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Abstract: In this paper, we consider the problem of computing the connected compo-
nents of the complement of a given graph. We describe a simple sequential algorithm for
this problem, which for a graph on n vertices and m edges runs in O{n + m) time and
is therefore optimal. The algorithm works on the graph, and not on its complement, thus
avoiding a potential ©(n?) time complexity. Moreover, unlike previous linear co-connectivity
algorithms, this algorithm admits efficient parallelization, leading to an O'(log” n)-time and
O((n+m)/ log n)-processor parallel algorithm on the CREW PRAM model of computation.
The algorithms find applications in a number of problems, such as, the recognition of weakly
triangulated graphs and the detection of antiholes. Indeed, we include a parallel recogni-
tion algorithm for weakly triangulated graphs, which takes advantage of the parallel co-
connectivity algorithm and achieves an O(log” n) time complexity using O((n + m?)/ logn)
processors on the CRCW PRAM model of computation.
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1 Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph, and
let u and v be vertices in G. We say that u is connected to v if & contains a path from u to v. The
graph G is connected if u is connected to v for every pair u, v in V{G). The connected components (or
components) of G are the equivalence classes of vertices under the “is connected to” relation. The

co-connected components (or co-components) of &G are the connected components of the complement
of G.

The problem we study in this paper is that of computing the co-connected components of a
graph. The computation of the co-connected components occupies a central place in algorithmic
graph theory, both in a sequential and in a parallel process environment, and is a key step in
algorithms for a large number of combinatorial problems on graphs, such as finding maximum
cliques and independent sets, transitive orientations, computing the modular decomposition of an
undirected graph [10, 12], recognizing weakly triangulated graphs [4], detecting antiholes in graphs
[25], determining k-vertex (k-edge) connectivity for k£ < 3 [20, 21], constructing a minimal 2-vertex
(2-edge) connected spanning subgraph [13, 21].

Sequentially, the problem of determining the connected components of a graph G on n vertices
and m edges is solved by a search and label approach. A simple sequential algorithm — e.g., one



based on depth-first search — runs optimally in O(n+m) time, whenever the input graph & is given
in adjacency list representation [9, 12].

By definition, the problem of determining the co-connected components of a graph G can be
easily solved by computing first the complement G of the graph G and then applying a connectivity
algorithm on G. It takes Q(n?) time to compute the complement explicitly, and thus, this approach
produces a co-connectivity algorithm which may be super-linear in the size of the input graph.
Ito and Yokovama [21] proposed a storage method for representing a simple undirected graph; it
maintains in a data structure the original graph if m < n(n — 1)/4, and the complement graph if
m > n(n — 1)/4, where n and m are the numbers of vertices and edges of the graph respectively.
Based on this storage method, they showed that a breadth-first tree and a depth-first tree on the
complement of a given graph can be constructed in linear time. This result, in turn, implies a linear
time algorithm for computing the co-components of a graph. Dahlhaus et al [10], in their paper
on modular decomposition, deseribed a procedure for finding a depth-first forest on the complement
of a directed graph in O{n + m) time. The key element of their procedure is the use of a mired
representation of a graph; some vertices carry a list of their non-neighbors rather than that of their
neighbors. This gives a depth-first forest on the complement in time proportional to the size of the
mixed representation, and, thus, it implies a linear-time co-connectivity algorithm.

Developing efficient parallel algorithms for finding the components and co-components of a graph
turns out to be a more challenging problem. Early parallel connectivity algorithms appear in
Hirschberg [17] and Hirschberg et al. [18); the proposed algorithms compute the connected com-
ponents of a graph on n vertices, which is given by its adjacency matrix, for a cost of O(n? logn)
on the CREW PRAM model of computation. Later, this cost was improved to O(n®) by Chin
et al. [6] with preservation of the CREW PRAM model. Specifically, Chin et al. presented an
algorithm which runs in O(log® n) time and requires O(n?/log” n) processors. An EREW PRAM
version of the algorithm was proposed by Nath and Maheshwari [24]. An O(logn)-time CRCW
PRAM algorithm for determining the connected components of a graph on n vertices and m edges
was described by Shiloach and Vishkin [28]. Their algorithm takes the input graph G as a list of
edges and computes the connected components of G using a linear number of processors; that is, it
runs in O(logn) time using O(n + m) processors. The algorithm was later simplified in [2]. Other
parallel connectivity algorithms were proposed by Savage and JaJa [27], among which an algorithm
which runs in O(log® n) time using O(nlogn + m) processors on the CREW PRAM model. An
extensive coverage of parallel connectivity algorithms can be found in [1, 22, 26].

The parallel computation of the co-connected components of a graph can be easily done by
computing the complement of the graph and then by applying one of the parallel algorithms for
the connected components on the complement. However, as in the sequential case, this vields non-
optimal algorithms. To the best of our knowledge no parallel algorithm which “directly” computes
the co-connected components exists.

In this paper, we describe a simple sequential algorithm for computing the co-components of a
graph, which for a graph of n vertices and m edges runs in O(n + m) time and is therefore optimal.
The algorithm works on the graph, and not on its complement, and, unlike the algorithms in [10,
21], it is not data structure-based and it employs neither breadth-first-search nor depth-first-search.
Additionally, it admits efficient parallelization, leading to an O(log” n)-time and O((n + m)/ log n)-
processor parallel algorithm on the CREW PRAM model of computation.

As an application of the parallel co-connectivity algorithm, we present a parallel algorithm for
recognizing weakly triangulated graphs. An undirected graph G is called weakly triangulated (or
weakly chordal) if both G and its complement G have no chordless cycle of length greater than or
equal to 3 (see [14]); a chordless cycle of the graph G is a simple cycle such that there are no edges
of & connecting any two nonconsecutive vertices of the cycle,

Weakly triangulated graphs were introduced by Hayward [14] as a natural extension of the well-
known perfect class of triangulated graphs. Hayward also proved that the weakly triangulated graphs
are perfect, and that not all weakly triangulated praphs are perfectly orderable [7]; indeed, the Fs-
free weakly triangulated graphs are perfectly orderable, whereas the Ps-free weakly triangulated



graphs are not necessarily perfectly orderable [15]. Moreover, Hodng has shown that recognizing
perfectly orderable graphs remains NP-complete for weakly triangulated inputs [19].

The problem of recognizing weakly triangulated graphs has been studied, both on its own and
in the context of finding chordless cycles of length & > 5. However, most of the effort has focused
on sequential algorithms ([14, 29, 16, 4]), ending with the O(m?®)-time algorithms of Hayward,
Spinrand, and Sritharan [16], and of Berry, Bordat, and Heggernes [4]. The O(n®*m)-time sequential
algorithm of Hayward [14] for detecting chordless cycles of length at least equal to 5 implies a
parallel recognition algorithm for weakly triangulated graphs running in O(logn) time with O(n%)
processors on the CRCW PRAM. On the other hand, the weakly triangulated graph recognition
algorithm proposed by Spinrad and Sritharan [29] does not seem to be amenable to parallelization.
Recently, Chandrasekharan et al. [5] presented a parallel algorithm for obtaining a chordless cycle
of length greater than or equal to k& > 4 in a graph, whenever such a cycle exists, in O(logn) parallel
time using O(n*~*m?) processors on the CRCW PRAM. If we set k = 5, we see that a chordless cycle
of length greater than or equal to 5 can be found in O(logn) time using O(nm?) processors. This
result leads to a parallel algorithm for recognizing weakly triangulated graphs running in O{logn)
time using O(n®) processors on the CRCW PRAM.

Owur parallel algorithm for recognizing weakly triangulated praphs takes advantage of the parallel
co-connectivity algorithm and achieves an O(log® n) time complexity using O((n + m?)/ logn) pro-
cessors on the CRCW PRAM model of computation. Since the currently best sequential algorithm
for the problem requires O(m?) time [29, 4], our algorithm is cost efficient.

The paper is organized as follows. In Section 2 we present the notation and related terminology
and we prove results on which the co-connectivity algorithmes rely. In Section 3 we describe the se-
quential co-connectivity algorithm, establish its correctness and analyze its complexity. In Section 4
we give the parallel co-connectivity algorithm and its analysis. In Section 5 we address the problem
of recognizing weakly triangulated graphs; we provide background, present the parallel algorithm
and analyze its time and processor complexity. Finally, in Section 6 we conclude the paper and
discuss possible extensions.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph with
vertex set V() and edge set E{G). The subgraph of a graph G induced by a subset 5 of the vertex
set V(G) is denoted by G[5]. For a vertex subset S of G, we define G— 5 := G[V(G)— S]. A graph
is complete if all its vertices are pairwise adjacent; a complete graph on n vertices is denoted by K.

The neighbourhood N(zx) of a vertex z € V(G) is the set of all the vertices of G which are
adjacent to z. The closed neighbourhood of  is defined as N[z] := {x} U N{z). The neighbourhood
of a subset A of vertices is defined as N(A) := (|J,4 N(z)) — A and its closed neighbourhood as
N[4] := AUN(A). For an edge € = (z,y), the neighbourhood (closed neighbourhood) of e is the
vertex set N({r,y}) (N[{z,y}] resp.) and is denoted by N(e) (Nle]).

Both the sequential and the parallel co-connectivity algorithms rely on the result stated in the
following lemma.

Lemma 2.1. Let G be an undirected simple graph on n vertices and m edges, where m < n/4. If
v is G's verter of smallest degree, then the subgraph of G induced by the neighbors of v has fewer
than n/2 vertices and fewer than m/2 edges.

Proof: Since v is G's vertex of smallest degree, then degree(v) < n/2, for otherwise each ver-
tex would be incident upon at least n/2 edges; thus, the total number m of edges would be
1/2 ¥ evia) desree(u) = 1/2(n (n/2)), in contradiction to the fact that m < n®/4,



We show next that the subgraph of G induced by the neighbors of v has less than m/2 edges.
Let d be the degree of v. Then the number of edges of the subgraph induced by the d neighbors of
v cannot exceed d(d — 1)/2; if m, denotes the number of these edges, then we have that

did—1)
< —.
m) = D)
The remaining edges are edges connecting v to its neighbors and edges incident upon the remaining
n—d—1 vertices; the latter set of edges may at worst involve edges connecting the n —d —1 vertices
between themselves. Since each of the remaining n — d — 1 vertices has degree at least equal to d,
the number of remaining edges is

- 1
2 2
Since d < n/2, we have that 2d < n +2 < d — 1 < n — d + 1, which implies that m; < ma. If we
additionally take into account that m; + mg = m, we conclude that m; < m/2.

This lemma suggests the following way to compute the co-components of a graph G: if the
number of edges of G is at least equal to the square of the number of vertices divided by 4, then
we can apply the linear-time connected component algorithm on the complement of G: otherwise,
we recursively solve the problem for the subgraph of & induced by the neighbors of the minimum-
degree vertex of &, and we use this solution to construct a solution for G. Both the sequential
and the parallel co-components algorithm rely on this strategy and in fact provide different ways of
computing the general solution from the partial solution.

Finally, we prove two additional lemmata which will be useful in establishing the correctness of
the algorithms.

Lemma 2.2. Let G be an undirected graph which is disconnected. Then, G's complement is con-
nected,

Proof: Let @Q,...,Q (k = 2) be the connected components of . Then, any two vertices u and
v of G belong to the same connected component of the complement G of G: if u and v belong to
different connected components of G, then clearly thev belong to the same connected component
of G, since in G there exists an edge connecting them; if u and v belong to the same connected
component of G, then the sequence of vertices (u, z, v), where r belongs to a connected component
of G other than the one to which u and v belong, forms a path in G, and thus u and v belong to
the same connected component of G. g

Lemma 2.3. Let G be an undirected simple graph and let A and B be two disjoint subsets of V(G)
such that the vertices in A all belong to the same connected component of the complement G of G
and so do the vertices of B. If the number of edges of G with one endpoint in A and the other in B
is less than |A| x | B|, then the vertices in AU B all belong to the same connected component of G.

Proof: If the number of edges of G with one endpoint in A and the other in B is less than |A| x |B|,
then there exists a pair of vertices u € A and v € B such that u and v are not adjacent in G. These
vertices are therefore adjacent in G. The lemma follows. g

Remark: During the process of inputting a graph, its vertices are read in in some order; we can
thus assume without loss of generality that each vertex is associated with a distinct integer from 1
to n. Therefore, in the algorithm, any reference to a vertex is meant to correspond to the vertex's
unique identification number. In light of that and with a slight abuse of notation, we will be using
vertices to index arrays.



3 The Sequential Co-connectivity Algorithm

In order to have the necessary flexibility, we represent a graph in a list-of-lists representation: there
is & main list of records, each corresponding to a distinet vertex of the graph; each such record has
a pointer to the adjacency list of the vertex. This representation allows us to quickly construct
the list-of-lists representation of any induced subgraph of a graph: if we want to construct the
representation of the subgraph of a graph H induced by a set § C V(H), then we only need to
link in a list the vertex records of the vertices in 5§ and to remove from the adjacency lists of these
vertices any records corresponding to vertices not in S.

Algorithm Co-components

for the computation of the connected components of the complement of a graph
Input:  a simple graph G on n vertices and m edges.

Output:  sets of vertices; each set corresponds to a co-component of G.

1. Compute a list-of-lists representation of the graph G.

2. Allocate space for the arrays co-comp[1..n] and size[l..n]. (These arrays will receive values
in the procedure Co-connectivity which is given below. When the procedure completes its
computation, then, for a vertex u of G, co-comp[ul is equal to the vertex of G (possibly u
as well) which is the representative of G's co-component to which u belongs, and size[u] is
equal to 0, unless u is the representative of the co-component of &, in which case size[u] is
equal to the size of the co-component. )

Additionally allocate space for an auxiliary array num[l..n] and initialize its entries to 0.
The array is used by the procedure Co-connectivity and helps count edges between smaller
co-components to determine whether they need to be merged.

3. Call the procedure Co-connectivity on the list-of-lists representation of G.

4. Allocate an array co-components[l.n]; each entry is the head of a list of vertex records
corresponding to the vertices in the same co-component. [Initialize each entry to the null
pointer.

For each vertex u of G

attach a record for the vertex u in the list of co-components [co-comp [u]].
Then, the co-components of & are the non-null lists attached to the entries of the array
co-components[].

From the above outline, it is obvious that the heart of the algorithm is the procedure Co-connectivity,
which is recursive; it is described next.

Procedure Co-connectivity

Input: a list-of-lists representation of a graph H of ng vertices and my edges, which is
an induced subgraph of a graph G.

Output:  the entries of the arrays co-comp[] and size[] corresponding to the vertices of H
have been updated with respect to the co-components of H (the remaining entries,
which correspond to the vertices in V(&) — V(H), have not yet been updated).

1. If the number of edges of H is at least equal to n} /4, then compute the complement H of H
(using adjacency lists or an (ng % ny)-size adjacency matrix) and compute the DFS forest [9]
of H; each tree in the DFS forest is a separate co-component of H. Next, update appropriately
the entries of the arrays co-comp[] and size[] which correspond to the vertices of H. Return.

2. Find v, the vertex of smallest degree; let v's degree be d.



3. Ifd=0
then {H is a single verter or a disconnected graph; H is connected}
for each vertex u of H other than v

co-complu] «— v {v is the representative of the conn. component of H}
size[u] — 0

co-complu] +— u, sizel[v] — ny

Return.

4. Compute the sets S; = N(v) and Sz = V(G) — NTu].
From the main list of the list-of-lists representation of the graph H remove the record and
adjacency list for v and partition the remaining list into two sublists: a list Ly for the vertices
in 5; and a list Lo for the vertices in 5;. Next, remove from the adjacency lists of the vertices
in L; any records corresponding to vertices not in $;, so that this list becomes a list-of-lists
representation of the subgraph H' of H induced by the d neighbors of v in H.

5. Call the procedure Co-connectivity on the subgraph H'. When the recursive call returns, the
entries of the arrays co-comp[] and size[] corresponding to the vertices of H' have been
correctly updated with respect to the co-components of H'.

6. For each vertex u in the list L {u e V(G) — Nv]}
for each vertex r in the adjacency list of u
if z € N(v) then num[co-comp[z]] « num[co-comp[z]] + 1.
k0 {k counts the vertices in N(v) belonging to v’s connected component in H}
For each vertex w in the set 5; {we N(v)}
if co-comp[co-comp[w]] = v or num[co-comp[w]] # (ng — d) % size[co—comp[w]]
then {w belongs to the same connected component of H as v}
co-comp [w] +— v, {v is the representative of its conn. component in H}
size[w] « 0,
increment &k by 1.
For each vertex u in the set Ss
co-comp[u] ~— v, {recall that v is the representative of the co-component}
sizelu] — 0.
co—comp[v] ~ v, sizelv] — ng—-d+k.
For each vertex w in the set 5, {zero the used entries of the array num[ ]}
oum [w] « 0.

Correctness,  Clearly the correctness of the algorithm follows from the correctness of the pro-
cedure Co-connectivity. If the procedure returns without making any recursive call, then it has
obviously returned at Steps 1 or 3: the correctness of Step 1 is a consequence of the correctness of
the breadth-first-search algorithm [9]; the correctness of Step 3 follows from Lemma 2.2. If a recursive
call to Co-connectivity is executed, then the correctness is established by means of Lemma 3.1.

Lemma 3.1. Let H be an undirecied simple graph and let v be one of its vertices. Moreover,
suppose that Cy,Ca,...,Cy are the co-components of the subgraph H' = H[N(v)] of H induced by
the neighbors of v. Then,

(i) The vertex v and the vertices in V(H) — N|v] belong to the same co-component of H.

(i) Let r; (1 = i = k) be the number of edges of H connecting vertices of C; to vertices in
V(H) - Nl Ifr; < |V(C))| x |V(H) — Nlv]|. then C; belongs to the co-component of H to
which v belongs; If r; = |V(C;)| x |[V(H) — N[v]|, then C; is one of the co-components of H.



Proof: (i) Obvious, since v is non-adjacent to any of the vertices in V(H) — Nv]. (ii) f r; <
|V(Ci)| = |V(H) — N[v]|, then there exists a vertex of C; and a vertex in V(H) — N[v| which are
not adjacent: therefore, in accordance with Lemma 2.3, C; belongs to the co-component of H to
which v belongs. Suppose now that r; = |V(C;|) x |V(H) — N[v]|; this implies that each vertex of
C; is adjacent to all the vertices in V(H) — N[v]. Moreover, if we take into account that C; is one
of the co-components of H', which implies that each of its vertices is adjacent to all the vertices in
N(v) — V(C;), and that all the vertices of C; are adjacent to v, we conclude that C; is one of the
co-components of H. g

Step 6 uses the results of Lemma 3.1 to correctly update the entries of the array co-compl[]
corresponding to the vertices of the graph H. Note that v is selected as the representative of the
co-component of H to which it belongs. The nested loop at the top of Step 6 serves to count the
edges connecting a vertex in the set 5; to a vertex in the set Sz; in particular, for every edge with
one endpoint, say, z, in §;, and the other endpoint, say, u, in 52, we increment by 1 the entry of
the array num[] corresponding to the representative of the co-component of H' to which = belongs.
In this way, at the completion of this nested loop, the entry num[z] of a representative z of a co-
component is equal to the total number of edges connecting vertices of the co-component to vertices
in S;. If this number is equal to the product of the cardinality of Sz (i.e., ny — @) to the number
of vertices of the co-component (i.e., size[z]), then the co-component is a co-component of H and
remains as it is; otherwise, in accordance with Lemma 3.1, the co-component needs to be merged
in the co-component of H with v as the representative. This merging is done in the second loop of
Step 6: until and when the representative z of the co-component is met, the second condition of the
if statement is true, and the entries of the arrays co-comp[] and size[] of the vertices of the co-
component are appropriately updated; after the representative has been met, it is the first condition
of the if statement which is true, and the corresponding entries are again appropriately updated.
For every vertex in 5; whose co-comp[] entry is set equal to v, the variable & is incremented by 1.
Thus, at the completion of this loop, k is equal to the number of neighbors of v which belong to the
same co-component of H as v. Then, the assignment of ny —d+ & to size[v] is correct taking into
account that all the vertices in S; belong to the same co-component of H as v (recall that there is
no edge in H connecting v to any of these vertices). Because of that, the assignments to the entries
of the arrays co-comp[] and size[] corresponding to the vertices in S are correct as well.

Time Complexity. Let us first compute the time complexity of the eall to the procedure Co-
connectivity for a graph H on ny vertices and my edges. Step 1 takes O(ny + mpy) time: It
is important to observe that n}; = ©(mg); then, both the construction of the complement H of
the graph H, and the execution of the linear-time DFS-forest algorithm on H take O(ng + n%) =
Olng +mg) time. Steps 2 and 3 clearly take O(ny + my) time each. Moreover, if either Step 1 or
3 is executed, then the procedure returns, so that no more than one of these steps will be executed
in all the recursive calls of the procedure Co-connectivity. Linear time is also sufficient for Step 4
the removal of the record and adjaceney list of v and the list partitioning is done by means of a
traversal of the main list in the list-of-lists representation of H, and by unlinking and relinking some
of the visited records, which takes O(ng) time; the cleaning of the adjacency lists of the vertices
in the list L, is also done by traversing the adjacency list records and by unlinking and relinking
some of them in O(myg) total time. Additionally, the description of Step 6 directly implies that it
too takes O(ng + my) time. Finally, let us turn to Step 5. Note that, for Step 5 to be executed,
Step 1 must not have been executed, which only happens if the number my of edges of H is less
than n%; /4; therefore, the graph H meets the conditions of Lemma 2.1. Then, Lemma 2.1 implies
that the recursive call is applied on a graph on less than ng /2 vertices and less than my /2 edges.

In light of Lemma 2.1 and of the previous discussion, we conclude that there exist appropriate
positive constants ¢; and ¢z such that the time T'(H) taken by the procedure Co-connectivity applied



on the graph H satisfies the following recurrence relation

c1(ng +mpy) if the procedure returns in Step 1 or 3;
T(H) =
T(H')+ ¢z (ng +my)  otherwise;

where H' is an induced subgraph of H such that |V(H')| < ng/2 and |E{H')| < myu /2. We note
that if nyz < 2 then the procedure returns; if H = K; or H = 2K then the procedure returns in
Step 3, whereas if H = K&, then it returns in Step 1.

It can be easily shown by induction on the number k of recursive calls that
T(H) < c(ng+mpy) (1)

where ¢ = ¢; + 2¢5. Indeed, if &k =0, i.e., there is no recursive call, we have termination by one of the
Steps 3, 4, or 5; this, in accordance with the definition of T(H), implies that T{H) = ¢; (ng +mg)
which is less than cing + mg), as desired.

Suppose now that the inequality (1) holds for all graphs such that the execution of the procedure
Co-connectivity on them requires k = kp > 0 recursive calls. We will show that it also holds for
all graphs such that the execution of the procedure on them requires kg + 1 recursive calls. Let
us consider such a graph H. Then, because of the first of the ky + 1 recursive calls, we have that
T(H)=T(H')+ca (nyg+mp), where H' is a subgraph of H on ny. vertices and my- edges such that
the execution of the procedure Co-connectivity on H' requires ky recursive calls, and nge < ng/2
and my < mg/2. By the inductive hypothesis, T(H') < ¢(ng + mg-), which in turn implies that
T(H') < ¢/2(ng +mpg). From this, we conclude that

£1 + 2cg
2

as desired. Thus, the inductive proof is complete. Therefore, the time complexity of the execution
of the procedure Co-connectivity on a graph on n vertices and m edges is O(n + m).
The above result implies that Step 3 of the co-components algorithm takes time linear in the size

of the input graph. It is easy to see that Steps 1, 2, and 4 also take linear time. Therefore, we have
the following theorem.

FLE) & %[“H+mﬁ}+'3&{ﬂH+mHJ = ( —.Ez)[ﬂH+mH} < c¢(ng +mg),

Theorem 3.1. Let G be a simple undirected graph on n vertices and m edges. Then, algorithm Co-
components computes the connected componenis of the complement of G in O(n + m) time.

4 The Parallel Co-connectivity Algorithm

In this section we present a parallel algorithm for computing the co-connected components of a
graph on n vertices and m edges. Since in a parallel process environment, processing arrays is more
efficient than processing lists, the representation of a graph, which we will be using, will be based
on arrays. Namely, we use an array 1ists[] of size 2m to store the adjacency lists of the vertices
of the graph; the lists are ordered in lexicographic order of the vertices to which they are associated,
and each entry contains both the vertex of the adjacency list and the vertex to which the adjacency
list is associated. Accessing the adjacency list of a vertex is done by means of the array head[] of
size n; the entry corresponding to a vertex, say, u, is equal to the position in the array lists[] at
which u's adjacency list begins. Then, the size of the adjacency list of a vertex, or alternatively its
degree, can be computed by subtracting the contents of two entries of the array head[]. We call the
representation of a graph by means of the two arrays head[] and lists[], its sequential-storage
representation.



In order to avoid re-indexing every time we consider a subgraph of G (recall Lemma 2.1}, we
represent subgraphs as follows: an array head[] of size n, whose entries corresponding to vertices
not in the subgraph are invalid; an array 1ists[] of twice as many entries as the number of edges
of the subgraph. Note that this representation has the effect that if we need to compute the degree
of a vertex of the subgraph, we need to apply array packing on a copy of the array head[].

Algorithm Par_Co-components
for the parallel computation of the connected components of the complement of a graph

Input: a simple graph G on n vertices and m edges.
Cutput:  the co-connected components of the graph G.

1. if m < n—1 then G is disconnected, and hence  is connected; generate a list of all the vertices
of & forming a single co-component; stop.

2. Compute the sequential-storage representation of the graph G and call the procedure Par_Co-
connectivity on G by supplying it with the arrays head[] and lists[]; it returns the array
co-comp[] of length n which has the property: co-comp[u] is equal to a representative of the
co-connected component containing vertex u.

3. Generate a separate list of the vertices in each co-connected component of the graph & using
the array co—comp[].

Procedure Par_Co-connectivity
Input: a graph H of ng vertices and my edges

Output: the entries of the arrays co—compl[] such that co-comp[u] is equal to a represen-
tative of the co-connected component of H containing vertex u

1. If the number my of edges of H is at least equal to n3 /4, then compute the co-connected
components of H by applying a CREW parallel connectivity algorithm on the graph H, and
transfer the results in the corresponding entries of the array co-comp[]; Return;

2. Find the vertex of smallest degree in H; let it be v.

3. If the degree of v is equal to 0, then H is either a single vertex graph or is disconnected. In
either case, H is connected; set to v the entries of the array co-cemp[] corresponding to the
vertices of H; Return;

4. Compute the set 5; = N(v); compute the number & = ny — d(v) of the remaining vertices,
where d(v) is the degree of v in H;

5. Compute the graph H' induced by N(v) on H and its number ng. of vertices and my- of

edges;

6. 5. =0
For each vertex u in §;, do in parallel
if diu) < d'{u) +& {d{u) and d'(u) are the degrees of u in H and H' resp.}
then include u in the set Sa:

7. If mpr < ng — 1, then the graph H' is disconnected, and set all the entries of the ar-
ray co—comp[] which correspond to the vertices of H' equal to the same vertex; otherwise,
call the procedure Par_Co-connectivity on the graph H'; (When the recursive call returns, the
entries of the array co-comp[] corresponding to the vertices of H' have been updated so that
co—comp [u] = co-comp[v] iff u and v are in the same co-connected component of H'.)



8. For each vertex u not in the set 5, do in parallel {ue V(H)—-N(v)}
set co-comp [u] — u;
For each vertex u in the set 5., do in parallel
set co-comp [co-comp[ul] «— v;
For each vertex u in the set S, do in parallel {note that co-comp[v] = v}
if co—comp[eo-cemplu]] # co-comp[u], then set co-complu] — v,

Correctness.  The correctness of the algorithm follows from the correctness of the procedure
Par_Co-connectivity, If the procedure returns without making any recursive call, then it has ob-
viously returned at Steps 1, 3 or 8 if myg < ng+ — 1: the correctness of Step 1 is a consequence
of the correctness of the parallel connectivity algorithm used; the correctness of Step 3 and of the
updating at Step 7 follows from Lemma 2.2. Let us now consider the case of the execution of the
procedure Co-connectivity when it makes a recursive call on the subgraph H', and suppose that the
recursive call updates correctly the entries of the array co-cemp[] corresponding to the vertices of
H’. We show that at the completion of Step 8, the entries of the array co-cemp[] corresponding
to the vertices of H have been correctly updated. First recall that the vertex v and the vertices in
V(H) — Nv] belong to the same co-component of H; the first for loop of Step 8 just takes care of
that using v as the representative of the co-component. Next, it is important to note that if for a
vertex u € N(v), it holds that d(u) < d'(u) + |V(H) — N(v)|, where d(u) and d'(u) are the degrees
of uin H and H' respectively, then there exists a vertex in V(H) — N[v] which is not adjacent to u;
this implies that u and all the vertices in u's co-component of H' belong to the same co-component
of H as v. Let us now see how the second and third for loops of Step 8 ensure the above behavior,
Let u be a vertex in §; C N(v), i.e., d(u) < d'(u) + |V(H) = N(v)|. Then, in the second for loop,
the entry of the array co-comp[] corresponding to the representative of the co-component of H' to
which u belongs is set equal to v. In the third loop, the co-comp[] entries corresponding to the
vertices of u's co-component in H', except for the representative, are set equal to v. Thus, the entire
co-component of H' has become a part of the co-component of v in H, as desired. The above holds
for any such u in Sz, so that the entries of the array co-comp[] corresponding to the vertices of all
these co-components are correctly updated. For the remaining co-components of H', the contents
of the co-comp[] entries corresponding to their vertices do not change: in the second for loop, no
change occurs since none of the vertices of these co-components belongs to the set So; no change
cceurs in the third for loop either, since the content of the co-comp[] entry corresponding to the
representative of each of these co-components is equal to the representative, and the condition in
the if statement is false.

Time and Processor Complexity. Next, we analyze the time and processor complexity of the
algorithm.

Step 1: The verification of the condition in the if statement takes constant time, while generating

the single co-component, whenever the condition is true, takes O(1) time using O(n) processors on
the CREW PRAM model.

It is important to note that if the algorithm does not stop at Step 1, then n—1 < m < n?, which
implies that log m = O(logn).

Step 2: Let us see how to construct the sequential-storage representation of G from the standard
adjacency lists representation. We compute the ranks of the elements in each of the adjacency
lists. The largest rank in each adjacency list is its size; we collect those in an auxiliary array
of size n and we compute parallel prefix sums on it. Then, we set head[1] «— 1, and we set
head[i] equal to 1 plus the (i — 1)-st prefix sum. The array lists[] is updated as follows: if
the j-th record of the adjacency list of the vertex u corresponds to the vertex v, then we set the
entry lists[head[u] +j— 1] equal to the pair (u,v). Using list ranking takes O(logn) time using
O(m) processors on the EREW PRAM model. Computing parallel prefix sums on an array of size n
takes (Mlogn) time and O(n/ logn) processors on the EREW PRAM model. Finally, updating the
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arrays head[] and lists[] takes O(1) time using O(n + m) processors on the CREW PRAM.
If T(G) and P(G) denote the time and processor complexity, respectively, for the computation
of the array co-comp[] using the procedure Par_Co-connectivity on the graph G, then Step 2 is
executed in O(log +T(@)) time using O(n + m + P(G)) processors or in O(log” +T(G)) time using
O((n+ m)/ logn + P{G)) processors on the CREW PRAM model.

Step 3: We can compute the number % of the co-connected components of G by counting the number
of distinet elements of the array co-comp[]. This computation can be easily done by sorting
the array co-comp[] and determining all its elements such that co-compli — 11 # co-compl[il,
2 < i < n. It is known that n elements can be sorted in O(log” n) time and O(n/ logn) processors
on the CREW PRAM model using a standard merge-sort parallel algorithm (in fact, the pipelined
merge-sort requires O(nlogn/p+logn) time, where p is the number of processors; this algorithm is
commonly referred to as Cole's merge-sort algorithm in the literature [8]). Thus it is easy to see that
the computation of the number k of co-components of G requires O(log” n) time and O(n/logn)
processors on the CREW PRAM model. From the sorted array co-comp[], we can construct k
arrays, each containing the vertices of each co-connected component, in O(1) time with n processors
or in O(log® n) time with n/ log® n processors on the EREW PRAM model. Then, we can generate
a separate list of the vertices in each co-connected component of the graph G within the same time
and processor bounds.

Taking into consideration the time and processor complexity of each step of the algorithm, we
obtain the following result.

Lemma 4.1. When. applied on a graph G on n vertices and m edges, Algorithm Par_Co-components
runs in O(log” n + T(G)) time using a total of O((n + m)/logn + P(G)) processors, where T(G)
and P{G) are the time and processor complexity, respectively, for the computation of the array
co—compl] of length n.

Let us now estimate the parameters T'( ) and P( ) by analyzing the time and processor complexity
of the procedure Par_Co-connectivity. We consider that the procedure is applied on a graph H on
ny vertices and my edges; the graph H is an induced subgraph of a graph G which has n vertices
and m edges. It is important to note that thanks to the tests at Step 1 of the algorithm Par_Co-
components and at Step 7 of the procedure Par_Co-connectivity, it holds that ny — 1 < mpg < n:ﬁ;.
which implies that ng = O{my) and logmy = O(logny).

Step 1: If the number my of edges of the graph H is at least equal to n% /4, then we can compute
the co-connected components of H by applying the O(log” ng)-time and O(n%;/ log® n g )-processor
CREW parallel connectivity algorithm of Chin et al. [6] on the graph H (an EREW version of the
algorithm has appeared in [24]). To be able to use the above algorithm, we need to compute an
adjacency array representation of H, or similarly an adjacency array representation of H; to do
that we need to apply array packing on head[], to obtain an array storing the transformation to
the new indices, as well as another array storing the reverse transformation. Array packing and
the computation of these arrays can be done in O(log n} time using D{n,r’ logn) processors on the
CREW PRAM. The algorithm of Chin et al. takes O{log” ny) = C-'[Ing n) time and O(n%/ log” ngr)
processors on the CREW PRAM; since my = nH,"ri we have t]::a,t nH D[mH}, and thus the total
number of processors required for this computation is O(myg/ Iug ng) = Olmpg/logng). After the
algorithm of Chin et al. has returned, we use the array which stores the reverse transformation
to update the array co-comp[]; this takes O(1) time using O(n) processors on the CREW PRAM
model.

Step 2: The minimum degree is computed by using array packing on a copy of head [ 1, by computing
and storing the degrees of the vertices, and then by finding the minimum of them. Therefore, the
minimum degree of the vertices of H can be computed in O(logn) time using O(n/ logn) processors
on the EREW PRAM model. Then, within the same time and processor bounds, we can compute
a vertex exhibiting the minimum degree.
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Step 3: Step 3 can be executed in O(logn) time using O(n/ logn) processors on the EREW PRAM
model.

Step 4: The set 51 can be computed by marking the neighbors of v from its adjacency list into
an array of size n, whose entries initially are equal to 0; this can be done in O(1) time using O(n)
processors, or in O(logn) time using O(n/ logn) processors on the EREW PRAM model.

Step 5: First, we mark as useless all the entries of the array head[] corresponding to vertices in
V(H) — N[v]. Next, we mark as useless all the entries of the array lists[] which contain pairs,
say, (u,v), where u € V(H) — N[v] or v € V(H) — N[v]; then, we remove the useless entries by
applying array packing. Finally, the lengths of the adjacency lists in the updated lists[] array
are computed, and the contents of the array head[] are updated as well. All the above operations
can be done in O(logn) time using O((n/logn) + (mg/lognyg)) processors on the CREW PRAM;
recall that logmpy = O(logny).

Step 6: The inclusion of a vertex in the set 5; can be done by marking the corresponding entry
of an auxiliary array of size n. If we take into account that computing degrees involves using array
packing on auxiliary arrays of size n, we have that this step can be executed in O(logn) time using
O(n/logn) processors on the CREW PRAM model.

Step 7: If the condition in the if statement is true, the updating of the co-comp[] can be done
in O(1) time using O(n) processors or in O(logn) time using O(n/logn) processors on the EREW
PRAM model; otherwise, the time for the completion of the recursive call needs to be accounted.

Step 8: From its description, it is easy to see that this step can be completed in O(1) time using
Q(n) processors, or in O(logn) time using O(n/logn) processors on the CREW PRAM model.
(Recall that the sets S; and Sa are represented by arrays of size n whose entries corresponding to
the elements of the sets are equal to 1 and the remaining entries are equal to 0; thus, the membership
of a vertex in these sets is tested by checking whether an entry of an array is equal to 1 or 0.)

Summarizing, we have that the execution of the procedure Par_Co-connectivity on a graph H
with ng vertices and my edges takes
e login if the procedure employs a recursive call;
T(H) <
T{H")+cz logn otherwise;

where H' is an induced subgraph of H such that |V(H')| < ng/2 and |E(H')| < mg /2. Then, it is
not difficult to show that T(G) = O(log” n).

The number of processors needed for the execution of Par_Co-connectivity on the graph H is
O(in/logn) + (my/logng)). We next show that this is O((n + m)/logn). We distinguish two
cases:

1. ng = ¥n: Then, logny = B(logn). If we also take into account that my < m, we have that
O{mp/lognyg) = O(m/ logn).

2. ng < ¥n: Then, my < n} < ¥n. Thus, my/logng < myg < In < n/logn, which implies
that O(mpg/logny) = O(n/logn).

Therefore, P(G) = O((n + m)/logn). The previous discussion and Lemma 4.1 lead to the
following theorem.

Theorem 4.1. Algorithm Par_Co-components computes the co-connected components of a graph on
n vertices and m edges in O(log® n) time using O((n + m)/logn) processors on the CREW PRAM
maodel,
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5 Recognizing Weakly Triangulated Graphs in Parallel

In this section we present a parallel algorithm for recognizing weakly triangulated graph. The
algorithm takes advantage of the parallel co-connectivity algorithm. Before presenting the algorithm,
we give a brief review of the notions on which the algorithm relies.

5.1 Theoretical Background

Let & be an undirected graph with no loops or multiple edges. A vertex set § C V() is called a
separator if the graph G — 8 has at least two connected components, an ab-separator (a,b € V(GF))
if a and b belong to different connected components of G — 8, a minimal ab-separator if 5 is an
ab-separator and no proper subset of 5 is an ab-separator, and a minimal separator if 5 is a minimal
ab-separator for a pair {a,b} of vertices of G [3, 4].

In general, generating minimal separators can be done by computing the neighborhoods of the
connected components resulting from the removal of certain vertex sets [3|. In [23], the minimal
separators in the neighborhood of a vertex ¢ are computed in the following way: for each connected
component (; of the graph G — N|z], compute the set N((;); this set is a minimal separator induced
in N(z).

Definition 1. Let e be an edge of a graph G, and let (J; be a connected component of the graph
G — Nle|. Then, the vertex set 5;(e) := N(Q;) is called an e-separator of the graph G.

It is interesting to note that Si(e) € N{e). Moreover, it is not difficult to see that:

Lemma 5.1. Let e be an edge of a graph G on n vertices and m edges. Then,
(i} There are fewer than n e-separator of the edge e.
(i) The total surm of the sizes of the e-separators of the edge e is less than m.,
(#ii) Each e-separator of the edge e is a minimal separator of the graph G.
Let Q1,Q2,...,Qi be the connected components of the graph G — Ne], where ¢ is an edge
of G, and let S;(e), Sz(e),...,Sk(e) be the e-separators of G which correspond to the connected

components. Then, with respect to an e-separator S;(e), 1 < i < k, we define the following three
sets of vertices:

Ai(zie) == 5i(e) N (N(z) — N(y))
Ai(y:€) = Si(e) N (N(y) — N(z))
Ai(zyie) = Si(e) N N(z) N N(y)

The set A;(z;e) consists of the vertices in §;(e) which are adjacent to = but not to y. Similarly, the
set A;(y:e) consists of the vertices in S;(e) which are adjacent to y but not to z. The set A;(zy;¢)
consists of the vertices in S;(e) which are adjacent to both = and y. Clearly, Sile) = Ai(z:e) +
Ai(y:e) + Ai(zy:e), 1 <1 < k. We also define the set Sy(e) as the set N(e) — |, Si(e); note that
Sale) = Ne) if and only if the graph G — Nle] is empty.

By extending the notion of a simplicial vertex [11, 23], which helps characterize triangulated
graphs, Berry et al. [4] introduced the notion of an LB-simplicial edge, and gave a new characteri-
zation of weakly triangulated graphs.

Definition 2 ([4]). An edge e = (x,y) of a graph G is LEB-simplicial if one of the following holds:
(i) For each minimal separator S induced in N(e), the edge € is S-saturating;
(i) Nle] = V(G).
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The definition is based on the concept of S-saturation introduced by Hayward in [14]: Given a set §
of vertices, an edge e of the graph G[V(G) — 8] is S-saturating if, for each connected component R;
of the complement of G[S], at least one end-point of e sees all the vertices of R;. Then, we can give
an alternate equivalent definition of an L B-simplicial edge.

Definition 3. Let e = (x,y) be an edge of a graph G and let 5i(e), Sz(e), ..., Sk(e) be the e
separators of G which correspond to the edge e. Then, the edge e is LB-simplicial if either
Sole) = N(e) or none of the co-connected components of the graph G|[S;(¢e)] contains vertices
from both A;(z;e) and A;(y:e), 1 <i < k.

Based on the notion of an LB-simplicial edge, Berry et al. [4] proved the following theorem.

Theorem 5.1 ([4]). A graph G is weakly triangulated if and only if every edge of G is LB-simplicial.

Morecver, they derived an (m?)-time algorithm for recognizing weakly triangulated graphs [4];
their algorithm is a direct application of Theorem 5.1 and thus it works by checking all the edges of
the given graph for being LB-simplicial.

5.2 A parallel weakly triangulated graph recognition algorithm

In this section we present a parallel algorithm recognizing weakly triangulated graphs. The algorithm
is based on the result provided by Theorem 5.1, We assume that the input graph is connected; for
disconnected graphs, we apply the algorithm on each of their connected components.

Algorithm WT_REC for the recognition of weakly triangulated graphs
Input: a connected graph G on n vertices and m edges.

1. For each edge e of the graph G, do in parallel
1.1 compute the set N(e);
1.2 compute the connected components Q1,Qa, ..., Q¢ of the graph G — Nlel;
1.3 compute the corresponding e-separators 5;, 5a2,.... S of G;

2. Collect all the e-separators of the graph G in a list S; if the list is empty, then @ is a weakly
triangulated graph; Stop; Otherwise, remove from the list 5 all the duplicate entries;

3. If the number of (distinct) e-separators in the list 5 is greater than n + m, then G is not a
weakly triangulated graph; Stop;

4. For each e-separator §; in the list § (1 <4 < n+m), do in parallel
4.1 compute the vertex sets A;(z:e) and A;(y;e), where e = (x,y) is the edge asso-
ciated with the e-separator 5;;

4.2 compute the induced subgraph G[S;] of G

4.3 compute the co-connected components Uy, Uia, . . ., Uy of the graph G[S;];

44 for j=1,....f do in parallel
if U;; contains vertices from both A;(z;e) and A;(y;e), then set M[i] — 1;
otherwise set M[i] — 0;

5. If there exists an entry of the array M|[] which is equal to 1, then the graph G is not weakly
triangulated; otherwise, G is a weakly triangulated graph.

Correctness The correctness of the parallel algorithm WT _REC is established through the The-
orem 5.1.

Time and Processor Complexity. Below, we analyze the complexity of the algorithm step by
step. Recall that the graph & is connected so that n = O(m) and logm = &(logn).
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Step 1: This step is executed for each of the m edges of G.

Substep 1.1: We use an array N, [] of size n. For each vertex adjacent to x, we mark the corresponding
entry of Ng[] with z. Next, for each vertex adjacent to y, we check the corresponding entry of Ng[];
if it is marked with , then we mark it with Ty instead, otherwise, we mark it with y. In this way,
we have recorded in N.[] the entire neighbourhood of the edge e. The above computation can be
done in O(1) time using O(n) processors or in O(logn) time using O(n/logn) processors on the
EREW PRAM model.

Substep 1.2: We use Shiloach and Vishkin's algorithm [28] for computing the connected components
of G— N|e|. The algorithm receives the input graph as a collection of edges; so, we compute an array
of all the edges of G in a fashion similar to that used in Step 2 of Algorithm Par_Co-components
to construct the array lists[]. This takes O(logn) time using O{(n + m)/logn) processors on
the CREW PRAM model. Next, we remove from the array of edges the entries corresponding to
edges incident upon at least a vertex in N[e] and we use array packing to pack the array; this takes
O(logm) = O(logn) time using O(m/ logm) = O{m/ logn) processors on the EREW PRAM. Since
Shiloach and Vishkin's algorithm takes O(logn) time and needs O(n + m) processors on the CRCW
PRAM model, this substep requires O{logn) time and O(m) processors on the CRCW PRAM for
each edge of the graph.

Substep 1.3: Let 1,Q2....,Q% be the connected components of the graph G — Ne| computed
in the previous substep. We check each edge ¢’ = (u,v) of G and if u  Nle|, v € N(e), and u
belongs to the component ;, we add an entry (i,v) in an array of size 2m; if v € Ne|, u € N(e),
and v belongs to the component Q;, we add an entry (j,u) in the array. After having processed
all the edges, we sort the array lexicographically, remove duplicates, and pack the array. In this
way, we have the vertices of each e-separator of e collected together and in increasing index order.
We can use this array to place pointers for the vertices of each separator (the pointer points to the
entry of the array storing the first vertex of the separator) and compute the sizes of the separators;
these computations are identical to the construction of the array head[] and the computation of
degrees at Step 2 of Algorithm Par_Co-components, and take O(logn) time and O((n + m)/logn)
processors on the CREW PRAM. Since sorting takes O(logm) = O(logn) time and O{m) processors
on the EREW PRAM model, the entire substep can be completed in O(logn) time using O(n + m)
processors on the CREW PRAM model.

Thus, the whole step is executed in O(logn) time using a total of O(m) processors on the CRCW
PRAM model.

Step 2: In the previous step, for each edge of the graph we have computed a collection of pointers to
its e-separators. Then, by using list ranking or parallel prefix sums, we can rank each e-separator in
the list or array of e-separators of each edge. If we use parallel prefix sums on an array which stores
the number of e-separators per edge and use the ranking we mentioned earlier, we can produce
an array of all the e-separators without concurrent writes. Now, we need to sort the array and
remove the duplicates. Two e-separators of lengths, say, n; and nj, are compared based on their
vertices which have been stored in increasing index order: we need to check the first min{n,, n;}
vertices; if they don’t match, we readily obtain an ordering of the two e-separators, whereas if
they match, then the e-separator with the fewest vertices is considered smaller. Such a comparison
takes O(logn;) time using O(n;/logn;) processors or O(logn) time using O(n;/logn) processors
on the CREW PRAM model. Since sorting an array of size h can be done in O(logh) time using
O(h) processors on the EREW PRAM, sorting the array of e-separators takes O(log” n) time using
O(m?/logn) processors on the CREW PRAM; recall that 3, n; = O(m?) in accordance with
Lemma 5.1. Finally, we remove the duplicates; two e-separators are identical if they contain the
same number of vertices and these vertices are identical. The removal is done by comparing pairs of
consecutive e-separators in the sorted array, in order to determine whether they are identical; if they
are, the one corresponding to a higher index of the array is considered useless. Then, array packing
brings the different e-separators in consecutive positions in the array. Comparing consecutive entries
takes O(logn) time using O(m?/ logn) processors on the CREW PRAM; array packing on an array
of size O(nm) takes O(logn) time using O(nm/lognm) = O(m?*/logn) processors on the EREW
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PRAM. In total, Step 2 is executed in O(log” n) time using O(m?/logn) processors on the CREW
PRAM model.

Step 3: From the array packing in the previous step, we know the number of distinct e-separators,
Thus, this step takes O(1) time using one processor on the EREW PRAM.

Step 4: This step is executed for each of the e-separators in the list S, which do not exceed n + m.

Substep 4.1: The vertex sets A;(x;e) and A;(y; €), represented in arrays of size n, can be computed
in Clogn) time using O(n) processors on the EREW PRAM model by taking advantage of the
array N.|| which stores all the information on the neighbourhood of e; see Step 1.1.

Substep 4.2: The graph G|[S;] can be constructed from a copy of the adjacency list representation
of &, where records of vertices not in 5; are marked useless and are removed by means of array
packing or pointer jumping. The graph can be constructed in O(logn) time using O(m) processors
on the CREW PRAM model. Note that arrays need to be built to hold the transformations from
the old indexes to the new indexes of the graph ([S;] and back. This too can be executed in the
above stated time and processor complexity.

Substep 4.3: Here, we compute the co-connected components of the graph G[S;]: let n; and m;
be the numbers of vertices and edges of G[S;]. This computation can be done in O(log® n;) time
with O((n; + m;)/ logn;) processors or in O(log® n) time with O((n; + m;)/ logn) processors on the
CREW PRAM model using Algorithm Par Co-components of the previous section. Since we have
at most n +m e-separators, each having less than n vertices and less than m edges, we have that for
all the e-separators this substep takes O(log” n) time with O{m?/logn) processors on the CREW
PRAM model.

Substep 4.4: Let V1, V3,...,V; be the co-components of the graph G[S;]. We use an array L[] of
size n, which we fill by processing the vertices of G as follows. Consider a vertex u: if u € A;(x;e)
and u belongs to the co-component V;, we set Li[u] — (j,z); if u € A;(y;e) and u belongs to the
co-component V;, we set Li[u] «— (7,y): f u & Ai(z:ie)UA;(y:e), we set Li[u] — (0.0). Next, we sort
the array L;|] lexicographically, and check whether there exist two consecutive entries containing
(£,z) and (£, y), If yes, then we set M|[i] — 1 else we set M[i] — 0.

The above description implies that Step 4 can be executed in O(log® n) time with O(m?/logn)
processors on the CREW PRAM model.

Step 5: This step can be executed in O(logn) time and O(n +m) processors on the EREW PRAM
model by computing the maximum of the array M|| and testing whether it is equal to 1.

Taking into consideration the time and processor complexity of each step of the algorithm, we
obtain that the parallel algorithm WT_REC on a connected graph on n vertices and m edges takes
O(log® n) time and O(m?/ logn) processors to be executed on the CRCW PRAM model. Thus, we
have the following result.

Theorem 5.2. [t can be determined whether a connected graph on n vertices and m edges is a
weakly triangulated graph in O(log” n) time using a total of O(m?/logn) processors on a CRCW
FPRAM model.

If the input graph is not connected then we apply Shiloach and Vishkin's algorithm to compute
its connected components. Taking into account that this algorithm takes O(logn) time using O{n+
m) processors or O(log® n) time using O((n + m)/logn) processors, the following result can be
established.

Corollary 5.1. It can be determined whether a graph on n vertices and m edges is o weakly

triangulated graph in O(log” n) time using a total of O((n + m?)/logn) processors on a CRCW
PRAM maodel.
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6 Concluding Remarks

In this paper we deseribe a sequential co-connectivity algorithm which, for a graph on n vertices
and m edges, runs in O(n+m) time and is therefore optimal. The algorithm is simple, works on the
graph, and not on its complement, avoiding a potential ©(n?) time complexity, and admits efficient
parallelization, leading to an O(log” n)-time and O((n+m)/ log n)-processor CREW PRAM parallel
algorithm.

The co-connectivity algorithms find applications in a number of problems, such as, the recognition
of weakly triangulated graphs and the detection of antiholes. In fact, we describe a parallel recogni-
tion algorithm for weakly triangulated graphs, which takes advantage of the parallel co-connectivity
algorithm and achieves an O(log® n) time complexity using O((n + m?)/logn) processors on the
CRCW PRAM model of computation.

Due to the work of Shiloach and Vishkin [28], the components of a graph can be efficiently
computed in O(logn) parallel time, for a cost of O((n + m) logn) on the CRCW PRAM model.
Thus, since our co-connectivity CREW PRAM algorithm is of the same cost, it is reasonable to ask
whether the time complexity of our algorithm can be improved to O(logn), with preservation of the
cost O((n+m)logn) and perhaps the CREW PRAM model. Moreover, due to the optimal sequential
co-connectivity algorithm of this paper and [10, 21), another interesting question is whether we can
design optimal O(log n)-time or O(log” n)-time parallel algorithms for computing the co-components
of a graph. We pose both questions as open problems.

Our parallel algorithm for recognizing weakly triangulated graphs runs in O(log” n) time on the
CRCW PRAM model, for a cost of O((n + m?)logn) and, thus, it is cost-efficient due to the work
of Hayward, Spinrand, and Sritharan [16] and Berry, Bordat, and Heggernes [4]. It is interesting to
investigate whether there exist O(log n)-time or O(log” n)-time cost-optimal recognition algorithms
for weakly triangulated graphs.
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