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1. SUMMARY
In a hysteresis model following the Preisach formalism, the output sequence, f(r), is

obtained by integrating the characteristic probability density function, pla. ). of the
elementary hysteresis operators, y,, operating on the input sequence u(r) over the

Preisach plane. The model can be one - or two - dimensional depending on the
dimensionality of the hysteresis operator chosen. The vector version has been designed
for perfectly oriented systems with uniaxial anisotropy under vector inputs. Angular
dispersion of orientation axes is accounted for by superimposing the responses of
angularly distributed perfectly oriented models. The identification method accompanying
it is using data from a major hysteresis curve and a least-squares fitting procedure for the
parameters of the characteristic density. Results using two different operators, the “sw-
astroid” and the “diamond™ are obtained and compare well will experimental hysteresis
data on two different magnetic samples.

2. INTRODUCTION

The abstract formulation and speed of the resulting calculations have placed the Preisach
formalism among the favorites in the modeling of the particularly complex phenomenon
of hysteresis. Onginally designed for ferromagnetic hysteresis, it has been extended to
applications in shape memory alloys (sma), rocks, economics and other systems with
hysteresis. Preisach models have successfully been used in magnetic recording
simulations, electrical steel lamination loss calculations, finite element calculations and
control of sma actuators — all problems involving lengthy calculations where the speed of
the Preisach model based algorithms is much needed.

The inherently scalar nature of the classical model has drawn a considerable amount of
criticism on the grounds that the one-dimensional treatment of a hysteresis process is not



always valid and a lot of information is lost when modeling the one-dimensional
projection of a vector process. However, the classical model whose properties have been
extensively and exhaustively studied remains a very popular and efficient model [1]. To
address the issue of the modeling of vector hysteresis, vector extensions of the original
formalism have been developed [2]. The vector formulations divert from the original one
and so do their properties. The higher complexity of the vector models complicates the
identification process as well. In the scalar case, the identification of the model can be
carried out through detailed measurements of the characteristic density of the system
being modeled as outlined by Ewverett [3]. It is not obvious how this method can be
extended to the vector case, so alternative methods are being considered. One such
approach is based on a major loop measurement and consists in determining the
parameters of the probability density function chosen to model the system in
consideration [4-6].

In the following section, we discuss the building blocks of the model: two vector
hysteresis operators and their features and the vector extension of the original formalism.
An identification procedure using major loop data and a least-squares algorithm that
optimizes the density parameters for the given data [6] is described in section 3. In order
to test the identification method in conjunction with the vector model, results using the
two vector operators are presented in section 4. The results are compared with
experimental data from two ferromagnetic samples.

2. MODELING OF HYSTERESIS

The definition of hysteresis adopted in this work and used to describe the systems to
which Preisach-type modeling applies is that of hysteresis as rate independent memory
effect [7]. According to this definition, in a system with hysteresis the current output is a
function of the current input as well as previous inputs and/or the initial state. The system
can store information, it has memory. For every input there may be more than one
equilibrium states. The resulting state depends on the history of the system, on the
previous equilibrium states. When a system with hysteresis is bistable is characterized by
a hysteresis loop like the one shown in Fig. 1. The curve is traced along the path ABC
(descending branch) or CDA (ascending branch). For uzu_, (or u£u_), the output is
increasing (or decreasing) monotonically with the input, hysteresis vanishes, the
processes are reversible and the resulting states are uniquely defined and stable. For
u, <u(t)<u,, f(t) is a metastable state and a nonlinear function of previous states

[13]. If the loop ABCDA delimits the space of all possible states for any given input, it is
called a major loop. A point inside the major loop can be attained through several
trajectories called minor loops. Because hysteresis is modeled as a rate-independenet
phenomenon, the rate of change of the input in the systems under consideration must be
slow enough to allow for any transients to die out so that the quasistatic treatment applies.

2. 1 The Preisach formalism
According to the Preisach formalism, hysteresis is the result of superposition of scalar
local hysteresis operators v (Fig. 2b). The system being modeled is viewed as a

collection of subcomponents each of which has a hysteresis characteristic v, with



different switching points (a,b). The displacement of the loop from the origin,

a+b N . . .
u, = . corresponds to the effective interactions experienced by a given component.
2

If the subcomponents are isolated or the sum of interactions one of them experiences is

zero the corresponding loop is centered at the origin and a = —b. The loop halfwidth, or
. . . a-b

half distance between the two critical values is u_ = i o

The system is modeled as a distribution of upper and lower switching
points (a, b)obtained from the characteristic density of the system pla.b) defined over the
Preisach plane (Fig. 2a), bounded by u_=0, u=u_,and u=u,_, where u,_and u_are
the input wvalues leading to positive and negative saturation respectively:
va,b a<u_.b=u,_. The response of the system, f{[}, to an input, u(t}. 15 the
integral of the output states of each elementary loop weighed by the probability density
function p(a‘b]:

f(t) = J'_[pqa,bj.;.ra,,uu;dadh. (1)

azh
Since the model is quasistatic, time is discretized and an input sequence ug ,u,,...u_is

assumed instead of a continuous input time function. When an input u, > u__ is applied,

the system "saturates” in the positive state where all the operators are in the +1-state.
Decreasing the input to u,_ <u, <u__ all operators with u__ > b > u, will switch to -1. A
horizontal boundary separating the regions of +1- and -1- states is established at b=y,
and the change in output, Af =f, —f,, is obtained by integrating the density over the
triangle ABC. Decreasing the input to u_ <u, <u,, all operators with b > u, will revert
to —1 and a perpendicular boundary segment appears (Fig. 2a). The change in output is
then given by the integral over the triangle CDE. This way, at the end of an input
sequence a staircase boundary is established between areas of positive and negative state.
The horizontal and vertical segments, a direct consequence of the discontinuity of the
operator at the switching points, clearly indicate the past input extrema. Therefore, the
boundary serves as memory keeping track of the history of the system. The integrals of
the density over the triangular area of change are called Everett functions [3] and can be
used for the identification and the inverse model.

The classical model, due to the operator y_, is able to model irreversible processes

(switching) only and yields congruent loops [1]. There are systems, like the ferromagnets,
where reversible processes (rotations) take place and non-congruent lops are observed. A
vector extension of the Preisach model is therefore needed.

2.2 The two-dimensional model

To model vector hysteresis, the model must be able to respond to vector inputs and allow
for reversible as well as irreversible rotations of the output vector. This can be achieved
by substituting the scalar switch y,, by a vector operator:



F®)= [fp(a,b)ygu(t)dadb. 2)

azh

2.2.1 Vector hysteresis operators
The vector operators used in this work are shown in Fig. 3. The sw-astroid [8] (Fig. 3a) is

the locus of the equation u’” +u;"* =1, where u. and u, are the components of the input

u(t) along the easy and hard axis respectively. The solution is the tangent to the astroid
passing from the tip of the input vector. Switching occurs only when the output vector
crosses the astroid from the inside out. Otherwise the output vector rotates reversibly.
The astroid equation results from the minimization of the free (Gibbs) energy equation
for an ellipsoidal magnetic particle with uniaxial anisotropy under the influence of an
applied field. u tang —u_ +sing =0. The solution ¢ is the angle of the output vector

with respect to the easy axis of the astroid. Because the solution of a transcendental

¢

equation can be quite time consuming, the transformation k = [anE is used and the roots

of the equation: u k* +2(u, — 1)k +2(u, +1)u —u_ = 0are used.

The second vector operator, the diamond (Fig. 3b), is the first order approximation of the
sw-astroid: u, +u, =1. It is computationally more efficient but without physical
attributes.

In order to demonstrate the differences between the two operators the following
experiment is performed. Inputs of constant magnitude are rotated 360° and the output is
calculated in both cases (Fig. 4). For very small inputs, the response is practically
identical. As the input increases but not enough to cause switching, the sw-astroid rotates
harder than the diamond. For large inputs, the sw-astroid allows for more switching.

2.2.2 The model
Because the vector operators assume a system with uniaxial anisotropy, the vector model
described by Eq. (1) is a model for perfectly oriented systems with uniaxial anisotropy.
Where needed, dispersion of orientations can be added by superimposing the responses
of angularly distributed perfectly oriented models:
w2
F=[ p(6)dd [[pa,b)ypu(tidadd, 3)
-2 azh

where p(g) is a probability density function of angles.

The vector model does not possess the congruency property (Fig. 5), as expected, since it
allows for rotations and, according to Mayergoyz’ theorem [1], it is not a Preisach model.
Therefore, we shall call it a Preisach-type model. The vector properties of this model are
very good and in agreement with experiments [2,4]. A theoretical experiment testing the
vector properties of the model is shown in Fig. 6. The transverse component of the output
is plotted against the longitudinal component for a major loop input sequence applied at
0°, 45° and 90° to the main easy axis of the model described by Eq. (2). The model using
the sw-astroid allows for more switching as expected. Fig. 7 shows major loops obtained
by the classical model in Eq. (1), by the perfectly oriented model in Eq. (2), and by the



model with dispersion in (3) using both operators. The scalar and perfectly oriented
models yield identical results for fields along the main easy axis, as expected. Adding
dispersion makes switching easier, which is in agreement with experimental evidence,
and accounts for the reversible behaviour and the slope of the curve near saturation.

JIDENTIFICATION
Because in the Preisach-type models the mathematical tools developed for the Preisach
model [1,3] no longer apply, the characteristic density p[aTh) cannot be directly

measured with the help of Everett functions. The alternative approach is to fit the

parameters of a known probability density functions (pdf) to some points on a major

hysteresis curve. This method is more appropriate for use with a general application

model because it is not restricted by the type of material or system, the 1D or 2D

treatment of the problem and the ability to measure the Everett functions.

The bivariate probability density function of upper and lower switching points can be
, a=b

equivalently expressed in terms of the (ransformation u_ = B and

w, =22 splab) = plut ) (Fig. 2

There are systems, like ferromagnets, supporting the assumption that the variables u’. and
u’, are independent and therefore p(a,b)=p(u’,u})=p(u’)p(u,). Then, if ¢°,o; are
the variances of a and b, it can be shown that, ¢ =c; and symmetrical loops are
obtained. It can also be shown that for loops centered at the origin, u, = p, must hold,
where u ,u, are the mean values of a and b. This implies that the mean interaction
i, =0 which is a valid assumption in ferromagnets.

In [5], the density was constructed as a product of the two independent variables, u_,u,:

pla,b)=plu’,u})=plu.)p(u}). The four parameters u_, o, M,, O, W were
determined according to some empirical rules outlined in [5]. Finding appropriate values
for o_and o, was the most difficult part in this process being more of an art rather than a

science,

The need to come up with a more systematic identification method applicable to as many
classes of systems as possible pointed to the direction of using a bivariate probabilty
density function as a basis for the Preisach distribution and apply a least-squares curve -
fitting procedure. The method used in [5] will be hereafter called “old” and the one
presented here “new”. In either method, a pdf of angles is involved to account for
dispersion. It is a gaussian centered at 0° with its standard deviation being the sole

I o

parameter controlling the squareness § = —= of the loop.

T

The obvious bivariate pdf to use with the “new” method is the normal one with five
parameters to be determined: p_.u,.c,,0, and the correlation parameter r between



aand b. An array of i points of the experimental loop is fed to the least squares
algorithm along with an array of initial estimates of the parameters and the algorithm

P i 2 " e
iterates on the parameter values until Z(fm: —f“p) < g, where £ 1s a small positive
i

number.

4 RESULTS AND DISCUSSION

The model in Eq. (3) and the identification method described is tested using experimental
data from a homogeneous SmFeN and an inhomogeneous a-Fe/SmFeN sample obtained
from the literature [8]. In ferromagnets, hysteresis occurs during the switch from positive
to negative magnetization. For an applied magnetic field (input) H{l}. the resulting
magnetization (output) is a function of the applied field as well as an internal interaction
field which i1s in turn a function of the magnetization ’UI{t) Hence the resulting
magnetization state contains a positive feedback mechanism leading to hysteresis:
M(t)=M(H(t),M(t)). Ferromagnets, well-known for their energy and information
storage capabilities, are a typical example of the type of hysteresis described by (4).

Furthermore, hysteresis in a ferromagnet 1s a vector process and a vector model is
appropriate.

In the results which follow the output is normalized with respect to the maximum value
attained experimentally, or to saturation magnetization, and ranges from -1 to +1. The
Preisach plane is coded as a KxK array. K depends on the desired degree of
discretization and the maximum experimental input values observed. Each element of the
array holds a hysteresis operator and the height (weight) of the density at the given point.
The input 1s operated on by ¥, at each array element, its output state is decided and then

multiplied by the weight. Summing over the weighed outputs of each element yields the
aggregate output for a given input.

In the case of ferromagnets, because of the symmetry of the loops, u, = u,.0, =g,.

Also, it turns out that the correlation parameter r has a slight effect on the shape of the
loop; high positive values yield slightly higher loop squareness. So r is, generally, taken
to be 0. The characteristic density parameters obtained through the optimization are
summarized in Table I. The resulting calculated major loops for the two samples are
shown in Figs. 8-9. Four curves are displayed in each figure: the experimental curve
(exp), the curve obtained using the sw-astroid operator and the old identification method
(old/vector), the curve obtained using the scalar operator and the new identification
method (new/scalar), and the curve obtained using the diamond operator and the new
identification method (new/vector). The importance of using a vector model is obvious in
both cases, especially for the points near saturation. The improvement due to the new
identification method is important in both cases, while in the case of the inhomogeneous
sample (Fig. 9) the fitting is excellent. For the generation of the curves labeled
‘vector/new’ the vector model with the diamond operator was used. The results obtained
with the sw-astroid operator were either not as good (the homogeneous sample) or
equally good (inhomogeneous sample) in which case the computationally faster
“diamond™ was preferred.



Table 1: The density parameters used in the identification of the two samples

SmFeN o-Fe/SmFeN
op diamond sw-astroid diamond sw-atroid
K 50 &0 50 70
i 58.2282 61.1324 30.2099 40.8309
o 2.2383 | 4.0074 2.8029 28716

5 CONCLUDING REMARKS

A Preisach-type 2D vector model for anisotropic media has been used to reproduce the
hysteresis major loops in two ferromagnetic samples. Two vector operators, the sw-
astroid and the diamond, have been used and their performance has been tested and
compared. The identification method used to determine the characteristic density
parameters is based on a least-squares fitting procedure using data from an experimental
major loop curve. The results demonstrate significant improvement over results obtained
with an older identification procedure and the necessity of vector modeling in the case of
materials like ferromagnets where hysteresis is a vector process.

Work in progress involves the testing and development of more operators, scalar and
vector, and the refinement of the identification procedure. Other bivariate densities as
well as products of single-variable densities are being tested and the possibility of using
vector data for the identification is being considered.
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Figure 1: A typical hysteresis loop traced along the path ABCDA.

(a)

Figure 2: (a) The Preisach plane with the staircase boundary and (b) the scalar operator.
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Figure 4: Comparison between the diamond and the sw-astroid hysteresis operators.
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Figure 6: The transverse vs the longitudinal component of the magnetization for a major
loop field sequence applied at 0, 45 and 90 degrees to the main easy axis
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