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A Divide-and-Conquer Method
for Multi-Net Classifiers

Abstract

Several researchers have shown that substantial improvements can
be achieved in difficult pattern recognition problems by combining
the outputs of multiple neural networks. In this work, we present and
test a pattern classification multi-net system based on both super-
vised and unsupervised learning. Following the “divide-and-conguer”
framework. the input space is partitioned into overlapping subspaces
and neural networks are subsequently used to solve the respective
classification subtasks. Finally, the outputs of individual classifiers
are appropriately combined to obtain the final classification decision.
Two clustering methods have been applied for input space partition-
ing and two schemes have been considered for combining the outputs
of the multiple classifiers. Experiments on well-known data sets indi-
cate that the multi-net classification system exhibits promising per-
formance compared with the case of single network training. both in
terms of error rates and in terms of training speed (especially if the

training of the classifiers is done in parallel).

Keywords: Divide-and-Conguer; Multiple Classifier Systems; Clas-
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1 Introduction

Several paradigms for multi-classifier systems have been proposed in the lit-
erature during the last vears. Classifier combination approaches can be di-
vided along several dimensions, such as the representational methodology,
the use of learning techniques or the architectural methodology [1. 2. A
major issue in the architectural design of multiple classifier systems concerns
whether individual learners are correlated or independent. The first alterna-
tive is usually applied to multistage approaches (such as boosting techniques
[3, 4]), whereby specialized classifiers are serially constructed to deal with
data points missclassified in previous stages. The second alternative advo-
cates the idea of using a committee of classifiers which are trained indepen-
dently (in parallel) on the available training patterns, and combining their
decisions to produce the final decision of the system. The latter combina-
tion can be based on two general strategies, namely selection or fusion. In
the case of selection, one or more classifiers are nominated “local experts” in
some region of the feature space (which is appropriately divided into regions},
based on their classification “expertise” in that region [5], whereas fusion as-
sumes that all classifiers have equal expertise over the whole feature space.
A variety of techniques have been applied to implement classifier fusion by
combining the outputs of multiple classifiers [1, 6, 7, 8].

The methods that have been proposed for combining neural network clas-
sifiers can provide solutions to tasks which either cannot be solved by a single
net, or which can be more effectively solved by a multi-net system. However,
the amount of possible improvement through such combination techniques

is generally not known. Sharkey [9], and Tumer and Ghosh [10, 11] outline



a mathematical and theoretical framework for the relationship between the
correlation among individual classifiers and the reduction in error, when an
averaging combiner is used.

When multiple independent classifiers are considered, several strategies
can be adopted regarding the generation of appropriate training sets. The
whole set can be used by all classifiers [2, 12] or multiple versions can be
formed as bootstrap replicates [13]. Another approach is to partition the
training set into smaller disjoint subsets but with proportional distribution
of examples of each class [12. 14].

The present work introduces a different approach for building a multi-net
classifier system. The proposed method is based on partitioning the original
data set into subsets using unsupervised learning techniques (clustering) and
the subsequent use of individual classifiers for solving the respective learning
subtasks. A key feature of the method is that the training subsets represent
non-disjoint regions that result from input-space clustering. This partitioning
approach produces a set of correlated “specialized” classifiers which attack a
complex classification problem by applying the devide-and-conquer philoso-
phy.

Thus. instead of training a single neural network involving a lot of param-
eters and using the entire training set, neural networks with less parameters
are trained on smaller subsets. Through the splitting of the original data,
storage and computation requirements are significantly reduced.

The general principle of divide-and-conquer is the basis of several learn-
ing approaches, such as the Hierarchical Mixtures of Experts of Jordan and

Jacobs [15] and related tree-structured models [16]. The idea of partitioning



the input-space through clustering has been applied to building classifier se-
lection models [53], where classifiers are trained on the same training set and
are subsequently assigned to different disjoint regions according to their ac-
curacy. In the approach proposed here, classifiers are assigned to overlapping
regions from the beginning and acquire their specialization through training
with data sets that are representative of the regions.

In the next section, we address the issue of data partitioning based on
unsupervised learning techniques. Sections 3 and 4 describe the training
of classifiers and techniques for combining classifier outputs. Experimental
results for the evaluation of the proposed method are presented in Section 3.
In Section 6 the present work is compared with related work in the literature

and, finallv, conclusions are presented in Section 7.

2 Partitioning of the Data Set

Consider a classification problem with ¢ classes and a training set D having
N supervised pairs (", k') where i € R' and k' is an integer indicating the
class of the pattern . The first stage of the proposed classification tech-
nique consists of partitioning the original data set D = {#*,..., 7"} using
clustering techniques to identifv natural groupings. As a result of clustering,
the set D is partitioned into a number M of subsets Dy, D,. ..., Dy; as shown
in Fig. 1.

We considered two clustering techniques that are based on completely
different principles. The first method is fuzzy clustering whereas the second
method is based on probability density estimation using Gaussian mixtures.

Both techniques allow for the specification of the degree with which a data



point belongs to each cluster, i.e., the data subsets obtained from the cluster-
ing stage are not disjoint. This fact provides the flexibility to define a clus-
tering threshold q that determines the degree of cluster overlapping. More
specifically, a pattern is considered to belong to a given cluster if the mem-
bership degree of the pattern to that cluster exceeds the value of the factor
g. Experimentally, the best clustering threshold was found to be ¢ = 1/M,
where M is the number of clusters. An exception is the case M = 2 where,
experimentally, the best threshold was found to be ¢ = 0.3. The two clus-
tering techniques tested in this work are brieflv described in the following

subsections.

2.1 Fuzzy C-Means Clustering

Fuzzy C-means (FCM) [17] is a data clustering technique in which a data
sample belongs to all clusters with a membership degree. FCM partitions the
data set into M fuzzy clusters (where M is specified in advance), and provides
the center of each cluster. Clustering is usually based on the Euclidean

distance:
d*(F Z{x i = ;) (1)

where 7 € R' is a training sample and ji € R’ corresponds to a cluster center.
The FCM algorithm provides fuzzy partitioning, so that a given data point
T belongs to cluster j (with center ;) with membership degree u; varving

between 0 and 1:

1
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..., M (2)



The membership degrees are normalized in the sense that, for every pattern,

M
Z w1 (3)
i=l

Starting from arbitrary initial positions for cluster centers, and by iteratively
updating cluster centers and membership degrees using Eq. (1) and (2)
for each training point #,i = 1,..., N, the algorithm moves the cluster
centers to sensible locations within the data set. This iteration is based
on minimizing an objective function J that represents the distance from any
given data point to a cluster center weighted by the data point’s membership

degree.

N M

J(f, i) = 3 9 (upd*(F, i1;), (4)

i=1 j=1
where m € [1, o¢) is a weighting exponent.

The main drawbacks of this algorithm is that its performance depends
on the initial cluster centers and that the number of clusters is predefined
by the user. Therefore, it is required to run the FCM algorithm several
times, each time with a different number of clusters to discover the number
of clusters that results in best performance of the classification system. Fig.
2 displays the result of the fuzzy C-means clustering method with the well-
known Clouds data set considering three clusters. The clustering threshold ¢
is set 0.333. So, in this example, the data point ¥ belongs to the jth cluster
(and to the subset D;), if u; = 0.333.

In Fig. 2. the three cluster centers are presented with big circles and the
patterns of each cluster are presented with crosses, circles and stars respec-
tively. We can also observe a degree of overlapping between clusters, as some

patterns belong to two or three clusters simultaneously. Thus, the data sets

il



created with the fuzzy C-means algorithm are not disjoint. The correlation
between the data sets has a beneficial impact increasing the robustness of

the multi-net classification system.

2.2 Greedy-EM algorithm for Gaussian mixtures

We have also considered a different technique for partitioning the training set
that is based on probability density function (pdf) estimation using Gaussian
mixtures. According to this approach, the data are assumed to be gener-
ated by several parametrized Gaussian distributions, so the data points are
assigned to different clusters based on their posterior probabilities of having
been generated by a specific Gaussian distribution. A multivariate Gaussian

mixture is defined as the weighted sum:
M
plF) = Z 7 f (% ;) (5)
j=1

where 7; are the mixing weights satisfying ZJ Tye=1; w2 O and f{F; 5J-]I

is the [-dimensional Gaussian density
F(E®;) = (27)72 | S; |72 exp[-0.5(F — m;) " §7' (& — )] (6)

parametrized on the mean 1; and the covariance matrix 5;, collectively
denoted by the parameter vector 'i_‘;,r Usually, for a given number M of
kernels, the specification of the parameters of the mixture is based on the
expectation-minimization algorithm (EM) [18] for maximization of the data

log-likelihood:
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The iterative EM update equations for each kernel j, 7 =1,...,! M, are the

following:
o i f (2 65)
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1, i
mo= & 2L PUlE) (9)
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In this work we have used the recently proposed greedy EM algorithm [19],

Y P{jlf");f‘* (10)

which is an incremental algorithm that has been found to provide better
results than the conventional EM algorithm. This algorithm starts with one
kernel and adds kernels dynamically one at a time. Assuming at some point
of the algorithm £ kernels, regular EM steps are carried out until convergence,
and then a new kernel is added to the mixture in a specific way. To locate
the optimal position of the new kernel two types of search are employed:
(i) efficient global search among all input points, followed by (ii) local search
based on partial EM steps for fine tuning of the parameters of the new kernel.
Simulation results have shown that the greedy-EM algorithm (running until
M kernels have been added) seems to outperform EM (with M kernels).
Moreover, it is possible to estimate the true number of components of the
mixture as follows: We run the algorithm for a large final value of My,
and for the solution obtained for each intermediate value of M we apply a
model selection criterion e.g., cross-validation using a set of test points, a
coding scheme based on minimum description length ete. Then we finally

select the optimal value of A that corresponds to the optimal value of the



model selection criterion. In this work we have used as a criterion for the
specification of M, the log-likelihood value on a validation set of points that
have not been used for training.

After the number of kernels and the mixture parameters are specified,
we can compute the posterior probability P(j | ) that a pattern i has
been generated from kernel j. according to Eq. (8). Therefore, we can
consider that each kernel corresponds to a group (cluster) of patterns and
that P(j | i) corresponds to the membership degree wu;; of pattern I to the

jth group. In analogy with Eq. (3). it holds that:

M
ZF{}' ) =1Vi=1,...,] N (12)

Fig. 3 and 4 display the partitioning of the Clouds data set using the
greedyv-EM algorithm. The optimal number of kernels was found to be M =
4. In Fig. 3, we can see the means m and variances s° for the kernels, whereas
in Fig. 4 we present the patterns corresponding to each kernel (crosses, circles,
stars and diamonds) respectively. Since ¢ = 1/M = 0.25, the ith data
point belongs to the jth kernel if P(j | ) 2 025, ¥Yi=1,...,. N and
J =1.2.3.4. We can observe some overlapping between clusters, since some

patterns belong to two, three or four clusters simultaneously.

3 Training the individual classifiers

In what concerns the classification module, the primary idea is to train a
neural classifier, in particular a multi-layered perceptron (MLP), for each
group of patterns D; generated through the partitioning of the original data

set D (see Fig.3). In this sense, each classifier learns a subspace of the prob-
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lem domain and becomes a “local expert” for the corresponding subdomain.
An important advantage of this method is that the training of each subnet-
work can be done separately and in parallel. Thus, in the case of parallel
implementation, the total training time of the system equals to the worst
training time achieved among the neural classifiers. It must be noted that
this total training time cannot be greater than the training time of a single
neural classifier of the same tvpe dealing with the entire training set. Since
such a single network usually requires more parameters, to learn the whole
data set (which is much larger), the multi-net approach may lead to reduced
execution times even in the case of implementation on a single processor.
This case actually occurred in our experimental study, when during data
partitioning we came up with clusters of a single class. Thus, there was no
need of training a classifier for these clusters, leading to reduced training
time compared with the case of single network training.

In this work, each classifier is a fully connected multilayer perceptron
(MLP}. with one hidden layer of sigmoidal units. We have applied the BFGS
quasi-Newton algorithm [20] to train the MLPs using the early stopping tech-
nique. Assuming that we have created M groups of patterns after partition-
ing the original data set. we divide the available training data of each group
D; into two parts, a training set and a validation set for “early stopping”.
Therefore, we train M MLPs using different (but possibly overlapping) train-
ing and validation sets. The classifications produced by the multiple individ-

ual MLPs are combined following different formulas as discussed next.
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4 Techniques for combining classifications

As described above, the original data set D is partitioned into M subsets
and M classifiers are trained. one for each subset. Given a new pattern ¥
we obtain the output g, j = 1...., M, produced by each MLF j. We also
compute the membership degrees u; of pattern ¥ in group ;. We considered
two different ways to combine the outputs of the MLPs in order to obtain

the final elassification decision.

4.1 Weighted sum of outputs

Let ¥ be an input vector which belongs to one of ¢ classes. Every MLP has ¢
continuous outputs corresponding to each of the ¢ classes. More specifically.

for each MLP j, =1,...,! M. the corresponding output vector is

b= ud) (13)

To obtain the combined final output, the weighted sum of the output vec-
tors 3; of the MLPs is computed, with the weights corresponding to the

membership degree u; of pattern I belonging to group j.

yk:ykl-u1+,,,+yi-'”~u_u (14)

for k =1,...,¢. The final decision C of the classification system for input I
is:

C'=argmax(¥g; Ye) (13)

Eq. (15) provides a final estimate for the class of an input vector ¥, where

all classifiers participate in the decision in a fuzzy manner.
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4.2 Class probabilities

Consider an input vector & which belongs to one of ¢ classes. As with the
weighted sum scheme, we compute the output vector i for every MLP j
along with the corresponding membership degree u; of the input vector T for
group D;. A usual approach to obtain the classification of T is to compute
the probability P(k | ¥) (k = 1,....¢) that pattern T belongs to class k and
select the class €' with the maximum P(C | ¥) as the final decision following
the Bayes rule.

The probability P(k | £) can be computed as follows: First we select the
maximum component C; of the output vector y; to obtain the class label
suggested by each MLP j. Then, we can use the following formula:

M
P(k|%) =) wI(C;=Fk) (16)

j=1
where I(z) is an indicator function, i.e. I(z) = 1 if z =true, otherwise
I(z) = 0. The above equation states that the class probability P(k | T)
results as the sum of the weights u; of the classifiers that suggest class k.
It is easy to check that Y[ P(k | ) = 1. It must be noted that the
combination method (16) is more general since it considers the class label
suggested by each classifier and not the numerical output vectors as in the
weighted sum case. Consequently, the method can also be used with other

types of classifiers, eg. decision trees or SVMs.

5 Experimental results
In this section, we present comparative performance results from the use of
the proposed classification system using the FCM and greedy-EM algorithms

12



for data partitioning and the previously described schemes for combining
classifier outputs. For comparison, we also present results from individual
MLPs with different numbers of hidden units. Five well-known data sets
were used in our experiments, as shown in Table 1.

In all the tests presented here, each experiment was run ten times and the
min, mean and maz errors were calculated from these ten trials. For each ex-
periment, each subnetwork was trained several times with different numbers
of sigmoidal hidden units (5, 8, 10, 15, 20) and different initialisations. The
hest outcome of the trials according to the validation error was used when
testing the combination schemes.

The classification performance of the system was evaluated for the fol-

lowing cases of data clustering and classifier combination:

FCM algorithm and weighted sum (FCM WS,

FCM algorithm and class probabilities (FCM CP),

Greedy-EM algorithm and weighted sum (G-EM W5),

Greedv-EM algorithm and class probabilities (G-EM CP).

5.1 The Clouds data

The Clouds artificial data from the ELENA project [21] are two-dimensional
with two a priori equally probable classes. There are 5000 examples in the
data set, 2500 in each class (30%). The theoretical error is 9.66%.

In our experiments, we used 2000 patterns for training, 2000 for valida-
tion and 1000 patterns for testing the system. respectively. For the FCM

algorithm, we obtained the best results by splitting the original data set into
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three subsets (g = 0.333). The Greedy-EM algorithm divided the Clouds
data set into four subsets (g = 0.25). The testing results for the multi-net
classification syvstem are shown in Table 2.

The classification error obtained with the multi-net system is quite close
to the theoretical one; therefore, any further improvement can hardly be

achieved.

5.2 The Diabetes data

The Diabetes set from the UCI data set repository [22] contains 8-dimensional
data belonging to two classes. It is based on personal data from 768 Pima
Indians obtained by the National Institute of Diabetes and Digestive and
Kidnev Diseases. The diagnostic binary-valued variable that is investigated
indicates whether the patient shows signs of diabetes according to World
Health Organization criteria.

In our experiments, we used 400 patterns for training, 200 for validation
and 168 patterns for testing the system. For the FCM algorithm, we obtained
the best results by splitting the original data set into three subsets (g =
0.333). The Greedy-EM algorithm divided the Diabetes data set into three
subsets (g = 0.333). The testing results for the multi-net classification system
are shown in Table 3.

It must also be noted that this data set contains some known outliers,
that affect the construction of the clusters and eventually the classification

performance of the system.
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5.3 The Image Segmentation data

The Image Segmentation data set from the UCI data set repository [22]
contains 19-dimensional examples belonging to 7 classes. There are 2310
instances drawn randomly from a database of 7 outdoor images. The images
were handsegmented to create a classification for every pixel. Each patterm
corresponds to a 3x3 region.

We used 1000 patterns for training, 500 for validation and 810 patterns
for testing the system. For the FCM algorithm, we obtained the best results
by splitting the original data set into four subsets (g = 0.25). The Greedy-
EM algorithm divided the Segmentation data set into five subsets (¢ = 0.2).
The testing results for the multi-net classification system are shown in Table
4,

In our experiments, we preprocessed the Image Segmentation data set by
applving a principal component analysis (PCA). In addition, the size of the
input vectors was reduced to a 7-dimensional space by retaining only those
components which contribute more than a specified fraction (defined 0.009)

of the total variation in the data set.

5.4 The Phoneme data

The aim of using the Phoneme dataset from the ELENA project [21] is to
distinguish between nasal and oral vowels, hence, there are two classes: the
nasals and the orals. The Phoneme dataset contains vowels originating from
1809 isolated syllables. Five features were chosen to characterise each vowel.
The features are the amplitudes of the first five harmonics normalised by

the total energy integrated over all the frequencies. There are 3818 patterns
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from the first class and 1586 patterns from the second class.

In our experiments, we used 2500 patterns for training, 2000 for validation
and 904 patterns for testing the system. For the FCM algorithm, we obtained
the best results by splitting the original data set into two subsets (g = 0.3).
The Greedy-EM algorithm divided the Phoneme data set into six subsets
(g = 0.17). The testing results for the multi-net classification system are

shown in Table 5.

5.5 The Breast Cancer data

This is data provided to the UCI repository [22] by Dr. William H. Wol-
berg [23] from the University of Wisconsin Hospitals, Madison. Data contain
699 patterns belonging to two classes (458 benign and 241 malignant). It
involves 9 variables representing cellular characteristics.

In our experiments, we used 350 patterns for training, 150 for validation
and 199 for testing the system. For the FCM algorithm, we obtained the best
results by splitting the original data set into three subsets (g = 0.333). The
Greedv-EM algorithm divided the Breast Cancer data set into five subsets
{g = 0.2). The testing results for the multi-net classification system are

shown in Table 6.

5.6 Discussion

An important conclusion that can be drawn from the experimental results
is that, as expected, the multi-net system almost always exhibits better per-
formance than a single neural classifier. For the Clouds, Segmentation and

Phoneme data sets the gain in performance is quite significant. With FCM
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partitioning we achieved better classification error in Diabetes, Segmentation
and Breast Cancer data sets, while the partitioning based on the Greedy-EM
algorithm led to better performance in Clouds and Phoneme data. However,
the Greedyv-EM algorithm dvnamically determines the number of clusters
during data partitioning and this makes it superior to FCM algorithm which
assumes a predefined number of clusters. An important result that occa-
sionally came up during data partitioning in our study, was the creation of
clusters with examples of a single class. Thus, there was no need of train-
ing a classifier for these clusters. Another interesting conclusion is that the
weighted-sum combination scheme produces slightly better results than the
class probabilities formula, in all cases except for the Clouds and Breast
Cancer data sets.

The obtained results show that the proposed multi-net classification svs-
tem outperforms several methods reported in the literature, like Bagging or
Boosting. for the Diabetes and Breast Cancer data sets [3, 4. 13] as well
as for the Segmentation data set [4]. Also, for the Phoneme data set, the
performance of our approach was better in comparison with the Cluster-
ing, Selection and Decision Templates combination scheme [2, ;'J]. For the
Diabetes data set, it vielded superior results in comparison with classifier
combining through trimmed means and order statistics [8]. Finally, the pro-
posed multi-net classification svstem performed better for the Clouds data
set in comparison with a variety of soft combinations of multiple classifiers
like Majority. Averaging, Weighted averaging, Borda count etc [6]. It should
be noted. however, that, since the partitioning of the data may or may not

be the same as in our case, this comparison should be considered as rather
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indicative,

6 Related work

We have presented a multi-net classification method that implements the
“divide-and-conquer” problem solving paradigm through the appropriate com-
bination of unsupervised and supervised learning schemes. First, the input
space is partitioned into overlapping subspaces through clustering. Then
neural networks are subsequenlty used to solve the respective classification
subtasks. Finally, the outputs of the individual classifiers are appropriately
combined to obtain the final classification decision. A key feature of the
method is that the training subsets correspond to non-disjoint regions of
the input space. Thus, the partitioning procedure produces a set of corre-
lated specialized classifiers which cooperate at the decision level in order to
tackle a complex classification problem. In this wav, smaller networks may
be emploved that can be trained in parallel on smaller and usually easier to
discriminate training sets. Through the splitting of the original data storage
and computation requirements are significantly reduced.

The multi-net methodology described here is related to a number of
divide-and-conquer approaches in machine learning and neural networks. In
general these approaches can be classified into two main categories. The
first category contains the methods that follow the “divide-and-conquer”
philosophy and can be considered that exhibit analogy with the proposed
technique. The second category contains multi-net methods (like bagging,
boosting etec) which do not perform input space partitioning. Instead, they

consider that each individual classifier is trained using data points from the
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whole input space. It is clear, that methods of this category exhibit only
marginal relevance with our technique and cannot be considered to follow
the same principles.

The main multi-net method that belongs to the first category is the Hi-
erarchical Mixtures of Experts (HME) method of Jordan and Jacobs [13].
It produces a tree-structured model which partitions the data into different
regions. Such decomposition ensures that the errors made by the expert nets
will not be correlated, as they each deal with different data points. Expert
nets learn to specialize in sub-tasks and to cooperate by means of a gating
net. Our approach differs from HME and related architectures, in that the
mixtures-of-experts model makes the assumption that a single expert is re-
sponsible for each example, whereas our combination scheme makes no such
mutual exclusivity assumption. and each data point is likely to be dealt with
by all component nets in the multi-net system. Since classifiers in the present
approach are assigned to overlapping regions and acquire their specialization
through training with data sets that are representative of these regions, this
approach is appropriate when no model is highly likely to be correct for any
point in the input space.

In the second category of multi-net techiques, the most popular methods
for creating ensembles are Bagging [13] and Boosting [4]. These methods
relv on “resampling” techniques from the whole input space to obtain differ-
ent training sets for each of the classifiers. Thus, it is not possible to use
smaller networks and accelerate the training of each classifier. In this group
of methods, the individual classifiers and their combination are trained to-

gether. OUn average, Adaboost is better than bagging, but the main problem
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with boosting seems to be robustness to noise [3, 4]. In parallel environ-
ments, bagging and the method proposed here have a strong advantage be-
cause sub-classifiers can be built in parallel. Our approach to designing a
classifier combination is to use already trained classifiers (typically a smaller
number of them compared to boosting and bagging) and combine their out-
puts. Simple combination methods, such as weighted sum (WS) and class
probabilities (CP), do not even require further training or optimizing be-
vond training the individual classifiers. Also another multi-net techique of
the second category concerns Kuncheva's clustering, selection and decision
templates model [2, 5. In that model, selection is applied in regions of
the feature space where one classifier strongly dominates the others from
the pool (called clustering-and-selection, CS) and fusion is applied in the
remaining regions; decision templates (DT} are adopted for classifier fusion.
Two main futures distiguish the proposed method from Kuncheva’s work and
other related selection-fusion architectures [12, 14]: (i) we apply clustering
techniques (unsupervised learning) to partition the input space and (ii) the
training subsets resulting from this partition represent non-disjoint regions.
We believe that both of these features can play a role in increasing the ben-
efits of combining and improving the robustness of the classification system

bv producing diverse component networks.

7 Conclusions

In this work we have elaborated on a multi-net classification syvstem that is
based both on unsupervised and supervised learning methods. To build the

classification system, first the original training set is divided into overlapping
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subsets by applving clustering techniques (unsupervised learning). Then, an
individual MLP is trained on every defined subset. To obtain the classifica-
tion of a new pattern, the outputs of the MLPs are appropriately combined
using several combination schemes. An important strength of the proposed
classification approach is that it does not depend on the type of the neural
network, therefore, it is quite general and applicable to a wide class of models
including neural networks and any other classification technique. The learn-
ing method offers the advantages of the “divide-and-conquer” framework, ie.,
smaller networks may be emploved that can be trained in parallel on smaller
(and usually easier to discriminate) training sets.

We have considered two algorithms for data clustering. The first is the
fuzzy C-means method which creates fuzzy partitioning of the input domain,
while the second approach is based on pdf estimation using mixture mod-
els, s0 patterns are assigned to different clusters based on their posterior
probabilities. We have considered two schemes for combining the outputs of
multiple neural classifiers: the first uses a simple weighted sum. while the
second one is based on a probabilistic interpretation. The resulting classifica-
tion approaches have been tested on different benchmark data sets exhibiting
very promising performance.

The multi-net methodology implemented in this work is quite general.
There is ample room for the implementation and testing of other techniques
both in the clustering and the classification module. It must be noted that
we are particularly interested in testing the performance of the classification
system when support vector machines (SVM) [24], [25] are employed in the

place of MLPs and this constitutes our primary direction for future study.
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Figure 1: Partitioning of the training set D into M subsets using clustering

methods.

| Features
Dataset Cases | Classes | Continuous | Discrete
Clouds 5000 2 2 -
. Diabetes 768 2 9 -
| Segmentation | 2310 7 19 -
| Phoneme 5404 2 ) -
Breast cancer 699 2 | - 9

Table 1: Summary of the data sets.
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Figure 2: Three-cluster partition of the Clouds data set using the fuzzv C-

means algorithm.

Table 2: The Clouds data set: Test set error (%) comparative results.

Clouds data set

Classifier min | mean | max
FCM WS 9.8 | 11.26 | 12.2
FCM CP 9.7 | 11.1 | 118
G-EM WS 10.1 | 11.03 | 11.8
G-EM CP 9.8 | 10.68 | 11.5
MLP(15 hidden units) | 10.1 1 12.13 | 13.7
MLP(20 hidden units) | 10.6 | 12.48 | 16.9
MLP(25 hidden units) | 10.8 | 11.91 | 17.4
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Figure 3: Means and variances of the kernels using the greedy-EM algorithm

for the Clouds data set.

Diabetes data set

Classifier min | mean | max
FCM WS 19.05 | 21.95 | 25
FCM CP 20.83 | 23.69 | 26.79
G-EM WS 18.45 | 22.74 | 26.19
G-EM CP 19.05 | 22.56 | 25.6

MLP(15 hidden units) | 19.64 | 22.97 | 25.6

MLP(20 hidden units) | 19.05 | 22.56 | 25

MLP(25 hidden units) | 17.86 | 23.15 | 26.79

Table 3: The Diabetes data set: Test set error (%) comparative results.
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Figure 4: Four-cluster partition of the Clouds data set using the greedy-EM

algorithm.
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Figure 5: Training a different MLP for each group of patterns.
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Segmentation data set

Classifier min | mean | max
FCM WS 158 | 17.79 | 19.01
FCM CP 16.54 | 18.44 | 21.73
G-EM WS 16.3 | 21.67 | 25.43 |
G-EM CP 16.17 | 21.79 | 25.56

MLP(30 hidden units) | 33.46 | 42.28 | 59.51

MLP(35 hidden units) | 16.3 | 38.25 | 55.31

MLP(40 hidden units) | 29.51 | 54.74 | 69.38

Table 4: The Segmentation data set: Test set error (%) comparative results,

Phoneme data set

Classifier min | mean | max
FCM WS 15.82 | 17.2 | 18.69
FCM CP 14.27 | 16.91 | 18.47
G-EM WS 14.38 | 15.47 | 16.48
G-EM CP 14.82 | 15.85 | 16.7

MLP(15 hidden units) | 15.49 | 19.2 | 21.46

|
MLP(20 hidden units) | 15.49 | 17.69 | 20.13

MLP(25 hidden units) | 13.83 | 17.24 | 19.25

Table 5: The Phoneme data set: Test set error (%) comparative results.
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Breast Cancer data set

Classifier min | mean | max
FCM WS 2.01 | 2.7 | 3.52

FCM CP 201 | 2.8 |3.52 |
G-EM WS 1.51 | 3.67 | 5.03
G-EM CP 1.51 | 3.62 | 5.03
MLP(15 hidden units) | 1.01 | 3.49 | 4.52
MLP(20 hidden units) | 1.01 | 3.12 | 4.02
: MLP(25 hidden units) | 2.01 | 3.92 | 5.03

Table 6: The Breast Cancer data set: Test set error (%) comparative results.
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