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1. SUMMARY

In the present work an attempt is made to compute the amount and distribution of the
absorbed power inside the human head system. We consider the case that the human
head system is simulated by a multi-layered confocal spheroidal structure while
electromagnetic excitation is realised through a localised point source emanating
spherical wave. The solution of the problem constitutes the Green’s function of the
general problem and can be exploited through a straightforward manner.

2. INTRODUCTION

The investigation of the mechanism describing the interaction of electromagnetic
waves with specific parts of the human body constitutes a scientific area of great
interest.  Several researchers have addressed the biological effects of the
electromagnetic radiation to human tissues and organs. Particularly, the necessity to
study the interference of electromagnetic waves with the human head has been
stimulated, now days, drastically by the use of handheld transceivers for mobile
communications. Rest of the work focuses on the computation of distribution of the
absorbed power inside the head system to reconsider and ameliorate the
characteristics of electromagnetic emission.

The interference of electromagnetic waves with the human head, in the framework of
localized source exposure, constitutes a very complicated scattering problem.
Complexity is first due to the fact that the human head system disposes complex
geometrical and physiological properties. On the other hand, the consideration of
antenna emission goes out of the usual plane wave excitation regime, rendering the
scattering problem more difficult. Several papers provide with numerical solutions of
the problem. Morgan [1] applied finite element techniques to determine the
distribution of the specific absorption rate in the human head. In Ref. [2-6], finite
difference time domain methods have been applied.



However, the development of analytical techniques handling the problem seems
necessary and indispensable not only as benchmarks for numerical solutions but in
order to form a structured and hierarchical knowledge about the specific area.
Analytical techniques are expected to deal with simpler models simulating the
realistic one. We mention here the case of the concentric layered spherical structure
model considered by Shapiro et al. [7] as well as the case of the layered eccentric
spheres model for the head presented in [10].

In this paper, the human head system is simulated by a multilayer confocal spheroidal
structure while the electromagnetic excitation is realized through a localized point
source emanating spherical waves. Actually, the solution of the problem constitutes
the Green's function of the general problem and can be exploited through a
straightforward manner. The consideration of the spheroidal model is realistic enough,
given that only the human skull, is proven to form a slightly perturbed spheroidal
shell with axes ratio almost 0.75.

The model, developed in this paper, permits an arbitrary number of layers. The
investigation of the scattering problem under discussion is based on the suitable use of
Navier vector eigenfunctions, which constitute a function basis for the
electromagnetic field. More precisely, the incident and scattered fields are expressed
as finite expansions of the vector spheroidal wave functions. These fields are forced
to satisfy the boundary and impedance conditions on the discontinuity surfaces,
imposed by Maxwell's equations. In order to obtain algebraic systems concerning the
expansion coefficients, we need to handle the boundary conditions for the basis
eigenfunctions. This is accomplished, instead of using the classical T-matrix theory
through a theoretical approach. This approach assumes the optimal treatment of vector
spheroidal wave functions as it minimizes the analytical and numerical burden by
suitable differential and integral transformations. The non-homogeneous algebraic
system obtained through the above analysis is solved numerically after suitable
truncation and stability analysis. There exists a plethora of parameters entering the
problem, as the position and orientation of the point source, the relevant position of
the source and the scatterer, as well as the relevant geometrical features of the
spheroidal structure itself.

3. THE MODEL
3.1 Spheroidal Geometry

The geometrical system fitting with the investigated structure is the spheroidal one
sharing the property to describe with simplicity all configurations lacking symmetry
in only one direction. The prolate spheroidal coordinates are connected with the
Cartesian ones through the relations

x = asinh wsinfcos ¢,
¥y =asinh gsin Fsing, (1)
z =acosh gcosd,

where 4 z0, 0=8=x, 0<¢g<2m.

In the above relation « stands for the semi distance of the foci of the coaxial
spheroidal structure. The unit spheroidal vectors, which play a crucial role in our
analysis, are:
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The position vector can then be expressed as

. asinh gcosh . asinfcosd
=M 2 = f -9 2 1 (3)
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while the grad operator, appearing in the forthcoming differential calculus obtains the
following form:
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The scale factor ycosh® u—-cos’@ has made already its appearance and is going to
constitute the major complicator factor of our analysis, as it implicates in a non-
separable way the spheroidal coordinates and &.

3.2 The Scalar Hemholtz Equation

The investigated scattering problem involves time-harmonic propagating waves.
Although the electromagnetic field is a vector function, its study can be based on the
investigation of the corresponding scalar waves, as it will be apparent in the sequel.
After suppressing the harmonic time-dependence, every scalar wave satisfies the
Helmholtz equation, given by

Viw+kw =0, (5)

where k is the wave number for the propagating process. Expressing v* in spheroidal
coordinates and applying separation of variable techniques by requiring

W= REES (D), £ =coshu, n=cosd,
we obtain that
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where P stands for the Legendre functions, while Z'*' runs over four alternatives of



spherical Bessel functions, as follows
z =, (2),

= f2);
Z.E.a] =h£]]{3}=j" {z]+£}-,,{z}, (7
z8 =1 (2)= j, (2) - v, (2),

where we encounter the spherical Hankel functions A (z).h”(z) of the first and the
second kind, respectively.

4. FORMULATION OF THE PROBLEM

Let us consider a multi-layered spheroidal structure, every layer of which constitutes a
linear, homogeneous, isotropic and non-conductive electromagnetic propagation
medium. Every component of the human head (e.g. skull, brain, cerebrospinal fluid,
etc.) is completely characterized by its electrical permittivity £ and its magnetic
permeability u, as far as the electromagnetic properties are concerned. The interfaces
of this structure constitute coordinate spheroidal surfaces of the same spheroidal
coordinate system whose center coincides with the structure center and which is
totally determined once the distance 2a of the focii is given. This structure is
surrounded by an infinite homogenous and non-conductive medium. The
aforementioned configuration is shown in Fig. 1. The spheroidal body is located in the
near field region of an antenna emanating spherical electromagnetic waves in the
surrounding space. Actually the electric current density of the source is given by

J=118(r-r)¥, (8)

where r’=(asinh 4'sin@'cos¢', asinh u'sin@'sing’, acosh u'cos@’)is the position
of the source, [ the current density, [ its length and ¥ stands for the unit vector
denoting its orientation. Notice that the pilot character of point source (8), since it
constitutes the Dirac stimulation and every other excitation is handled via
superposition principle. The electromagnetic field, E™, H™ of the point source are
considered as the incident field for the spheroidal structure and their interference leads
to the emanation of the scattered electromagnetic field E*, H” propagating in the
exterior space, as well as the creation of a plethora of stationary waves oscillating in
the several components of the structure. Each one of these interior waves is labeled by

the corresponding region symbol while in the exterior region the total field is the
superposition of the incident and the scattered field as

I ol ) it
L+l i | (9}
H,,=H" +H".

In every subregion, the electromagnetic field satisfies Maxwell's equations, which

under the assumption of time-harmonic dependence, with frequency o, ¢ ,obtain
the form
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Figure 1: The Problem Geometry

VxH=]J- jocE
VxE= jouH
V-H=0
V-E=0.

(10)

Actually, for every point except source location point, the non-homogenous term J
vanishes as we have assumed non-conductive media. It is well known [15] that the
first order differential system (10) can provide with second order equations
concerning every field separately. More precisely the electromagnetic field satisfies
the vector Helmholtz equation

VH+EH=0,r=r' (11a)
VE+&%E =0, (11b)

where k =,/ ue stands for the wave number in the specific surrounding medium. In



addition, the electromagnetic field satisfies suitable boundary conditions on the
discontinuity surfaces of the structure. Restricting ourselves to the magnetic field
only, the boundary conditions are

i :i{Hr._: -H) iﬂ. (12)
b H, =pn, -H,ref§, i=12..,L,

which in accordance with (1la) — for every sub region, the asymptotic radiation
conditions and the superposition (9), establish a well — posed boundary value
problem. Our aim is the selection of this problem by determining the scattered field as
well as the trapped stationary waves inside the spheroidal layers, in terms of the
several altematives concerning physical properties, relevant geometrical
characteristics and point source location.

5. SOLUTION OF THE PROBLEM IN TERMS OF SOLENOIDAL
SPHEROIDAL EIGENVECTORS

The electromagnetic field satisfies, as we mentioned in the previous section, the
vector Helmholtz equation. As explained in [13] every solution F(r) of the vector
Helmholtz equation is written as the superposition of an irrotational and a solenoidal
field as follows

F(r)=Vd(r)+ VxA(r). (13)

However, the solenoidal character of the electromagnetic field excludes potential
@ (r)from the representation (13) and further analysis [13] guarantees that a basis

space for the solution of vector Helmholtz equation consists of the vector functions

M :"?-":-c{P"I-"}

N =2 Vx(Vx(PE)) = VxM ()

where P alternatively may be X,¥.Z, or r and runs over all solutions y (see Eq. (7) of

the scalar Helmholtz equation). The completeness of the spheroidal eigenvectors (14),
assures that the magnetic fields of the several regions have the following
representation
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where, index r characterizes the even or odd azimuthal dependence, index 7 indicates
the specific region, indices m, n correspond to the separation of variables parameters
of the scalar Helmholtz equation while index j defines the selected radial dependence
as indicated in Eqgs. (6)-(7). Notice that in region 1, the regularity of the magnetic field
near the origin demands j=1, while the asymptotic outgoing behavior of the scattered
field requires that j=3 in the surrounding space. What remains to be commented,

between the above expression, is the incident field presented in the third of Eqgs. (13)
ik|r-r]
in a primitive form. More precisely, G[r.r’}=4j|—f|
TIr=r
function of the scalar Helmholtz operator and the third of expressions (15) is the
outcome of the standard analysis [14], producing the magnetic field from the vector
potential through the relations

is the free-space Green'’s

pHH=V=A

AG) = o O (G, ()

In fact, the combination of Egs. (8)-(16) leads to the third of expressions (15). In order
to express the incident field in spheroidal coordinates, all we need is the expansion of
G{r,r’] in terms of the spheroidal functions [14]

(16)

r e“h-- r1 Ek = 3 Elll L
G(r,r') = o - mzﬂ; o S (c0s8:¢) S, (cosé'ic)

mn

R (cosh u";¢) RY (cosh e if p > o'
cns{m{lﬁ—#ﬂ'}} “}{ ) " ( ) ) _ e (17)
R (cosh g;¢) Ry, (cosh e} if p< p
where

|1 m= 0
=12 m=of’
and A, are the normalization coefficients of the spheroidal functions §,,, . i.e.

(18)

| i R s !
A, = ﬂSm {x;c]| dx=§ |df" |1: - j{k+2m] ]
i -

L2k +2m+1 k!

The representations (15) transfer the unknown character of the magnetic fields to their
expansion coefficients. These coefficients will be determined once the expansions
(15) are substituted in the boundary conditions (12). Actually these boundary
conditions must first projected to the unit spheroidal coordinate vectors to obtain
scalar equations. These new equations constitute functional equations as they are
defined in the space 0<#<x, 0<¢<271.To obtain purely algebraic equations

governing the field expansion coefficients, we have to “project” functionally these
scalar boundary conditions on a complete set of functions in the space of square
integrable functions on the unit sphere. We obtain then, instead of Eqgs. (12), the
infinite algebraic equations
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In the previous equations, w,,w,,w,stand for weight functions, which are proved

very helpful for compensating the scale factor appearing in the denominator of the
integrals. These weight functions need not to be the same and their functionality as
well as the methodology of handling the appeared surface integrals are described
extensively in [13]. The replacement of expansions (15) in the boundary conditions
(19) reveals that all we need to handle these surface integrals is the treatment of the
corresponding “inner-products” referring to vector eigenvectors. More precisely the
following integrals emerge and suffice to be determined

(B -MS.®,w,dS, [[[p-NS@w,dS. p=1.8.9.
5

£
As we mentioned above, their determination has been implemented elsewhere[13].
The outcome of this analysis leads to the following results
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where the quantities in bold are defined in the Appendix.

Let us define the following expressions which will help us to form the final
system of the equations
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Let us remind that for every azimuthal number m, the free index v in the above
systems can take the values v=m, m+1, m42, ... . For every pair (m, v) we remark
that the system consists of L groups, each one of them is formed by six equations.
However, there exists some inner structure of these subsystems, which can be
decoded in order to provide with a systematic and efficient algorithm for the solution
of the reduced truncated systems. More precisely, the unknowns can be grouped as

':Iit].m- = [a;.ur‘-lﬂrl.m :IT : ctlz].m = I:_':x:m‘ﬂ-::'.mﬂ ]T ’
bl fal gt T oo c[=gtl pd T,
2<i<l, j=1,2,

R T G O I i

(22)

since these pairs satisfy individual subsystems as they are involved in only three
equations of every subgroup. Indeed, let us define the coefficient matrices

F]Frlr:u (;”n:} ﬂlﬂ];fy {;“m J
G (i) O (o) |5
B (20r)  —Foms (2201)
Ut (pae ) P (s )]
DL O’ (Hr) O (i)
e () P’ ()

1
B

1l

(23)

Next, for every specific triple (m, n, v) we form the kernel coefficient matrices
referring each of them to 3L equations. More precisely, we define the matrix A, as

p., -pit -pt 0 0 0 0. 0 0 0
0 peh pRRE sopted agpat g 0 0 .. 0 0 0
0 0 0 DR ps o pe AR Do O 0 0
A”yw — mn mn
0 0 0 0 0 0 O O BT BEL D
(24)

Furthermore, the unknown expansion coefficients for every pair (m, n) are grouped as
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It is now an easy task to verify that the boundary conditions obtain a matrix form and
they are written as

E A 1) = D

n=m

3 A€oy = iy (26)

A=m

m=0,12..., v=mm+lm+2,..
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2 ing, [ ine
(1] e _l:ﬂ‘ 0, ... 0 H¢ mt'u' H o H, u.w] s (2?)
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Ay =[0 0. . O HI¥ HIS —HXST,

are the non-homogeneous terms. The matrix A, has dimension 3Lx4Land all

column matrices have dimension 4Lx1. This fact orientates the specific manner
according to which the truncation of the systems will be realized. However, the
forthcoming suggestion obeys just to the rule not to divide apart the 6L subgroups and
is not restrictive for the final numerical scheme. More precisely, we define the
12kL =x12kL square matrices

A an J‘!‘rﬂ.'w—'..wr A‘m.m+2.w R AW.JHH—I.M
! Afﬂfﬂm—l Am.»r-l.»nl m,m+Z,m+l o mm+3k-lm+l
T . , (28)
'Am.lumi-d-t-l ﬁﬂ.‘..‘hvl.mfﬂk—] Ja‘m,nl v medk=1 wiy Ja‘m.m|Jai:-|,r|||-1J: [

where m=0,1,2... and k=1,2,3,... .We define also the truncated columns

ET;:L [trfl:l.m.ﬂl ¥ Cr[l'].m.mﬂ o hasy Crl:é]..w.m v k=1 :|I L 1= .I... 2 (29}

containing the unknown coefficients with n=m, m+1, ... , m+3k — 1. The non-
homogenous terms of the same order are

dE:;]i = [drl:.i_l.rr:..w 5 d-irll':l.m.nu] 5 sasy d-l.l:al.x'.'.m vk =1 :|J B i= 11 . (3[]}

Then, the truncated systems under investigation, for specific azimuthal dependence,
are the following

Imglm} _ gl

B¢ [0}k d{m' (3”
() () gl

B ':i 2k _du,zz-w

for &=1,2,3, ... .

5. CONCLUSIONS
In our work we presented a theoretical treatment of the electromagnetic wave
interaction emanating from a point source with a multilayer spheroidal body. This



configuration corresponds to an indicative system for the mobile phone antenna
placed close to the human head. The analysis does not follow classical T-matrix
theory and is based on the expansion of incident and scattered electromagnetic waves
in terms of solenoidal spheroidal eigenvectors. This results to a linear algebraic
system of equation, which can be solved numerically if it can be truncated
appropriately. Our approach can be easily expanded to include conductivity and it is
independent of the various parameters (geometrical and physiological) entering the
system.

6. APPENDIX

The quantities 1 *™ L™, Q"™ R are defined as

I :"*"““ = ]-'xF Hfm {.J::] Sm {x}dx o Zd:Tﬁ-Er’-'ﬂ {C] B:.r::“ rﬂv—p-l" 1
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: jx{ S
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" ds,. -
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In the above expressions the coefficients B)",C!'™ as
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they expand the product x* " (x) as follows
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The coefficients A" are defined from the relation
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where &, is the well known Dirac function
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