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Abstract — In this paper we prove structural and algorithmic properties on the class of quasi-
threshold graphs, or QT-graphs for short, and show that a QT-graph G has a unique tree
representation; that is, a tree structure, we call it cenr-tree, which meets the structural properties of
G. Based on the structure of the cent-tree, we prove necessary and sufficient conditions for a
QT-graph to be Hamiltonian. By taking advantage of these properties and conditions, we construct
linear-time algorithms for finding a Hamiltonian cycle and computing the Hamiltonian completion
number and the Hamiltonian completion edge set in a OT-graph; our algorithms take O(n 4+ m) time
on graphs with n vertices and m edges. This implies linear-time recognition algorithms for this class
of graphs. We also present a linear-time algorithm for constructing the cent-tree of a Q7-graph.
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1. Introduction

We consider finite undirected graphs with no loops nor multiple edges. Let G be such a graph with vertex
set V(G) and edge set E(G). We say that G is a Hamiltonian graph if it has a spanning cycle (as opposed to
the more usual definition which refers to spanning path); such a cycle is called a Hamiltonian cycle. The
Hamiltonian completion number of G is the minimum number of edges which need to be added to E(G) to
make G Hamiltonian; the set of such edges is called Hamiltonian completion edge set of G [2, 12]. We
denote the Hamiltonian completion number of a graph G as hen(G) and its Hamiltonian completion edge
set as CE(G). If G is a Hamiltonian graph, then hcn(G) = 0.

Given a graph G, an edge (x, ¥) = (¥, x) of G can be classified as follows according to the relationship
of closed neighbourhoods [13, 18]: (x, ¥) is free if N[x] = N[v]; (x, ¥) is semi-free if N[x] = N[v] (or N[y] =
N[x]): and (x, ¥) is acrual otherwise. Obviously, E(G) can be partitioned into the three subsets of free
edges, semi-free edges and of actual edges, respectively.

A graph G is called a quasi-threshold graph, or QT-graph for short, if every edge of G is either free
or semi-free. Thus G is a QT-graph if and only if for every edge (x, ¥) of G, we have N[x] < N[y¥] or
N[x] = N[v]: equivalently, & is a QT-graph if and only if G has no induced subgraph isomorphic to Py
or Cyq [3, 11, 16]. The class of OT-graphs is a subclass of the class of cographs [6, 8] and contains the
class of threshold graphs [7].

Many researchers have devoted their work to the study of QT-graphs. Wolk [21] called these graphs
comparability graphs of trees and gave characterization of them. Golumbic [10] called them trivially



perfect graphs in respect to a concept of “perfection”. Ma, Wallis and Wu. [15] called them gquasi-
threshold graph (OT-graphs) and studied algorithmic properties.

The class of QT-graphs is a subclass of the well-known class of perfect graphs [3, 11, 16]: it is a very
important class of graphs, since a number of problems, which are NP-complete in general, can be solved
in polynomial time on its members. For the class of QT-graphs, Ma et. al. [15] presented polynomial
algorithms for a number of optimization problems. In particular, they gave an O(nm) time algorithm for
the recognition problem, and polynomial algorithms for the Hamiltonian cycle problem and the bandwidth
problem. They also gave a formula for the clique covering number and conditions for a OT-graph to be
Hamiltonian. Yan et. al [24] stated important characterizations of these graphs and presented a linear-time
algorithm, that is, O(n + m), for the recognition problem. They also gave linear-time algorithms for the
edge domination problem and the bandwidth problem in this class of graphs.

In this paper we study the class of QT-graphs in farther details and provide structural and algorithmic
properties on its members. We show that a QT-graph G has a unique tree representation; that is, a tree
structure which meets the structural properties of G; we refer to this tree as cent-tree of the graph G and
denote it by T.(G). Based on the structure of the cent-tree, we prove necessary and sufficient conditions
for a QT-graph to be Hamiltonian. From these properties and conditions, we first design a linear-time
algorithm for constructing the cent-tree representation of a OT-graph G and, then, we construct linear-time
algorithms for finding a Hamiltonian cycle and computing the Hamiltonian completion number of G; our
algorithms take O(n + m) time on graphs with n vertices and m edges. Note that the linear-time algorithm
for the Hamiltonian completion number is also a recognition algorithm. We also show that the
Hamiltonian completion edge set of a QT-graph can be computed in linear time and propose an O(n + m)-
time algorithm,

We should point out that, to the best of my knowledge, the study of the Hamiltonian completion
number on OT-graphs has not received much attention. On the other hand, this problem on other classes
of graphs has been extensively studied (see, [1, 9, 14, 19]).

The paper is organized as follows. In Section 2 we characterize the class of OT-graphs in details and
show that a OT-graph has a unique tree representation; that is, the cent-tree. In Section 3 we give
necessary and sufficient conditions for a QT-graph to be Hamiltonian. In Section 4 we present a linear-
time algorithm for constructing the cent-tree of a QT-graph. Based on the structural properties of the cent-
tree and the conditions of Section 3, we present the main results of the paper in Section 5; we design and
analyze linear-time algorithms for finding a Hamiltomian cycle and computing the Hamiltonian
completion number and the Hamiltonian completion edge set of a OT-graph. Finally, in Section 6 we
conclude with a summary of our results and extensions.

2. Quasi-threshold Graphs and their Structures

Let G be a graph with vertex set V() and edge set E(G). The neighbourhood of a vertex x is the set N(x) =
Nglx) consisting of all the vertices of G which are adjacent with x. The closed neighbourhood of x is
defined by N[x] = Nglx] := {x} w Ni(x). The subgraph of a graph G induced by a subset § ¢ V(G) is
denoted by G[S]. Let X and ¥ be two subsets of a certain set. Then X < ¥ means that X is a proper subset of
Y,andif Y X, then let X - ¥ denote X'\ ¥.



For a vertex subset § of a graph G, we define G - § by G[WG) - §]. The following lemma
follows immediately from the fact that for every subset S © W(G) and for a vertex x € §, we have
Ngisilx] = N[x] m § and that G - § is an induced subgraph.

Lemma 1 ([18]). If G is a QT-graph, then for every subset § — WG), both G[S] and G - § are also QT-
graphs.

The following theorem provides important properties for the class of QT-graphs. For convenience, we
define
cent(G) = {x € VG) | N[x] = V(G)).

Theorem 1 ([18]). The following three statements hold.
(i) A graph G is a QT-graph if and only if every connected induced subgraph G[5], § £ W(G), satisfies
cent(G[8]) = @.
(ii) A graph G is a OT-graph if and only if G-cent(G) is a QT-graph.
(i) Let G be a connected QT-graph. If G- cent(G) # @, then G - cent(G) contains at least two connected
components.

Let G be a connected QT-graph. Then V) := cent(G) is not an empty set by Theorem 1. Put G, := G, and
G-V =G; uGsu ... u Gy, where each G; is a connected component of G - V; and r 2 3. Then since each
G; is an induced subgraph of G, G;j is also a QT-graph, and so let V] := cent((;) # @ for 2 < i < r. Since
each connected component of Gi-cenr(G;) is also a QT-graph, we can continue this procedure until we get
an empty graph. Then we finally obtain the following partition of V(G).

WGY=V)+ Vo + ... + Vi, where V| = cent(G;).
Moreover we can define a partial order < on { V7, Vs, ..., Vi} as follows:

Vi<V, if Vi=cenG;) and Vg VG;).

It is easy to see that the above partition of V(G) possesses the following properties.

Theorem 2 ([18]). Let G be a connected Q7-graph, and let WG) = V] + Vo + ... + Vi be the partition
defined above; in particular, V, := cent(G). Then this partition and the partially ordered set ({Vi], ) have
the following properties:

(P1) If Vi< Vj, then every vertex of V; and every vertex of V; are joined by an edge of G.

(P2) For every Vj, cent(G[{UV; | V; <Vj}]) = V;.

(P3) For every two V; and V; such that Vi <V,, G[{uV; | V; <V; <V}] is a complete graph.
Moreover, for every maximal element Vi of ({Vi}, =), G[{UV; | v, <V; £V,}] is a maximal
complete subgraph of G.

(P4) Every edge with both endpoints in V; is a free edge.

(P5) Every edge with one endpoint in V; and the other endpoint in Vj, where V; # Vj, is a semi-free edge.

The results of Theorem 2 provide algorithmic and structural properties for the class of QT-graphs. A



typical structure of such a graph is shown in Figure 1. We shall refer to the structure which meets the
properties of Theorem 2 as cent-tree To((G). The cent-tree is a rooted tree with root Vy; every node Vj of the

tree To(G) is either a leaf or has at least two children. Moreover, V; < V} iff V; is an ancestor of V.

If V; and Vj are disjoint vertex sets of a QT-graph G such that V; < Vj or Vj <V}, we say that V; and V] are
cligue-adjacent and denote Vi=V;.

To(G) :

Figure 1. The typical structure of the cent-tree T(G) of a QT-graph G.

Let G be a QT-graph and let V = V| + V, + .. + V| be the above partition of V(G); V| = cent(G). Let
S = {vs, Vs+1s s V1s .y Vg} e a stable set such that v € V; and V; is a maximal element of ({Vi}, <) or,
equivalently, V; is a leaf node of T.(G), s <1 < g. It is easy to see that § has the maximum cardinality a(G)
among all the stable sets of G. On the other hand the sets {\UV; | Vi = Vi = V{1, for every maximal element
Vi of ({V;}, =), provide a clique cover of size x{(G) which has the property to be a smallest possible clique
cover of G; that is @(G) = k((G). Based on the Theorem 2 or, equivalently, on the cent-tree of G, it is easy
to show that the cliqgue number w(G) equals the chromatic number y(G) of G; that is, y(G) = w(G).

3. Hamiltonian Quasi-threshold Graphs

Let Vi, V5, ..., Vi be the nodes of the cent-tree T(G) of a OT-graph G rooted at r. = Vi, and let Vi,
Via, ..., Vjp be the children of the node V; (1 <i < k); note that p 2 2 if V] is not a leaf of the cent-tree. We
assign a label H-label(V;) to each node V; of the cent-tree T.(G), which we compute as follows:

hf'i |—p if V., is the root of the tree,
H-label(V) = { |V.|-p+1  if V. isaninternal node, and
0 if V, is a leaf,

where p is the number of children of the node V; (1 £ i £ k); see also [17]. Figure 2 depicts a node Vj of a
cent-tree along with its four children V;;, Vs, Vi3 and Vi4; here we have H-label(V}) = 2 if V] is an internal
node or H-label(V}) = 1 if V; is the root of the tree, H-label(V;)) = 1, H-label(Vi3) = -1, H-label(Vi3) = 0,



and H-label(V;q) = 0. We shall show that G is a Hamiltonian QT-graph if H-label(V;) = 0 for each node
Vi e TAG).

Let Vi1, Vi2, ..., Vip be the children of an internal node V; of the cent-tree T(() such that H-label(V;)
2 0, and let list(V}) = (Vi1, «.. Vi(p-1)» Vips --» Vis) be the list of the vertices of the node Vj, where p 2 2 and
5 2 p-1. Let a-vertices(Vj) = (Vip, Vi(p+1)» ---» Vis); the elements of this list a-vertices(V;) are called available
vertices of the node V;. If V; is the root of the cent-tree then a-vertices(Vi) = (Viip+1). Vigp+2)s - vig). In
Figure 2, for the internal node V; we have a-vertices(V;) = {u, v}.

Figure 2. A node of the cent-tree To(G) of a QT-graph G along with its four children; the
lists of the vertices of G that correspond to these nodes.

Let Vi1y, Vi - Vi) be the left-to-right order listing of the leaves of the cent-tree T(G), and let Vyj) be
the lowest common ancestor of the nodes Vi) and Vigis1), where 2 < f(i) <k and 1 < i < 1-1. We define the
h-sequence of the cent-tree T(G) to be the following sequence:

h-sequence(Tc(G)) = (Vi1), Vag1)s V) Va@)s -+ Vieny Va1 Vi Vi)

where V is the root of the tree T(G) and ¢ is the number of leaves in T¢(G); the length of the h-sequence
is 21; see also [17].

By definition there exists no pair Vg, Vg of elements Vi), Viay, - Vi of the h-sequence{T:(G)) such
that Vi) = Vj) for i # j, 1 =4, j = 1. On the other hand, may exist elements Vyi1), Vaci2)s - Vaigy such that
Vaii1y = Vagi2) = ... = Vagig) = Vi, where V; is an internal node T.(G); g is equal to the number of children of
V; minus 1. Let a(i1) and a(ig) be the indices of the leftmost and rightmost appearance of V; in h-
sequence(T(G)), and let a(il) < a(i2) < ... < a(ig). We say that Vyyy is the first appearance of V;, Vyz) is
the second appearance of V;, and so on; Vyig) is the last appearance of V; in h-sequence(T(()). Based on
the structure of the cent-tree T.(G) and the fact that each internal node of T.(G) has at least two children
we can easily conclude that each internal node of T(G) appears at least once in the Ai-sequence. Thus, we
have the following result.

Proposition 1. All the nodes of the cent-tree To(G) of a QT-graph G are appeared in h-sequence(T (G)).
Moreover, two consecutive node in h-sequence(T(G)) are clique-adjacent.

Let G be a QT-graph and h-sequence(T.(G)) be its h-sequence. We next use a depth-first search (dfs)
traversal strategy for searching the graph G and building a spanning tree of G. We shall use the h-sequence
for the process of selecting the next unvisited vertex; note that in the standard dfs traversal when we have



a choice of vertices to visit, we select them in alphabetical order. Based on the h-sequence for the selection
process, we describe a dfs traversal, which, hereafter, we shall call A-dfs; it works as follows:

Traversal strategy h-dfs:

(i) Select an arbitrary vertex v from V) as starting vertex; visit v and mark v visited (imitially, all
vertices of G are marked unvisited);

(ii) If vis visited and v is a vertex of V), then visit in turn each unvisited vertex of Vi (1 £i<1);

(iii) Once all the vertices of Vg;) have been visited, select an unvisited vertex u from the leftmost set
Vajy = Vi which lie on the right of Vi) in h-sequence(T(G)) (i < j < t-1); visit u, mark u visited and if
V) is the last appearance of V; in h-sequence, then visit in turn each unvisited vertex of Vyj):
otherwise, does to Vi(41) and select an unvisited vertex from this set and visit it.

{(iv) Visit all the unvisited vertices of the last set V) of h-sequence(T(G));

It is well known that if G is a connected undirected graph, then the dfs forest of G contains only one tree.
Moreover, it is obvious that if each node of the dfs tree rooted at v € V(G) has at most one child, then G
contains a Hamiltonian path beginning with vertex v (it is the path from the root v to the unique leaf); G
contains a Hamiltonian cycle if the root of the dfs tree and the unique leaf are adjacent in G. We next
prove the following result.

Lemma 3. A QT-graph G is a Hamiltonian graph if H-label(V;) = 0 for each node V; € T.(G).

Proof. Let Vi, Va, ..., Vi be the nodes of the cent-tree T(G) of the (T-graph G rooted at Vy, and let
(Vs Vacw Vi) - Vs Vi) be the h-sequence of T(G). Let g(i) be the number of all the nodes of h-
sequence(Te), say, Vagit)s Va(izps - Vaig). such that Vyiy = Vai2) = - = Vaiigy = Vi where V; is an internal
node T,(G); in fact, V; is the lca of some pairs of leaves of T.(G). By definition, g(i) is equal to the
number of children of V; minus 1.

Let Vi1, Via, ..., ¥jp be the children of the node V; and let list(V;) = (¥i1, -os Vigp-1)s Vips ---s Vis)- Then,
g(i) = p - 1. Since H-label(V;) 2 0, it follows that the V; contains at least p-1 vertices; it contains p vertices
if V; is the root V) of the cent-tree T.(G).

We select a vertex v from Vy;j) and apply A-dfs traversal to G starting at v. Since each Vj contains at
least p - 1 vertices (it contains p vertices if V; = V}) and g(i) = p - 1 (g(i) = p if V; = V| because the last
element of the h-sequence is the root V| of the cent-tree), it follows that after visiting the vertices of the
node Vi) there exists at least one unvisited vertex in Vy) and, thus, the h-dfs always selects the next
vertex from Vi), 1 < i < t-1; this is also true for the nodes Vg and Vy. On the other hand, the nodes Vi)
and Vij41) are clique-adjacent. Thus, the h-dfs tree of G has the property that each node has at most one
child; that is, G contains a Hamiltonian path. Moreover, V(1) and Vi are clique-adjacent. Thus, & contains
a Hamiltonian cycle. O

We conceder now the case where the cent-tree T(G) of a Hamiltonian QT-graph has nodes, say, Vj and Vj,
such that Vj < Vj and H-label(V;) = 0 and H—iabei{i*’j} < (). Let u be an available vertex of the node V. We
define an operation that moves the available vertex u from the node V; to node V;. We call this operation
vertex-move, or v-move for short.

From the structure of the cent-tree T.(G) of a QT-graph, it is easy to see that if we apply a v-move
operation to nodes V; and Vj, then the resulting tree has the Property (P3): for every two nodes V; and V;



such that Vi =V, G[{UV; | Vi = Vi = V1] is a complete graph. Obviously, if V| is a maximal element
of ({V;}, <), then after applying a v-move operation the graph G[{UV, | Vi £V; £Vi}] may not be a
maximal complete subgraph of G.

Consider the tree that results from the cent-tree T.(G) of a OT-graph after applying some v-move
operations on appropriate nodes so that each node V; of that tree has H-label greater than or equal to 0; we
call such a tree h-tree and denote it by Ty,(G). Then, we prove the following result.

Theorem 3. Let G be a OT-graph and let TJ(G) be the cent-tree of G. The graph G is a Hamiltonian
OT-graph if and only if either H-label(V;) = 0 for each node V; € T {G) or we can construct an
h-tree T(G) such that H-label(V;) 2 0 for each node Vi & Ty(G).

Proof. The if implication follows directly from Lemma 1 since H-label(V;) = 0 for each node V; € T3(G).
Note that Proposition 1 also holds for the A-tree Th(G).

Suppose now that there exist nodes in Th(G) with negative H-labels. Let V; be such a node and let
each ancestor Vij; of V; has H-label(Vj;) 2 (0; note that the leaves of the tree Th(G) have zero H-labels.
Since H-label(V;) < 0, it follows that there exists no predecessor Vi of V] with available vertices; that is,
H-label(Vy,) < 0.

Let Vi1, Via, ..., Vip be the children of V; and let g be the number of vertices vi1, vi2, ..., vig of Vj,
where g < p - 1 if Vj is an internal node and g < p if V; is the root of the tree T,(G). We construct the h-dfs
tree of G rooted at vertex v; recall that the starting vertex v belongs to Vij;. We consider the following
two cases: (i) ¢ < p - 1. It is easy to see that the vertex vig has at least two children in the h-dfs tree.
(ii) g = p - 1. In this case V; is the root of the tree Ty(G); that is, Vi = V|, and each vertex in the h-dfs tree
has only one child except, of course, of the unique leaf u. The vertices v and u are not adjacent in G since
they do not belong to the same connected comport of the graph G - V). Thus, in both cases the graph G
does not contain a Hamiltonian cycle. O

4. The Cent-tree of a Quasi-threshold Graph

The characterizations provided by Theorem 2 enable us to describe a linear-time algorithm for
constructing the cent-tree of a QT-graph.

Let G be a QT-graph and let T.(G) be its cent-tree with node set { V), Vi, .., Vk} and root V;. We
have shown that if node Vj is an ancestor of node Vj in the cent-tree of G, then Vi and V; are
clique-adjacent. Thus, if (Vq, V5, ..., V}) is a path from the root V) of the cent-tree to a node V;, then
deg(V1) > deg(V2) > ... > deg(V;), where deg(V;) denotes the degree of the vertices of G that belong to
node Vj; note that all the vertices of G that belong to node V; have the same degree and that each internal
node of the cent-tree of G has at least two children. It follows that if {vy, vz, ..., v} is a clique in a
QT-graph, then deg(vy) 2 deg(va) = ... 2 deg(vp), 1 Sp =n; see also [24].

Based on this property, we describe a method which produces a rooted tree representation of a
QT-graph; see also [24]. We call this tree degree-tree of G, or d-tree for short, and we denote it by
T4(G). The method is as follows. First, sort the vertices vy, va, ..., vy of G according to their degrees; let
D = (vq, v, ..., vp) be a sequence such that deg(v{) = deg(v2) = ... = deg(vy). Then, construct the tree T,
with vertex set {v{, va, ..., vy} in the following manner: for every vertex vi e D, 2 =i < n, find the vertex
Vi, if it exists, such that & is the maximum index satisfying 1 £ k < i and (v, v;) is an edge in ; add the



edge (v, vj) into E(Ty). Finally, root the tree T at vertex r = vi. The resulting tree is the d-tree Ty(G) of
the OT-graph G.

We next describe the above method in a more formal way. Note that we do not need to compute the
degree sequence of the input graph. The algorithm is a modification of the recognition algorithm
presented in [24]; it takes as input a QT-graph G and produces the d-tree Ty(G).

Algorithm D-Tree-Construction (DTC):

(1) For each edge (v, vj) € E(G) do the following:
If deg(vy) > deg(vj) or (deg(v;) = deg(vj) and i < j)
then Ievef{vj} - Ievefl{vj} +1
else level(v;) « level(v;) + 1;
Initially, level(v;) = 0 for every vertex v; e WG);
(2) Construct the tree T, with vertex set V(Tg} = {v1, ¥2, ..., Vp] as follows:
For each edge (v;, vj) € E(G) do the following:
If level(v;) = level(v;) + 1 then add the edge (v}, v;) in E(Ty);

(3) Root the tree T at vertex r = v; such that level(v;) = 0;
The resulting tree is the d-tree Ty(G) of the QT-graph G;

Let us now compute the complexity of the above construction algorithm. The degree deg(v;) of the vertex
vj can be computed in O(d;) time. Thus, since . d; = O(m), it takes O(n + m) time. Obviously, both
steps (1) and (2) are executed in O(m) time. It is well known that we can root an n-node tree in O(n) time.
Thus, the d-tree of a QT-graph can be constructed in linear time.

Vg_ V’u‘

Vs

Figure 3. The degree-tree T3(G) and the ceni-rree Tp(G) of a OT-graph G.

Based on the structural properties of the d-tree T4(G) of a QT-graph, we next present a linear-time
algorithm for the construction of the cent-tree T(G) of the graph G.

We observe that, a vertex u and its parent p(u) belong to the same node set V; of the cent-tree of G iff
u is a unique child of the vertex p(u) in the d-tree T4(G); see Figure 3. Let us, ..., iy be the vertices of the
d-tree T3(G) with the property that their parents have at least two children and let R = [r = uy w2, ..., ug},
where r is the root of the d-tree. It is easy to see that, the cent-tree T;((G) has nodes Vi, V3, ..., Vi and



uj € Vi, 1 =i <k Thenode V) is the root of the cent-tree and the node Vi = {u;} has parent the node Vj =
{uj} in TAG) if u; is the least ancestor of u; in Ty4(G) that belongs to R. The vertex u & R of the graph G
belongs to the node set V; if the least ancestor of u in T4((G) that belongs to R is the vertex w;, 1 =i < k; see
Figure 3.

More precisely, we have the following algorithm. It takes as input a QT-graph G and produces the
cent-tree of the graph G.

Algorithm Cent-Tree-Construction (CTC):
(1) Compute the d-tree Ty(G) of the input QT-graph G using Algorithm DTC;
(2) For each vertex v; of the d-tree T4(G), 1 < i < n, do the following
If v; is the root r of the tree or its parent p(v;) has more than one child, then
set color(v;) +— red; otherwise color(v;) + black;
Let r = uy, ua, ..., iy be the red vertices of T4(G), k= 1;
(3) For each red vertex u; do the following
Construct a node set V; and set V; « {u;} and label(u;) «— i, 1 <i <k,
(4) Visit (preorder) each vertex v; of the d-tree T3(G) and do the following
If v; is a black vertex then set label(v;) «— label(p(v;));
(5) Construct the tree T, as follows:
Set V{Tg} —{r=W, Vo, .... V]
For each black vertex v; € T4(G), do the following
if label(v;) = j, then add vertex v; in Vi 15j=k
For each read vertex u; € Vi, 1 <i <k, do the following
if label(p(u;)) = j, then add the edge (V}, V) in E(T);
(6) Root the tree T, at node V);
The resulting tree is the cent-tree To((G) of the graph G;

We next compute the complexity of the proposed algorithm for the construction of the cent-tree of a QT-
graph. Step I: The rooted d-tree T4(G) is constructed in O(n + m) time using Algorithm DTC. Steps 2
through 5: It is easy to see that all these steps are executed in O(n) time. Step 6: The process of rooting an
n-node tree takes O(n) time.

Therefore, from the above analysis, it follows that the construction algorithm CTC runs in O(n + m)
time. Thus, we have the following result.

Theorem 4. The cent-tree of a QT-graph on n vertices and m edges can be constructed in O(n + m) time.

5. The Main Results

It is well known that it is NP-complete to recognize whether a graph is Hamiltonian [2]. In Section 3
(Theorem 3) we give necessary and sufficient conditions for a QT-graph to be Hamiltonian. From this
condition, a linear-time algorithm can be constructed for finding a Hamiltonian cycle in a Hamiltonian
QT-graph G, and also linear-time algorithms for computing the Hamiltonian completion number hen(G)
and the Hamiltonian completion edge set CE(G) of G. Obviously, if hcn(G) = 0 then G is a Hamiltonian



graph. Thus, the algorithm for the computation of the number hcn((G) is also a recognition algorithm.

Let & be a Hamiltonian QT-graph and let T.(G) be its cent-tree with nodes Vy, Vs, ..., Vi and root V.
Suppose that H-label(V;) = 0 for each node V; € T(G). Then, by Theorem 3, the graph G has a
Hamiltonian cycle. Conceder the h-sequence (Vi1y, Va1ys -.-» V1) of the cent-tree of G and construct the h-
dfs tree of the graph G using the h-dfs traversal strategy on the sent-tree T.(G); see Section 3. We select an
arbitrary vertex v from the set Vf;y) as start point. Since H-label(V;) 2 0 for each node Vj e T(G), it is easy
to see that each node of the h-dfs tree rooted at v € V) has at most one child; its unique leaf u belongs to
node V] and, thus, (v, u) € E(G); see Figure 4. It follows that we can find a Hamiltonian cycle of the graph
G from its h-dfs tree.

The cent-tree and the h-sequence of a QT-graph are constructed in linear time. Thus, in the case
where H-label(V;) 2 0 for each node V; e TJ(G), a Hamiltonian cycle of G can be constructed in linear
time.
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Figure 4. The structure of a Hamiltonian cycle of a 0T-graph G; it is produced using
the h-dfs traversal strategy on the h-tree T (G).

Conceder now the case where the cent-tree of a Hamiltonian QT-graph has nodes, say, Vj and Vj, such that
Vi is an ancestor of P’j, and H-label(V;) > 0 and H-label(V}) < 0. In this case we first construct the h-tree
T#(G) of the cent-tree T.((), and then use the h-dfs traversal strategy on the h-tree to construct the h-dfs
tree of the graph G. Since H-label(V;) = 0 for each node V; & Th(G), it follows that the h-dfs tree has the
same structure as that of the previous case. Thus, the h-dfs tree gives us all the necessary information to
compute a Hamiltonian cycle of the graph G.

We next present an algorithm which takes as input the cent-tree T(G) of a Hamiltonian QT-graph and
produces the fi-tree Th(G) of the cent-tree of G. Since G is a Hamiltonian QT-graph, the algorithm always
succeed in computing the A-tree Ti(G).



Algorithm H-tree-Construction (HTC):

(1) If H-label(V;) 2 0 for each node Vi e T(G), 1 <i <k, then
T.(G) is an h-tree; set Ty(G) « T.(G) and exit;
(2) For each node Vi e To(G), 1 =i <k, such that H-label(V;) < 0, do the following

Find the least ancestor Vi, of V] in T(G) such that H-label(Vy) > 0;
Move available vertices from V}, to Vj until H-label(V;) = 0 or H-label(Vp) = 0;

We can easily show that the H-labels of the nodes of the cent-tree T.(G) can be computed in O(n) time;
the H-label(V;) of the node V; can be computed in O(n; + p;) time, where n; is number of vertices in V; and
pi is the number of children of node V; in the cent-tree T(G). The least ancestor V, of a node V; such that
H-label(Vp) > 0 can also be computed in O(n + m) time using similar techniques to that of computing the
cent-tree T.(G) tree from the d-tree T4(G); see Algorithm CTC. Since each available vertex is moved at
most once, we conclude that the h-tree T((G) can be constructed from the cent-tree T.(() in linear time.
Thus, we obtain the following result.

Theorem 5. Let G be a Hamiltonian QT-graph on n vertices and m edges. A Hamiltonian cycle of & can
be constructed in O(n + m) time,

We consider now the case where G is not a Hamiltonian QT-graph. Let G be such a graph and let T,(G) be
its cent-tree. From Theorem 3, we have that there are nodes in the cent-tree To(G) with negative H-labels
and the h-tree of T.(G) does not exist; that is, Algorithm HTC fails to construct the h-tree Th(G). That
means, there is a node V; e To(G) such that H-label(V;) < 0 for which the there exists no ancestor Vp of Vi
in To(G) such that H-label(V}) > 0.

In this case we are interested in computing the minimum number of edges which need to be added to
E(G) to make the graph G Hamiltonian. To this end, we construct a Hamiltonian Q7-graph D from the
graph G by adding dummy vertices in the set V() and appropriate edges in the set E(G). We shall define
the graph D through its corresponding h-tree; we call dh-tree the h-tree of the graph D. The dh-tree is
constructed from the cent-tree T.(G) of the graph G; the construction algorithm is as follows.

Algorithm DH-tree-Construction (DHTC):

(1) Step (1) of Algorithm H-tree-Construction (HTC);

(2) For each node Vi e T(G), 1 <i <k, such that H-label(V;) < 0, do the following
If there exist a least ancestor VP of V; in Te(G) such that H-label(V;) > 0
then move available vertices from V), to V; until H-label(V;) = 0 or H-label(V;,) =0
else add dummy vertices dv;;, dvia, ..., dvi, in node set V; until H-label(V;) = 0;

The dh-tree constructed from the above algorithm and the cent-tree T(G) have the same structures.
Moreover, the dh-tree has the property that H-label(V;) = 0 for each its node Vj, 1 <i < k; note that the
node V; of the dh-tree contains the vertices of the node V; of the cent-tree along with, probably, some
dummy wvertices. Thus, the graph D which corresponds to dh-tree is a Hamiltonian OT-graph.

More precisely, let vy, v, ..., v, be the vertices of G and let dv,, dvs, ..., dv, be the dummy vertices
added to T.(G) by the dh-tree construction algorithm. Then, the graph D is the following:



(1) WD) = {vi, V2, «oey Vi dVy, dVy, ..., diy}, and

(ii)  E(D) contains all the edges of G and edge of the form (u, dv)) if u € V; and dv; € Vj and the node sets
Vi, Vj have the property: Vj (V}) is an ancestor of Vj (Vi) or V| = V] in the cent-tree T.(G); the vertex
i is either a vertex of G or a dummy vertex.

By construction, the Hamiltomian OT-graph D contains the OT-graph G as an induced subgraph.

Moreover, it is easy to see that if we remove a vertex from D then it is no longer a Hamiltonian Q7-graph.

This proves the following result.

Lemma 4. The graph D constructed by Algorithm DHTC is a minimum order Hamiltonian QT-graph
which contains the QT-graph G as an induced subgraph.

Let G be a non Hamiltonian OT-graph and let T¢(G) be its cent-tree. We conceder the Hamiltonian Q7T-
graph D and its dh-tree constructed from T.(G) by Algorithm DHTC. We have shown that, a Hamiltonian
cycle of the graph D can be produced using the h-dfs tree of the graph D; recall that the h-dfs tree is
constructed by the h-dfs traversal strategy on the dh-tree. We prove the following result.

Lemma 5. The Hamiltonian completion number hcn(G) of a non Hamiltonian QT-graph G equals the
number of dummy vertices in the dh-tree of the graph D computed by Algorithm DHTC.

Frogf. Consider the h-sequence (Vi1y, Var1y, ..., V1) of the dh-tree and the h-dfs tree of the graph D. Let

v € V1) be the root of the h-dfs tree and let HC = (v, ..., v, dvj, W, ..., v) be the Hamiltonian cycle which

is produced by the h-dfs tree, where dvj is a dummy vertex. Note that HC is a cycle on n + h vertices,

where n is the number of vertices in G and h is the number of dummy vertices in the dh-tree. By

construction, the cycle HC has the following properties:

(1) If dvj is a dummy vertex in HC, then its two adjacency vertices, say, v; and v, are not dummy
vertices; that is, v;, v, € WG), and

(ii) if vi € V; and v € Vg, then both nodes V; and Vj; are leaves in TJ{(G) and V; = V.

Thus, if we remove each dummy vertex dv; from HC and makes the vertices v; and vy to be adjacent, the

resulting structure HC is a cycle on n vertices vy, v, ..., Vp.

Since the vertices v; and vy belong to deferent leaves in TJ(G), it follows that v; and v are not
adjacent in the graph G. Thus, if we add the edges (v;, v) in E(G), then the resulting graph G is
Hamiltonian and the cycle HC" is a Hamiltonian cycle of it.

We have proved that the number k of dummy vertices which need to be added to the nodes of T(G)
to produce the dh-tree is minimum. The graph G* is Hamiltonian, G") = V(G), E(G") = E(G) and
|E(G'] = |E|[G}| + h. Therefore, h = hen(G) and the lemma is proved. O

The preceding lemma provides a linear-time algorithm for computing the Hamiltonian completion number
of a QT-graph on n vertices since h < n. Moreover, it provides a linear-time algorithm for computing the
Hamiltonian completion edge set CE(G); that is, the set of edge which need to be added to E(G) to make &
Hamiltonian. Note that, | CE(G) | = hen(G). Thus, we have the following theorem.

Theorem 6. The Hamiltonian completion number of a Q7-graph G on n vertices and m edges can be
computed in O(n + m) time. Moreover, the Hamiltonian completion edge set of G can be computed within
the same time bound.



The method we have described for the computation of the number hcn(G) and the edge set CE(G) of a
OT-graph G based on the construction of the hd-tree and the computation of a Hamiltonian cycle of the
graph D.

The computation of the Hamiltonian completion number of a OT-graph G can also be done in linear
time in a much simpler way using only the structural properties of the cent-tree T.(G) and the H-labels of

its nodes. This computation is described in the following algorithm.

Algorithm Hamiltonian-Completion-Number (HCN):

(1) Compute the cent-tree T(G) of & using Algorithm CTC;
Let Vi, V4, ..., Vi be the nodes of the tree T{(G) and let r; =V be its root;
(2) For each node V] e T(G) compute the label H-label(V}), 1 =i < k;
(3) Contract the cent-tree T(G) into a 1-node tree by applying delete operations
on the leaves of the T.(G); when a leaf node V; (V; # V) is subject to a deletion
operation, we adjust the H-label of the parent p(V;) of the node Vj, as follows:
If H-label(V;) < 0 then
H-label(p(V;)) « H-label(p(V;)) + H-label(V});
Delete the leaf node V;;
Let Vp be the root of the resulting 1-node tree;

(4) Compute the Hamiltonian completion number hen(G) of the input graph G as follows:
If H-label(V}) <0 then hen(G) < | H-label(V}) |

else hen((G) « 0; that is, G is a Hamiltonian QT-graph;

Let us now determine the time required for the execution of the proposed algorithm for the computation of
the number hen((G) of a QT-graph. Srepl: The cent-tree of a OT-graph can be constructed in O(n + m) time
by Algorithm CTC. Step2: This step takes O(n) time; see the analysis of Algorithm HTC. Step3: The
contraction process on an n-node tree can be completed in O(n) time. Step4: Obviously, this step is
executed in (1) time.

From the previous step-by-step analysis, it follows that Algorithm HCR runs in O(n + m) time. Thus,
we have proved the following result.

Theorem 7. The Hamiltonian completion number of a QT-graph on n vertices and m edges can be
computed in O(n + m) time.

Corollary 1. It can be decided whether a QT-graph on n vertices and m edges is a Hamiltonian graph in
Oln + m) time.

6. Concluding Remarks

In this paper we studied the class of OT-graphs and proved structural and algorithmic properties on its
members. We showed that a QT-graph G has a unique tree representation, the cent-tree, and proved
necessary and sufficient conditions for a QT7-graph to be Hamiltonian. Based on these properties and
conditions, we constructed linear-time algorithms for finding a Hamiltonian cycle and computing the
Hamiltonian completion number of G. It is obvious that the linear-time algorithm for the Hamiltonian



completion number is also a recognition algorithm. We also showed that the Hamiltonian completion edge
set of a QT-graph can be computed in linear time and proposed an O(n + m)-time algorithm.

Based on the structure of the cent-tree of a QT-graph, we can also design linear-time algorithms for
some well-known optimization problems on QT-graphs. For example, the maximum clique problem, the
maximum independent set problem, the clique cover problem and the coloring problem cam be solved in
linear time.

Different problems can be foreseen for further research. An interesting optimization problem is the
construction of a Hamiltonian cycle of a OT-graph G in the weighted case: each vertex and/or edge of
G has certain weight and we wish to minimize the total weight of edges in a Hamiltonian cycle. A second
problem that is worth studying is the weighted version of the Hamiltonian completion edge set problem:
we wish to minimize the total weight of the edges (with respect to the weights of its end-vertices) of the
set CH(G). We pose these as open problems for algorithmic study.

A topic for further research is the study of problems on the line graph of a @T-graph (for results on
line graphs, see [4, 5, 20, 22, 23]). One can work towards the identification of structural and algorithmic
properties of such graphs, which may lead to linear-time algorithms for the Hamiltonian problems we
conceder here as well as for other combinatorial and optimization problems.

References
[11 A. Agnetis, P. Deni, C. Meloni and D. Pacciarelli, A linear algorithm for the Hamiltonian completion number
of the line graph of a tree, Inform. Process. Lett. 79 (2001) 17-24.
[2] A.A. Bertossi, The edge Hamiltonian problem is NP-hard, Inform. Process. Lerr. 13 (1981) 177-159.

[3] A. Brandstidi, B. Le and J.P. Spinrad, Graph Classes: A Survey, Siam Monographs on Discrete Math, and
Appl., 1999,

[4] H.J. Broersma, Subgraphs conditions for dominating circuits in graphs and pancyclicity in line graphs, Ars
Combinatoria 23 (1987) 5-12.

[5] ER.A. Brualdi and RLF. Shong, Hamiltonian line graphs, J. of Graph Theory 5 (1981) 304-307.

[6] D.G Corneil, H. Lerches and L. Burlingham, Complement reducible graphs, Discrete Appl. Marh. 3 (1981)
163-174.

[7]1 V. Chvatal and P.L. Hammer, Set-packing and threshold graphs, Res. Report CORR 73-21, University of
Warerloo, 1973.

[8] D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Compui. 14
(1985) 926-934.

[9] P. Detti and C. Meloni, A linear algorithm for the Hamiltonian completion number of the line graph of a
cactus, Proc. CTW 2001, in: Elecrronic Notes in Discrete Marh. (Elsevier), vol. 8, 2001.

[10] MLC. Golumbic, Trivially perfect graphs, Discrere Math, 24 (1978) 105-107.
[11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980,

[12] S. Goodman and S. Hedetniemi, On the Hamiltonian completion problems, in: A. Dold, B. Eckman (Eds),
Graphs and Combinatorics, Lecture Notes in Math. (Springer, Berlin), Vol. 406, pp. 262-272, 1974.

[13] F. Harary and 5.D. Nikolopoulos, On complete systems of invariants for small graphs, Inter. J. of Comput.
Marh, 64 (1997) 35-46,

[14] 5. Kundu, A linear algorithm for the Hamiltonian completion number of a tree, Inform. Process. Lett. 5
(1976) 55-57.

14



[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

5. Ma, W.D. Wallis and J. Wu, Optimization problems on quasi-threshold graphs, J. Comb. Inform. & Syst.
Sciences. 14 (1989) 105-110.

T.A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, Siam Monographs on Discrete Math.
and Appl., 1999,

5.D. Nikeclopoulos, Hamiltonian cycles in quasi-threshold graphs, Proc. CTW'2001, in: Electronic Notes in
Discrete Math. (Elsevier), vol. 8, 2001.

5.D. Nikolopoulos, Recognizing cographs and threshold graphs through a classification of their edges,
Inform. Process. Ler. 75 (2000) 129-139.

A. Raychaudhuri, The total interval number of a tree and the Hamiltonian completion number of its line
graph, Inform. Process. Lett. 56 (1995) 299-306.

H.J. Veldman, A result on Hamiltonian line graphs involving restrictions on induced subgraphs, J. of Graph
Theory 12 (1988) 413-420.

E.5. Wolk, The comparability graph of a tree, Proc. Amer. Marh, Soc. 3 (1962) 789-795.
L. Xiong, The Hamiltonian index of a graph, Graphs and Combinaiorics, to appear.

L. Xiong, H.J. Broersma, C. Hoede and X. Li, Degree sum and subpancyclicity in line graphs, Discrete Math.,
to appear,

J-H. Yan, J-J. Chen and G.J. Chang, Quasi-threshold graphs, Discrete Appl. Math. 69 (1996) 147-255.



