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Abstract

A three-level hierarchical mixture model for classification is presented which models the
following data generation process i) the data are generated by a finite number of sources
(clusters) and ii) the generation mechanism of each source assumes the existence of individ-
ual internal class labeled sources (subclusters of the external cluster). The model estimates
the posterior probability of class membership as a mixture of experts classifier where both
the gating network units and the specialised experts are suitably defined from the hierar-
chical mixture. In order to learn the parameters of the model we have developed a general
training approach based on maximum likelthood which results in twe efficient training algo-
rithms. Compared to other classification mixture models the proposed hierarchical model
exhibits several advantages and provides improved classification performance as indicated by
the experimental results.

1 Introduction

A widely applied method for implementing the Bayes classifier is based on obtaining the posterior
probabilities of class membership through the estimation of the class prior probabilities and the
class conditional densities (Duda & Hart, 1973). The computationally intensive part of the design
of such classifier concerns the estimation of the class conditional densities. The common approach
to obtain these estimates is independently to apply density estimation methods to each class
labeled data set. However, such an approach does not benefit from the existence of any commeon
characteristics among data of different classes. For instance, the data may arise from differently
labeled clusters that are located in overlapping regions in the data space.

A very general assumption about data generation in a classification problem which implies the

existence of common characteristics among data with different class labels is the following:
s the data is drawn by a finite number of sources (clusters).

o within each cluster the data is generated by lebeled sources which form subclusters of the

parent cluster.

The ahove generation assumptions can be efficiently modeled by a three-level hierarchical mixture
model (Bishop & Tipping, 1998). The first generation assumption is represented at the second
level of the hierarchical mixture, and typically the number of components are unknown and must

be inferred by the data. However, at the third level of the hierarchical mixture, where the second



assumption is represented, each submixture (associated with a specific parent component) has
precisely as manyv components as the number of classes. We refer to the above model as the
hierarchical mixture classification model

The proposed model can be considered as a mixture of experts classifier. Mixtures of experts
{Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994) are general models for esti-
mating conditional distributions. Tvpically these models comprise a gating network which divides
the problem into smaller problems and expert networks which solve each subproblem. In our case
both the gating network units and the specialised experts are suitably defined from the hierarchical
mixture.

In order to learn the parameters of the hierarchical mixture classification model we derive a
general training approach based on the maximum likelihood framework which results in two fast
training algorithms. We provide comparative results for the two training algorithms using well-
known artificial and real data sets. Moreover, an additional feature of the hierarchical mixture
classifier is that it provides class conditional density estimates as "flat’ mixtures. Consequently,
it is possible to directly compare the method with two well-known class conditional density esti-
mation techniques based on mixture models. The first is the well-known approach that employs
a separate mixture (having its own components) for representing each class conditional density.
This is the most widely used method and has been studied in (Hastie & Tibshirani, 1996). The
second approach is to assume that the class conditional densities are modeled by mixtures having
common mixture components (Ghahramani & Jordan, 1994; Miller & Uyar, 1996; Titsias & Likas,
2001). The later is actually similar to using an RBF or an RBF-like neural network for solving
classification problems. This is further investigated in (Miller & Uwar, 1998) where the Bayes
decision funection of a classifier which estimates the class conditional densities by mixtures with
common components is shown to be equivalent to the decision function of an RBF classifier. In
the following we will refer to the first approach as the separate mirtures model and to the second as
the common components model. We claim that the hierarchical mixture classifier is an extension
of the common components model and also compares favorably to the separate mixtures model.

Section 2 provides a unifying description of classification techniques based on mixture models.
In Section 3 the proposed hierarchical mixture classification model is deseribed along with a
training approach based on maximum likelihood. In addition, we provide theoretical justification
that the proposed method is more efficient compared to the common components model. This
justification is also verified experimentally in Section 4 where comparative performance results
are presented for several well-known data sets. Finally Section 5 provides conclusions and future

research directions.



2 Bayes classification based on mixtures

Consider a classification problem with each data point = generated from a class Cp, k= 1,... K.
The Bayes classifier decides about the class of a data point x by selecting the class label O with
the highest posterior probability value P(Ci|z). Using the Bayes rule, the posterior probability
P{Cy|x) is written:
P(Cilz) = £(3|ijpicu3 (1)
2e=1 P(z|Ce) P(Cy)

where P(C}.) is the class prior probability and p(z|C}) the corresponding class conditional density.

Each class conditional density p(z|Cy) is estimated by applying density estimation methods using
the available data. In the following we provide a brief unifyving description of some existing methods
for estimating the class conditional densities using mixtures.

We assume that the data have been generated by M sources (or clusters) and these clusters
can be modeled by the densities p(z|j,6,), j = 1,..., M, with #; denoting the corresponding
parameter vector. We further suppose that only some of the clusters can generate data of the
class C}., thus only a subset T}, of the density models is responsible for generating the data of class
C).. Consequently, the Cj-class conditional density can be modeled as the following mixture:

p(z|Ck,0k) = Y mp(zlj,0;) (2)

FET)

where the parameter 7;, represents the probability P(j|Ci) and ©; is the total parameters cor-
responding to class Cp. We assume that any two different subsets Ty and T} (corresponding to
classes Cj and C¢) may contain common elements, that is, in general, T N T; # 0. The later im-
plies that the data of different classes may have been generated from some common data sources.
According to (2) it is clear that once we know the component j from which a data point = has
been drawn, then x is independent of class Cy, ie. p(z|7) = p(z|j. Cr).

The above choice of the class conditional densities provides as special cases two well-known
approaches. The first is the separate mixtures model and itz basic property is that the data of
each class is a priori assumed to be generated by clusters which are not common with clusters
corresponding to differently labeled data. This model results from (2) if the sets T, k=1,..., K
are such that T, NTy = 0 for all ¥ # £. The separate mixtures model constitutes a widely
used method for designing a Baves classifier and it has been theoretically studied in (Hastie &
Tibshirani, 1996) in the case of Gaussian mixture components. An alternative approach, the
common components model, assumes that all data may arise from any of the M clusters and
results from (2) by assuming that T = {1,..., M} for each k (Ghahramani & Jordan, 1994;
Miller & Uyar, 1996; Titsias & Likas, 2001). Clearly the common components model exhibits
generality over the separate mixtures and also over all possible models described by (2).

To classifv a new data point x based on the Bayes formula (1), the class prior probahilities



P(Cy) are also needed, which are represented by introducing the parameters P, Training can be
performed based on maximum likelihood. Assume that we have a set (X,Y') of labeled data where
X is the set of data points and Y the corresponding class labels. The original data set X can be
partitioned according to the class labels into K disjoint subsets X, k = 1,..., K. Learning the
whole parameter vector € can be performed by maximizing the following log likelihood L(8) =

Y ¥sex, log Pep(z|Ch, O):

K

K
Z|Xk|10gP;¢ - Z Z log Z mikp(z|, 6;)

k=1 k=1zcX, FET

]

L(®)

1

K K
Y [ Xllog P+ Y Li(©%) (3)
k=1 k=1

where L; is the class log likelihood corresponding to the subset X;. Maximization of the first
term in (3) gives P = %‘ﬂ, while maximization of the second term would provide estimates
of the class conditional densities. Note that the later maximization in the case of the separate
mixtures approach splits into K independent problems each one involving a class log likelihood
L. Clearly the same does not hold for the common components approach since the parameters
of all components appear in each Lj.

Let F; be the subset of all classes C; for which the data can arise from the component j
(i € Te). To find out which is the generation process for a pair (z,C}), we need to express
the joint distribution of z and Ck. It holds that p(z, C|®) = P Z,‘iiETE mikp(x]j. #;) and since
Perje = P(§|©)P(Ci|j, ©) (where P(j18) = 3, p, mjx P and P(Ci[5,8) = ppfﬁg*jj, we obtain:

M

p(z.Cx|©) = 3" P(j10)P(Ckl. ©)p(|7. 6;). (4)

i=1

Based on this expression we may assume that the labeled data are generated as follows:
» Select a component j from the set {1,..., M} with probability P(j|©).

o Select a class label Cy, where k £ Fj, with probability P{Cy|j.©) and draw = from density
p(alj.6)).

The generative model for the separate mixtures and common components model is obtained as
a special case. More specifically, in the separate mixtures case the selection of a component j
automatically specifies the class of T since in this case the set F; contains only one element. On the
contrary in the common components case, each F} contains all classes and the class label is selected
among by all possible values. Aeccording to the second point above, once the component j has
been selected, the label Cy and the data point x are independently specified. Actually, both z and

Ci are independent from one another provided that the component variable j has been observed.



This can be explained by considering that according to (2) = is independent from Cj. given j, while
the opposite results from the fact that P(Cilx,5,8) = —= (libpxmbe___ _ P(CLl4, ©).

= plx]i.By) teF; Fymye

Finally if we are interested in the unconditional density of z, this is given by p(z|®) =

E;’L P(j1©)p(z|j,6;) which clearly is a 'flat’ mixture. In the next section we present a clas-

sification model which estimates the unconditional density of x by a hierarchical mixture.

3 The hierarchical mixture classification model

We wish to define a generative model realizing the following two assumptions: i) the data is
gpenerated by M clusters and ii) within each cluster the data is generated by class-labeled sources
which form subclusters of the larger cluster. If a subcluster corresponding to class Cy can be
modeled by the density p(x|Cy.j. ;) (where 8i; are the corresponding parameters), then the
unconditional density of r can be given by the following three-level hierarchical mixture model

(Bishop & Tipping, 1998) illustrated in Fig. 1:

M K
p(z|8) =Y ;Y Pe;p(z|Cr. j, bks) (5)
j=l k=1

where the parameter 7; represents the probability P(j), P; the probability P(Ck|j) and © denotes
the whole set of model parameters.

Clearly the second level of the hierarchical mixture (Fig. 1) provides information on how the
data are generated by the M components ignoring the class labels. In this level each component
density is obtained by marginalizing out the class labels, ie. p(z]j,9) = Ef;l Peip(z|Ch, 3, Bx5).
At the third level of the hierarchy information is provided about the data along with their class
labels. Note that since we have K classes, K subcomponents correspond to each component j of
the second level.

We are particularly interested in exploiting the use of this model for solving classification
problems. Therefore, the posterior probabilities of class membership P(Cy|x) must be computed:
3L 75 P P(2Cx, 7, 85)

plz|©) '

Although the above expression results directly by the model an equivalent and more useful ex-

P(Cy|z,0) = (6)

pression is
M
P(Ci|z,0) =Y P(jlz,0)P(Ck|z, 4, 0) (T)
Fml
where
; i , 9
Plilz. 8} = 7;p(zl5, ©) 8
and
P{Cﬂ.r.j.@} . 'ij'p{xickrj'. E*.‘f:lt {g)

p(z|7. )



Ax|C.j. 8,) = a8

Figure 1: Estimation of the unconditional density of = by the hierarchical mixture classification
model.

Expression (7) explicitly denotes that the model estimates the posterior P{Ci|z) as a mixture
of experts model. The mixture of experts network was originally introduced in (Jacobs, Jordan,
Nowlan, & Hinton, 1991) and further extended to a hierarchical structure in (Jordan & Jacobs,
1994). A mixture of experts network consist of several experts models which estimate the input
dependent distribution of the output in different regions of the input space. The output of the
model is computed using an input dependent gating network that probabilistically combines the
estimates of the experts. In our case the gating network units correspond to P(j|z, 8) provided by
(8), while the estimates of the experts correspond to the locally computed posterior probabilities
of class membership P(Ci|z, 7, ©) provided by (9).

Several useful quantities such as the class prior probability and the class conditional density

can be easily expressed as

M
P(Ci|®) =) Py (10)
J=1
and
ity
p(z|Cx,8) = Y _ P(j|Ck, ©)p(z|Ck, 1. 61;) (11)
=1
respectively, where
. Pk_-;i'ﬂ'_f
Plj|C.B) = =———. 12

Note that according to (11) each class conditional density exhibits a "flat’ mixture form. According
to the hierarchical mixture classification model the generation of a data pair (z.CL) proceeds as

follows:

s Select a component from the set {1,..., M} with probability ;.



» Select a class label Cy, where k € {1,..., K'}, with probability Py; and then draw r according
to the probability density p(z|Ck, 5, f&).

In contrast to the models deseribed in Section 2, in this case a class label C} and the corresponding
data value r are not independently selected given the component 7. Clearly in this case x and Cl,
are dependent one another given that the component variable j is observed (see equations (5) and
(9)) and this vields the hierarchical mixture classification model to be in principle different from
any mixture model classifier described in Section 2.

In order to gain better understanding of the characteristics of the proposed model it is useful to
compare it with the common components model. It is clear that the data generation mechanisms
of the two methods actually differ in the way that a data point z is selected. More specifically,
the common components model assumes that all data points generated by the component j and
possibly corresponding to different classes are explained by the same density model p(x[7, ;). In
contrast, the hierarchical mixture classification model assumes that the data generated by the
component j are explained in a way that depends on the their class labels (for each class Cl
a different probability model p(z|Ck, j.f;) is provided). In this sense the hierarchical mixture
classification model can be considered as an extension of the common components model. We
further elaborate on this issue in subsection 3.2, where we provide a quantitative comparison of

the two methods based on the class conditional density estimates.

3.1 Training the hierarchical mixture classification model

In the following we assume that all the probability models p(z|Ci, j, 8k;) follow the same para-
metric form taken from the exponential family. The log likelihood of the labeled data set (X,Y)
is

K M

L©)=3" 3" log)_ mPip(x|Ck. 3, 0k;). (13)

kmlzeX, =1
It is possible to directly maximize the above quantity using the EM algorithm. However such a
maximization would yield the whole model to collapse to one equivalent to a separate mixtures
model (with M components employed by each class conditional density model), which means that
hierarchy is lost. Therefore, in order to maintain the hierarchical nature of the model, we cannot
rely on direct optimization of the above log likelihood.

According to the assumption of the hierarchical mixture classification model, the missing in-
formation is related with the way that the data points are generated by the components of the
second level. On the other hand, there is no missing information in the third level of the hierarchy
{where class labels are taken into account) and the probability model that generated a data point
is explicitly indicated by its class label. In order to express the second level missing informa-

tion we introduce for each x an M-dimensional binary vector z(x) indicating the component that



generated r. The resulted complete data log likelihood is

K M
=3 3 3" zi(a)log; Poyp(x(Ch. 5, by ). (14)

km] rEX; j=1
However, sinee each variable z{z) is unknown, we should expect to employ only an approximation
of zj(x) provided by its expected value. In our case two methods exist to obtain the expected
value of z;(z). In the first method, class labels are ignored and the expected value of z;(zx) is equal
to the probability P(j|z). The second type of expectation takes into account the class label C
of z and corresponds to the probability P(j|x, Ci)!. If hj(x) denotes either P(j|z) or P(jlz,Ck),
then E_:’it hi(x) =1 and the expected value of the complete data log likelihood Le is

K M
Q@)=Y 3 ¥ hj(x)log 7 Pejp(|Ch. . Okj)- (15)

k=1 zeX; j=1
Now, in analogy to the case of the unsupervised hierarchical mixture training (Bishop & Tipping,
1998), we consider that h;(x) have been computed in a previous stage and remain constant. In

this case, the maximization of @ with respect to the parameters @ vields

# = Z > hyl (16)

k=1z£X;
2 cex. hilz
B = ;fz eXy T ) (17)
E.E-l E:EX: h_f{r}
By = argmax z h;(z)log p(z|Ck, 7, Bk;)- (18)
L F

Since p(z|Cy, j,8k;) is chosen from the exponential family, 31: can be analyvtically obtained by

solving the equation

> hi(2)Ve,,p(z|Cr. j, 6as) = 0 (19)
zEX,

with respect to ;.
In the Gaussian case the solution of (19) can be analytically obtained. Assume that each

probability model p(z|Ci, j,k;) is a Gaussian of the general form

; 1 1 o
P[Il‘:‘k, Js EEJ} — E.z_jldl,rzlgk |1.-"2 exp {_E{I = #k}]TEkjl {I il P‘k_il:l} . [20}
i j

Then the solution for each parameter vector 8; = {jk;. Zi;} takes the form

_ Laex hilx)x

o Ezex., hj(z)
zx;‘—:xk |: )z - .HJ:_;HT ~ P[kJ}T
ETEXk hJ{x] -

In the first case the expected value is E[z;(z)|X] = P(z;(x) = 1|z) = P(j|z), while in the second case it holds
that E[z;(z)|X, Y] = P(zi(z) = 1|z, Ci) = P{j|z, Ci).

(21)

Ekj =

(22)




Note that these two estimates are provided only if ij > [, since otherwise the component j does
not represent data of the class C.

Obviously, in order to obtain the parameter solution described by (16-18), we must first specify
the values of h;(z). ie. to estimate the probabilities P(j|x) or P(j|x,Ci). An approximation of
P(j|x) can be obtained by running a mixture model with M components using the data set X and
ignoring class labels. Similarly an approximation of P(j|x, Ck) can be obtained by applyving the
common components model to the labeled data set (X, Y). Therefore, two different approaches

can be applied for obtaining an estimate of h;(x) which are summarized next:

s Algorithm 1: Unsupervised case (h;(z) = P(j|z)): We introduce the mixture model p(z|®) =
Z:il w;plx|d, ;i) where p(z|j, »;) typically has the same parametric form as p(x|Ch, 7. fx;).
We maximize the log likelihood considering the unlabeled data X using the EM algorithm

and obtain the parameter solution & (Appendix A.1). Then we replace h;(r) by:

P(jlz,®) = %;p(zlj. 85) ; (23)
2 Riplali, i)

o Algorithm 2: Supervised case (h;(x) = P(j|z,Ci)): We introduce the common components
model p(z|Ci, ¥x) = Eﬁl 7;xp(z|j, ;) and obtain a parameter solution &, for each k
by maximizing the log likelihood (3) using the EM algorithm (Appendix A.2). Once the
quantities P{j|z, C, 'i'k:l have been specified, we replace h;(z) by:

: 2 Tiep(zld, @5)
P(j|z,Cr, ®x) = 37— L (24)
T | Faplli, @:)

Once we have obtained the parameter solution for the hierarchical mixture classification model,
several useful quantities can be estimated. The class prior probability given by (10) would essen-
tially be P(Ci|©) = %ﬁl where (16) and (17) are used. The class conditional density can be

estimated using (11) where

P(j|Ck.8) = IX | S hyl (25)

TeX;

In Fig. 2 a three-class data set is illustrated along with the parameter solution of the models
o{z|Cr, 7, 0k;) (solid lines) which were chosen to be Gaussians. The model employs two compo-
nents at the second level of the hierarchy. In this example the same solution is obtained at the
intermediate training stage (represented with dash lines) using either a mixture model or the com-
mon components model. Although the two algorithms provided the same parameter solutions in
this example, this is not expected to hold in general. This can be explained by the fact that the
application of a mixture model constitutes an unsupervised learning task, while the application of

the common components model is a supervised task.
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Figure 2: Illustrates the two-dimensional data points of a three-class problem and the parameter
solutions for the models p(x|Ck. j.8;) which were assumed to be Gaussians (solid lines). The
model employs at the second level of the hierarchy two components. The same solution at level 2
has been obtained using either unsupervised or supervised learning. The dash lines represent the
parameter solution obtained for the two Gaussian components at the second level. Note that for
the cluster on the right there exist only two subclusters (solid lines). This is because this data
region contains data from two classes only (*+’s are missing). thus the model p(z|Ck. j, 8y;) of the
third class is automatically discarded (the corresponding parameter Fy; takes zero value).
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3.2 Comparison with the common components model

As we have pointed out the hierarchical mixture classification model is more extended model
compared to the common components model. In this section we further investigate this issue.
Onece a hierarchical mixture classification model has been constructed using algorithm 2, it is
natural to compare the two classification methods in terms of the values of the corresponding
solution parameters.

Assume that © is the parameter solution for the hierarchical mixture classification model pro-
vided by the equations (16-18), where h;(z) is computed as P(j|z, Ck, &) obtained by the common
components model with parameters i, k=1,..., K. We wish to compare the classifier provided
by the hierarchical mixture classification model with parameters © with the corresponding of the
common components madel with parameters &y, k = 1,..., K. To achieve this, it is sufficient to
compare the class conditional density estimate p(x|Ci,8) = E::l P(j|Ck,8)p(z|Cx, 7,6;2) with
the corresponding p(z|Cx, 8x) = 2%, #jup(zl4, &5).

It can be shown that the solution p(z|Ck,©) is better than p(z|C, &) in terms of the corre-

sponding log likelihood values. More specifically, the following Proposition holds:

Proposition 1. Let © be the parameter solution for the hierarchical mirture classification model
provided by the equations [16-18), where hj(x) is computed as P{j|z, Cr, $.) which is the solution
provided by the common components model. Also assume that for each j the density models
plxli p;) and p(z|Cr, 5,0k;), k= 1,..., K have the same parametric form which is such that the

mazimum of (18) occurs for a unigue value of the parameters.

1. If for a elass Cy. it holds that "C’th(tiik} # 0, where Ly is Cy-class log likelihood defined in
(%), then the estimate p(z|Cy,©) provides higher class log likelihood value than the estimate
(z|Ch, ‘ik]l, that is

M M
Y log ¥ P(5ICk, O)p(z|Ch. 5 brs) > 3 log ¥ iuplzld, ). (26)
TEX) i=1 TeEX: j=1
2. If for a class Cy. it holds that Vg, Lie($i) = 0, then the estimates p(x|Ck, ©) and p(x|Ci, $s)
are identical®.

The proof is given in Appendix B.

Proposition 1 states that for each C). the estimate p(x|Cy, {:3] can be such that either the class
log likelihood value would be higher than the log likelihood computed using p(z|Ck, ®4) or it
would be identical to p(x|Cy. ®x). The second case occurs when the parameter values $; locally

maximize the class log likelihood L; which means that the p(z|Ck, $) is already a locally optimum

2We mean that P(j|Cy, 8) = # ;i and pl:Ile:j:_.ékj} = p(z|j, ;) for each j=1,...,M and x € X,..

11



estimate for the conditional density of class Ci.. On the other hand, the assumption in the first
case implies that $; does not constitute a local optimum of the class log likelihood value Ly. The
first case occurs frequently in practice. To explain this, consider that, since each $; is obtained
from the maximization of the log likelihood (3) (corresponding to the commeon components model
case) using the EM algorithm, we may assume that it constitutes a stationary point of the log

likelihood. This implies that each #,z and &; satisfy

: 1 . "
Tk = E_JEJI;* P{j|T1 Ck:-@k} {2‘”
K -
> 3" Pjlz, Cx, #4)V,, logp(zlj, ¢5) = 0 (28)
k=1zeX;
or
K
> Ve, Li(®i) = 0. (29)
k=1

Although #;; will always correspond to a stationary point of the class log likelihood Ly, equation
(29) explicitly points out that ¢; may not correspond to a stationary point of Ly for all k. In
order ¢; to be stationary point of Lg it must hold that

Ve, Le(@x) = Y P(jlz, Cr, 84)V,,, log p(zl], $5) = 0. (30)

TEX,

The situation where ¢3; satisfies (28) without satisfying (30) for every k occurs when the component
j represents data of different classes which do not overlap significantly®. In real-world classification
problems (with class overlapping) it is almost certain that there would be some ; for which the
condition (30) will not be true for all ¥*. Those #; will result in some Vg, Li($:) £ 0 and the
first case of Proposition 1 would be applicable. Subsequently the specific estimates p(z|C, ©)
will improve the corresponding p(x|C, @) and this improvement will be observed in data regions
with class overlap. The later can be considered very beneficial from the classification point of view
since improvement of the class conditional density estimates at class overlapping data regions can
naturally improve discrimination, which means that the obtained decision boundaries approximate

more accurately the true decision houndaries.

4 Experiments

To assess the performance of the hierarchical mixture classification model, we have conducted

a series of experiments using Gaussian components and compared the proposed model with the

* An illustrative example is displayed in Fig. 2. In this figure each component of the common components model
(dash lines) represents simultaneously data clusters of different classes which clearly do not have the same means
and variances. This vields the class log likelihoods not to be maximized. Note that these quantities would all be
simultanecusly maximized if the class-subclusters had precisely the same means and variances.

#Note that if for a specific &; there exists a class Cy, such that Vi Li(d.) # 0, then in order for the equation
(28) to be satizfied there must also be at least one different class C; for which Ve, Le{de) £ 0.

12



Data set Features | Classes | Number of data
Satimage 5 6 6435
Phoneme 5 2 5404
Clouds 2 2 5000
Pima indians 8 2 TGB
lonosphere 35 2 351

Table 1: Description of the datasets used in the experiments.

common components model and the separate mixtures model. We considered five well-known data
sets namely the Clouds, Satimage and Phoneme from the ELENA database and the Pima Indians
and lonosphere from the UCI repository. Details of these datasets are provided in Table 1. We
have performed experiments for several number of components M, where M denotes the number
of components appearing at the second level of the hierarchical mixture classification model and
also to the total number of components emploved either by the separate mixtures or the common
components model. In the case of separate mixtures we considered that an equal number of
components is used in the mixture model of each class. To obtain average and standard deviation
error values, we applied the 5-fold cross-validation method. The results for all algorithms and all
datasets are displayed in Table 2.

The hierarchical mixture classification model was trained using the two algorithms presented
in Section 3.1. Experimental results are displayed in Table 2, where bold numbers indicate best
performance among the tested algorithms. The two algorithms are denoted in Table 2 as h;(z) =
Pjlx) and hy(z) = P(jlz,Cy) respectively. Moreover, since the training of the hierarchical
mixture classification model for the case h;{x) = P(j|x,Ci) requires the construction of the
common components model, we have also obtained a solution for the common components model
at no additional effort.

The experimental results indicate the following: i) Both algorithms for training the hierarchical
mixture classification model provide better generalization results than the separate mixtures and
the common components model (except for the Clouds data set where the algorithm that computes
h;(z) as P(j|z) provided the worst performance). ii) The algorithm that uses h;(z) = P(j|z,Ct)
provides a classifier which significantly improves the corresponding common components classifier
obtained at the intermediate training stage. This constitutes an experimental justification of
the discussion in subsection 3.2. In the case of the clouds data set the two classifiers provide
approximately the same class conditional density estimates (the second case of Proposition 1 is
applicable) and thus the two methods exhibit almost equal performance. iii) Both algorithms for
training the hierarchical mixture classification model are efficient and can be proved competitive

in real-world applications.
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Satimage
M=6 M=12 | M=18 M=24
Algorithm error | std | error | std | error | std | error | std
ha(z) = P(|7) 12.04 | 0.55 | 10.75 | 0.45 | 10.73 | 0.81 | 10.39 | 0.87
hi(z) = P(j|z,Cp) | 11.90 | 1.1 | 11.50 | 0.08 | 10.89 | 0.87 | 10.58 | 0.95
Comm. comp. model | 17.09 | 0.39 | 12.91 | 0.25 | 12.20 | 0.32 | 11.42 | 0.48
Separate. mixtures | 1368 | 0.77 | 1205 | 0.53 | 11.21 | 0.75 | 10.98 | 0.71

Phoneme
| M=28 M=10 | M=12 M=14
Algorithm | error | std | error | std | error | std | error | std

h;(z) = P(jlx) 15.50 | 1.07 | 15.10 | 1.16 | 15.44 | 0.84 | 14.85 | 1.22
h;(z) = P(j|z,Ckx) | 15.76 | 1.12 | 14.74 | 1.03 | 14.02 | 0.91 | 14.50 | 1.00
Comm. comp. model | 22.04 | 1.11 | 20.61 | 1.94 | 19.87 | 1.10 | 21.26 | 1.16
Separate mixtures 178 | 1.0 | 1785 | 1.4 | 17.37 | 0.75 | 16.88 | 1.15

Clouds |
M=4 M=6 M=58 M=10
Alzorithm error | std | error | std | error | std | error | std

hi(z) = P(j|z) 16.68 | 2.53 | 12.88 | 0.94 | 12.62 | 1.04 | 12.48 | 0.87
hi(z) = P{jl=,C¢) | 13.06 | 0.90 | 11.34 | 0.96 | 10.94 | 0.94 | 10.84 | 0.93
Comm. comp. model | 13.06 | 0.90 | 11.38 | 0.95 | 10.88 | 0.91 | 10.76 | 0.82
Separate mixtures 2424 | 203 ] 2044 | 445 | 11.86 | 0.85 | 11.36 | 0.98
Pima Indians
M=6 M=8 M=10 M=12
Algorithm error | std | error | std | error | std | error | std
hi(z) = P(jlz) 2601 | 107 | 24.71 | 251 | 24.84 | 2.69 | 2497 | 251
hilz) = P(jlz,Ce) | 24.31 | 1.81 | 2484 | 1.73 | 24.58 | 247 | 24.71 | 2.79
Comm. comp. model | 28.63 | 3.56 | 29.54 | 2.86 | 28.10 | 3.70 | 2693 | 2.59
Separate mixtures 2711 | 2.2 | 2667 | 3.44 | 26.60 | 3.58 | 26.43 | 1.24

Tonosphere
M=6 M=8 M=10 M=12
Algorithm error | std | error | std | error | std | error | std

hi(z) = P{jlx) 1366 | 3.05 | 9.98 | 307 | 940 | 258 | 741 | 3.56

h;(z) = P(j|z,Ck) | 12.56 | 3.97 | 11.96 | 3.64 | 7.41 | 3.22 | 7.39 | 1.29

Comm. comp. model | 1769 | 401 | 1626 | 339 | 1198 | 338 | 95 3.31
Separate mixtures 15.09 | 3.8 | 11.82 | 1.89 | 12.24 [ 3.77 | 9.39 3

Table 2: Generalization error and standard deviation values for all tested algorithms and datasets.
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5 Discussion

A hierarchical mixture classification model has been presented which exhibits a three-level strue-
ture. This structure provides at the higher level an unsupervised representation of the data and
then at a lower level provides information about the classes having generated the data. The pro-
posed model can be considered as a mixture of experts classifier, since the components at the
second level of the hierarchy partition the data space into subspaces, while the probability models
at the third level form the experts which solve the classification problem in each subspace.

The hierarchical mixture classifier exhibits several attractive features compared to conventional
mixture models for classification. More specifically, the data generation assumption behind the
proposed model is more general than that of the common components model classifier and this
leads to improved performance results as it has been shown both theoretically and experimentally.
Also, due to the structure of the model, the class conditional densities are estimated by taking
into account data from all classes and this constitutes a computational advantage compared to the
separate mixtures model. For instance, if we have a problem with many classes (K > 10) and few
data is available for each class, then a method which separately estimates the class conditional
densities may not be applicable. On the contrary this is not a problem for our approach and the
training method deseribed in Section 3.1 is mainly based on training using all available data for
the specification of h;(x).

In what coneerns future research, several interesting directions may be followed: Any advanced
method for mixture density estimation such as the (Ormeneit & Tresp, 1996; Ueda, Nakano,
Ghahramani, & Hinton, 2000) can be incorporated at the first stage (computation of h;(x)) of the
proposed training algorithm of the hierarchical mixture classification model. Though such methods
can be directly applied in case where h;(x) = P(j|z), slightly modified versions are needed for
the case h;(z) = P(j|z,Cx). Also in the proposed approach the probability models p(z|Ck, 7, 0x;)
are assumed to be unimodal densities taken from the exponential family, however, other models
may be used such as factor analyzers (Everitt, 1984) or each p(z|Cy, 5, #) may itself be a mixture
model. Finally another important research direction is to develop a Bayesian approach for learning

the parameters of the model,
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A Specification of h;(z) for Gaussian components
A.1 Approximation of h;(z) by P(j|z)

We assume that the mixture model employed for determining the probabilities P(j|x) has Gaussian
components of the form (20). We can obtain an estimation of P(j|x) by iteratively applying until

convergence the following update equations:

- t t) t
p{mu py s 25w

P(jlz, ") = (31)
lp{Ill #(ﬂ E[ﬂ}*] 55}
plD 2reX P{j;;,@[']jz (32)
s 2 ex PUlz, @)
. +1 1
go+1) _ Zeex PUlE 30)@ — V)@ — uf )T (3)
: a EIEX |I @(zj:‘
Y le > P(jlz, @) (34)

zeX
where (31) holds for each € X and j and (32-34) for each j.

A.2 Approximation of h;(z) by P(j|z, Ci)

We assume that the common components model emploved for determining the probability P(j|z, Cr)
employs Gaussian components. The EM algorithm for maximizing the log likelihood (3) gives the
following update equations (Titsias & Likas, 2001):

[t) =it}
p{xj' Ty rgd
P(jlz, Cr, 80 = -
E?Lﬂ‘fp{m )
K :
LD _ Ek‘;l ¥ eex, Plilz, Ce, 80z o
J ka1 Zzex, Plilz, Ck, 89)
K .
) = Eatiail e Xy Pf.:il Cr, ®W)(z — i)z — pl+T -
Ek-lzzexk P(jlz, d'*)
= Ix | 2 Plile.CL 8 (38)

TEX;
where all equations holds for each j, while (38) holds additionally for each k and (35) for each k
and z € X.

B Proof of Proposition 1

For the parameter solution © the conditional density estimate of the class Cy, is

p(z|Ck. & ZP:lck )p(z|Ch, J, Oi;) (39)
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where according to (25) and (18)

P(ilCk.8) = = — 3 Plilz, Cu ) (40)
Xy
and
By = max > P(jlz,Ck, $x) log p(x|Cs. 5. bk;) (41)
Brs zeX,

respectively. Also the corresponding class conditional estimate provided by the common compo-

nents model is given by

M
p((Cr. &x) = 3 #japlalj, &7)- (42)
=1
Assume the Ci-class log likelihood corresponding to the data set X
= ¥ logz wiap(z|3 ¢5)- (43)

re X,
If we apply one EM iteration to maximize the above log likelihood starting from @Lﬂj = {1, PM

the parameter value d}il} is obtained by maximizing the function

QBE®) = 3 3 Plile,Cu 8 log rsupleli ) (44)
zEX; j=1

which yields

;E Z P[j|z,ck,ﬁ?{f}:l (45)
IX |=exk
and
¢ =max 3~ P(ilz,Cu, &) loga(ali. ¢s). (46)
rEXy

Now clearly from (40) and (45) it holds that P(j|Ck.©) = ":1] . Also since p(x|j, ;) has the same
parametric form with p(z|Ck. j, 8x;). c,sffl} and ék_.i; are ohtmned by maximizing the same quantity
(equations (41) and (46)). Thus, it holds that H‘kJ = ?E, ) and the class conditional estimates
wz|Ch, 'I?i ]]I and p( ;I:|C;¢, ) are identical. Now, one of the following two cases holds:

1. Vg, Le(®:) £ 0: The convergence property of the EM algorithm implies that if for the log
likelihood L(8©) of interest it holds that Vg L(B!") # 0, then at the next EM iteration it
will hold that L(8!+V) > L(6!")) (Wu, 1983; McLachlan & Krishnan, 1997). Thus, in our

case we find that

M
Y 1og Y P(jICH 8 )p(ali i) > Y wzﬂ{mp{zu,,ﬂm (47)
reXe fml e X i=1

which proves inequality (26).

2. Va,Li(®:) = 0: Since the EM algorithm converges to a stationary point (Wu, 1983) it
holds that *I-it} = {E'f::'}, Consequently, since p(x|Cx.©) is identical to p(x|Ck. fh}:’}, it will
also be identical to p(z|Ck, $).
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