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Abstract

The Probabilistic RBF (PREF) network constitutes a recently proposed classification
network that employs Gaussian mixture models for class conditional density estimation,
The particular characteristic of this model is that it allows the sharing of the Gaussian
components of the mixture models among all classes, in the same spirit that the hidden
units of a classification RBF network feed all output units. Training of the PRBF network
is a likelihood maximization procedure based on the Expectation - Maximization (EM)
algorithm. In this work, we propose a Bayesian regularization approach for training the
PREF network that takes into account the existence of ovelapping among classes in the
region where a Gaussian component has been placed. We also propose a fast and iterative
training procedure (based on the EM algorithm) to adjust the component parameters.
Experimental results on well-known classification data sets indicate that the proposed
method leads to superior generalization performance compared to the original PEBY
network with the same number of kernels.

1 Introduction

In pattern recognition it is well-known that a convenient way to construct a classifier is on
the basis of inferring the posterior probability of each class. From the statistical point of view
this inference can be achieved by first evaluating the class conditional densities p(z|Cy) and
the corresponding prior probabilities P{C}) and then making optimal decisions for new data

points by combining these quantities through the Bayes theorem
oo p(z|Ce) P(Ci)
PlCln) = - ; 1
) = & p(EIC)P(C) £

and then selecting the class with maximum P(Cg|z). In the traditional statistical approach

each class density p(xz|Cy) is estimated using a separate mixture model and considering only



the data points of the specific class, therefore the density of each class is estimated inde-
pendently from the other classes. We will refer to this approach as the separate mirtures
maodel.

The probabilistic RBF network [3, 4] constitutes an alternative approach for class condi-
tional density estimation. It is an RBF-like neural network adapted to provide output values
corresponding to the class conditional densities p(x|Cy). Since the network is RBF, the ker-
nels (hidden units) are shared among classes and each class conditional density is evaluated
using not only the corresponding class data points (as in the traditional statistical approach),
but using all the available data points. In order to train the PRBF network, an Expectation -
Maximization (EM) algorithm can be applied [4]. The treatment of the training procedure as
a likelihood maximization problem provides the opportunity to define Bayesian priors on the
network parameters. The priors we propose tend to favor solutions that avoid the placement
of a kernel in a region with weak overlap among classes. We provide an iterative EM-based
procedure for finding the maximum a posteriori probability (MAP) [2] PRBF parameters.
The effectiveness of the proposed method is demonstrated using several data sets and the
experimental results indicate that the method leads to performance improvement over the

classical PRBF training method.

2 The Probabilistic RBF Network

i

Consider a classification problem with K classes and a training set X = {(z'™,y™), n =
1,..., N} where z!™ is a d-dimensional pattern and y™ isalabel Ck (k = 1,..., K) indicating
the class of pattern ™. The original set X can be easily partitioned into K independent
subsets X, so that each subset contains only the data of the corresponding class. Let Ny
denote the number of patterns of class Cy, ie. N = |Xy|.

Assume that we have a number of M kernel functions (hidden units), which are probability
densities, and we would like to utilize them for estimating the conditional densities of all
classes by considering the kernels as a common pool [3, 4]. Thus, each class conditional

density function p(x|C:) is modeled as

M
plajCi) = maplall), k=l...K (2)
i=1

where p(z|j) denotes the kernel function j, while the mixing coefficient 7, represents the
prior probability that a pattern has been generated from kernel j, given that it belongs to

class Cp. The priors take positive values and satisfy the following constraint:
M

Y=t EER..K (3)
=



It is also useful to introduce the posterior probabilities expressing our posterior belief that
kernel j generated a pattern x given its class C),. This probability is obtained using the Bayes’
theorem

B 7k p(z|7)
P(j|C, ) = m )

In the following. we assume that the kernel densities are Gaussians of the general form
plali) = e { 5o — ) TS e - )} (5)
(2m)a/2|T;|1/2 9 R 7

where yu; € R? is a vector representing the center of kernel j, while X; represents the cor-
responding d x d covariance matrix. The whole adjustable parameter vector of the model
consists of the priors and the kernel parameters ({means and covariances) and we denote it by
i.

Training of the PRBF network may efficiently achieved with the EM algorithm [3, 4]. It

consists of the iterative application of the following processing steps:

1. E-step: For each training point {xi"j,y{“]] £ X compute the posterior probabilities

Pt (FCk, :.:{"]}__ for j=1....;, M and k =1,..., K, from (4) using the current parame-

ters @Y.

2. M-step: Find the new parameter vector #'*+!) using the following equations:

(1) _ Zf:l dex P (J|Ck, x)x

I = T (6)
d Zf=]_ EIEXk Plt}(jlck'm:l
; ; { (t+1
n(t+l) _ Ef=1 Ewex; P[ﬂ(ﬂcﬂz:ﬂf}"r = #j'”l]}{l' = #;-H ]}T 7
’ Ef:l E:EXk pit Ulck .I::I
(41} _ 1 () foomas -
= ﬁmezxkjj (i|Ck. ), k=1,...,K (8)

It is apparent that the PRBF model is a special case of the RBF network where the outputs
correspond to probability density functions and the second layer weights are constrained to
represent prior probabilities. Furthermore, it can be shown that the separate mixtures model
can be derived as a special case of PRBEF.

As discussed in [5] both the PRBF model (trained in a typical manner) and the sepa-
rate mixtures model, in some cases provide solutions that are not very effective from the
classification point view. More specifically, it has been observed [5] that the PRBF network
provides inferior classification solutions when there exist kernels that have been placed on

regions where there exists weak overlapping among classes. The motivation behind this work



is to exploit Bayesian regularization, by specifying appropriate priors on the PRBF parame-
ters, in order to guide the training process to avoid solutions exhibiting the above undesirable

characteristic.

3 Bayesian Regularization

Let P(C}) denote the prior probability of class Cy. In order to use Bayes rule (1) for unlabeled
input data we have to find first appropriate values for both class prior probabilities and pa-
rameter vector #. Thus, the whole adjustable parameter vector is & = (8, P(C1), ..., P(Cy)).
We can utilize Bayes theorem once again to estimate the a posteriori distribution of the
parameter vector © according to

p(X [©)p(©)

PO X) = X To)p(0)d0 ®)

where p(X | ©) is the density of the observations X given ©, and p(@) is the prior density
on ©. The configuration © that maximizes p(X | ©)p(©) also maximizes p(& | X), and is

known as the maximum a posteriori (MAP) estimation of ©

O = argmax p(X | ©)p(©) (10)

In order to proceed with the MAP estimation, we have to define a proper prior p(®)

for PRBF training. At first we introduce the variables pj; and Zg, for j = 1,..., M and
k=1,..., K. These represent means and covariance matrices respectively as follows:

g 2ozex, PUICK, T)z
' Y zex, PUICk, )

(11)

]T

g E:cEX,-_. P{j!ﬂk,xj{m = #j.!c:l(x — ik
ZIEXk Pl:jlck" -’T:I

As shown in [4], ;i and ;i constitute an estimation of the parameters of kernel j, when

TS (12)

only data of class C, are considered. It has been shown [4] that during PRBF training, the

parameters of kernel j computed at any EM iteration can be written as

K
i =Y P(Cili)mjk (13)
k=1
Ti=Y_ P(Ck|iEjx (14)
k=1
where -
P(Ch | §) = = i2lO0) (15)

z-{::=l Tr_fk.aPIIC';rfj
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is the probability that pattern z belongs to class Ci, given that it has been generated from
kernel j. The above equations indicate that the parameters p;, X; of kernel j actually cor-
respond to the mean values of the variables p;; and X, for k= 1,..., K. For convenience
we will refer to a 'component’ with parameters u;; and ¥ as subkernel jk. In other words
each subkernel jk defines a distribution p(z | jk) with mean u;;. and covariance £, Now
we can quantify the overlapping among classes in the region of a kernel using measures of the
distance among distributions. The expected value of the distance between the kernel j and
its subkernels jk can be used as a measure of class ovelapping in the region of kernel j. Using

the Bhattacharya distance between p(z | j) and p(z | 7k) we obtain the desirable measure:

K
6 =3 PGk 1) {~1n [ Iz | ol | 0]/ ex] (16)

k=1
In the case of complete overlapping among classes §; equals zero, and the same holds if only

one class exists in the region of the kernel j.
Based on this property of 4;, we define the prior on © as

M
p(©) = [] exp{—ad;} (17)

i=1
Apparently there is no a priori assumption about class priors, and each factor of the product
refers to a kernel of the model. According to the above discussion, solutions where kernels
are placed in regions with high overlapping or no overlapping at all are prefered. With this
choice of p(©), it is expected that in the case where a subkernel jk exhibits weak overlapping

with the remaining subkernels jl, the training algorithm will force ;3 to become zero.

3.1 The EM training procedure

The posterior log likelihood function of the data set X is

N
L(®) =3 logp(z™,y™ | ©) + log p(©) (18)

n=1
Using that p(z,Cy | ©) = p(z | C,©)P(C}. | ©) and the fact that the data set X consists of
K independent subsets Xi, the above equation takes the form

K
L(®) = ) |X|logp(Ck|®©)

k=1

K
+ Y. Y plz|Ci©) +logp(O) (19)
k=l$EXj;



To simplify the procedure, we maximize the first term of (19) separately, and then use the
resulting solution in the maximization of the remaining terms. Maximization of the first term
yields

P(Cy) = ||Xf‘|| E=1,... K (20)

while the maximization of the reamaining terms is equivalent to PRBF training using regu-
larization. Consequently the a posteriori log likelihood function suitable for training of the
PREBF network is given by

K
L@ =3 ¥ p(z|Cy 6) +logp(8) (21)

k=1xcX)
and assuming Gaussian mixture models the above equation can be written as

M K

L(8) = Z > 1oazmp z|f)—ad > P(Ci| )8 (22)

k=1zreX; j=1k=1

where 3;; is the Bhattacharya distance between Gaussian distributions p(z | j) and p(z | 7k)

1 Breok Bip T2
i = gf#j — )T [J—D'J—] (B3 — pjk)
13 (55 + Ziw) | 5
+ 1 |E |1;?| |1,-’2 {‘3’1

In order to maximize L{#) we employ the EM algorithm [1] and show that PREF regularization
can be performed with a fast, effective and easily implementable scheme.

The Expectation-Maximization (EM) algorithm is a general technique for maximum like-
lihood estimates in the case where hidden information exists. Given the corresponding incom-
plete data set X, the complete data set is defined as X¢ = {(z™ ¢\ z\™), n=1,...,N}
where the hidden variable z is a M-dimensional vector of zero-one values, indicating the
kernel that generated z. If kernel j is responsible for generating x then z; = 1, otherwise
zj = 0. The expected value of z equals the a posteriori probability P(j | z,C}} that kernel j
generated r given the class label Cy, defined as

. nep(e | ~
LS Ziliju T"ik?:"{r}l i) i

Following the commeon procedure, we define the expected complete a posteriori log likelihood

as
MO K

Le(8) = z > ZPL_?ll Ci)logmixp(z | j) —ad_ > P(Cx | 5)Bs (25)

k=lzeX, j=1 i=lk=1
We make the reasonable assumption that ;. = IZ;, and concentrate on the centers of the

subkernels. So at iteration t+1 of the algorithm, the quantity to be maximized at the M-step

6



i9 M

Qe:6) = > > 3 PO |, C)logmmplz | 5)
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Sy T [5(e)] ! (1

S S PG| )5 — DT [ZP] T (s - ) (26)

k=1 j=1

o R

Based on several algebraic manipulations, it can be shown that the above maximization can

be performed analytically thus leading to the following update equations:

L) _ T Trex M | 2. Ch)e + § TE, PY(Cy | ugy

. m (27)
! et Toex, PO | 2,C) + §
: (b1} {t+1)
s+ _ Zhot Taex, POG 12,00 = ™)@ — ™) (28)
. Tic1 Teex, PO | 2,C)
; P ; i { o o) t
eeny _ Zeex POG 12,00 + §PO(C 1 9) {T POG )87 — 82 -
" Xl + § oM, PO(C, | i) {TK, PO(C | )87 - 85}
where
: 1 ;
65D = (WD — )T [V (e - ) (30)
It is worthwile to examine the regularization term in (29). Notice that for any kernel j, the
regularization terms corresponding to the subkernels jk (k=1,..., K) sum to zero:
K K
> P(Cx|4) {ZP(C: | 3)d51 = 5;&} =0 (31)
k=1 =1

This equations indicate that there is competition among the subkernels. If the distance
between the kernel j and one subkernel j&' is less than the average, then the corresponding
regularization term is positive, otherwise it is negative. In that way the remote subkernel is
penalized, and eventually rejected if the prior 7, becomes zero.

A computational problem that we experience is that sometimes the negative regularization
term becomes too high and results in negative priors. To avoid this situation, at each iteration
if the minimum prior of any class becomes negative we set it equal to zero, and normalize the

remaining priors in order to satisfy (3).

4 Experimental Results and Conclusions

In this section we compare the proposed training method with the typical PREF training
method [3, 4]. We considered four well-known data sets from the UCI repository, namely

the Phoneme, Satimage, Pima Indians Diabetes and Ionosphere data sets. For each data set,
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' Number of kernels

Algorithm | 6 R 10 | 12 | 14
PREF 30.33 | 30.07 | 28.26 | 28.00 | 27.35
a=235 31.25 | 28.25 | 27.21 | 26.82 | 25.78
a =10 28.091 | 26.30 | 28,56 | 27.60 | 26.82
a=15 28.00 | 27.73 | 27.99 | 26.81 | 26.43
a=20 27.47 | 25.64 | 27.86 | 28,30 | 25.38 |

Tahble 1: CQeneralization error on the Pima Indians Diabetes data set.

Number of kernels

|| Algorithm 6 o 12 15 18

|  PRBF 2412 | 17.09 | 17.01 | 16.08 | 16.16
=5 2392 | 17.20 | 16.92 | 16.05 | 15.69
a=10 | 24.10 7.08 | 16.41 | 15.99 | 1571
=15 2274 | 16.58 | 15.80 | 15.85 | 15.68
a=20 |22.55]15.88 ] 15.99 | 15.76 | 15.48 |

Table 2: Generalization error on the Satimage data set.

in order to obtain an estimation of the generalization error, we have employed 5-fold cross-
validation. In every experiment all training algorithms started from the same initial state.
Tables 1-3 provide the obtained results for both methods, for several values of the number of
kernel functions M, and the hyperparameter a. The values of @ we used were multiples of
the quantity R"jﬁ'

The results indicate that the proposed regularization technique provides networks with
superior performance compared to typical PRBF training. It must also be noted that the
method is fast, since in all experiments 100 EM iterations were sufficient for reaching the final
solution.

In what concerns future enhancement of the method, our current work focuses on the
utilization of alternative distance measures, averaging PRBF networks obtained for different
values of the hyperperameter o, and developing an approach for dynamicaly adjusting the
number of kernels M. In the last case our aim is to exploit recent results for adjusting the
number of kernels in a Gaussian mixture that have been developed in the framework of pdf

estimation [6].



Number of kernels
Algorithm ] 10 12 | 14 16 |
PRBF 21.12 | 21.58 | 21.23 | 21.57 | 21.33 |
=25 20,97 | 21.66 | 21.27 | 21.64 | 21.10
a=10 21.08 | 21.44 | 20.81 | 20.70 | 20.62
a=15 21.34 | 21.16 | 2099 | 20.75 | 20.38
a=20 21.03 | 20.81 | 20.97 | 20.55 | 20.57 |

Table 3: Generalization error on the Phoneme data set.

Number of kernels
Algorithm 4 6 8 10 12
PRBF 2449 | 17.37 | 1283 | 11.69 | 9.42 |
x=25 19.11 12.26 | 10.25 | 9.40 | 9.41 |
a=10 14.52 | 10.26 | 10.80 | 9.11 | 9.70
=15 14.80 | 12.83 | 10.82 | 9.40 | 9.70 |
a=20 14.80 | 12.83 | 10.25 | 8.83 | 9.11 |

Table 4: Generalization error on the Ionosphere data set.
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