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Abstract

In this paper we present a method, which includes automated detection of regions of interest
in sequential Intravascular Ultrasound (IVUS) frames and combination of the extracted results
with biplane angiography data. The application of the proposed method in the entire IVUS
image sequence, in combination with the processing of two perpendicular angiographic
images, produces a three dimensional model of the examined arterial segment, where the
stenotic areas are depicted in detail. The detection of regions of interest is performed using
deformable models. The energy function is appropriately modified and is minimized using a
Hopfield neural network. The method includes boundary correction schemas, which introduce
suitable initial estimations for sequential frames. The 3D reconstruction is based on the
computation of the pullback path and appropriate placement of the detected boundary points.

The method 15 used in several cases and the obtained results are illustrated.
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I. INTRODUCTION

Atherosclerosis is the disease that causes partial or total obstruction of human arteries. The
infection of coronary arterial segments by this disease requires early diagnosis and accurate
assessment of plaque 3D geometry for the selection of the appropriate therapeutic method.
Several imaging techniques exist for the estimation of the severity of the disease in vivo.
Intravascular ultrasound (IVUS) and biplane coronary angiography are commonly used
diagnostic tools. The first permits direct visualization of the arterial wall morphology, while
the second produces accurate information about the lumen as well as the vessel topology and

shape.

IVUS requires insertion of a catheter in the vessel. A small transducer is placed at the tip of
the catheter, which transmits a high-frequency (20-40 MHz) ultrasound signal. The
attenuation of the signal, while passing through the vessel and its adjacent tissues generates
cross-sectional images. An image sequence is acquired during the constant speed catheter’s
pullback along the vessel. In those images the region of the lumen and the outer layers of the
vessel can be identified and the percentage of stenosis can be calculated. Furthermore, plaque
characteristics are obvious in many cases and typical plaque components, such as calcium,

can be detected.

IVUS exhibits certain advantages such as real time visualization of plaque morphology,
quantification of plaque eccentricity and detection of lumen borders for the assessment of
wall thickness. However, [IVUS does not provide information regarding vessel topology or its
location in the 3D space. This information, which is needed for the specification of stenotic
areas along the vessel, can be derived by biplane angiography. Using biplane angiography,
two images of the arterial lumen are produced from different projection rays and the vessel

curvature can be extracted by processing those images.

A lot of effort has been made to combine the information extracted from these techniques in
order to reconstruct accurately the arterial segment [1, 2, 3, 4]. Several techniques have been
proposed concerning the automated detection of the regions of interest in individual IVUS
frames and afterwards the 3D reconstruction of the arterial lumen. These techniques can be
classified depending on the information they use and the methods they apply in image

segmentation for the detection of the wall borders.



The techniques for automated identification of the regions of interest in IVUS frames take
advantage of the characteristic appearance of the arterial anatomy in two dimensional IVUS
images. Some of the earlier work on segmentation of IVUS images was based on graph
searching algorithms. The cost function, which was used in the border detection process,
incorporated a priori information of the expected pattern in IVUS frames [35, 6]. Also, in this
direction, segmentation methods based on probabilistic approaches have been proposed [7, 8].
A class of methods that take advantage of the expected similarity of the regions of interest in
adjacent IVUS frames takes into account that the sequence of frames constitute a three
dimensional object. On this object, active contour principles [9, 10] or boundary detection in
3D space [11] can be used to extract the desired contours of lumen and vessel. Other methods
use the information from two perpendicular longitudinal sections from the entire 3D object to
detect lumen borders [12, 13]. Afterwards, they combine this result with the corresponding

planar images, to extract the final contour.

In order to generate a 3D model of the arterial segment. several approaches have been
proposed. Methods that are based only on the information extracted from biplane angiography
for the 3D reconstruction of arterial segments [14, 15] are restricted by the loss of the lumen
width, because the three dimensional object (lumen) is projected on a plane. Furthermore,
methods that make the assumption that [IVUS frames are parallel to each other [9, 16] and the
3D transducer pullback trajectory is approximated by a straight line, comprise a volume error

due to its under or overestimation in curved vessel segments [17].

To avoid these drawbacks, fusion of biplane angiography and IVUS images is performed to
result in a reliable model of the artery. The lumen’s border is obtained by the processing of
IVUS images and the curvature of the vessel is extracted from biplane angiography [2, 3, 4].
For the determination of the curvature, the catheter’s path in angiographic images is required.
In this direction, two approaches are used, depending on the information contained in
angiographic images: estimation of the catheter’s path using the vessel centerline [2] or
extraction of the catheter’s path in the lumen, when this is visible [18, 3]. The last step in the
3D reconstruction process is the mapping the IVUS images to their location on the catheter’s

path.

In this work, we focus on the development of a fast and automated method for accurate IVUS
image segmentation and the 3D reconstruction of the arterial segment. User interaction is
required only in the first frame of the sequence, for setting an initial estimation for the border
of the lumen and the boundary between media’advenitia. A robust method, based on

deformable models, is applied sequentially on the entire set of IVUS frames for the extraction



of the borders of region of interest. The modification of the energy function of the deformable
model makes the use of a Hopfield neural network feasible for the minimization of the energy
function, which results in the reduction of the processing time for each frame. Furthermore,
the introduction of a new expression for the image energy makes the method stable resulting
in accurate boundaries for all images, regardless of the presence of noise or weak edges, both
common in IVUS imaging. In each frame, a smooth initial deformable curve is provided by
the computation of the convex hull of the extracted boundary in the previous frame. The
method is applied twice in each frame. The outcome of the first application is the boundary
between media/adventitia and is used for the restriction of the searching space for the
determination of the lumen border. The extracted curves from the entire IVUS sequence are
placed in 3D space to obtain a 3D model of the arterial segment. The curvature of the vessel is
estimated with the use of two perpendicular angiographic images. The three dimensional

representation of the artery segment is obtained through a 3D reconstruction method.
IL. METHODS
A, IVUS Image Segmentation Method

The extraction of the regions of interest in individual IVUS frames is performed by a method
based on the basic principles of deformable models, which takes advantage of the knowledge
of the quality of a single image and use it to find the corresponding regions in sequential
frames. The initial estimation for the searching area is provided by the previously processed
frame. The use of the Hopfield neural network for energy minimization makes the method

fast.

Preprocessing

IVUS frames contain noise and the actual boundaries of regions of interest are difficult to be
identified in many cases. Image preprocessing removes speckles and artifacts that can
interfere with the detection of desired boundaries, during the selection process. Furthermore,
the detection of regions of interest is restricted by the weak edges in IVUS images and image
enhancement is required. We use a 3x3 median filter to eliminate the effect of speckles,
without blurring the edges. A band-pass linear filter is then applied for the sharpening of

image edges whose thresholds are determined empirically.

Boundaries Detection



I. Initial Estimation

The regions of interest in IVUS images are detected automatically in the entire frame
sequence. The borders of lumen/intima and media/adventitia, which delimit the region of
plaque in the arterial wall must be extracted. The method is applied twice in each IVUS
frame, with some modifications, for the detection of both boundaries. Since our approach 1s
based on deformable models, an initial contour for the lumen/intima and media/adventitia
boundary must be provided. The initial estimation of the region of interest must be in
proximity to the real boundary, otherwise the deformable model does not converge. The
observer, interactively, gives a set of points on the estimated boundary, and a closed curve is
produced drawing line segments between those points (Fig. 1). The number of sampled points
is not constant and depends on the smoothness of the region. Regions of interest that are not

ellipse-like shaped may require more points to be defined accurately.

The catheter is moving into the vessel with a constant speed of 1 mm/sec. Given that the
frame storage rate is about 25 frames/sec, contours in adjacent frames must have similar
shape. Thus, we use the contour detected in the current frame as the initial estimation for the

next frame. This process is applied on the entire image IVUS sequence.
2. Active Contour Model

The initial estimation of the boundary of the region of interest forms an active curve, which
deforms in order to obtain the final shape of the actual boundary. As proposed in [19], a snake

deforms with the influence of internal and external forces and is attracted to image
characteristics. The position of the snake is represented parametrically as v(s) = (x{.s'}, y(s]},

and the corresponding energy functional is:
1

Esnake = J(Einl {V{S)}"' Eimagc {V{S)})dﬁ (1)
0

where E,, represents the internal energy of the snake due to bending and E;, ... is derived

from image data. As in most conventional snake models, the internal energy is a function of

the first and second order derivatives of the curve, and is expressed as:

Ei = als)(s)Y* +B(s)"(s)* @

Eimagc is the term that forces the snake to be attracted to image features, and is defined as:

E =—y(s)VI g’

(3)
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where |"G'.|" | is the image gradient, and a(s), B(s) and y(s) are the elastic factors.

In the discrete domain, the first and second order derivatives of the snake can be
approximated by a finite difference scheme, and assuming constant elastic factors, the energy

function of the snake can be expressed as:

N .
Esnnkl: N E{il{b‘.. — Vi }' + B(vl—'l —2v; +Vyy )2 —YE; }
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where N is the number of points of the snake and g; is the image gradient at each image

pixel. The pixels of the image that minimize this energy function and are close to the region
of interest define the boundaries of the desired region. The energy of the snake is minimized,
with the use of a Hopfield neural network, which reduces the searching time needed for the

selection of the appropriate image pixels.
3. Application of the Hopfield Neural Network

A typical Hopfield neural network [20] consists of a single layer of neurons, where each
neuron has one of the two outputs, © =0 or o =1 (firing or not firing). A Hopfield network
is fully interconnected with no specific input or output layer. Each node has a bias / and is

connected with every other node. The connections are bi-directional and symmetric and a

specific weight T,

;i is assigned to each connection. The state u of each neuron depends on

the input it receives from other neurons, and is given as:

u,-=_}:ir'"qaj+f (5)
J#i

where N is the number of neurons. The total energy function of the network can be expressed

das:

N
Tj0:0;,~ 2 10;. (6)
i=1
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The network converges when the energy function reaches a local minimum.

The energy of a deformable curve can be minimized using a Hopfield neural network [21].
The nodes of this network correspond to image pixels and the pixels that minimize the total
energy of the network form the desired boundary. The network consists of one laver of

N x M neurons (Fig. 2). Given the initial estimation curve, N points were sampled and



perpendicular line segments consisted of M points are drawn. Each neuron (i, j). 1 €i< N,
1< j< M, represents a candidate point of the final boundary. The output of the neuron is

zero, for a point that is not included in the set of the boundary points, and one, for a point that

belongs to the boundary set.

The energy of the snake which will be minimized by a Hopfield neural network, can be

expressed as:
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where x, v are the coordinates of a point, 0 is the output of a neuron, and g is the image

energy.

The interconnective strengths are given as:

- (4o +12)3; — (2 +8B)5,. ; — (2 + 8BS, [x . | ] N
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¥ 0, otherwise

and the bias for each neuron is [ =vg;; .

At every iteration the state of each neuron (i, k) is updated according to:

N M
Ui = _'ZI leﬂaﬁﬂ jt + i - (10)
j=ll=

The output of the neuron is determined by the function: o, = f {”;k :I where:

f{u.-;‘}={l’w‘* = max(uy1h=12... M) an

0, otherwise



Using relations (5) — (11) we can initialize the strengths for each connection, the state, output
and bias for each neuron, and finally. the total energy of the network. In the first iteration, the
output of all neurons is zero, except those neurons that correspond to points of the initial

estimation contour.

After the construction of the network an iterative procedure is followed described by the

following steps:

0 Update the state of each neuron synchronously.

O If the new state of the neuron reduces the total energy of the network, then the new state
is acceptable and the states of all neurons and the total energy of the network are updated,
otherwise no state change is affected.

O Check the total energy of the network. If the energy does not change anymore, the
network has reached a local minimum of the function.

O The firing neurons form the new boundary for the region of interest.

Rt

Specification of the Searching Grid

An important step of the segmentation algorithm is the definition of the area where the initial
contour ¢an deform to equilibrate to the final contour. The searching area consists of line
segments that are perpendicular to the initial contour, at some sampled points. The sampling
process of the initial contour requires the calculation of the center of the contour points,
which is given by:

n.l

!

Hji= (ff*-vj ]=

where j is the number of the contour, containing n [ points with coordinates (xy-, Yy ). WU j

is considered to be the center of the ellipse-like curve, from which we draw two perpendicular
lines that intersect the contour at four points and divide it into four separate regions. Starting
from every one of these four points, we move anti-clockwise and at equal angles of 15° we
sample five points at every region. The total number of the sampled points at each contour is
24, which is sufficient to reach a smooth final contour. Then, perpendicular line segments are
drawn centered at sampled points. The number of points included in each segment is different
for the inner and outer boundary. These points are the candidate points for the final contour

and one point of each line segment will be selected as a point of the final contour.

3. Proposed Image Energy



The intensity or the gradient of the image at specific pixels is included in the image energy
expression. For the detection of strong edges it is essential to push the snake to contours
which correspond to large image gradients. In general, the gradient of the image is computed
using standard operators for row and column gradient. A limitation common to all edge
gradient operators is their inability to accurately detect edges in high noisy environments such
as IVUS images. In these images, the distribution of the pixels, which correspond to regions
of specific tissues, is not homogenous and their intensity varies in a small range. Furthermore,
pixels with large image gradient may appear due to noise speckles introduced from the
ultrasound signal. These pixels do not indicate the real border of the region, but they attract
the snake towards their position, which may entail wrong identification of the boundary of the
region of interest. For this reason, we try to find those edges that separate large regions with

small intensity variations in IVUS images.

For the detection of the actual boundary of the region of interest we calculate the mean
intensity value of four adjacent areas of fixed size at a specific pixel (Fig 3). The size of those

areas depends on the boundary of the region we are interested in, for example the lumen or

the outer border of the vessel. For each pixel (i, j) the image gradient g;; is defined as:

— — vl —
gy =\t = ws i, ) + (ot - we G D) - (13)
where 1_1-"[,,- (L. ), ;’b (i,j), ;';{:'. J) and ;-'r (i. j) represent the mean values of the upper,
lower, left and right windows of the pixel (i, j), respectively, computed as:

1 k2 hR2

w=—r-y 3% > fl+k, j+l). (14)
h* k=-hi21=hi2

The size of noise speckles is normally small, compared to the region of the lumen or the

media in [IVUS images, so they do not affect the mean value of the intensity of the entire area.

As a result, the snake is attracted by the pixels of the actual boundary of the region of interest

and noise effects are suppressed. Fig. 4 illustrates the use of our approach with the new image

energy term incorporated in the energy function of the deformable model, compared with the

use of conventional image gradient operators, for the expression of the image energy.
. Convex Hull Calculation

Small distortions in the shape of the final contour may cause abnormalities in the
specification of the searching area for the next frame and there is a great probability of false
detection of the wanted boundaries. The error introduced by non-convex initial estimation for

the detection of the border between the media and adventitia is propagated in sequential



applications of the algorithm in several frames (Fig. 5(b)). For this reason, we look for

smooth initial estimations for the boundary of media/adventitia.

In our method, the points extracted from the convergence of the network form a closed curve,
which is the boundary of the region of interest. The shape of a cross sectional boundary of the
border between media and adventitia is convex, according to the physiology of a healthy
artery. This is also acceptable in the case where plaque appears in the vessel’s wall. with the
exception of highly diseased wvessels, in which the morphology of the plaque 1s very
complicated. For the definition of the final curve, which is used as the initial estimation of
the border in the next frame, we calculate the convex hull of the final points (Fig. 6). The
algorithm we have used is incremental and is related to plane sweep [22]. The convex hull is
calculated only for the detection of the outer boundary of the vessel, while the shape of the
border of the lumen can be more complicated and the approximation of the desired boundary
with a convex curve may cause loss of information. As it is shown in Fig. 5 the need for the
calculation of the convex hull is obvious in order to obtain an initial good estimation for the

next frame.

7. Further Resrrictions

The image segmentation method is applied twice on the entire sequence of IVUS frames (Fig.
7). The first application results in the detection of the border between media and adventitia,
while the second concerns the detection of the boundary of the lumen. The outcome of the
first application is stored and it imposes further limitations for the searching space of the inner
boundary. On this way points of the searching lines that lay in the outer region of the vessel

are not selected, during the iterative use of the neural network.

B. Three Dimensional Reconstruction of the Arterial Segment

A reliable three-dimensional representation of the arterial segment is essential for the accurate
calculation of the characteristics related to the severity of the disease, such as the diameter
and the length of the stenotic area and its exact position. Although IVUS images depict with
detail the morphology of the plaque, they do not provide any information about the vessel
topology or the location of each frame along the vessel. To produce a 3D model of the arterial
segment, we need an estimation of the pullback path in 3D space, which is derived from the
processing of angiographic data (Fig. 8). The extraction of the pullback path requires the
processing of two angiographic images, acquired from two different projection views. The

path is approximated with the vessel centerline in both images (Fig. 9) and it can be
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reconstructed in 3D space. After the estimation of the 3D coordinates of the centerline, each
IWVUS frame is assigned to a specific location along the pullback path using its timestamp.
Finally, the relative orientation for each IVUS frame is determined and each contour point 1s
mapped in a plane perpendicular to the reconstructed 3D lumen centerline. The lumen

centroids in IVUS frames coincide with the points in the centerline.
Angiographic Image Processing

Two angiographic images are obtained simultaneously with the TVUS examination. In those
images adjacent tissues and bifurcations of the main vessel can be used as landmarks for the
appropriate correspondence of the frames along the vessel path. For each angiographic image
scale factors are calculated and each image was restored properly. Next the lumen borders are

identified and the pullback path is approximated by the vessel centerline.

We use two perpendicular angiographic images to determine the xz and vz planes of an
orthogonal system. The starting pullback point for both images coincides with the orthogonal
system origin. The pullback path can then be reconstructed in 3D space from its known
projections in both angiographic images. A curve is obtained from the set of points extracted,
using linear interpolation, and is smoothed with the use of a 5-point averaging filter. The
curve is then sampled uniformly; the number of sampled points corresponds to the number of
frames of the [IVUS sequence and each point represents the center of the lumen in 3D space.
We assume that the transducer moves parallel to the vessel wall and the produced cross

sectional images are perpendicular to the catheter’s path.

Next we compute the plane which is perpendicular to the pullback path that corresponds to a
specific frame. Initially, the IVUS frames are placed in planes that are parallel to each other
and perpendicular to the z-axis of the orthogonal system. For the localization of the frames
along z-axis, the timestamp of each frame is used, beginning from the first frame that
corresponds to the pullback starting point. The distance between two sequential frames is unit.
The center of the lumen at each frame is a point on the z-axis and the coordinates of the points

that form the boundaries of the regions of interest are computed with the appropriate

transformation. Given that the coordinates of the center L of the lumen are (x,.y,) in the

i -th frame, the new coordinates (x .y ,) for a point p of the boundary are computed as:

11
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The coordinates of the points of the boundary between media/adventitia are calculated in a

similar manner.

The method includes transformation and translation of the points at a different orthogonal
system that depends on the computed pullback path (Fig. 10). The idea is to determine a new
reference svstem along the points of the path and to define the corresponding points of the

boundaries in the new system. If the set of the points of the path in 3D space is

Ng,.95.....q, ) then every point of the frame { is translated in a way that the new center of

the lumen will be the point g; .

The determination of the new orthogonal system requires the calculation of the direction

cosines of the new axes. Given that the IVUS frames are perpendicular to the catheter’s path,

the z° axis is determined by the vector ¢, —¢;. For the determination of X" and vy axes
three sequential points ¢§;,q;,1.q¢;.2 of the 3D catheter’s path are considered. Those points
define a plane and the vector product r=r;x7r,, where 7, =¢;,—¢; and,
T3 =§;.2 — ;s is perpendicular to z” axis and corresponds to the x* axis. To define the
conventional direction of the vector x” (Fig. 11), we consider that the ordered set (7,.75.7)
is a right-hand system. Thus, if the vectors 7 and r,form a right turn, we calculate the

vector product T) x T, otherwise we take the opposite vector product. The vector’s turn is

calculated from the projection of the path in a plane where the torsion of the curve is not

considered. In this plane, we have to check if the three points are collinear or coincide.

The new axis y" is calculated from the vector product x'xz'. To place the points of each

frame in the new orthogonal system, it is essential to calculate the direction cosines of each

axis. After the definition of the new orthogonal system, we consider the points F,(x;, ¥.2;),
P5(x5.¥5.25)and Py(x5.)5.2;) onthe axes x’, y'and z', respectively. Given that the point
Fy(xg.¥p.2g)is the origin of the system, the direction cosines are defined as:

=1, Y=Y, 5 -2
] == smy=t p = o (16a)
. d d d
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'ﬂtm_zu M (16¢)

. dy 3 dy = ° d;
where d,is the distance between Fand F.

The coordinates of the points of the boundaries are given as:

*p !.1' ‘r_'r ‘I: x.p 9x
Ypl=|me my m |V, |+ ay | (17)
Zp n, n, n; ‘-rp q:

The determined coordinates of the points of the boundaries produce a three dimensional grid

of the arterial segment (Fig. 12).

IIL RESULTS AND DISCUSSION

Sequences of IVUS images were used to test the image segmentation algorithm and two
perpendicular angiograpphic images of the vessel were used for the reconstruction of the 3D
geometry of the arterial segment. The initial estimation of the boundaries was given manually

for the first frame.

The proposed approach is based on deformable models for the detection of both the
boundaries of lumen and media/adventitia. Compared with conventional boundary-detection
algorithms, snakes involve the incorporation of a priori knowledge, provided by the user. The
estimation of the boundary is necessary before the application of the method in sequential
frames. In our method the detected boundary is used as initial estimation for the next frame.
The results of the method are not acceptable when the estimation is not good enough. We
addressed two problems. The first is related with the modification of the image energy, since
the use of conventional edge gradient operators results in highly distorted detected
boundaries, due to the presence of noise in IVUS frames. The new term for image energy,
introduced in the proposed method, results in the selection of pixels that belong to edges
separating large and homogenous regions in the image. This is based on the fact that the areas
of noisy pixels are small and they do not greatly influence the mean value of the intensity in
large areas. The second is related 1o the computation of convex hull, which provides better

and smoother boundary identification.

The determination of values of the parameters a. f. ¥ of the deformable model has been also

addressed. The selection of the most suitable values was based on what each term denotes



physically. The first derivative in the internal energy determines the total length of the snake,
while the second derivative controls the bending of the curve. Changing the values of the
weights of the snake’s terms will change the contribution of each term. We want the snake to
be attracted mainly from the characteristics of the image and finally to have a smooth shape.
After repeated applications of the method in several sequences of IVUS images. the values

that vield acceptable results for the inner and outer boundary were o =0.2, #=0.1 and

=009,

The use of the Hopfield neural network for the minimization of the snake’s energy makes the
application of the method in individual frames faster and computationally more efficient. The
uniform separation of the searching domain in similar areas reduces the searching space and it
takes advantage of the information contained in the entire neighborhood of the region of
interest. The calculation of the convex hull produces smooth curves and ensures that the
searching lines, which are formed at the next frame, will not coincide or will not be restricted

in a small area, resulting in loss of significant image characteristics.

The application of the method yields accurate results, even if calcium appears in the media. In
these cases, the border between media and adventitia is difficult to be detected, because of the
dark shadow that calcium produces in the IVUS images. The detection of the borders of
interest, when it is done manually, is an approximation of the real borders, and it is based on
former images, where the actual borders are clear. The same is assumed in our method since

the initial estimation of the region of interest depends on previous frames.

As far as 3D reconstruction is concemned, the proposed method is applicable in cases where
the projection of the catheter in angiographic images is not visible. This is an important
aspect, given that the angiographic images are produced simultaneously with the IVUS
examination and the information they must depict with detail is the lumen and not the catheter
itself. Perpendicular projections are desirable because of the amount of the spatial information
they contain, but it is not a prerequisite, since the method can easily be extended to produce a

three-dimensional model processing two angiographic images with known projection angles.

Iv. CONCLUSIONS

The study of the three dimensional geometry of atherosclerotic arterial segments is a
challenging issue. Several imaging technigques provide useful information about the vessel,
but the production of a reliable three-dimensional model requires the combination of data

from different imaging techniques. We have developed a method that successfully combines



the information from IVUS and angiographic images. The image segmentation method,
presented in this paper, includes automated detection of the region of interest in IVUS images
and shows a good overall performance. The method needs an initial estimation of the regions
of interest only for the first frame. The use of deformable models with modified energy
function and convex hull computations ensures fast convergence in sequential frames. The

use of angiographic images provides information about the vessel geometry in 3D space.

With the results obtained from the application of the proposed method (Fig. 13) we can
extract quantitative and qualitative information for the distribution of the plaque and the
severity of the disease. The morphology of the arterial wall, the stenotic segments and the
curvature in 3D space is depicted in the reconstructed model, while it is feasible to make

volumetric computations or eccentricity estimations on the extracted model.
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Initial Estimation of the Region of Interest

Neural Network Architecture

Image Gradient Computation at a Specific Pixel of the Image

Extraction of the Media/Adventitia Boundary using (a) the Proposed Image
Energy in Sequential Frames and (b) a Conventional Gradient Operator for
the expression of image energy.

Extraction of the Media/Adventitia Boundary (a) using the Computation of
the Convex Hull in Sequential Frames and (b) without the Computation of the
Convex Hull.

Final Boundary Estimation Based on the Computation of the Convex Hull.

The Detected Boundaries for the Lumen and Media/Adventitia Borders.

Catheter’s Path Extraction in 3D Space using two Perpendicular
Angiographic Images.

Lumen’s Centerline Computation.

Placement of each Frame along the Catheter’s Path Through the use of a New
Orthogonal Coordinate System.

Different Directions of the Vector Product Depending on the Turn of the
Three Sequential Points,

Three — Dimensional Grid Visualisation of the Lumen.
(a) Three — Dimensional Grid Visualisation of the Lumen and the Outer

Border of the Vessel. and (b) Three — Dimensional Solid Visualisation of the
same Structures.
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