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1. SUMMARY

Several time and time-frequency methods are applied to the tachograms obtained from
arrhythmic ECG recordings. Small segments of the tachograms are used for feature
extraction, which are fed into a neural network to classify them as normal or arrhythmic. The
methods are tested using the MIT-BIH recordings and results are presented for all
combination of features in terms of the obtained sensitivity and specificity.

2. INTRODUCTION

Arrhythmias are disorders of the regular rhythmic beating of the heart. The
Electrocardiogram (ECG) of healthy individuals in resting conditions exhibits periodic
variation in RR intervals, corresponding to respiratory activity, known as Respiratory Sinus
Arthythmia (RSA). Non-natural arrhythmias can take place in a healthy heart and be of
minimal consequence, but they may also indicate a serious problem and lead to heart disease,
stroke or sudden cardiac death [1].

Heart Rate Variability (HRV) refers to the beat-to-beat alterations of heart rate. HRV
believed to be a good marker of the individual’s health condition and heart diseases [2,3].
Therefore HRV analysis became an important tool in cardiology. Time domain analysis
(statistical measurements, geometrical evaluation [3,4,6-8]) and frequency domain analysis

[3,6-8] are the most commonly used methods. Non-linear — chaotic analysis has also been
used [3.5,6-8].

Time domain analysis provides essential but not detailed information for HRV. Time-
Frequency (TF) analysis, which is based on TF distributions, is a more detailed analysis,
which provides with non-stationary information of the HRV. Several TF distributions have
been used for TF analysis. The Wigner Ville Distribution has been used for the identification
of severe brain stem injury and postural tachycardia syndrome [9-13]. Keselbrener et al. used
Selective Discrete Fourier Transform (SDA) and Short Time Fourier Transform (STFT) for
cardiovascular control and fast vagal response [14-16]. Chan et al. used Wigner Ville
Distribution (WVD) and Smoothed Pseudo Wigner Ville Distribution (SPWVD) for Cheyne-
Stokes oscillation detection [17-19]. Bentley et al. used the Choi-Williams Distribution
(CWD) for classification of native and bioprosthetic heart valve sounds [20].



In this study we use time and time-frequency analysis to detect arrhythmia in long-term
electrocardiograms. In the time domain analysis extract several features by segmentation of
the corresponding tachograms. In TF analysis STFT and a number of distributions belonging
to the Cohen’s class are applied on the segmented signals. The obtained characteristics are
fed into a neural network. The latter provides with arrhythmia diagnosis. The proposed
methods are used in MIT-BIH arrhythmia database and the corresponding results are
presented.

3. MATERIALS AND METHODS

The dataset used in our research are the MIT-BIH arrhythmia database recordings [21]. The
database consists of 48 ECG recordings, which are divided into 23 recordings of 100 Series
and 25 recordings of 200 Series. The length of each recording is 30 minutes, which results to
atotal 0of 112,568 RR intervals.

Our analysis is carried out in several stages. At first a preprocessing procedure is used to
extract the tachogram from the ECGs. Next, time domain or time-frequency methods are
applied to extract several features. Finally a classification technique based on neural
network’s methodology is applied.

Preprocessing stage

Preprocessing is carried out in two steps. In the first step we extract the tachograms from the
ECG recordings. Tachogram is the signal, which indicates the RR interval duration. We used
the RDNN sofiware, included with the MIT-BIH database, to extract tachogram from the
database recordings. In the second step we use segments of 32 points and we characterize
each segment. A segment is characterized “Normal” if it contains more than 95% “Normal™
annotated RR intervals of the total 32 RR intervals, otherwise is characterized *Arrhythmic”.
The total number of segments in the segmented dataset is 3,431. The above process is shown
schematically in Fig. 1.
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Figure 1: Preprocessing of the ECG signal.



Time domain methods
In the first step of the time domain methods the features shown in Table 1 are extracted from
the segmented dataset.

Table 1: Time domain features.

Feature Description
1 SDNN Standard deviation of all RR intervals
2 r MSSD Square root of the sum of the squares of differences
3 SDSD Standard deviation of differences
4 pNN3 Percent of RR intervals » Smsec
5 pNN10 Percent of RR intervals > 10msec
B pNNa0 Percent of RR intervals > 50msec

We use all possible combinations among these features in order to create the pattern set for
the classification stage. This leads to a total of 63 feature combinations. In addition, we apply
the Principal Component Analysis (PCA) for all the features (SDNN, r_MSSD, SDSD, pNN3,
pNNI0, pNN30). That gives us a total of 64 inputs with 3.431 patterns each. All inputs,
feature combinations and PCA, are shown in Table 2.

Table 2: Combinations of time domain features.

| Combination Name
Combination | (Feature Numbers) | Features
1 1 SDNN
2 2 r_MSSD
3 12 SDNN, r_MSSD
4 3 SDSD
] 13 SDNN, SDSD
] 20 SDNN, r_Ms5D
7 123 SDNN, r_MSSD, SDSD
8 4 piN5
60 ' 3426 D50, pNNbB, plN10, pNN5O
61 13456 SDNN, SDSD, pNN3, pNN10, pNNSO
62 | 23456 r_MSSD, SDSD, pNNb, pNN10, pNN3O
63 ! 123456 SDNN, r_MSSD, SDSD, pNN3, pNN10, pNN5O
64 pca PCA(SDNN, r MSSD, SDSD, pNNS, pNN10, pNNBO)

In the second stage we train and test a feed-forward back-propagation neural network, for
each input, using 2000 patterns as training set and 1431 patterns as testing set. The
architecture is always the same: N inputs, one hidden layer and one output. N is the number
of features used in the specific input, the hidden layer has 20 neurons and the output is a real
number between 0 and 1. The final “Normal™ or “Arrhythmic” classification depends on the
selection of the decision rate. If the output is greater than the decision rate then the result is
“Arrhythmic™ segment otherwise is a “Normal” segment. The training of the neural network
ends when the square error is less than 0.01 or the training epochs are more than 2000. The
procedure followed for the time domain methods is shown in Fig. 2.
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Figure 2: Time domain methods procedure.

Time-frequency methods
We calculate multiple Time-Frequency Distributions (TFDs) for each segment of the
segmented dataset. All TFDs belong to the in Cohen’s class except Short Time Fourier
Transform (STFT). The TFDs used are shown in Table 3. The TFDs are normalized in [-1,1]

interval.
Table 3: Time-frequency distributions.

Distribution Name
1 | Born-Jordan distribution BJ]
2 | Butterworth distribution BtWth
3| Choi-Williams distribution [5] CW
4 | Generalized rectangular distribution GenRect
o | Margenau-Hill distribution MarHil
613 al Pseudo Margenau-Hill distribution PsMarHil
7 | Margenau-Hill-Spectrogram distribution MarHilSp
8 | Page distribution Page
9 | Pseudo Page distribution PsPage
10 | Wigner-Ville distribution [6] WV
11 | Pseudo Wigner-Ville distribution PsWV
12 | Smoothed Pseudo Wigner-Ville distribution [7] SmPsWV
13 | Rihaczek distribution Rih
14 | Reduced interference distribution with Bessel window RIBes
15 | Reduced interference distribution with Hanning window R1Han
16 | Reduced interference distribution with binomial window RIbio
17 | Reduced interference distribution with triangular window Rltria
18 | Zhao-Atlas—Marks distribution ZAM
19 | Short Time Fourier Transform STFT
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Figure 3: a. Distribution, b. Traces c. Areas, d. Features for time-frequency methods

For each distribution we create multiple traces with amplitude = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.
Then we calculate the area below 0.0 and the areas between adjacent traces. Fig. 3 shows the
distribution, traces and areas calculated. The features extracted from each TFD of the
segments in the segment set are summarized in Table 4.

Table 4: Time-frequency features
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Six features for each TFD are computed. This leads to a total of 19 inputs with 3,431 patterns

each.

For each TFD we train and test a feed-forward back-propagation neural network, with a
standard architecture: six inputs, one hidden layer with 20 neurons and one output being a
real number in the interval [0.1]. The final *Normal” or “Arrhythmic” decision depends upon



the used decision rate. If the output is greater than decision rate then the result is
“Arrhythmic” segment otherwise the segment is classified as “Normal”. Schematically, the
time-frequency procedure is presented in Fig. 4.
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Figure 4: Time-frequency methods procedure.

4. RESULTS

For each input and combination of time domain features or TFD features, we calculate the
corresponding sensitivity and specificity, using a decision rate equal to 0.5. We derive the
Receiver Operating Characteristic (ROC) curve calculating sensitivity and specificity for
multiple decision rates, from 0.0 to 1.0 with 0.05 step. Based on ROC curves the Area Under
Curve (AUC) marker is also calculated.

Time domain results

Table 5 contains the ten best results for sensitivity, specificity and AUC marker of the total
63 combinations. Results are shown also for PCA. The results are obtained for all MIT-BIH
recordings.



Table 5: Time domain methods summary of results for the MIT-BIH recordings.

Best Sensitivity Best Specificity AUC

Features Sensitivity Specificity Features Sensitivity Specificity Features AUC
1 6 95% 36% 126 85% T1% 1346 86. 4%
3 26 91% 39% 12356 85% 1% 126 B5.9%
3 46 0% 40% 12346 B4% 69% 136 B5.9%
4 234 89% GRS 1326 B3% 69% 12356 85. 8%
3 34 89% 48% 1236 Be% 68% 1236 B85. 5%
6 456 B9% 41% 1246 BE% 68% 12346 85. 3%
7 23 B8% a0% 1256 B4% 68% 1256 B5. 1%
8 5 BR% 33% 136 B6% 67% 1246 84. 9%
g9 12456 87% 61% 12 Bi% 67% 36 B84.8%
10 235 BT% a4% 1346 BE% 66% 12456 84, 5%
11 pca 83% 60% pca 83% 60% pca 83.0%

The combination 6 (only pNN30) shows the highest sensitivity (95%) but the specificity is
very low (36%). The combination 12456 (SDNN, r MSSD, pNN5, pNNI10, pNN50)
indicated 87% sensitivity and 61% specificity. The best specificity is obtained for
combinations 126 (SDNN, r MSSD, pNN30) and 12356 (SDNN, r MSSD, SDSD, pNNI10,
pNN350) which corresponds to 71% specificity and 85% sensitivity. Use of PCA leads to 83%
sensitivity and 60% specificity. Using the AUC marker the best result (86.4%) is obtained
using the 1346 combination (SDNN, SDSD, pNN35, pNN30) and the use of PCA leads to

83.5%.

Time-frequency results
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Figure 5: ROC curve for feature combination 1346 and PCA result

Table 6 contains the results for sensitivity, specificity and AUC marker of the nineteen TFD

methods used for the MIT-BIH database recordings.



Table 6: Time-frequency methods summary of results for the MIT-BIH recordings

Best Sensitivity Best Sensitivity ACU
FeaturesSensitivity Specificity FeaturesSensitivity Specificity Features AUC
1| MarHilSp B80% T0% MarHil T3% To% PsPage B3. 6%
2l PsPage 80% 69% Page T3% 5% MarHilSp 82.7T%
3 ZAM 80% 69% Rihaczek Ta% 3% ZAM 82, 1%
El Cw T6% 64% MarHilSp 80% T0% MarHil 80. 3%
31 RIBes T6% B1% PsPage 80% 69% Rihaczek B80.2%
6] Rihaczek T5% T3% ZaM B0% 69% SmPsWV 79, 4%
T SmPsWV 75% 63% GenRect T4% 69% Page 78.5%
8 RIHan T5% 58% PsWV T0% 67% GenRect 78.3%
9 GenRect T4% 69% BtWth 1% 65% PsWV 76.8%
10 PsMarHil T4% 62% RIBio T1% 65% CW 76.7%
11} MarHil T3% T5% CW T6% B4% PsMarHil 76. 3%
12 Page T3% 75% BJ 2% 64% RIBes 76.0%
13 RITria T3% 61% SmPsWV 9% 63% RIBic 75.2%
14 BI 2% B4% STFT T0% 63% BtWth 74.4%
15 BtWth T1% 62% Wy 69% 63% RITria 73.8%
16 RIBio Tl% 60% PsMarHil T4% 62% RIHan 73.8%
17 PsWv T0% 67% RlBes T6% 61% STFT 73.5%
18 STFT T0% 63% RITria 3% 61% B] 72.5%
19 Wy B9% 63% EIHan 75% bk WV Tl. 2%

Margenau-Hill-Spectrogram  distribution has the highest sensitivity (80%) and the
corresponding specificity is 70%. The Pseudo-Page and Zhao-Atlas-Marks distributions
perform also well indicating 80% sensitivity and 69% specificity. The use of STFT leads to
70% sensitivity and 63% specificity. The corresponding AUC markers are 83.6% for Pseudo-
Page distribution, 82.7% for Margenau-Hill-Spectrogram, 82.1% for Zhao-Atlas-Marks
distribution and 73.5% for STFT.
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Figure 6: ROC curve for Pseudo-Page distribution, Margenau-Hill Spectrogram distribution,

Zhao-Atlas-Marks distribution and Short Time Fourier Transform.
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