £ = {a1,...,an} of length 0 = [X].

Initialization

e Apply a window of length W to the original set S creating a learning dataset of
substrings X = {;} (i=1,...,n), where n = 21 (Ls — W + 1).

¢ Apply the proposed kd-tree approach over the dataset X, find the C final consensus
substrings and define the corresponding C candidate initial parameter values 6., 7 =
C (Equation 17) used for global searching.

e Initialize @, = 0, ¥r = 1,...,C. and calculate matrix = of quantities £-; according to
Equation 18.

o Initialize the model using one component (¢ = 1) that represents the background

characters a; € &, i.e. g} = fﬁ’ where f; indicates the frequency of character oy

=1
in the original set of sequences S.
Iterate

1. Perform EM steps (Equations 5-T) until convergence: |£{f}[‘Fg]|f£{'I'g}"~"_l}—ll o [
If an appropriate stopping condition (e.g. maximum number of motifs, or ZE=1 Wy =
') holds then terminate.

2. If g = 2 then from the motif occurrences z; (with z;; > 0.9) find their neighborhood
Ni={z;} (j=i-K,...,i+ K) and set @, = 1 for each leaf node 7 which contains
any of the x;.

3. Insert a new candidate component g + 1 by searching over all 8. (wherer=1,...,C
and @, = 0) and setting f,.1 equal to the f that maximize the log-likelihood func-
tion of Equation 14 using the already calculated quantities &, ; instead of ¢(xi;8:).
Compute the weight @ using the obtained value ég.;_]_ in Equation 15.

4, Perform partial EM steps (Equations 10 - 12) with initial values & and f..1, until
convergence as in step 1 and obtain the parameter values ¥g .

on

cIf L{Wgyq) > L(V,) then accept the new mixture model with g + 1 components and
] go to step 1, otherwise terminate.

with parameter settings (probability matrix #;) equal to the relative frequencies of |

The above algorithm ensures the monotonic increase of the log-likelihood of the learning
set since EM cannot decrease the log-likelihood and the proposed partial EM solutions are
accepted only if £{¥,:1) > L(T,). The stopping condition mentioned at step 1 depends not
only on the maximum allowed number of components g (specified by the user), but also on
the vector . This means that in the case wr = 1, ¥7 = 1,...,C, the parameter space for

selecting candidate components has been entirely searched and therefore the possibility of

15



existence of another motif in the set of sequences is very low.

3 Experimental results

In order to evaluate the effectiveness of our method we have conducted a series of experiments
considering several sets of biological sequences. We have tried to select training sets consisting
of protein sequences for which there is a priori knowledge about the existing motifs and our
objective was to examine the ability of the method in discovering them. In addition, we
have measured the significance of the discovered motifs in terms of information content, in an
attempt to demonstrate the capability of the greedy mixture learning approach to build more
distinct (clearer) motifs which can subsequently be used as powerful diagnostic signatures.

The experiments described in this section have been conducted using both artificial and
real datasets. In all cases the width W of the motifs is considered constant (specified by the
user) and the proposed approach was applied only once. It must be noted that the only free
parameter of our method was the A value which is used to initialize the candidate position
weight matrices (Equation 17). Good values for A were found to be in the range [0.6, 0.8].

For all the experimental datasets we have also applied the MEME approach using the
available software from the corresponding Web site 2. MEME uses three different models
describing the distribution of motifs among the sequences. In all the experiments we have
selected the ”"any number of repetitions” model 2, 3] as it is equivalent to the one used in our
approach. After filling an appropriate form, the MEME Web site processes the submitted
biclogical datasets and returns the results (through e-mail) describing in detail the motifs
discovered for the submitted set of sequences.

It must be noted also that apart from the experiments described in the following sub-
sections, additional experiments have been conducted using protein families available from
the PROSITE database [10]. The reason why they are not cited here is that the PROSITE
database contains deterministic (gapped) motifs of protein families which are not convenient
for the evaluation of the proposed greedy EM algorithm. Hence, we decided to work with
the PRINTS database [1] where the available information about fingerprints can be easily

exploited to assess the performance of our method.

3.1 Experiments with artificial datasets

In the artificial datasets used in our experiments each motif has an associated randomly gen-

erated "seed substring” and copies of the motif {motif occurrences) are created by randomly

2The Web site of MEME/MAST system version 3.0 can be found at htép://meme.sdsc. edu/meme /website,
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| motif | starting seed motifs

, position | 1 2z 3 4 § & T 8 8 10
1 1-20 ews K L 1 M A T 1 & M rax
2 31-30 s+ P E G T H T 1 8 M A =xx=x
3 G1-80 +vsx A R N D © § E © H 1 ===
4 91-110 +*» E G H 1 L K M F P 8§ ssxx
5 121-140 [ +++ w ¥ ¥ T R © A N P V¥V  xxx
& 151-170 | +++ & ¥ © E H L M P T Y s#=s

Table 1: The motif distribution in the first series of artificial datasets

performing a number of substitutions (mutations) on the motif’s seed substring with a mu-
tation probability p,. In fact, the mutation operation inserts a degree of noise within the
motif description and as a result, the greater the probability value pr,, the harder the motif
identification problem. For simplicity, without loss of generality, we have chosen to construct
each artificial sequence using mutated copies of all the motifs (single occurrence for each one)
at random positions (assuming no overlapping occurrences).

Twao series of experiments have been made with the artificial datasets. In the first series
we measured the impact of the proposed kd-tree approach for candidate selection on the
performance of the whole algorithm. We created artificial datasets using six (6) different
seed substrings of length W = 10 (Table 1), where the first two substrings are identical in
half length, therefore making the problem of discovering them harder. Ten such sequences of
variable length (between 190 and 220) were constructed by randomly locating and mutating
copies of these substrings (ensuring no overlapping), while randomly filling the rest positions
with characters from the amino acids alphabet ¥£. Assuming three different values of the
mutation probability pm = {0,0.1,0.15} three artificial datasets were constructed.

Table 2 provides comparative results for the above three artificial datasets obtained from
the application of the greedy EM algorithm with and without the kd-tree approach. In
particular, the second column displays the performance of the greedy EM method with global
search over all the input substrings (no kd-tree) in terms of the number (M) of the discovered
motifs. The next column presents the same result with the employment of the kd-tree method
by applying the T-size scheme, as well as the hybrid scheme (T-size and 5-distance threshold),
respectively. For both of these cases results were obtained considering four different values for
the size of the subsets in the tree nodes (T = {100, 50,20, 10}), while for the hybrid scheme
the parameter 1 was fixed at 0.75. In addition, the number of obtained centroids (leaf nodes)
(' is presented, which are used in the global searching phase.

The observations that can be derived from these results concerning the candidate selection
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Problem || Greedy EM kd-tree Greedy EM
T'-size scheme Hybrid scheme
P =075
T=100 | T=50 | T=20 | T=10 | T=100 | T=50 | T=20| T=10
0 M=6 C=32 C=64 | C=134 | C=285 C=880 | C=880 | O=880 | C=B886
[n = 1974) hM=1 M=3 M=4 M=6 M=6 M= M=6 M=8§
0.1 M=6 C=32 C=64 | C=130 | C=264 C=Bo4 | C=804 | O=894 | C=894
(n = 1963 M=1 M=2 M=4 M=6 M=6 M=6 M=6 M=6
0.13 M=6 =32 C=(4 | C=128 | C=260 | C=916 | C=916 | C=916 | C=016
(n = 1964) M=1 M=1 | M=2 | M=5 M=6 | M=6 | M=6 | M=6 |

Table 2: Comparative results for estimating the impact of the proposed kd-tree partitioning
approach

methodology are very useful. Clearly, the proposed greedy EM learning algorithm using global
searching over all input substrings (C' = n) has the ability of discovering all the significant
motifs in all artificial sets of sequences. As it was expected, the application of the kd-tree
method results in less candidate motifs and therefore speeds-up the identification of the
appropriate initial motif parameters during the insertion of a new component in the mixture
maodel. The T-size kd-tree scheme leads to the creation of a small number of centroids for
T = 20. For smaller T" values the number of centroids created is larger and sufficient enough
for constructing a richer parameterized search space, but for harder problems (p, > 0.1)
this information is inadequate to find all motif occurrences. Adding the n-distance threshold
termination criterion the results are excellent in all cases. As it is shown in Table 2, the
enforcement of the n-distance threshold scheme plays the most significant role in the hybrid
scheme providing almost the same number of centroids independently of the T value.

The above experiments indicate that the hybrid scheme for kd-trees is able to provide
excellent component candidates for the mixture of motifs model which greatly accelerate
the global search phase. Even if the hybrid scheme produces greater number of centroids in
comparison with the T-size scheme, it results in great improvement in time complexity during
the searching procedure in comparison with searching for candidates over all the substrings
dataset (number of produced centroids is less than 50% of dataset size n). In the following
experiments the applied greedy EM approach uses the hybrid kd-tree scheme with T' = N
and 0.5 < n < 0.8.

The aim of the second series of experiments is the comparison of our greedy EM approach
with the MEME method in terms of the ability to discover the real number of motifs in
artificial datasets. For this reason we have created artificial datasets from a new set of six (6)
seed substrings of length W = 20. As it is illustrated in Table 3 the last two seed substrings (5
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| motif | starting seed motifs
position 1 2 3 4 5 & 7 B 9 10 11 12 13 14 15 16 17 16 19 20
1] 1-40 #i% A W B ¥ 1 N T E RE 2 TI N G ¥ 1 BE W wur
2 61-90 wue D E 8 1 ¥ ATETUDTYODET DI € ATE D x+x
3 111-140 | «we P R I M E R 2 T A G E D E 8 I © N I N * ok w
4 161-180 | «++ W A I T I N G F T H E € 1 A N T T B A M »x=
5 211-240 | »++ & T E W A R T E L E N A M I L E N A E M w#us
i) 261-200 | »++ A R I 858 T 1 D1 8 K N A MI L E N A E M +#s

Table 3: The motif distribution in the second series of artificial datasets

Problem | number of motifs found

Prm greedy EM | MEME
0 i 4

0.1 i 4

0.2 i 4

Table 4: Comparative results on artificial datasets using the greedy EM and the MEME
approaches

and 6) are exactly the same in half of their length (from position 11 to 20). This fact makes the
problem of identifving them as two distinet motifs very difficult. In analogy with the previous
datasets, twenty (N = 20) artificial sequences of variable length were constructed, assuming
a maximum and a minimum length of 330 and 310 respectively. For three different values of
the mutation probability (p,, = {0,0.1,0.2}), we have created three different datasets used
in our experimental study.

Given the artificial sets of sequences constructed as described above, the locations of all
possible motifs are known and hence the greedy algorithm was applied in order to verify its
effectiveness in discovering motif occurrences in such hard problems. The same datasets were
also applied using the MEME approach and the corresponding results were depicted. Table 4
displays the comparative results for these two approaches where the superiority of the greedy
EM algorithm is obvious in discovering all the incorporated motifs in the three datasets. The
MEME approach does not achieve the identification of all the motifs. Due to its limitations,
by considering the motifs 5 and 6 as one motif, and after erasing their occurrences from the
dataset of substrings, MEME is unable to identify them in future steps. On the other hand,
the greedy EM algorithm always works with the original dataset and is able to identify the
two motifs.
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3.2 Experiments with real datasets

The real datasets used in our experiments were obtained from the PRINTS database [1] which
contains protein motif fingerprints *. A fingerprint of a protein family consists of a set of
motifs that characterize this family and can be used as a classifier to predict the membership
degree to that family, according to the complete (true family members) or partial (subfamily
members) occurrence of this set of motifs in an unknown sequence. Thus, a fingerprint can be
considered as a diagnostic signature of the family. The identification of the fingerprints within
the PRINTS database has been made using database scanning algorithms from sequence
analysis tools [1].

The current release of PRINTS (32.0) contains 1600 families with 9800 individual motifs.
Each database entry is composed of the original set of sequences containing the family, its
characteristic fingerprint composed of a set of motifs, the true-positive and the subfamily se-
guences that correspondingly match completely or partially the fingerprint of the family. The
final motifs that generate a fingerprint are included in all the true-positive protein sequences
and can be used as diagnostic rules for the family.

During the experiments conducted with the PRINTS database we have considered the set
of true-positive examples of each family as the original training dataset. The objective was
twofold. First we measured the effectiveness of the proposed greedy EM approach in terms of
its ability to identify the motifs of the known fingerprints, and second we tried to figure out
the possibility of discovering additional motifs within a real biological family and therefore
to extend the definition of a given fingerprint. Moreover, the same datasets were examined
with the MEME method. In this spirit, the objective of our experiments exceeds the simple
comparison of two motif discovery techniques in real-world examples and proceeds towards
the identification of additional unknown motifs that may potentially improve the established
diagnostic signature of a family.

In our experimental study we have selected six (6) families from the PRINTS database, as
illustrated in Table 5. These describe fingerprints for ribosomal proteins (PRO0058, PRO0061),
secretion pathway protein C (PRO0810) and glutathione S-transferases (PR0O01266, PRO01267,
PR001268). The selection of the motif length W was based on existing knowledge about the
fingerprints design in the PRINTS database. Therefore, we have set W to be the smallest mo-
tif length in the set of motifs comprising a fingerprint and we have selected PRINTS families
containing motifs of approximately equal length. It must be noted also that during experi-
ments, discovered motifs with small number of occurrences were considered as redundant and

thus were removed from the final set of the detected motifs (both in the greedy EM and the

3The PRINTS database is available at: http:/ Aioinf man, ac. wk/dbbrowser /FPRINTS/
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Accession Name Number of | Number of Description
number SEQUENCES motifs
PROOOGHE RIBOSOMALLS 16 (297) [i] A G-element fingerprint that pro-
vides a signature for L35 ribosomal
proteins
PROD0O61 | RIBOSOMALL1® 24 (1209 4 A d-element fingerprint that pro-
| vides a signature for L19 ribosomal
| proteins
PRO0OA10 BCTERIALGSPC 6 (286) 2 A Z-element fingerprint that pro-

vides a signature for general secre-
tion pathway protein C

PRO1266 CSTRNSFRASEA 24 (222) 4 A d-element fingerprint that pro-
vides a signature for alpha-class
glutathione S-transferases
PRO1267 | CSTRNSFRASEM 22 (218) 4 A d-glement fingerprint that pro-
vides a signature for mu-class glu-
tathione S-transferases

PRO1268 CSTRNSFRASEP 19 (209) 3 A 3-glement fingerprint that pro-
vides a signature for pi-class glu-
tathione S-transferases

Table 5: Real datasets selected from the PRINTS database

MEME method), since we are working with fingerprints, i.e. sets of of motifs matching all
the sequences in each family (real-motifs).

Each real-motif discovered in a dataset was evaluated in terms of the information content
(IC) [3] of the proposed model. The information content for a real-motif j can be formally
defined as follows: . i

IC;=3 > pixlogs "} (19)
k=1 g €X Py
where p] indicates the overall background probability of letter a; in the dataset. IC indicates
the mutual information between motif model and single aminoacid frequencies. This score
becomes maximal if the motif is well conserved and differs significantly from the background
distribution. Thus, higher /C scores indicate clearer motif representations.

Table 6 summarizes the comparative results obtained using the six protein families. The
superiority of the greedy EM algorithm over MEME is obvious not only in terms of the greater
number of real-motifs discovered but also in terms of the degree of motif conservations as
indicated by the IC scores. As in the case of the artificial datasets, when MEME considers
as motifs more than one real-motifs located in equivalent number of sites upon the set of
sequences, it is unable to identify them during future steps because of erasing their occurrences
in the dataset of substrings. Therefore, the protein family fingerprints discovered by the

MEME algorithm in most cases do not contain a great number of real-motifs and the results
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are poor. It must be noted also that even if the "one motif occurrence per sequence” motif
model was applied, MEME was unable to reach the number of motifs discovered by the
proposed greedy EM algorithm.

On the other hand, the proposed greedy EM algorithm specifies an iterative procedure
of adding new components together with a combined scheme of local and global search that
results in better fitting of multiple-component mixture models, since it overcomes the problem
of poor initialization of the component parameters. As illustrated in Table 6 the number of
the discovered motifs in these protein families are not only greater with respect to MEME
but also it is greater than the number of motifs specified in the PRINTS database. This
means that the proposed method has led to the discovery of larger fingerprints (containing

more motifs) and thus constitutes a promising tool for biological sequence analysis.

4 Conclusions

In this paper we have proposed a greedy EM algorithm for solving the multiple motif discovery
problem in biological sequences. Our approach describes the problem through likelihood
maximization by mixture learning using the EM algorithm. It learns a mixture of motifs
model in a greedy fashion by iteratively adding new components. This is achieved through a
combined scheme of local and global search which ensures fine tuning of the parameter vector
of the new component. In addition a hierarchical clustering procedure is proposed based on
the notion of kd-trees, which results in partitioning the (usually) large datasets (containing
all substrings of length W) into a remarkable smaller number of candidate motif-models
used for global searching. As it has been experimentally shown, this partitioning technique
constitutes an effective strategy which manages to significantly reduce the time complexity
for global searching without affecting the performance of the whole algorithm.

We have studied the performance of the proposed algorithm in several artificial and real
biological datasets, including hard problems of almost indiscernible motif instances. Compar-
ative results have also been provided through the application of the MEME approach which
exhibits analogies to our method providing also an iterative algorithm of learning mixture
models. The differences between the two approaches have already been highlighted through-
out this paper, while experiments have shown the superiority of the greedy EM in discovering
larger number of more distinguishable (clearer) motifs as suggested by the information content
measure. The results obtained from the experimental study with the PRINTS database have
also proved the ability of the greedy method in expanding protein fingerprints (larger number
of discovered motifs) that is of great biological interest. It must be noted that our approach

has been developed mainly in an attempt to overcome some limitations of the MEME scheme,
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Problem (rreedy EM | MEME
Are. number | Motif G Matif Ic
PRO0058 I 724434 [ T £3.2093
11 72.4589 | II 56.9837
(W = 20) 1 | 721314 | III | 49.4185
IV | 673621 | IV | 46.0057
v £9.4684
[ VI | 69.7300 |
. VII | 65.3427 '
VIII | 57.0378 £
PRO0061 | I | 706732 | 1 | 50.8767
w=2) [ 1 65.2676 | II 62.6215
I | 616727 | I | 53.1911
PRO0DZ10 I 37.2183 I | 343275
i 352812 | 1T 33.9981
(W = 10) I | 34.7850 | III 31.8608
Iv | 33.0099 | IV | 30.0946
v 33,2078 |
VI | 20.8507
PRO1266 1 61.9772 I 57.7944
Il 59,2620 | I 57.3155
(W = 15) 1 | 57.0082 | III 55.9137
v | 566980 | IV | 53.9237
v 54.5780 | V' 4. THO0
VI | 503692 | VI | 38.6581
VII | 45.3330
VIII | 38.657
IX | 445795
PRO1267 I 52.8780 I 52.4928 |
I 52.4925 | 1T 51.2751
(W =13) I | 488996 | III | 46.3277
IV | 504470 | IV 46.2217
v 48.7069 | V| 45.0163
VI | 485278 | VI 41.6475
VII | 44.3744
VIII | 41.9956 |
X | 42.1630
X 40,3605 |
PRO1268 I 59,7265 ) 57.5664
Il 57.0125 | 1I 56.2638
(W =1T) III | 587029 | INI | 53.1302
IV | 57.5660
v 56.2634
VI | 54.2335
VII | 51.4365
VIII | 55.0629 ;
IX | 53.1297 !

Table 6: Comparative results between the greedy EM and the MEME for the PRINTS
database
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such as erasing input data each time a new motif is discovered using the assumption that this
motif is correct, and limiting the model exclusively to the two-component case. Our technique
actually overcomes these limitations based on recent methods for incremental mixture density
estimation.

Ongoing research is mainly focused on working with multiple motifs of variable length.
Thiz can be viewed as a problem of expanding an existing model and determining the correct
number of its parameters (the optimum width of the motif). Several model selection tech-
niques can be adopted for this reason that have been proposed mainly for Gaussian mixture
models, such as the likelihood ratio test (LRT), the minimum description length (MDL), the
Markov chain Meonte Carlo (MCMC), the Bayesian information criterion (BIC), the asymp-
totic information criterion (AIC) and some recent Bayesian approaches [18, 13].

Another direction of future work is the application of our greedy EM approach to clas-
sification problems of biclogical families. In particular our aim is to develop a modification
of the method in order to deal with biological sequences of several categories (families). It is
expected that such an approach will constitute a powerful tool for the construction of highly

accurate classification systems for biological sequences.
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