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Abstract:

A hybrid intelligent system is presented for the identification of microcalcification clusters in
digital mammograms. The proposed method is based on a three step procedure: (a)
preprocessing and segmentation, (b) regions of interest specification, and (c) feature
extraction and classification. The reduction of false positive cases is performed using an
intelligent system containing two sub-systems: a rule based and a neural network sub-system.
In the first step of the classification schema 22 features are automatically computed which
refer either to individual microcalcifications or to groups of them. Further reduction in the
number of features is achieved through PCA analysis. The proposed methodology is tested
using the Nijmegen and the MIAS mammographic databases. The detection specificity is 1.80
and 1.15 false positive clusters per image, for the Nijmegen and MIAS dataset respectively, at

the sensitivity level higher than 0.90.
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1. Introduction

Breast cancer is currently one of the leading causes of death among women worldwide.
Regular mammographic screening projects for women of certain age or high-risk groups is
taking place in developed countries. Early detection is the key for improving breast cancer
prognosis [35]. Mammography is the most effective procedure for detecting non-palpable
cancers even when the size of the abnormality is minimal [33, 51]. One of the early signs of
breast cancer is the presence of microcalcification clusters at the mammogram of
asymptomatic women. However, a number of such findings could be missed or misinterpreted
by doctors, due to the particularly small size and low contrast that they usually exhibit in an
inhomogeneous mammographic background. Thus, the task of the radiologist is tedious in the
case where a significant number of mammograms require fast and accurate interpretation. For
this reason, a reliable automated computer-aided diagnosis system (CAD) could be very

useful, providing a valuable “second opinion’’ to a radiologist, especially to a non-expert one.

In the literature, several techmiques have been proposed to detect the presence of
microcalcifications using various methodologies. In what concerns image segmentation and
specification of regions of interest (ROIs), several methods have been proposed such as
classical image filtering and local thresholding [8, 11, 32, 36], techniques based on
mathematical morphology [12, 49], stochastic fractal models [21, 22], wavelet analysis [2, 6,
18, 19, 37, 41, 45, 46] and multiscale analysis based on a specialized Gaussian [26]. In what
concerns the characterization of regions of interest various classification methods have been
reported suggested as rule-based systems [8, 11], fuzzy logic systems [10], statistical methods
based on Markov random fields [16] and Support Vector Machines [2]. Nevertheless, the
most work reported in the literature employs neural networks for cluster characterization [9,
23, 27, 30, 43, 44, 47, 50]. Typically. a neural network accepts as input features computed for

a specific region of interest and provides as output a characterization of the region as true



microcalcification cluster or not. Recently, neural networks have also been used to

characterize a microcalcification as malignant or benign [5, 20, 33, 39].

In this paper we present an intelligent system (Fig. 1) for the identification of
microcalcification clusters in a digitized mammographic image. The system, as it is described
in section 2, consists of three modules: the preprocessing and segmentation, the ROI
specification and the feature extraction and the classification module. The latter is a hybrid
classification schema composed of a rule based and a neural network sub-system. The
proposed system is fast and accurate in the detection of ROIs. We employ an additional
characteristic for ROI characterization that is related with the existence of a small ROI in the
neighborhood of a large one. In addition, we have found that performance is improved in the
case where PCA analysis is used to reduce the number of features. The method is fully
automated and provides satisfactory results in two well — known datasets: the Nijmegen and
the MIAS mammographic databases as it 1s described in section 3. It must be noted that the
proposed hybrid system performs better compared with the case where either the rule-based

or the neural network subsystem are solely employed for classification.

2. Material and methods

2.1 Image datasets

For the development and evaluation of the proposed method we use the Nijmegen [16] and
the MIAS [38] databases. The first contains 40 mammograms of both craniocaudal and
mediolateral oblique views from 21 patients. Digitization has been carmed out using an
Eikonix 1412 CCD camera with 0.1 mm pixel size and 12 bit grey depth. The size of each
image is 20482048 pixels. For each image a lookup table is provided for conversion-
rescaling from 12 to 8 bit format based on noise characteristics [16]. One or more

microcalcification clusters are annotated in each mammogram by expert radiologists using a



circle enclosing the abnormality. The total number of annotated clusters in the database is
105. Tt must be noted that the Nijmegen dataset digitization characteristics are different from
the MIAS dataset and we resampled the Nijmegen images to change the pixel size from 100

to 50 um, because our software originally was developed to handle 50 pm images.

The second dataset contains 20 images and has been developed by the Mammographic Image
Analysis Society (MIAS) [38]. Each mammographic image is obtained from the medio-
lateral oblique view and is digitized with spatial resolution 50 pm and 8 bit grey depth. A
circle enclosing the abnormality indicates each cluster area. The database contains a number

of 25 annotated clusters,

The proposed system is implemented in three stages. The first is related to image
segmentation, the second with the identification of candidate ROIs, and the third with the

characterisation of each ROI as cluster of microcalcifications or not.

2.2 Preprocessing and Segmentation Module

In a typical mammogram several different areas are present such as the image background,
the tissue area, and informative marks. At the beginning of preprocessing it is necessary to
locate the breast region. For this reason we apply a skin-line segmentation procedure by
setting equal to zero the image pixels with intensity less than 20 (for 0-255 grey levels). Most
of those pixels belong to the background area, although a small number exists belonging to
the tissue area close to the breast surface. This thresholding procedure results in a binary
image of white objects on a black background. Neighbouring white pixels with connectivity
of eight are grouped together to form objects corresponding either to the breast region or to
marks and film artefacts. The largest object corresponds to the breast region (Fig. 2) and close
to the breast outline a number of very small objects appear. These are actually part of the

breast region but, due to thresholding, they appear as distinct objects. To deal with this



problem we apply morphological dilation with a structure element radius of 30 pixels (~1.5
mm). This results in an expansion of breast region outline, which includes all the nearby
located objects. All the pixels that do not belong to the expanded breast area are set to zero,
resulting in the removal of background, marks and artefacts. The artefacts located at the
boundary of the breast region, at the chest side, forming a thick line are eliminated too. The
minimum rectangle containing the breast region is automatically drawn and it is used in the

subsequent processing stages.

At first, the mammogram is considered as a 3D plot with the third axis (2) corresponding to
the intensity of each pixel (Fig. 3a). The whole image is split into 30x30 sub-regions and,
using bicubic interpolation, a second plot is obtained representing the intensity level of the
microcalcification local background (Fig. 3b). The interpolated image is subtracted from the
original mammogram producing a third image with each pixel value providing the difference
between the original and local background pixel values. The pixels with positive values are
identified and a percentage of them (5 %) with the highest values is selected producing a
binary image and also specifying a threshold value (the lowest value among the selected
pixels). The reason for the above selection is that the objects of interest (microcalcifications)
are characterized by higher intensity compared to their background. In a typical image, the
number of selected pixels is quite large and in subsequent processing a fraction of them will
be removed. If the amount of the selected pixels is lower than 10% of the total number of
pixels of the cropped mammogram, the pixels with intensity higher than half of the previously
specified threshold are added. In such a way an adequate number of pixels are included in the
obtained binary image (A). This case occurs when the mammogram exhibits very low

contrast usually due to erroneous exposure conditions.

Next a contrast enhancement filter is applied with 9x9 kernel having central element equal to

80 and all the other elements equal to —1 [31, 34]. 5% of the pixels having the highest



intensity are selected, producing a second binary image (B). The outcome of the segmentation
module is an image produced by the logical summation (AND) of the two binary images A
and B. It contains the pixels that have high intensity values and, at the same time, quite high

intensity values in comparison with the background intensity of their local neighbourhood

(Fig. 4).

2.3 Regions of interest specification

In the segmented image obtained in the previous stage, neighbouring pixels with connectivity
of eight are grouped together to create possible microcalcification objects. Objects containing
one or two pixels are rejected since they are considered as artefacts [9]. Since the diagnostic
information is based on the existence of groups of objects, individual objects (possibly
artefacts) should be removed. The elimination of these artefacts is achieved through the use of
morphological operators. The application of the erosion operator (with structure element a
3x3 kernel of unit value) results in the removal of all objects apart from those that have at
least one innermost pixel that is not part of its boundary. In this way only inner pixels that
belong to large objects remain. These pixels correspond to the centres of ROIs, which are
generated using the dilation operator with a 3x3 structure element of unit value. The dilation

is repeated 50 times in order to produce a ROI with sufficient area around the object.

The smallest possible size of ROI is 101x101 pixels and appears when the central pixel of an
object is isolated and no other central pixel is located at a distance smaller than 100 pixels
(which is the maximum allowed distance in order for two distinct objects to belong in the
same ROI). This selection takes into account the mean distance among microcalcifications in
a cluster [3]. A ROI that is not of minimum size is considered as having been generated from
a group of objects located in the same neighbourhood. In such case, two or more ROIs will be

combined and a new enlarged ROI will be generated containing more than two of the original



objects. Based on the above methodology, several ROls are identified in the mammogram and

each of them is a candidate for being a true cluster of microcalcifications.

The set of ROIs is partitioned in two groups depending on their area. The first group contains
those ROIs with area lower than 20,000 pixels (2x100x100), which is a reliable threshold
value discriminating ROIls that are generated from individual objects. The second group
contains the remaining ROIs which contain at least two nearby objects. This discrimination

of ROIs defines a novel feature that will be used at the classification stage.

The existence of an individual object close to a ROI might be a problem in some cases. To
resolve it a second dilation process 1s applied on the previous image, but only to the set of
larger ROIs, using a 3=3 structure element in a 50-cycle repeated procedure. The resulting
image contains usually one or two ROls that include at least one large ROl and perhaps some

small ROIs (of the previous image) that are close to the large one.

The above procedure constitutes an attempt to identify groups of objects that are candidate
microcalcification clusters. The medical rule for the existence of microcalcification cluster is
the presence of more than three microcalcifications in 1 em® area [17]. Since this rule can be
used for the reduction of false positive detected ROISs, all the regions that include less than
two objects are eliminated. Using the above morphological analysis, a number of ROIs is

specified.

2.4 Classification Module

The objective of the classification module is to categorize the specified ROls as true
microcalcification clusters or not. The large number of false positive clusters that are
identified by the segmentation process makes the characterization task difficult. In order to

specify the features that will be used as inputs to the classification system, at first 54 features



are identified and computed characterizing either an individual microcalcification (object) or
a group of them in a specific ROL Those features fall into three categories related with the
intensity, shape and texture properties of each object. The group features are computed as the
mean value of the five larger objects included in a ROIL The selection of the five larger
microcalcifications is made since a very small microcalcification does not have enough pixels

for reliable feature value computation [3].

An important feature that contributes significantly to the classification ability of the proposed
system is whether a given ROI lies in the same neighbourhood with a larger ROL. Despite the
fact that this feature is not related with some established medical rule, the discrimination
performance of this feature is high. The last is a consequence of the way that the ROIs are
generated. The existence of a small ROI near a large one introduces increased possibility for
it either to be a true cluster or part of the large one. In any case, the inclusion of this feature

increases the detection performance of the system.

Since the number of the computed features is quite large and their discriminative power

varies, a feature validation together with feature selection procedure is applied. The receiver

operating characteristic (ROC) curve is plotted for each feature and the area 4. under the

ROC curve is computed. Features with the highest 4. are selected, resulting in a set of 22

features (Table 1). It must be noted that most of the selected features correspond to the

mammographic characteristics that expert radiologists examine during a diagnostic procedure

[42].

In the next step of the classification module the selected features are fed into a hybrid
intelligent classification system, which consists of two components (Fig. 5): a rule based and

a neural network component. We make the assumption that each rule of the rule based sub —



system employs at most two features. Therefore it is straightforward to visualise the data and

identify the corresponding threshold values.

In the Nijmegen database the rule based sub-system contains three rules employing a single
feature and one rule with two features. The employed features are the standard deviation of
the microcalcifications’ intensity in a cluster, the mean eccentricity value in a cluster, the
entropy of a cluster and the standard deviation of the distances of microcalcifications from the
cluster centre and the average microcalcifications’ area in a cluster. All the rules, other than

the cluster entropy, contribute to the removal of false positive clusters.

In the MIAS database four rules have been obtained each one employing one feature. The
features with the higher discriminative capability are the area of a cluster, the average
background intensity in each cluster, the highest entropy value of the clusters in each image
(relative entropy value) and the existence of large area clusters in the neighbourhood of a
cluster. All the features, apart from the second one, contribute to the classification of
abnormal cases. It must be noted that the cluster entropy is a common feature in both datasets,

something that underlines the importance of this particular feature.

All the ROIs characterized by the rule based sub-system are removed from the dataset. The
remaining ROIs constitute the dataset (with 22 features per ROI) that will be used for

construction of the neural network.

The neural network (Fig. 6) that is used for ROI charactenisation is a feedforward neural
network with sigmoid hidden nodes (Multiplayer Perceptron — MLP). In order to select an
appropriate architecture (number of hidden layers and hidden nodes per layer) several
networks were tested with one or two hidden layers and different number of hidden nodes. In
order to reduce the dimensionality of the input vector, a principal components analysis (PCA)

was applied to eliminate the features that contribute less than 3% to the total variation of the



data set. The PCA procedure transforms each 22-dimensional feature vector into a 9-
dimensional feature vector that will constitute the input to the neural network. The

components of each new feature vector are normalized to zero mean and unit variance.

Several training algorithms were implemented and tested: gradient descent methods, resilient
backpropagation, conjugate gradient methods, and quasi Newton methods. The best results

are obtained using a Quasi-Newton method, and more specifically, the one step secant - OSS

algorithm [1].

To assess the performance of several architectures and training algorithms the two-fold cross
validation method was employed. According to this procedure, the dataset is randomly
divided into two subsets where the number of positive and negative cases in each subset is
approximately equal. In a first experiment the training set corresponds to the first subset and
the test set to the second one. In a second experiment the first subset corresponds to the test
set and the second to the training set. The performance is calculated as the average test set

performance in the two experiments.

To train a neural network we assume that positive (true) ROls correspond to unit output while
negative ones to zero output. Training is terminated either when the training error is less than

a very small given value (107) or when 2000 iterations have been performed.

During testing a threshold value is needed to classify an input case as true or false cluster
based on the output value which ranges from zero to one. As the threshold value decreases
from one to zero, a larger number of true positive cases is correctly characterised with an

obvious increase of false positive cases. The network performance is measured using the area
A_ under a ROC curve generated by plotting the true positive fraction (sensitivity) against the

false positive fraction (specificity) of the cases for various threshold values. Alternatively, the
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FROC curve may be used which considers the number of false positive clusters per image

instead of the specificity value [7].

The finally selected network (the one with the best cross-validation performance) for the
Nijmegen database has an input laver with nine nodes, two hidden layers with 20 and 10
sigmoid nodes respectively, and an output layer with one sigmoid node. For the MIAS

database, the same neural network has also been used.

3. Results

Nijmegen Database

The segmentation process results in 446 candidate ROIs from which 115 are true. The
difference is due to the fact that our system in some cases identifies two or more ROls
contained in a single annotated ROl Using the rule based sub-system 215 ROIls are
classified. Most of them are normal ROIs corresponding to artefacts and blood vessel type
objects. 41 ROIls are true positive (TP), 167 are true negative (TN), 5 are false positive (FP)
and 2 are false negative (FN) cases. Using the rule based sub-system 48% of the cases are

characterised corresponding to 39 % of abnormal and 49 % of normal cases.

The performance of the hybrid system using two — fold cross-validation at the sensitivity level
0.90 is 1.8 false positive clusters per image. The use of the neural network results in 54 TP,

89 TN, 9 FN and 70 FP cases and the hybrid system results in 95 TP, 256 TN, 11 FN and 75
FP cases. The A.area under the ROC curve is 0.912 (Fig. 7). The performance is high for a

wide range of sensitivity. At the sensitivity level 0.79, the specificity is 0.86 (or 1.15 false
positive clusters per image) and at the sensitivity level 0.96 the number of false positive

clusters per image is 3.28 (Table 2).



It is also common in the related literature to report performance results where the complete
dataset (including both the training and the test set) is used as a test set (for measuring the
performance of the method), due to the limited number of available cases. In such case, as
expected, the system performance is greatly improved. More specifically, at the specificity
level of 1.18 false positive clusters per image, the sensitivity value obtained is 0.96 (Table 3).

The area A.1s equal to 0.956 (Fig. 8).

In order to assess the performance benefits from the use of the hybrid system, we have
conducted experiments to compare the method against the case where a single neural network
is used a classification component instead of the hybrid system. More specifically the same
network architecture was used but the rule based component was left out. The performance of
this system at a sensitivity level of 0.90 was 4.25 false positive clusters per image (Table 4).

The A. area under ROC curve area is 0.825 (Fig. 9). Obviously these results are much worse

than those obtained with the proposed hybrid classification system.

The MIAS Database

The MIAS database contains 20 digitised films that include microcalcification clusters. The
total number of annotated clusters is 25. The segmentation process results in 193 candidate
ROIs from which 34 are true. The rule based sub-system characterises 116 ROlIs
corresponding to 25 TP, 79 TN, 12 FP, and zero FN cases. The percentage of ROIs classified

by the rule based sub-system is 73% of the abnormal and 50% of the normal cases.

The performance of the hybrid system using two—fold cross-validation at the sensitivity level
0.91 is 1.15 false positive clusters per image. The use of neural network at the remaining

cases results in 4 TP, 57 TN, 3 FN and 11 FP cases and the entire hybrid system results in 29
TP, 136 TN, 3 FN and 23 FP cases. The A4_ area under the ROC curve is 0.921 (Fig. 10). At

sensitivity level 0.84, the specificity value is 0.90 (or 0.8 false positive clusters per image)
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and at the sensitivity level 0.94 the specificity is 2.70 false positive clusters per image (Table

5).

If the performance of the hybrid neural network is measured in the complete data set (training

and testing) the sensitivity improves to 0.94 at the specificity level of 0.92 or 0.65 false
positive clusters per image (Table 6). The area A_in this case is 0.968 (Fig.11). When a
single neural network is solely used instead of the hybrid system, the performance
deteriorates significantly: at sensitivity level 0.91, the specificity is 3.0 false positive clusters

per image (Table 7). The 4. area under ROC curve is 0.866 (Fig. 12).

4. Discussion

The proposed system exhibits high performance in the detection of microcalcification clusters
since it is able to identify more that 90% of the total number of clusters with a rather small
number of false positive findings. The utilization of a hybrid intelligent classification
component improves the performance of the system. A reduction of the false positive clusters
cases is achieved without any cost for the sensitivity of the system. The absence of user
adjustable parameters in the segmentation process ensures that it is straight forward to apply

the method to other mammographic datasets.

Several techniques have been reported in the literature for the detection of microcalcification
clusters using various methodologies. The performance of the proposed method is comparable
with the reported results. For the Nijmegen dataset, Meersman et al. [24] using a neural
network approach reported sensitivity level (.84 and 2 false positive clusters per image. Using
an adaptive filtering method Gurgan [15] achieved sensitivity one with 2.3 false clusters per
image. Yu [47] obtained sensitivity 0.9 with 0.5 false clusters per image and Bazzami [2]

obtained sensitivity 0.94 with 0.6 false clusters per image using an evaluation procedure that
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incorporates the training set. Netsch [26] reported sensitivity 0.84 with 1 false positive cluster
per image. Kassemeijer [16] obtained sensitivity 0.90 with 0.8 false positive clusters per

image using an extended Nijmegen dataset (containing 25 additional images).

For the MIAS dataset, Diahi et al. [13] proposed a neural network system that is fed with
predefined ROIs providing detection performance 0.95 for the whole dataset. Norhavati et al.
[28], using triple-ring filter analysis, reported sensitivity 0.96 with 1.8 false positive clusters

per image using an extended dataset containing 24 additional images without findings.

Concerning our methodology several comments can be made. First, the cluster detection
procedure is greatly accelerated. Instead of using sliding windows and applying a medical
rule in each of them (as happens in several other systems), our methodology detects the center
of each ROI and then a window is drawn around it. Therefore, search for clusters based on the
application of the medical rule is performed for a limited number of windows. In addition,
ROls are detected more accurately including a larger number of microcalcifications, which

are consisted of more pixels.

At the feature extraction step 54 features are initially computed. Some of them are extracted
from individual microcalcifications and others (group features) are the average values of the
microcalcification cluster features. 22 features are kept after ROC analysis for each feature.
Most of these features are also taken into account by medical experts during the wvisual
mammogram interpretation. In addition, we introduce a new significant feature related with
the existence of large ROIs in the neighborhood of a given ROL The employed number of
features is further reduced using PCA whose threshold has been experimentally specified. The
use of PCA in conjuction with the hybrid intelligent system constitutes a novel characteristic

of the method.
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The proposed method detects microcalcification clusters in digitized mammograms
eliminating the false groups of objects having similarities with the true clusters. In both
datasets the performance of our method is high for a large range of sensitivities. This is an
indication of robustness giving expectations for satisfactory performance using other datasets.
It must be noted that the method performs well despite the fact that no processing for
identification of line structures is included. The latter constitutes a natural direction for

further enhancement of our method performance.

Additional patient features other than those obtained from the image such as family history,
age, etc. might be included to improve the diagnostic value of our system. The next step of
our work is to use hybrid systems to perform classification of identified clusters as malignant

or not.

5. Conclusions

A hybrid intelligent system has been developed for the identification of microcalcification
clusters in digitised mammograms. The method employs two components: a rule based and a
neural network sub-system. We tested our system in the Nijmegen and the MIAS
mammographic databases with satisfactory results. The achieved classification specificity is
1.80 and 1.15 false positive clusters per image, for the Nijmegen and MIAS dataset,

respectively, at the sensitivity level of about 0.91.

Although the achieved performance is satisfactory further studies should be done in the
elimination of falsely detected objects with line structure that are in most cases non-
microcalcification items. Further testing has to be performed conceming the use of other
databases as well as of original mammograms obtained from the clinical routine of the

collaborating hospitals or screening population projects. Finally, future work will also be

16



directed towards the construction of a classification system that will perform discrimination

between benign and malignant microcalcification clusters.

Acknowledgements

The present work is partially supported by the Greek General Secretariat of Research and
Technology as part of the project “EPET II — PENED: Analysis and Design of Classification
Methods for Computerized-Aided Detection of Breast Cancer from Radiological Data”.

The Nijmegen database was provided by courtesy of the National Expert and Training Centre

for Breast Cancer Screening and the Department of Radiology at the University of Nijmegen,

the Netherlands.

17



References

(1]

3]

[4]

[3]

[6]

[7]

(8]

[9]

R. Battiti, First and second order methods for learning: Between steepest descent and
Newton's method, Newral Computation 4(2) (1992) 141-166.

A. Bazzani, A. Bevilacqua, D. Bollini, R. Brancaccio, R. Campanini , N. Lanconelli, A.
Riccardi, D. Romani, G. Zamboni, Automated detection of clustered
microcalcifications in digital mammograms using an SVM classifier, European
Symposium on Artificial Neural Nerworks (2000) 195-200.

D. Betal, N. Roberts, G.H. Whitehouse, Segmentation and numeral analysis of
microcalcifications on mammograms using mathematical morphology, Br J Radiol.,
70(9) (1997) 903-917.

C.M. Bishop, Neural Networks for Pattern Recognition, (Oxford University Press,

Clarendon Oxford, 1996).

M.J. Bottema, J.P. Slavotinek, Detection and classification of lobular and DCIS (small
cell) microcalcifications in digital mammograms, Partern Recognition Letters 21 (2000)
1209-1214.

D. Brzakovic, P. Brzakovic, M. Neskovic, An approach to automated screening of
mammograms, SPIE Biomed. Image Processing. Biomed. Visual. 2167 (1993) B68-886.
D.P. Chakraborty, L.H. Winter, Free response methodology: Alternate analysis and a
new observer-performance experiment, Radiol. 174(3) (1990) 873-881.

H.P. Chan, K. Doi, 5. Galhotra, C.J. Vyborny, H. MacMahon, P.M. Jokich, Image
feature analysis and computer aided diagnosis in digital radiography: 1. Automated
detection of microcalcifications in mammography, Med. Phys. 14 (1987) 538-548.

H.P. Chan, 5.C.B. Lo, B. Sahiner, K.L. Lam, M.A. Helvie, Computer-aided detection

of mammeographic microcalcifications: Pattern recognition with an artificial neural

network, Med. Phys. 22(10) (1995) 1555-1567.

1%



[10]

[11]

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

H. Cheng, Y.M. Lui, R.L Feiimanis, A novel approach to microcalcification detection

using fuzzy logic techniques, JEEE Trans. Med. Imag. 17(6) (1998) 442-450.

D.H. Davies, D.R. Dance, Automated computer detection of clustered calcifications in

digital mammograms, Phys. Med, and Biol. 35(8) (1990) 1111-1118.

J. Dengler, S. Behrens, J.F. Desage, Segmentation of microcalcifications in
mammograms, J[EEE Trans. Med. Imag. 12 (1993) 634-642.

J.G. Diahi, C. Frouge, A. Giron, B. Fertil, Artificial neural networks for detection of
breast cancer in mammography, 3" Inter. Workshop on Digital Mammography (1996)
329-334,

R.C. Gonzalez, R.E. Woods, Digital Image Processing (Reading MA: Addison-Wesley
1993).

M.N. Gurgan, Y. Yardimeci, A.E. Cetin, Microcalcification detection using adaptive
filtering and gaussianity tests, 4th Inter. Workshop on Digital Mammography

(1998)157-164,

N. Karssemeijer, Adaptive noise equalization and recognition of microcalcifications in
mammography, Inter. J. Pattern Recog. Artif. Intel. 7 (1993) 1357-1376.

D.B. Kopans, Breast Imaging. (1.B. Lippincott, Philadelphia, 1989).

M.J. Lado, P.G. Tahoces, A.J. Mendez, M. Souto, J.J. Vidal, A wavelet-based
algorithm for detecting clustered microcalcifications in digital mammograms, Med.
Phys. 26(7) (1999) 1294-1305.

AF. Laine, 8. Schuler, J. Fan, W. Huda, Mamographic feature enhancement by

multiscale analysis, JEEE Trans. Med Imag. 1905 (1994) 725-738.

S.K. Leg, C.S. Lo, CM. Wang, P.C. Chung, C.I. Chang, C.W. Yang, P.C. Hsu, A
computer-aided design mammography screening system for detection and classification

of microcalcifications, Int. J. Med. Informt. 60 (2000) 29-57.

1%



[21]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

F. Lefebvre, H. Benali, R. Gilles, E. Kahn, R. Di Paola, A fractal approach to the
segmentation of microcalcifications in digital mammograms, Med. Phys. 22 (4) (1995)

381-390.

H. Li, K.J.R. Liu, 8.C.B. Lo, Fractal modelling and segmentation for the enhancement
of microcalcifications in digital mammograms, IEEE Trans. Med. Imag. 16 (6) (1997)

785-798.

5.C. Lo, H.P. Chan, I.S. Lin, H. Li, M.T. Freedman, 5.K. Mun, Artificial convolution
neural network for medical image pattern recognition, Neural Nerworks 8(7/8) (1995)
1201-1214.

D. Meersman, P. Scheunders, D. Van Dyck, Detection of microcalcifications using

neural networks, 3rd Inter. Workshop on Digital Mammaography (1996) 287-290.

C.E. Metz, ROC methodology in radiologic imaging, fnvest. Radiol. 21(9) (1986) 720-

733.

T. Netsch, H.O. Peitgen, Scale-space signatures for the detection of clustered

microcalcifications in digital mammograms, JEEE Trans. Med. Imag. 18(9) (1999) 774-

T86.

E.H. Nigel, R.M. Nishikawa, J. Papaicannou, K. Doi, Analysis of methods for reducing
false positives in the automated detection of clustered microcalcifications in

mammograms, Med. Phys.25(8) (1998) 1502-1506.

I. Norhayati, F. Hiroshi, H. Takeshi, E. Tokiko, Automated detection of clustered
microcalcifications on mammograms: CAD system application to MIAS database,
Phys. Med. Biol. 42 (1997) 2577-2589.

A. Papadopoulos, D.I. Fotiadis, A. Likas, A hybnid neural method for
microcalcification cluster detection in mammography, Proc. of 4th Inter. Conf. on

Newural Networks and Expert Systems in Medicine and Healtheare (2001) 90-96,

0



[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

E.A. Patrick, M. Moskowitz, V.T. Mansukhani, E.I. Gruenstein, Expert learning system
network for diagnosis of breast calcifications, Invest. Radiol. 26 (1991) 534-539.

W.K. Pratt, Digital Image Processing (A Wiley-Interscience Publication, 1991).

W. Qian, L.P. Clarke, M. Kallergi, H. Li, R. Velthuizen, R.A. Clark, M.L. Silbiger,
Tree-structured nonlinear filter and wavelet transform for microcaleification
segmentation in mammography, SPIE Biomed. Image Processing and Biomed. Visual.

12(4) (1993) 634-642.

R.A. Schmidt, R.M. Nishikawa, Digital screening mammography. Principles and

Practice Oncol., 8 (1994) 1-16.

F. Schmidt, E. Sorantin, C. Szepesvari, E. Graif, M. Becker, H. Mayer, K. Hartwagner,
An automatic method for the identification and interpretation of clustered
microcalcifications in mammograms, Phys. Med. Biol. 44 (1999) 1231-1243.

ELA. Smith, Epidemiology of breast cancer categorical course in physics, Tech. Aspects

Breast Imaging, Radiol Soc. N. Amer. (1993) 21-33.

T. Soni, J.R. Zeidler, W.H. Ku, Performance evaluation of 2-D adaptive prediction
filters for detection of small objects in image data, JEEE Trans. Image Processing 2(3)

(1993) 327-329.

E.N. Strickland, H.I. Hahn, Wavelet transforms for detecting microcalcifications in
mammography, [EEE Trans. Med Imag. 15(2) (1996) 218-228,

J. Suckling, J. Parker, D. Dance , 5. Astley, . Hutt, C. Boggis, 1. Ricketts, D.
Stamatakis, N. Cemeaz, S. Kok, P. Taylor, D. Betal, J. Savage, The mammographic
images analysis society digital mammogram database, Exerpta Medica 1069 (1994)

375-378.

W. Veldkamp, N. Karssemeijer, J.D.M. Otten, JH.C.L. Hendriks, Automated
classification of clustered microcalcifications into malignant and benign, Med. Phys.

27(11) (2000) 2600-2608.

21



[40]

[41]

[42]

[43]

[44]

[43]

[46]

[47]

[48]

W. Veldkamp, N. Karssemeijer, Automated classification of clustered
microcalcifications in digital mammograms: applications of artificial neural networks.

Digital mammography, Exerpta Medica (1996) 23-30.,

T.C. Wang, N.B. Karayiannis, Detection of microcalcifications in digital mammograms

using wavelets, [EEE Trans. Med. Imag. 17(4) (1998) 498-509.

P. Whatmough, A.G. Gale, A.R.M. Wilson, Do radiologists agree on the importance of
mammographic features?, 3rd Inter. Workshop on Digital Mammography (1996) 111-

116.

Y. Wu, K. Doi, M.L. Giger, R.M. Nishikawa, Computerized detection of clustered
microcalcifications in digital mammograms: application of artificial neural networks,

Med. Phys. 19(3) (1992) 555-560.

Y. Wu, M.L. Giger, K. Doi, C.J. Vyborny, R.A. Schmidt, C.E. Metz, Artificial neural
networks in mammography: application to decision making in the diagnosis of breast

cancer, Radiol. 187 (1993) 81-87.

H. Yoshida, K. Doi, RM. Nishikawa, Automated detection of clustered
microcalcifications in digital mammograms using wavelet transform techniques, SPIE

Image Processing 2167 (1994) 868-886.

H. Yoshida, K. Doi, R.M. Nishikawa, M.L. Giger, R A. Schmidt, An improved CAD
scheme using wavelet transform for detection of clustered microcalcifications in digital
mammograms, Acad. Radiol. 3 (1996) 621-627.

S. Yu, L. Guan, A CAD system for the automated detection of clustered
microcalcifications in digitised mammogram films, JEEE Trans. Med Imag. 19(2)

(2000) 115-126.

W. Zhang, K. Doi, M.L. Giger, Y. Wu, M. Nishikawa, R.A. Schmidt, Computerized
detection of clustered microcalcification in digital mammograms using a shift-invariant

artificial neural network, Med. Phys. 19 (1994) 555-560.



[49]

[50]

[51]

D. Zhao, Rule-based morphological feature extraction of microcalcifications in

mammograms, SPIE Med. Imag. 1095 (1993) 702-715.

B. Zheng, W. Qain, L.P. Clarke, Digital mammography: Mixed feature neural network
with spectral entropy decision for detection of microcalcifications, JEEE Trans. Med.

Imag. 15(5) (1996) 589-597.

H.C. Zuckerman, The role of mammography in the diagnosis of breast cancer, in: Ariel
IM, Cleary JB, eds., Breast Cancer, Diagnosis and Treatment (McGraw-Hill, New

York, 1987) 152-172.

23



Table 1: Main features for cluster categorization.

Microcalcification (MC) cluster
classification features

Radiologists characterization
features

Number of MCs in cluster

Cluster elements (separable /
countable)

Cluster area Cluster size

Mean MC area MCs size

STD of MCs area Shape of elements within cluster
Mean MC compactness Shape of elements within cluster

Mean MC elongation

Shape of elements within cluster

STD of MC elongation

Shape of elements within cluster

STD of MC intensity

Density of calcifications

Mean MC background intensity

Density of calcifications

Mean contrast

Contrast of calcifications

Cluster eccentricity

Shape of cluster

Mean distance from cluster centroid

Calcification distribution

Neighbouring with a larger cluster

Cluster distribution

Cluster Entropy

Calcification’s distribution

Spreading of MCs in cluster

Calcification’s distribution

Cluster elongation Cluster’s shape

Mean local MC background Density of calcifications

Mean MCs intensity Density of calcifications

STD of MC compactness Shape of elements within cluster

STD of distances from cluster centroid

Calcification’s distribution

Area of the cluster convex hull

Shape of cluster

The length of the cluster convex hull

Shape of cluster
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Table 2: Performance of the proposed hybrid intelligent system tested for the Nijmegen
dataset (cross validation).

Sensitivity Specificity False positive clusters / image
0.79 0.86 1.15
0.84 0.82 1.45
0.90 0.77 1.80
0.96 0.60 3.28




Table 3: Performance of the proposed hybnid intelligent system tested for the Nijmegen
dataset (complete set).

Sensitivity Specificity False positive clusters / image
0.89 0.92 0.68
0.93 0.89 0.95
0.96 0.86 1.1%8




Table 4:

Performance of the neural network system without rules employment, tested for the
Nijmegen dataset (cross validation).

Sensitivity Specificity False positive clusters / image
0.83 0.68 2.70
0.90 0.49 425
0.96 0.36 5.90




Table 5: Performance of the proposed hybrid intelligent system tested for the MIAS dataset
(cross validation).

Sensitivity Specificity False positive clusters / image
0.84 0.90 0.80
0.91 0.86 1.15
0.94 0.66 2.70
0.97 0.55 3.55




Table 6: Performance of the proposed hybrid intelligent system tested for the MIAS dataset
(complete set).

Sensitivity Specificity False positive clusters / image
0.91 0.92 0.65
0.94 0.92 0.65
0.97 0.88 0.95

9



Table 7;

Performance of the neural network system without rules employment, tested for the
MIAS dataset (cross validation).

Sensitivity Specificity False positive clusters / image
0.82 0.68 2.50
0.91 0.62 3.00
0.97 0.58 3.30
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Fig. 8
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Fig. 12
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(Illustrations’ captions)

Figure 1: The microcalcification cluster detection system.

Figure 2: (a) An original mammogram, (b) the different objects appearing in the
binary image and (c) a zoom view in the area of the breast skinline.

Figure 3: (a) 3D intensity representation of a 300x300 pixel area, (b) calculated
object’s background intensity of the same area.

Figure 4: (a) A part of a mammogram (original image), (b) the output of the
segmentation component and (c) the binary image after small object
elimination.

Figure 5: The hybnd classification system.

Figure 6: The neural network sub-system.

Figure 7. ROC curve obtained with the hybrid intelligent system using the Nijmegen
database with cross validation.

Figure 8. ROC curve obtained with the hybrid intelligent system using the Nijmegen
database (complete set).

Figure9. ROC curve obtained with the neural network system using the Nijmegen
database with cross validation.

Figure 10. ROC curve obtained with the hybrid intelligent system using the MIAS
database with cross validation.

Figure 11. ROC curve obtained with the hybrid intelligent system using the MIAS
database (complete set)..

Figurel2. ROC curve obtained with the neural network system using the MIAS

database with cross validation.
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