VERIFICATION OF PARTITIONS OF 2d
AND 3d OBJECTS

L. Palios

23 - 2001

Preprint, no 23 - 01/ 2001

Department of Computer Science
University of loannina
45110 loannina, Greece

L/

Verification of Partitions of 2d and 3d Objects

Leonidas Palios

Dept. of Computer Science, Univ. of Ioannina, Greece
palios@cs.uoi.gr

Abstract: We consider the problem of deciding whether a given collection of
polygons forms (i) a partition or (ii) a cell complex decomposition of a given polygon.
We also consider the 3-dimensional counterpart of the above problem, i.e., deciding
whether a given collection of polyhedra forms (i) a partition or (ii) a cell complex
decomposition of a given polyhedron. We describe simple O(n log n)-time and O(n)-
space algorithms for these problems, where n is the total size of the input. If, in the
input, vertices are referenced by means of indices to a global list of distinct vertices,
then our cell complex decomposition verification algorithms run in O(n) time.

Keywords: checker, verification, partition, cell complex, polygon, polyhedron.

1. Introduction

In recent years, there has been growing interest in algorithms for the verification of geo-
metric structures, which is the result of both the obvious benefits from such algorithms,
and the fact that the newer and more efficient algorithms are more and more complicated
which makes it easier for programming errors to occur in their implementation. Therefore,
verification procedures are needed in order to check the programs’ results. Since the ver-
ification procedures are programs themselves, they must be simple enough so that their
correct implementation can be easily verified.

Usually, the authors of an algorithm for computing some geometric object describe
properties of the object which can be used to verify the correctness of the computation (see
e.g. (1] and [4] for 2-dimensional and 3-dimensional triangulations of point sets). Often,
however, more machinery is needed. The first verification algorithms (“checkers™) were
provided by Mehlhorn et al. who defined the properties that a checker should have (correct-
ness, simplicity, efficiency) and described checkers for convex polyhedra and convex hulls
[5]; they have also studied checkers for trapezoidal decompositions, planar point location
structures for trapezoidal decompositions, and Voronoi and Delaunay diagrams. Devillers
et al. extended the notion of checkers characterizing them with respect to whether they need
a certificate to help them in the verification task and to the kind of the certificate needed
(arbitrary certificate, topology certificate, no certificate), and provided checkers for convex
polytopes in two and higher dimensions, and for various types of planar subdivisions, such
as triangulations, Delaunay triangulations, and convex subdivisions [3]. Their algorithms

(a) (b)
Figure 1: (a) a partition which is not a cell complex decomposition:
(b) a cell complex decomposition.

run in linear time, assuming that the input is a 2-dimensional or 3-dimensional geometric
graph with the necessary ordering of the graph.

In this paper, we present simple and efficient verification algorithms for partitions and
cell complex decompositions of simple polygons and polyhedra. The algorithms rely on
appropriately matching the edges of the two-dimensional decompositions and the facets of
the three-dimensional decompositions, and run in O(nlogn) time using O(n) space, where
n is the total size of the input. If, in the input, vertices are referenced by means of indices to
a global list of distinct vertices, then our cell complex decomposition verification algorithms
run in optimal O(n) time.

The paper is structured as follows. In Section 2, we review the terminoclogy that we will
be using. In Section 3, we present verification algorithms for a partition and a cell complex
decomposition of a polygon and in Section 4 verification algorithms for the three-dimensional
counterpart, i.e., for a partition and a cell complex decomposition of a polyhedron. Section 5
concludes the paper with a summary of our results and open problems.

2. Terminology

A simple polygon is the part of the plane bounded by one closed non-self-intersecting polyg-
onal line. This polygonal line is the boundary of the polygon which separates the interior
of the polygon from its complement. The boundary of a polygon P is denoted by dF and
consists of a collection of relatively open sets, the faces of P, which are called vertices and
edges if their affine closures have dimension 0 and 1 respectively. The notion of a simple
polyhedron is defined in the three-dimensional space in a fashion similar to that of a simple
polygon in two-dimensional space. The boundary of a polyhedron consists of vertices, edges,
and facets if their affine closures have dimension 0, 1, and 2 respectively.

Let P be a simple polygon (polyhedron) and C be a collection of simple polygons (poly-
hedra resp.). Then, C defines a partition of P if and only if the union of the elements of C
equals P and any two elements of C either do not intersect or their intersection is a subset
of their boundaries. The collection C defines a cell compler decomposition of P if and only
if C is a partition of P and additionally the intersection of any two elements A and B of C
is either the empty set or it is a face of both A and B. Figure 1{a) depicts a partition of
an L-shaped polygon which is not a cell complex decomposition, while Figure 1(b) depicts
a cell complex decomposition of the same polygon.

Note: In the following, we will deal with simple polygons and simple polyhedra only.
Therefore, we will be using the terms polygon and polyhedron to mean simple polygon and
simple polyhedron.

3. The Two-dimensional Case

"We assume that each polygon in the input is described by the sequence of its vertices along
its boundary, where each vertex is given by its coordinates.

3.1. Verification of a partition of a polygon.
Our verification algorithm relies on the following lemma.

Lemma 3.1. Let P and C be a polygon and a collection of polygons respectively. Addition-
ally, let E; = {e — 0P | e is an edge of a polygon in C} and Eg = {eNJP | e is an edge of
a polygon in C}. Then, the collection C forms a partition of P if and only if

(i) the set E; of (parts of) edges of the polygons in C can be partitioned into two sets S
and S' such that

® Uses closure(s) = U,z closure(s),

o the closures of the segments in S and S’ define a partition of |J.cs closure(s),
and

o for each (part of) edge e in S (resp. S'), if §'[e] (resp. S|e]) is the set of segments
of §' (resp. §) that are collinear with and intersect e, then, locally around e, the
interior of the polygon in C with edge e and the interiors of the polygons in C
whose edges contributed the elements of S'[e] (resp. S|e]) lie on opposite sides of
the line supporting e;

(i) the closures of the segments in Eg form a partition of the boundary 8P of P, and for
each (part of) edge e in Eg, locally around e, the interior of the polygon in C with e as

an edge and the interior of P lie on the same side with respect to the line supporting
B

Proof: If C is a partition of the polygon P, then the above two conditions clearly hold (see
Figure 1({a) for an example). Let us now prove the converse; we assume that the above two
conditions hold and it suffices to show that no point in the complement of P belongs to
any polygon in C and that each point in inferior(P) — (UQE,: 3{2) (i.e., p is a point of the
interior of P that does not belong to the boundary of any polygon in C) belongs to exactly
one polygon in C.

Condition (i) implies that if we overlay the two partitions defined by S and 5, each sub-
segment s of the overlay belongs to exactly two edges, say, e and d, such that, locally around
s, the interiors of the polygons in C with edges e and d (let them be P, and P; respectively)
lie on opposite sides of the line supporting s. Let p be a point of s, and let N(p) be a disc
centered at p which is small enough that it does not intersect any other edge except for e
and d. Then, the segment s partitions N(p) into two half-discs, one belonging to P, and
the other belonging to Py. Consider two points ¢ and ¢’ such that g € interior(P.) N N(p)
and ¢’ € interior(Pys)N N (p). Then, points ¢ and ¢’ belong to the same number of polygons

in C: ¢ belongs to P. and some k other polygons, ¢’ belongs to Py and the same k other
polygons. In a similar fashion, condition (ii) implies that for any point p belonging to a
segment s in Ep (note that s C 8P), any point g € N(p) — P belongs to 1 fewer polygons
in C than any peint ¢’ € N(p) Ninterior(P).

We first show that no point in the complement of P belongs to any polvgon in C. Let p
be such a point; then there exists a non-self-intersecting path from p to infinity which does
not intersect P. Moreover, we can assume without loss of generality that the path does
not go through any vertex of the given polygons. Since the path does not intersect 9P,
it intersects, if any, only segments in E;. The fact that the polygons in C do not extend
to infinity (i.e., the point at infinity does not belong to any polygons in C) and the earlier
observation regarding segments of E; imply that the point p does not belong to any polygon
in C. Thus, the point in the complement of P do not belong to any polygon in C.

Next, consider a point p in the interior of P which does not belong to the boundary
of any polvgon in C. Then, there exists a non-self-intersecting path from p to a point g in
the complement of P which avoids all vertices and crosses the boundary of P exactly once.
As the path crosses segments of E7 then the number of polygons to which points of the
path on either side of the segment belong remains the same, whereas as the path crosses the
boundary of P then the number of polygons to which a point of the path in the interior of P
belongs is 1 more than the corresponding number for a point of the path in the complement
of P, which is 0 as we showed earlier. Hence, point p belongs to exactly one polygon in C.
Therefore, we have shown that the polygons in C define a partition of P.

The partition verification algorithm applies Lemma 3.1. It uses an array A of size equal
to the total number of edges of the polygons in C and of the polygon F; the array is initially
empty. The algorithm works as follows:

2d Partition Verification Algorithm

1. We orient the boundarv of polygon P and the boundaries of the polygons in C in
a compatible fashion (e.g., the order of vertices corresponds to a counterclockwise
traversal of the boundary).

2. For each polygon @ in C do
for each edge uv of Q do
if u is lexicographically smaller than v
then we add the entry (u,v,+1) to A;
else we add the entry (v,u,—1) to A;

3. For each edge uv of P do
if u is lexicographically smaller than v
then we add the entry (u,v,—1) to A;
else we add the entry (v,u,+1) to A;

4. We sort the entries (u;, v;, £1) of the array A by slope of the line w;1; and, in case of
ties, lexicographically taking into account the coordinates of the vertices u; and ;.

5. For each slope separately, we traverse the related entries of A verifving that those
with “+1" and those with “—1" partition the same set of segments. If this terminates
successfully, then the given collection C of polygons defines a partition of the given
polygon P, otherwise it does not.

Time complezity. Clearly, Steps 1, 2, and 3 can be completed in time linear in the total
size n of the input, while Step 4 requires O(nlogn) time. Step 5 requires linear time: for
each slope, the sorting of the entries implies that each new entry with “+1” is either the
extension of the latest entry with 417 or starts a new segment of the union of the “4-17-
entries, and similarly for the “—1"-entries. The algorithm uses linear space. Thus, we have
the following result:

Theorem 3.1. Let P and C be a polygon and a collection of polygons respectively of total
size n. Then, it can be determined whether the collection C forms a partition of P in
O(nlogn) time using O(n) space.

3.2. Verification of a cell complex decomposition of a polygon.
Our verification algorithm relies on the following lemma.

Lemma 3.2. Let P and C be a polygon and a collection of polygons respectively. Then, the
collection C forms a cell complex decomposition of P if and only if the set of edges of the
polygons in C can be partitioned into two sets Er and Ep such that

(i) for each edge e in Ej there exists exactly one other edge, say d, in E; such thate = d
and, locally around e, the interiors of the polygons in C with edges e and d lie on
apposite sides of the line supporting e;

(ii) the edges in Eg form a partition of the boundary OF of P and for each edge e in Eg,
locally around e, the interior of the polygon in C with edge e and the interior of P lie
on the same side with respect to the line supporting e.

Proof: If C is a cell complex decomposition of P then the above two conditions clearly hold
(see Figure 1(b)) provided that we show that in a cell complex there cannot be an edge of a
polygon in C that has non-empty intersections with both the boundary 8F and the interior
of P. Let e be such an edge (of a polygon @ in C) and suppose that a segment au of e
belongs to P whereas a segment ub belongs to the interior of P; clearly, u is a vertex of P.
Since ub belongs to the interior of P and because C defines a cell complex decomposition,
there exists a polygon Q' in C other than Q which intersects Q along ub. But then, their
intersection is a proper subset of the edge e, in contradiction to C defining a cell complex
decomposition.

Let us now prove the converse. It is easy to see that if the two conditions of the lemma
hold, then so do the conditions of Lemma 3.1. Therefore, C defines a partition of P. The
proof will be complete if we show that the intersection of any two polygons in C is either
empty or a face of both polygons. If the intersection of the two polygons is a single point,
then clearly it is a vertex of both of them. (Suppose for contradiction that two polygons
A and B of C intersect at a point ¢ of the edge e of A. Clearly, the intersections of 4 and
B with a small enough disc N(t) centered at t share only . Then, condition (i) implies
that there exists another polygon in C, let it be B’, with an edge coinciding with e; then,
ANN(t) and B'N N(t) partition N(t), which implies that B and B’ share interior points, a
contradiction.) Suppose now that the intersection is a segment; then it must be a subset of
an edge of either polygon. Then, condition (ii) implies that this segment cannot belong to
an edge in Epg; equivalently, the segment belongs to the interior of P. Then, condition (i)
implies that the segment has to be an edge of both polygons, as desired. g

The cell complex verification algorithm applies Lemma 3.2. It too uses an array A of
size equal to the total number of edges of the polygons in C, which is initially empty. The
algorithm works as follows:

2d Cell Complex Verification Algorithm

1. We collect all the vertices and assign to each one of them a distinct positive integer

id().

2. We orient the boundary of polygon P and the boundaries of the polygons in C in a
compatible fashion.

3. For each polygon @ in C do
for each edge uv of @ do
if u is lexicographically smaller than v
then we add the entry (id(u),d(v), +1) to A;
else we add the entry (id(v),id(u), —1) to A;

4. We sort the array A lexicographically.

5. We traverse the sorted array A deleting the matching entries (i.e., (k.&',—1) and
(k,k’,+1)), which now appear next to each other.

6. We collect the unmatched entries and by applying a depth-first traversal we form the
graph that these entries form. If this graph is a closed path identical to the boundary
of P, then the collection C of polygons defines a cell complex decomposition of the
given polygon P, otherwise it does not.

Time complerity. Step 1 can be executed in O(nlogn) time: for each vertex in turn, we
check if it coincides with any of the previously processed vertices by means of a balanced
binary search tree; if it does, then it is assigned the integer associated with the vertex found
in the tree, otherwise it is inserted in the tree and is assigned the next available positive
integer. In this way, the integers assigned to the vertices range from 1 to the number of
distinct vertices, which does not exceed n. Steps 2 and 3 take O(n) time. Step 4 as well
can be completed in linear time by using radix sorting [2] (recall that vertex indices range
from 1 to n), and so do Steps 5 and 6. Thus, the algorithm requires a total of O(nlogn)
time. The space required by the algorithm is O(n).

Thus, we have the following theorem:

Theorem 3.2. Let P and C be a polygon and a collection of polygons respectively of
total size n. Then, it can be determined whether the collection C forms a cell compler
decomposition of P in O(nlogn) time using O(n) space.

It is important to observe that all the steps of the above algorithm but Step 1 take linear
time. In fact, if the input consists of the list V' of distinct vertices of the polygon P and of
the polygons in the collection C, followed by the vertices of each polygon, where each vertex
is referenced by its index to the list V, then we do not need to execute Step 1. Such a
representation is commonly used, and is easily produced by partitioning programs. Hence,
we have:

Corollary 3.1. Let P and C be a polygon and a collection of polygons respectively of total
size n, where each polygon is described by a sequence of indices to a global list of distinct
vertices which indicates the order of the vertices around the boundary of the polygon. Then,
it can be determined whether the collection C forms a cell complez decomposition of P in
O(n) time using O(n) space.

4. The Three-dimensional Case

We assume that each polvhedron in the input is described by a list of its facets, each
represented by the sequence of its vertices along its boundary, where each vertex is given
by its coordinates.

Two lemmata similar to Lemmata 3.1 and 3.2 hold in the three-dimensional case and
are the basis of our verification algorithmas.

4.1. Verification of a partition of a polyhedron.

Lemma 4.1. Let P and C be a polyhedron and a collection of polyhedra respectively.
Additionally, let Fy = {f —OP | f is a facet of a polyhedron inC} and Fg = {fN&P | f is
a facet of a polyhedron in C}. Then, the collection C forms a partition of P if and only if

(i) the set F; of (parts of) facets of the polyhedra in C can be partitioned into two sets S
and S’ such that the closures of the polygons in each of these sets defines a partition
of U,z closure(s), and for each (part of) facet f in § (S’ resp.), the interior of the
polyhedron of C with facet f and the interiors of the polyhedra of C with facets the
polygons of S’ (S resp.) which intersect with f lie (locally around f) on opposite sides
of the plane supporting [

(ii) the closures of the polygons in Fg form a partition of the boundary 8P of P, and for
each {part of) facet f in Fg, locally around f, the interior of the polyhedron of C with
facet f and the interior of P lie on the same side with respect to the plane supporting

;

Proof: The proof is similar to that of Lemma 3.1. g
In light of Lemma 4.1, the partition verification algorithm is as follows:
3d Partition Verification Algorithm

1. We orient the facets of the polyhedron P and of the polyhedra in C in a compatible
fashion (i.e.. in counterclockwise order as seen from outside the polyhedron).

2. For each polyhedron @ in C do
for each facet f of Q do
we find the lexicographically smallest vertex of f; let it be u;
if the boundary of f forms a left turn at u
then we add the entry (f,+1) to A; {A is an initially empty array}
else we add the entry (f, —1) to A;

3. For each facet f of P do
we find the lexicographically smallest vertex of f; let it be u;
if the boundary of f forms a left turn at u
then we add the entry (f,—1) to A;
else we add the entry (f,+1) to A4;

4. We sort the entries {f;, =1) of the array 4 by slope of the plane supporting f; and, in
case of ties, lexicographically on the second field of the entry.

5. For each slope separately, we verify that the related facet records with “+1” and
those with “—1" partition the same polygonal regions. If this matching terminates
successfully, then the given collection C of polyhedra defines a partition of the given
polyhedron P, otherwise it does not.

Time complexity. Clearly, Steps 1, 2, and 3 can be completed in time linear in the to-
tal size n of the input. Step 4 requires O(nlogn) time. Step 5 can also be completed in
O(nlogn) time: for each different plane slope, we collect the entries with “+1" as second
field, and apply on the associated facets Steps 2 and 4 of the 2d partition verification algo-
rithm (see Section 3.1); Step 5 of that algorithm is applied next, except that the difference
of the union of the “+1” and the “~1" entries is computed and used to form a graph; the
same procedure is applied to the entries of the array A with “~1" as second field; finally,
the two resulting graphs are checked to see whether they are identical. Thus, the algorithm
requires a total of O(nlogn) time. The algorithm uses linear space. Thus, we have the
following result:

Theorem 4.1. Let P and C be a polyhedron and a collection of polyhedra respectively of
total size n. Then, it can be determined whether the collection C forms a partition of P in
O(nlogn) time using O(n) space.

4.2. Verification of a cell complex decomposition of a polyhedron.

Lemma 4.2. Let P and C be a polyhedron and a collection of polyhedra respectively. Then,
the collection C forms a cell compler decomposition of P if and only if the set of facets of
the polyhedra in C can be partitioned into two sets F; and Fg such that

(i) for each facet f in Fy there exists exactly one other facet, say f', in F1 such that
f = f' and, locally around f, the interiors of the polyhedra in C with edges f and f'
lie on opposite sides of the plane supporting f:

(ii) the edges in Fg form a partition of the boundary P of P and for each facet f in Fp,
locally around f, the interior of the polyhedron of C unth facet f and the interior of
P lie on the same side with respect to the plane supporting f.

Proof: The proof is similar to that of Lemma 3.2.

The cell complex verification algorithm applies Lemma 4.2. It uses two auxiliary arrays A
and B, which are initially empty. The algorithm works as follows:

3d Cell Complex Verification Algorithm

1.

10.

We collect all the vertices and assign to each one of them a distinct positive integer

id().

We orient the facets of the polyhedron P and of the polyhedra in C in a compatible
fashion.

For each polyhedron @ in C do
for each facet f of @ do
a +— the lexicographically smallest vertex of f;
b+ the lexicographically largest vertex of f;
¢ + f’s vertex farthest away from the line ab (and lex-smallest, if ties);
if f's boundary is directed from a to ¢ to b
then we add the entry ((id(a),id(b),id(c)), +1) to A;
else we add the entry ((id(a), id(b),id(c)), —1) to A;

We sort the array A lexicographically.

We traverse the sorted array A, we verify that matched entries (which now appear
next to each other) correspond to matching facets and we delete them.

For each facet f whose entry in A has not been matched do
for each edge uv of f do
if u is lexicographically smaller than v
then we add the entry (id(u),id(v),+1) to B;
else we add the entry (id(v),id(u), —1) to B;

We sort the array B lexicographically.

If the entries in B do not appear in matching pairs (i.e., (k,k',—1) and (k, ¥, +1)),
then the collection C of polyhedra does not define a cell complex decomposition of the
given polyvhedron P.

. For each matching pair (id(u),id(v),£1) in B do

if the two facets incident upon this pair of edges are not coplanar
then make u and v adjacent;

We apply a depth-first traversal and we check that the graph formed matches the edge
skeleton of P. If it matches, then the collection C of polyhedra defines a cell complex
decomposition of the given polyhedron P, otherwise it does not.

Time complexity. Step 1 takes O(nlogn) time, as described in Section 3.2. Steps 2, 3, 5,
and 6 take O(n) time. Steps 4 and 7 can be completed in linear time as well by using radix
sorting. Finally, Steps 8, 9, and 10 also take linear time. Thus, the algorithm requires a
total of O(nlogn) time. The space required by the algorithm is O(n).

Thus, we have the following theorem:

Theorem 4.2. Let P and C be a polyhedron and a collection of polyhedra respectively
of total size n. Then, it can be determined whether the collection C forms a cell complex
decomposition of P in O(nlogn) time using O(n) space.

As in the two-dimensional case, all the steps of the above algorithmn but Step 1 take
linear time. Hence, we have:

Corollary 4.1. Let P and C be a polyhedron and a collection of polyhedra respectively
of total size n, where each polyhedron is represented by a list of facets, each described by a
sequence of indices to a global list of distinct vertices which indicates the order of the vertices
around the boundary of the facet. Then, it can be determined whether the collection C forms
a cell compler decomposition of P in O(n) time using O(n) space.

5. Concluding Remarks

In this paper, we present simple O(n log n)-time and O(n}-space verification algorithms for
partitions and cell complex decompositions of polygons and polyhedra. We note that if
the input is so that vertices are referenced by means of indices to a global list of distinct
vertices (something which can be easily obtained from a partitioning program), then the
cell complex verification algorithms take linear time.

The obvious open guestion is whether linear time verification algorithms for these prob-
lems can be constructed. We conjecture that linear partition verification algorithms may
be difficult to obtain under the problem’s specifications because we assume that verfices
are referenced by their coordinates. Another open question is whether these verification
algorithms extend to higher than three dimensions.

6. References

[1] D. Avis and H. El Gindy, Triangulating point sets in space, Discrete and Computa-
tional Geometry 2, 99-111, 1987,

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edition, MIT Press & McGraw-Hill, 2001.

3] O. Devillers, G. Liotta, F.P. Preparata, and R. Tamassia, Checking the convexity of
polytopes and the planarity of subdivisions, Computational Geometry: Theory and
Applications 11(3-4), 187-208, 1998,

[4] H. Edelsbrunner, F. Preparata, and D. West, Tetrahedralizing point sets in 3 dimen-
sions, Journal of Symbolic Computation, 10, 335-347, 1990.

[5] K. Mehlhorn, S. Niher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig, Checking
geometric programs or Verification of geometric structures, Proc. 12th Symposium on
Computational Geometry, 159-165, 1996,

10

