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1. SUMMARY

In this work, we examine the direct electromagnetic scattering problem of spherical
waves by a buried spheroidal perfect conductor. The proposed analysis is based on
the integral equation formalism of the problem and the purpose is the establishment
of a multiparametric model describing analytically the scattering process under
consideration. The outcome of the analysis is the determination of the scattered field
in the observation environment along with its multivariable dependence on the
several physical and geometric parameters of the investigated system.

2. INTRODUCTION

The present work concerns the investigation of the three-dimensional direct scattering
problem of electromagnetic spherical waves by a prolate spheroidal perfect conductor,
which 1s embedded in a semi-infinite dielectric medium.

The investigation of the aforementioned scattering problem is a very difficult task
with several complication factors. It is well known that the embedding environment
interface complicates drastically the analysis of the scattering process, while the
geometric and physical characteristics of the scatterer constitute the most important
and intricate parameters of the problem.

Within the framework of arbitrary scatterer shape, the suggested techniques for
handling the direct scattering problem belong to the numerical regime [1-4]. Several
fine techniques belonging to the regime of Boundary Elements Methods (BEM's) are
evoked for the numerical treatment of the problem based on the establishment of the
integral equation formalism [5,6]. Nevertheless, in case that we have a priori
information concerning the geometric features of the scatterer, it is possible to
develop analytical methods facing the scattering problem and leading to the
establishment of multiparametric models describing the studied process. The work at



hand examines the case of the prolate spheroidal scatterer, which simulates perfectly a
convex body that lacks symmetry in only one direction.

Section 3 provides the mathematical formulation of the scattering problem under
consideration. The main outcome of this section is the establishment of appropriate
integral representations for the electric fields in the two half-space media. In Section 4
we expand the electric field in scatterer’s region in terms of the spheroidal vector
wave functions and force this expansion to satisfy the boundary condition on the
scatterer’s surface. Exploiting orthogonality arguments of the underlying spheroidal
functions, we obtain fully algebraic equations with unknowns the electric field
expansion coefficients.

The handling of the integral representation for the electric field in the host medium
via the aforementioned spectral decomposition in spheroidal coordinates is presented
briefly in Section 5. A lot of the analysis is dedicated to encounter the coexistence of
the cylindrical with the spheroidal geometry in order to obtain fully analytical
expressions for the above integral representations. Based on these expressions, we
arrive at algebraic equations resulting from the investigation of the electric field in the
asymptotic realm. These equations are combined with those originated from the
boundary condition satisfaction and met in Section 4 in order to form the final non-
homogeneous algebraic system whose solution provides with the spectral
decomposition coefficients. Finally, in Section 6, it is explained that the knowledge of
these coefficients is actually equivalent to the determination of the scattered electric
field in the observation environment.

3. FORMULATION OF THE PROBLEM
We consider two separate subregions characterized by different electric permittivities
&;,i=(1,2), separated by a flat infinite interface S;, on which suitable impedence

conditions are satisfied (Fig.1). The media occupying the two half-spaces V, ,i =(1,2)
are isotropic, homogeneous and non-magnetic, having magnetic permeability u,. The
upper half-space is the region where we can stimulate or measure electromagnetic
fields. In contrast, the lower half-space corresponds to the propagation environment,
where we usually do not have access or we cannot make any measurements.

A prolate spheroidal scatterer with surface S, is embedded in subregion (2). The
scatterer is assumed to have semiaxes ay.b, [aﬂ }bﬂ]ﬁ focal distance a, to be
orientated vertically with respect to the interface S; and its center is located at a

distance & from the boundary S;. The origin of the coordinate system coincides with
the center of the spheroidal object.
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Figure 1: The System Geometry

A point source emanating time-harmonic electromagnetic spherical waves is located
in region (1), at a position O' with cylindrical coordinates (pﬂ,gﬁﬁ.zu}. The
electromagnetic field generated by the point source constitutes the incident field, the
interference of which with the interface S; along with the spheroidal surface § ;.

leads to the creation of the scattered wave. This interference is strongly dependent on
the boundary conditions on the scatterer’s surface. For the problem under discussion,
we assume that the spheroidal body constitutes a perfect conductor. The scattered
wave encodes all the information concerning the physical characteristics of the
scatterer along with the relevant geometrical features of the system under
consideration. The total electromagnetic field is formed by the superposition of the
incident field with the scattered one and is denoted by the vector pair

(EMEE),I. =(L2) in each region. These fields satisfy the non-homogeneous time-
reduced Maxwell's equations concerning harmonic time dependence of the form



exp{—f mr}, The non-homogeneous term is the current density T; (;), which is given
by
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where a is the unit vector indicating the source orientation, Ia is the magnitude of
the current moment of the source expressed in terms of its length a and its constant

amplitude I [7] and ro denotes the source position vector.

On the interface §;, the electric field satisfies the following impedence conditions

Ex[E.G]-E:[?)FE, (2.a)
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Furthermore, the tangential component of the total electric field on the spheroidal
surface §,,, vanishes, i.e.

ixExlr)=0, res,,, (3)

where i is the outward unit normal vector to the scatterer’s surface.

In addition, the electric fields satisfy the radiation conditions
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where k; = —=w,/y,&;, i =(12) are the wave numbers in the two media.
c

i

Finally, the electric fields are susceptible of the following integral representations via
the well-known dyadic Green’s functions [7]
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In the sequel, our aim is the exploitation and adaptation of the above integral
representations in order to determine the electric fields from the knowledge of the
physical and geometric characteristics of the scatterer.

4. SPECTRAL DECOMPOSITION IN SPHEROIDAL GEOMETRY AND
BOUNDARY CONDITIONS INVESTIGATION

The electric field in region (2) is preferable to be expressed in terms of the spheroidal
solenoidal vector wave functions [8, 9], which constitute a basis in the space of
Maxwell’s equations solutions. This spectral representation is expected to fit suitably

to the boundary conditions imposed on the spheroid §,, . Consequently, it holds that

0= 3 S0 70, ()80, 70 () Fevi.
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We force representation (7) to obey the perfect conductor boundary condition (3) and

we project the resulting vector equation on the tangential unit vectors 6,9 of the
spheroidal system. Afterwards we project the resulted equations functionally on the

cos(me)
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along with 18 “complicated” &-inner products. The complete derivation of these &-
brackets is of extended complexity, although analytical, and is omitted for simplicity.
Finally, we obtain for every pair of parameters (m,n} with m=0,12,....n2m the

following set of algebraic equations, which is equivalent to the boundary condition on
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where the terms multiplying the unknown expansion coefficients A':f:' BY) are

Cma’ Smn'
specific known functions of the concrete u; characterizing the spheroidal surface.

We mention here that the combination of these equations with the corresponding non-
homogeneous ones resulting from the integral representation (6), after being amenable
to asymptotic analysis in the far-field region, will lead to the determination of the
expansion coefficient.

5. DETERMINATION OF THE ELECTRIC FIELD IN THE HOST
ENVIRONMENT

The integral representation (6) is characterized by the fact that its surface integral
involves functions expressed in different geometrical coordinate systems. As a matter
of fact, the electric field “lives” in spheroidal geometry, since it is expressed via the
spectral decomposition (7), while the kernel dyadic GEL](:‘,H) is expressed in terms
of the cylindrical solenoidal vector wave functions [7]. The substitution of the
aforementioned eigenfunction expansions in the surface integral of representation (6)
along with extended use of several vector analysis arguments lead to the creation of a
plethora (38 terms) of surface integrals on the spheroidal surface. These integrals are
of “mixed-type” in the sense that their integrands constitute products of scalar
functions expressed in the two different coordinate systems. The analytical treatment
of these integrals constitutes the most demanding part of the analytical burden of this
work, since their determination is based on the investigation and handling of suitable
addition theorems connecting the two geometries and the exploitation of special
function’s properties. Their exact values have been fully determined and they are
analytical expressions of cumbersome form so they are omitted for the sake of
brevity.

Coming back to the integral representation (6) and remarking that the volume integral
15 faced easily since it includes the Dirac current density (1), we proceed with the



application of stationary phase techniques adapted to this kind of problems [7] to
obtain the following asymptotic equation
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The asymptotic expression (12) is first projected on the unit vectors @ and ¢ of the

spherical coordinate system, which asymptotic analysis has revealed as the primitive
one. Projecting then functionally the resulted equations on azimuthal functions
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averaging over a dense partition of the interval (7/2,7] we obtain, for every pair of
indices (m,n) with m=012,....n2m, a set of four non-homogeneous algebraic
equations. These equations along with those originated from the boundary condition
satisfaction, i.e. Eqgs. (8)-(11), constitute a block system of eight algebraic equations
for every pair of parameters (m,n). This system is of infinite dimension since it
includes infinite summations over the infinite unknowns and therefore a truncation
procedure needs to be imposed for its numerical treatment. Indeed, we followed a
truncation procedure in a systematic way, adapted to the inner structure of the
aforementioned blocks to obtain the following matrix formulation of the truncated
system

},m=ﬂ,l?2,... and subsequently multiplying with basis &-functions and
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In the above expressions, the notation D,Ef}';;; ;i=12,...8;5=(A,,A,,B,,B,) is used
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for the coefficients of the unknowns (3) Afﬂ Bl
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in each one of the eight
equations consisting a specific block for concrete parameters m,n, while

d,{,f?” ,i=1,2,...8 denotes the right-hand sides of these equations.

6. DETERMINATION OF THE ELECTRIC FIELD IN SCATTERING
REGION

Once the electric field Ez(;) is determined (through the numerical calculation of the

spheroidal expansion coefficients) the determination of the electric field E l[;J in the
scattering region is accomplished through the integral representation (5). It is noticed
first that the volume integral (in this representation constitutes the incident wave) is
independent of the specific scatterer and usually is not the subject of the measurement

process. In contrast, the surface integral stands for the scattered wave Ei (r) and
encodes all the information concerning the spheroidal scatterer. This surface integral
is first fed with the known spectral spheroidal expansion of the electric field in the
complementary region and the appropriate expression for the dyadic kernel involved



and after that is being amenable to asymptotic analysis applying stationary phase
arguments. This yields the following representation of the scattered field in spherical
coordinates
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which is valid for Ar>>1 and & (0, 7/2] and constitutes the final expression that
renders feasible the determination of the electrie field in the observation environment.
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