PARALLEL ALGORITHMS FOR
P4-COMPARABILITY

Stavros D. Nikolopoulos and Leonidas Palios

20 - 2001

Preprint, no 20 - 01/ 2001

Department of Computer Science
University of loannina
45110 loannina, Greece

Parallel Algorithms for P,-comparability Graphs

Stavros D. Nikolopoulos and Leonidas Palios
Department of Computer Science, University of lIoannina
GR-45110 Ioannina, Greece
e-mail: {stavros,palios} @cs.uoi.gr

Abstract: = We consider two problems pertaining to Pj-comparability graphs,
namely, the problem of recognizing whether a simple undirected graph is a Fy-
comparability graph and the problem of producing an acyclic Pj-transitive orien-
tation of a Py-comparability graph. Sequential algorithms for these problems have
been presented by Hoang and Reed and very recently by Raschle and Simon, and by
Nikolopoulos and Palios. In this paper, we establish properties of Py-comparability
graphs which allow us to invent parallel algorithms for the recognition and orienta-
tion problems on this class of graphs; for a graph on n vertices and m edges, our
algorithms run in O(log® n) time and require O((n + m?)/logn) processors on the
CREW PRAM model. Thus, in view of the fact that the currently fastest sequen-
tial algorithms for these problems require O(n + m?) time, this behaviour is cost
efficient. Qur approach relies on the parallel computation and proper orientation of
the Pj-components of the input graph.

Keywords: Parallel algorithms, perfectly orderable graphs, Pij-comparability
graphs, Pj-components, recognition, acyclic Ps-transitive orientation, PRAM com-
putation.

1. Introduction

Let G = (V, E) be a simple non-trivial undirected graph. An orientation of the graph G is
an antisymmetric directed graph obtained from G by assigning a direction to each edge of
. An orientation U = (V, F) of G is called transitive if U satisfies the following condition:
if abe is a chordless path on 3 vertices in G, then ab and be, or ab and be in U, where by
uv or vu we denote an edge directed from u to v. The relation F is called a transitive
orientation of E(G) or of G [14]. An orientation U of a graph G is called Py-transitive if the
orientation of every chordless path on 4 vertices of G is transitive; an orientation of such
a path abed is transitive if and only if ﬁ? be and & or 4*a_‘!:', be and ed. The term borrows
from the fact that a chordless path on 4 vertices is denoted by Pj.

A graph which admits an acyclic transitive orientation is called a comparability graph
(12, 14]; Figure 1(a) depicts a comparability graph. A graph is a P;-comparability graph
if it admits an acyclic Pi-transitive orientation [16,17]. In light of these definitions, every

(a) (b) (c)
Figure 1: (a) a comparability graph, (b) a Fj-comparability graph,
{(c) a graph which is not Pj-comparability.

comparability graph is a Pj-comparability graph. Moreover, there exist Fj-comparability
graphs which are not comparability; Figure 1(b) depicts such a graph, which is often referred
to as a pyramid. The graph shown in Figure 1(c) is not a Pj-comparability graph.

In the early 1980s, Chvéital introduced the class of perfectly orderable graphs [5]. This
is a very important class of graphs, since a number of problems, which are NP-complete
in general, can be solved in polynomial time on its members [3, 5|; unfortunately, it is NP-
complete to decide whether a graph admits a perfect order [24]. Chvdtal showed that the
class of perfectly orderable graphs contains the comparability and the chordal graphs [3];
thus, it also contains important subclasses of comparability and chordal graphs, such as
the bipartite graphs, permutation graphs, interval graphs, split graphs, cographs, threshold
graphs [14]. Later, Hoang and Reed introduced the classes of the Pj-comparability, the Py-
indifference, the Py-simplicial and the Raspail graphs, and proved that they are all perfectly
orderable [17]. Moreover, the class of perfectly orderable graphs also includes a number of
other classes of graphs which are characterized of important algorithmic and structural
properties; we mention the classes of brittle, co-chordal, HHD-free, Meyniel N co-Meyniel,
Py-sparse, ptolemaic [14]. We note that the class of perfectly orderable graphs is a subclass
of the well-known class of perfect graphs.

Many researchers have devoted their work to the study of perfectly orderable graphs.
They have proposed both sequential and parallel algorithms for many different problems
on subclasses of perfectly orderable graphs; for example, problems for finding maximum
cliques, maximum weighted cliques, maximum independent sets, optimal coloring, breadth-
first search trees and depth-first search trees, hamiltonian paths and cycles, testing graphs
for isomorphism [1,6-10, 12, 15, 16, 19-22, 25-30, 32].

The comparability graphs in particular have been the focus of much research which cul-
minated into efficient recognition and orientation algorithms [14, 22,23, 25, 32]. Golumbic
presented algorithms for recognizing and assigning transitive orientations on comparability
graphs in O(dm) time and O(n + m) space, where d is the maximum degree of the graph’s
vertices [13,14]. Due to the work of McConnell and Spinrad [22,23], the graph modu-
lar decomposition and graph transitive orientation problems can be solved in O(n + m)
time. This gives linear time bounds for maximum clique and minimum vertex coloring
on comparability graphs, and other combinatorial problems on comparability graphs and
their complements. Recently, Morvan and Viennot [25], presented parallel algorithms for
recognizing and assigning transitive orientation of comparability graphs; their algorithms
run in Oflogn) time and require O(dm) processors on the CRCW PRAM model. They

also presented a modular decomposition parallel algorithm which runs in O(logn) time with
O(n?) processors on the same model of parallel computation.

On the other hand, the Pj-comparability graphs have not received as much attention,
despite the fact that the definitions of the comparability and the Pj-comparability graphs
rely on the same principles [11, 16,17, 29, 30]. Hoang and Reed addressed the problems of
recognition and acyclic Py-transitive orientation on the class of Pyj-comparability graphs and
they described polynomial time algorithms for their solution [16, 17]. Their recognition and
orientation algorithms require O(n*) and O(n®) time respectively, where n is the number
of vertices of G. Newer results on these problems were provided by Raschle and Simon [30);
their algorithms for either problem run in O(n + m?), where m is the number of edges of
G. Recently, Nikolopoulos and Palios [29] presented different O(n + m?)-time recognition
and acyclic Py-transitive orientation algorithms for Pj-comparability graphs of n vertices
and m edges. We note that Hoang and Reed [16, 17] also presented algorithms which solve
the recognition problem for Pj-indifference graphs in O(n®) time. The recognition and
orientation problems for Ps-indifference graphs were also studied by Raschle and Simon
[30] who achieved O(n + m?) time complexities for both problems.

In this paper, we present parallel algorithms for the recognition and the acyclic Pj-
transitive orientation problems on Pj-comparability graphs and analyvze their time and
processor complexity on the PRAM model of computation [2,4,18,31]. Both algorithms
run in O(log? n) time using a total of O((n + m?)/logn) processors on the CREW PRAM
model, where n and m are the number of vertices and edges of the input graph. They rely
on structural properties of Pj-comparability graphs, and on efficient parallel algorithms for
the computation and Py-transitive orientation of the Py-components of the input graph. To
the best of our knowledge, the currently fastest algorithms for the recognition and acyclic
P;-transitive orientation problems of Pj-comparability graphs require O(n + m?) time in a
sequential process environment [29, 30]. Thus, our algorithms are cost efficient.

The paper is structured as follows. In Section 2 we review the terminology that we will
be using throughout the paper and we state some useful lemmata. We describe and analyze
the recognition and acyclic Py-transitive orientation algorithms in Section 3 and Section 4,
respectively, while in Section 5 we conclude with a summary of our results, extensions and
open problems.

2. Theoretical Framework

Let G = (V, E) be a simple non-trivial graph on n vertices and m edges. A path in a graph
G = (V, E) is a sequence of vertices (vg,vy,...,v) such that yy_y;; € Efori=1,2,...,k;
we say that this is a path from vy to vy and that its length is k. A path in a graph &
is undirected or directed depending on whether G is an undirected or a directed graph: a
directed path (vg,v1,...,vx) is a path such that voui, viva, ..., Uk_1Uk. A path is called
simple if none of its vertices occurs more than once; it is called #rivial if its length is equal
to 0. A path (simple path) (vg,v1,...,v) is called a eycle (simple cycle) of length k + 1
if voux € E. A simple path (cycle) (vg,v1,...,vx) is chordless if vjv; € E for any two
non-consecutive vertices v;, v; in the path (cycle). Throughout the paper, the chordless
path (chordless cycle, respectively) on n vertices is denoted by F, (C,, respectively). In
particular, a chordless path on 4 vertices is denoted by Pj.

Let abed be a Py of a graph G. The vertices b and ¢ are called midpoints and the
vertices a and d endpoints of the Py abed. The edge connecting the midpoints of a Fy is
called rib; the other two edges (which are incident upon the endpoints) are called wings.
For example, the edge bc is the rib and the edges ab and cd are the wings of the Py abed.
Two Pys are called adjacent if they have an edge in common. The transitive closure of the
adjacency relation is an equivalence relation on the set of Pys of a graph G; the subgraphs
of G spanned by the edges of the P;s in the equivalence classes are the P;-components of G.
Clearly, each Pj-component is connected and for any two Pys p and g’ which belong to the
same Py-component C, there exists a sequence of adjacent Pys in € from p to g'. With slight
abuse of terminology, we consider that an edge which does not belong to any P; belongs to
a Pj-component by itself; such a component is called trivial A Fj-component which is not
trivial is called non-frivial; clearly a non-trivial Pj-component contains at least one Fy. If
the set of midpoints and the set of endpoints of the Pys of a non-trivial Pj-component C
partition the vertex set V(C), then the Py-component C is called separable.

The definition of a Pyj-comparability graph requires that such a graph admit an acyclic
Py-transitive orientation. However, Hoang and Reed [17] showed that in order to determine
whether a graph is a Pj-comparability graph one can restrict one’s attention to the Py-
components of the graph. In particular, what they proved ([17], Theorem 3.1) can be
paraphrased in terms of the Psy-components as follows:

Lemma 2.1. ([17]) Let G be a graph such that each of its Pij-components admits an
acyclic Py-transitive orientation. Then G is a Py-comparability graph.

Although determining that each of the Pj-components of a graph admits an acyclic Py-
transitive orientation suffices to establish that the graph is Pj-comparability, the directed
graph produced by placing the oriented Py-components together may contain cycles. How-
ever, an acyclic Fj-transitive orientation of the entire graph can be obtained by inversion
of the orientation of some of the P;- components. Therefore, if one wishes to compute an
acyclic Py-transitive orientation of a Py-comparability graph, one needs to detect directed
cycles (if they exist) formed by edges from more than one Pj-component and appropriately
invert the orientation of one or more of these Pj- components. Fortunately, one does not
need to consider arbitrarily long cycles as shown in the following lemma [17].

Lemma 2.2. ([17], Lemma 3.5) If a proper orientation of an interesting graph is cyclic,
then it contains a directed triangle.!

For a non-trivial Ps-component C, the set of vertices V' — V(C) can be partitioned into
three sets: the set R contains the vertices of V' — V' (C) which are adjacent to some (but not
all) of the vertices in V'(C), the set P contains the vertices of V — V(C) which are adjacent
to all the vertices in V(C), and the set () contains the vertices of V' — V/(C) which are not
adjacent to any of the vertices in V(C). The adjacency relation is considered in terms of
the input graph G.

In [30], Raschle and Simon showed that, for a non-trivial Ps- component C and a vertex
v & V(C), if v is adjacent to the midpoints of a Py of C and is not adjacent to its endpoints,
then so is v with respect to every Py in C (that is, v is adjacent to the midpoints and not

! An orientation is proper if the orientation of every Py is transitive. A graph is interesting if the

orientation of every Pi-component is acyelic.

adjacent to the endpoints of every Py in). This implies that any vertex of (7, which does
not belong to C and is adjacent to at least one but not all the vertices in V(C), is adjacent
to the midpoints of all the Fys in C. Based on that, Raschle and Simon showed that:

Lemma 2.3. ([30], Corollary 3.3) Let C be a non-trivial Py-component and R # 0.
Then, C is separable and every vertex in R is Vi- universal and Vz-null®. Moreover, no
edge between R and () ezists.

The set V; is the set of the midpoints
of all the Pys in C, whereas the set
V5 is the set of endpoints. Figure 2
shows the partition of the vertices
of a graph with respect to a separa-
ble Py-component C; the dashed seg-
ments between P and R and P and
(} indicate that there may be edges
between pairs of vertices in the cor-
responding sets. Then, a Py with at
least one but not all its vertices in
V¥ (C) must be a P; of one of the fal-

lowing types: Fiahte:d
type (1) vpqLge where ve€ V(C), pe P, q1,02 € Q
type (2) PLUpeq where pp € P, ve V(C), pp e P, g @
type (3) PLapar where jm e P, voe Vs, me P, re R
type (4) VapPTTS where e Vo, pe P, ri,7a € R
type (5) U g where re R, vwelVi, peP, g€ @
type (6) UL where re R, mely, peP, me Vs
type (7) T vl where re R, vy €Vq, w,vh €Vl
type (8) virive where r€ R, v, €V, me W

Raschle and Simon proved that neither a P; abe with @ £ V] and b, ¢ € V5 nor a P abe with
a,b € V) and ¢ € V5 exists ([30], Lemma 3.4), which implies that:

Lemma 2.4. ([30]) Let C be a non-trivial Py-component of a graph G = (V, E). Then,
no Pys of type (7) or (8) with respect to C exist.

Let us consider a non-trivial Py-component C of the graph G such that V(C) C V, and
let S¢ be the set of non-trivial Ps-components of G which have at least as many vertices as
C and have a vertex in common with C. Then, each component in S¢ contains at least one
vertex in V — V(C); otherwise, its vertex set would be equal to V(C) (it cannot have fewer
vertices than C, according to the definition of Sg), which would imply that the component
would coincide with C (see [30]), a contradiction. Since each of these components also has
a vertex in common with C, it contains a Py of type (1)-(8). Then, taking Lemma 2.4 into
account, we can partition the elements of §¢ into two sets as follows:

2

For a set A of vertices, we say that a vertex v is A-universal if v is adjacent to every element of A; a
vertex v is A-null if v is adjacent to no element of A.

o Fi-components of type A: the P; components, each of which contains at least one Py
of type (1)-(5) with respect to C;

e Py-components of type B: the Pj-components which contain only Pys of type (6) with
respect to C.

Let B be a Pyj-component which is of type B with respect to a Py-component C. Then,
the general form of a Py of type (6) with respect to C implies that every edge of B has
exactly one endpoint in V(C), that if an edge of B is oriented towards its endpoint that
belongs to V(C), then so are all the edges of B, and that the edges of B incident upon the
same vertex v are all oriented either towards v or away from it. The following lemmata
establish properties of Py-components of type A and of type B (proofs can be found in [29]).

Lemma 2.5. Let C be a non-trivial Py-component of a Fy-comparability graph G = (V, E)
and suppose that the vertices in V' — V(C) have been partitioned info sets R, P, and Q as
described earlier in this section. Then, if there exists an edge rv (where x € RU P and
v € V(C)) that belongs to a Py-component A of type A, then all the edges, which connect the
verter T to a verter in V(C), belong to A. Moreover, these edges are all oriented towards x
or they are all oriented away from x.

Lemma 2.6. Let B and C be two non-trivial Py-components of the graph G such that
|V(B)| = [V(C)| and let 8 = 3, cv(c) dB(v), where dg(v) denotes the number of edges of B
which are incident upon v. Then, B is of type B with respect to C if and only if 8 = |E(B)|.

Lemma 2.7. Let Cy, Ca, ..., Cp be the non-trivial Py-components of a graph G ordered by
increasing verter number and suppose that each component has received an acyclic Py-tran-
sitive orientation. Consider the set S; = {C; | j < i and C; is of type B with respect to C;}.
If the edges of each Pyj-component C; such that S; # 0 get orienfed fowards their endpoint
which belongs to V(C;), where i = min{j |C; € S;}, then the resulting directed subgraph of
G spanned by the edges of the C;s (1 <1 < h) does not contain a directed cycle.

Notation. Let G be a simple graph with vertex set V' and edge set E. Hereafter, the
subgraph of G induced by a vertex subset S C V is denoted by G[S] and the subgraph
spanned by an edge subset W C E is denoted by G{5).

Moreover, with slight abuse of notation, in the following we use vertices or edges to
index arrays.

3. Fi-comparability Graph Recognition
We will assume for the time being that the input graph is connected; the case of a discon-
nected input graph is addressed in Section 3.5. So, let G = (V| E) be a connected simple
graph on n vertices and m edges. Then, n = O(m) and logn = ©(logm). Let E¢ and Er
be the sets of the edges of all the non-trivial and trivial Pj-components of G respectively;
because the edges in ET span trivial Pj-components, we will refer to these edges as frivial
edges. Since an edge belongs to exactly one Fy-component, it follows that £ = Ec U Er.
Before presenting the algorithm, we will describe the preprocessing. In order to save on
the number of processors, we need to be able to determine in constant time the rank of a

vertex in the adjacency list of one of its neighbors. To be able to do that, we construct a
(2m)-array of edges where we place each edge twice, once for each of the two orderings of
the two vertices to which it is incident; so an edge incident upon the vertices x and y, will
contribute two entries, one for ry and another for yx. Then, we sort the elements of the
array based on the index of the first of the two vertices that correspond to the entry; note
that the entry which corresponds to zy will be sorted based on the vertex z, whereas the
one corresponding to yz will be sorted based on y. After the sorting, all edges incident upon
the same vertex occupy consecutive places in the array. Thanks to this sorted array, the
rank of a vertex in the adjacency list of one of its neighbors can be computed in constant
time. For example, the rank(z, y) of the vertex y in the adjacency list of £ can be computed
by adding 1 to the difference of the position of the edge zy in the array minus the minimum
position of any edge incident upon z.

The above array can be initialized in O(1) time using O(m) processors on the EREW
PRAM model, or in O(log® n) time using O(m/ log® n) processors. The sorting can be done
in O(logm) = O(logn) time using O(m) processors on the CREW PRAM model, or in
O(log® n) time using O(m/log n) processors on the same model (2,18, 31].

Our Fy-comparability graph recognition algorithm involves the following algorithmic
steps.

Algorithm for the Recognition of a Py-comparability Graph G (P4G-REC)

1. Construct an auxiliary graph G which has m vertices U, U, .-y Um; the Vertex g
corresponds to the edge e; of G. Two vertices u; and u; are adjacent in G iff the
corresponding edges e; and e; form a P; which is contained in a P of G.

2. Compute the connected components of the graph E; the edges corresponding to the
vertices of each connected component span a Pj-component of &. Then, find a Ps-
transitive orientation for each Pj-component. If a Fy-component cannot admit a
Fj-transitive orientation, then G is not a Py-comparability graph; exit.

3. Compute appropriate inversions (if needed) of the orientation of the non-trivial Fy-
components of G so that if G is a Pj-comparability graph then the directed graph
G(Eg), spanned by the edges of its non-trivial Pj-components, is acyclic.

4. For each trivial edge zy (i.e., zy € Et), check if there exists a directed path from z to
y, or from y to x; in the former case orient the edge towards y, in the latter towards
z. If during this process, a directed triangle (C3) or a directed Cj is formed, then G
is not a Py-comparability graph; exit.

We note that in order to determine if G is a Pj-comparability graph, it would suffice to
check whether the Fj-transitive orientation of each Pj-component (after Step 2) is acyclic
(Lemma 2.1). Finding a cycle can be done either by computing the transitive closure of
each Pj-component or by a method similar to Step 4 above (if this approach is used before
Step 3 — that is, the Py-components have not received compatible orientations —, then a
trivial edge may be assigned opposite orientations by different Py-components; because this
does not necessarily imply that the input graph is not a Fj-comparability, we need to keep
different copies of the trivial edges, which results into high cost.) Both approaches exhibit
high time and processor complexities.

Steps 1 and 2 correctly compute and orient the Py-components of the input graph G; note
that if an edge is assigned incompatible orientations (for example, if the graph contains a
Cs) then G is not a Py-comparability graph and the algorithm terminates. Step 3 computes
appropriate orientation inversions of the non-trivial Py-components based on Lemma 2.7
which guarantees that if G is a Py-comparability graph then the resulting directed graph
spanned by the edges of the non-trivial Fij-components has an acyclic Py-transitive orien-
tation. So, if G is a Pj-comparability graph, then no directed C3 or C; exists (otherwise
a directed cycle would exist), and our algorithm correctly identifies the input graph as a
Py-comparability graph. If G is not a Py-comparability graph, then either there will be in-
compatibilities in the assignment of orientations to the edges (which is detected in Step 2),
or there is a directed ¢ycle in a non-trivial Pj-component; thus, there exists a directed cycle
in G{E¢) (Step 3 terminates even if G is not a Pj-comparability graph). If there exists a
directed C3 or Cy in G{E¢g)}, it will be immediately detected and the input graph will be
correctly characterized. If there exists a longer cycle, then every triple of consecutive edges
of the cycle cannot span a P; and hence there exist chords which will receive compatible
orientation in Step 4 and will result in the formation of a directed Cs or Cy; again, the
input graph is correctly characterized.

A parallel implementation of each step of the proposed algorithm is presented in the
following paragraphs.

3.1. Construction of the Graph G. In the construction of the graph G, we use two
auxiliary arrays for each vertex of the input graph G and an (m x m)-array M. Namely, for
vertex v of G, we use an n-array D, and an array L, of size 2m x degree(v). The array D,
contains information about the vertices of G at the 1st and 2nd level of the BFS tree T}, of
G rooted at v. In particular, D,[z] = 1, Dy[y] = 2, and D,[z] = 3 iff = is a vertex of the
1st level of T,,, y is a vertex of the 2nd level which is incident upon no vertices in the 3rd
level, and z is a vertex of the 2nd level which is incident upon a vertex in the 3rd level; for
the remaining vertices, the corresponding entry of D, is equal to 0. The array L, helps us
avoid simultaneous memory accesses for write operations and so does the array M.

The construction algorithm works as follows:
Algorithm for the Construction of the Graph G (G.HAT)

1. Construct a graph G with m vertices U1, Uz, ..., Uy and no edges (the vertex uy;
corresponds to the edge e; of G);

2. Compute the arrays D, for each vertex v of G: initialize to 0 all the entries of the
arrays L, for each vertex v of G and of the array M;

3. For each vertex v of the graph &, do in parallel
3.1 for each edge xy of the graph G, do in parallel

(a) if Dylx] =1 and Dy[y] = 3, then
M|e;, €] := 1, where e; = vz and e; = zy;

(b) if Dy[z] =3 and D,[y] = 1, then
M{e;, ej] := 1, where ¢; = vy and e; = Ty;

(¢) if Dylz] =2 and Dy,[y] = 2, then
for each vertex w adjacent to v, do in parallel

if Dy [z] =1 and Dy[y] # 1, then Ly[zy, rank(v, w)] := 1;

a a a
b / /
[“*C

".‘iﬂ £ -id"
S d i
(a) (b) (c) (d) (e) (f)

Figure 3: The different positions of a Py abed in the BFS tree T,,.

if Dylz] # 1 and Dy [y] = 1, then Ly[yz, rank(v, w)] := 1;
3.2 for each vertex w adjacent to v, do in parallel
for each vertex z, do in parallel
check if there exists an entry in the subarray L,[z#, rank(v, w)] equal
to 1; if yes, M[e;, e5] := 1, where e; and e; are the edges of G
connecting v and w, and w and r respectively;

4. Fori=1...m do in parallel
for j =1...m do in parallel .
if Mle;,e5] =1 or M(ej, &) = 1, then add the edge w;u; in G;

We observe that the gapdllﬁ has m vertices and O(nm) edges. The correctness of the
construction algorithm of G follows from the fact that both Pss of each Py of the graph G
are taken into account. To see this, consider a Py abed of the graph G. We will show that
the vertices of G corresponding to the edges ab and be will be adjacent in G : the case for
the edges be and ed is similar. Since the algorithm processes all the vertices of G in Step 3,
it will process the vertex a too. Let us investigate the different positions that this path may
assume in the BFS tree T,. Clearly, the vertices a, b, and ¢ have to belong to the Oth, 1st,
and 2nd level respectively; the vertex d may belong to the 2nd or 3rd level, but not to the
1st level since d is not adjacent to a. All the possible positions of the path are shown in
Figure 3; the solid lines, the slanting dashed lines, and the horizontal lines represent tree
edges, cross edges, and level edges respectively. In the first four cases of Figure 3, the Py abc
will be recorded in G by means of the Substeps 3.1{a)-(b); the final two cases of Figure 3
are covered by the Substeps 3.1(c) and 3.2.

Time and Processor Complexity. We shall use a step-by-step analysis.

Step 1: A graph with m vertices and no edges can be constructed in O(1) time using O(m)
processors on the EREW PRAM model.

Step 2: The initialization of all the arrays L, (Vv € V) can be carried out in O(log® n)
time using O((n+m?2)/ log®n) = O(m?/ log® n) processors since the total number of entries
of these arrays is 4m?. Similarly, the array M can be initialized in O(log®n) time using
O(m?/log®n) processors. Next, we present a CREW PRAM computation of the n-array
D, where v € V(G). We will use the array L, (that we saw earlier) and another auxiliary
array N, of size 2m. In the array N,, we mark the edges connecting a vertex of the 2nd
level of T, to a vertex of the 3rd level of T,,. We work as follows:

Computation of all the vertices of the 1st and 2nd levels of T),:
(i) we initialize to O all the entries of the arrays D, and L, for all v € V:

(ii) for each vertex x, we do:
(a) if rank(v,z) > 0 (i.e., v and = are adjacent), then Dy[z] := 1;
(b) else for each vertex y adjacent to z, we do
if rank(v,y) > 0 (i.e., vz € E, vy € E), then L,[zy, rank(v,y)] :== 1;
(c) we check whether there exists an entry in the subarray L,[z+,] with value equal
to 1; if there exists, then we set Dy[z] := 2; {not necessarily the final value}

Computation of all the 2nd level vertices, which are adjacent to vertices of the Srd level:
(iii) we initialize all the entries of N, to (;

(iv) for each edge zy, we do:
if Dy[z] =2 and D,[y] =0, (i.e., = in 2nd, y in 3rd level), then N,[ry] := 1;
if Dy[z] =0 and Dy[y] =2, (i.e., z in 3rd and y in 2nd level), then N,[yz] := 1;

(v) for each vertex x, we check whether there exists an entry in the subarray N, [z+] with
value equal to 1; if there exists, (i.e., & is adjacent to a vertex in the 3rd level of T},),
then we set Dylz] := 3;

By the end of steps (i)-(v), the arrays D, are correctly updated. In steps (ii)(c) and (v), the
test whether there is an entry equal to 1 in the subarrays L,[z*, #] and N,[z«], which are of
sizes degree(z) x degree(v) and degree(z) respectively, is done by means of an interval prefix
computation on the entire arrays L, and N, which are of sizes 2m x degree(v) and 2m
respectively; the interval prefix computation on an array of N elements can be carried out
on the EREW PRAM in O(log N) time with O(N/ log N') processors [2, 18], or in O(log” N)
time with O(N/ log® N') processors. Thus, the arrays D, can be computed for all the vertices
v of G in O(log®n) time using a total of O(m?/log®n) processors on the CREW PRAM
model; note that logn < log(m x degree(v)) < logn®.

Step 3: It is not difficult to see that Substep 3.1 can be executed in O(log® nm) time using
O(nm/ log® nm) processors on the CREW PRAM model. The maximum in Substep 3.2,
is computed by using interval prefix computation. Thus, the processing takes O(log®n)
parallel time and requires O(m?/ log® n) processors on the CREW PRAM model.

Step 4: Step 4 can be executed in O(1) time using O(m?) processors on the EREW PRAM
model, or in O(log? n) time using O(m?/ log? n) processors on the same model.

Thus, we have proved the following result.
Theorem 3.1. Let G be a connected simple graph on n vertices and m edges. Algo-

rithm G_HAT constructs the graph G of G in O(log® n) time using a total of O(m?/log® n)
processors on the CREW PRAM model.

3.2. Pj-transitive Orientation of each Pj-component. The algorithm relies in the
computation and processing of the connected components of the graph G': note that the
edges of G corresponding to the vertices of such a component span a Pj-component of G.

10

Algorithm for the Py-transitive Orientation of each Py-component (P{C_TRQ)
1. Compute the connected components 6‘1, o i (j'g of the graph E

2. For every connected component C;, 1 < i < £, do in parallel
compute a spanning tree T; of C; and the set B; of its non-tree edges;

d. For every tree T;, 1 < i < £, do in parallel

Construct the tree R; using the tree T; as follows:

3.1 for every vertex u of T; which corresponds to the edge zy of G, do in parallel
add two vertices a, and by in V(R;);
add the edge a,b, in E(R;);
set Ibl(ay) := = and Ibl(b,) := y;

3.2 for every edge uv of T; where u and v correspond to the edges zy and yz of G,

do in parallel

if Ibl(ay) = y, then a := a, else a := by;
if Ibl(a,) = y, then b := a, else b := b,;
add the edge ab in E(R;); {note that, Ibl(a) = Ibl(b) = y}

4. For every tree Ry, 1 < i < £, do in parallel
4.1 root the tree R; at an arbitrary vertex r;
4.2 for every vertex v of R;, do in parallel
while p(v) and p(p(v)) are defined and Ibl(p(v)) = Ibl(p(p(v))) do
set p(p(v)) to be the parent of v; {p(v) denotes v’s parent in R;}
4.3 for every vertex v of R;, do in parallel
if v is a leaf and Ibl(v) = Ibl(p(v)), then delete v from R;; {note: v # ry}

5. For every tree B;, 1 <1 < £, do in parallel
5.1 compute the level of each vertex of the tree R;:
5.2 for each edge ab of H;, do in parallel
if level(a) is even, then orient edge ab away from a;
otherwise, orient edge ab towards a;

6. For every component Ci,1<i<é doin parallel
6.1 if for every pair of edges ab and cd in R; such that {bi(a) = Ibl{d),
and Ibl(b) = Ibl(c), it holds that ab, cd (or ab, cd),
then R; is a “good-R;" tree;
6.2 for every edge uv of B; where u and v correspond to the edges zy and yz of G,
do in parallel
if for every pair of edges ab and cd in R; such that Ibl(a) = =,
Ibl(b) = Ibl(c) = y and 1bl(d) = z, it holds that ab, cd (or ab, cd),
then R; is a “good-B;" tree;

7. If there exists a tree R;, 1 <1 < £, which is not a “good-R;"” or a “good-B;" tree, then
(7 is not a Pj-comparability graph;

Time and Processor Complexity. We now compute the time and processor complex-
ity of the proposed parallel algorithms on the CREW PRAM model of computation. We
shall use a step-by-step analysis.

11

Step 1: The graph G has m vertices. Thus, the connected components Cl Ca, ..., Ciof
the graph G can be computed in O(log® m) time using a total of O(m?/ log® m)]I)I‘{ZJCESS{)I'S
on the EREW PRAM model [26].

Hereafter, m; denotes the number of vertices of the connected component . 1Ligh
Step 2: A spanning forest of a graph on N vertices is computed in O{lﬂg2 N) time using a
total of O(N?/ log? N) processors on the EREW PRAM model [26]. (Note that an algorithm
that finds a spanning forest of a graph also finds the connected components of this graph; the
converse, however, is not necessarily true.) The number of vertices of the component C‘i of
the graph G is m;; thus, a spanning tree T; of the component 5 is computed in D{lﬂg m;)
time using O(m?/ log® m] processors, 1 < i < £. Since m; + ma + ...+ my < m, we obtain
that the whole substep can be executed in O(log®?m) time using a tutal of G{m%‘ log® m)
processors. (We use a dummy vertex w and make it to be adjacent with a vertex of each
connected component C, Ca, ..., Cy; vertex w connects Cy, G, ..., C; into a connected
component C; then, we cumpute a spanning tree of C, we delete the vertex w, and we have
the connected components of the resulting graph.)

Step 5: The connected component 6',: of the graph G has m; vertices, and, thus, T; is a
tree on my; vertices and m; — 1 edges, 1 < i < £. Clearly, since my +ma + ... +mg < m,
both Substeps 3.1 and 3.2 are executed in O(log?m) time using a total of O(m?/log®m)
processors on the EREW PRAM model. (We use the array packing technique to compute
the sets V' (R;) and E(R;) for each tree B;, 1 <i < £.)

Step 4: Rooting a tree with NV vertices can be optimally done on the EREW PRAM using
the Euler-tour technique; that is, this computation needs O(log V) time and O(N/log N)
processors [18]. Thus, Substep 4.1 is executed in O(log® m) time using a total of O(m?/ log® m)
processors on the EREW PRAM model. (Let ry,ra,...,r¢ be arbitrary vertices of the trees
Ry, R, ..., Ry, respectively; we use a dummy vertex w and make it to be adjacent to the
vertices ry, T, ..., Tg; vertex w connects R, Ha, ..., Ry into a tree R; then, we root the tree R
at vertex w; we compute the subtrees R;, Rs,..., By of the tree R rooted at ry.1ra,...,7g,
respectively.) Substep 4.2 implements the pointer jumping technique on RB;, 1 < i < #; this
technique on a tree of N vertices needs O(log N) time and O(N) processors on the CREW
PRAM model [2,18]. The tree R; has m; vertices; thus, Substep 4.2 is executed in O(log m)
time with O(m) processors on the CREW PRAM model. Substep 4.3 is clearly executed
in O(1) time with O(nm) processors, or in O(log® n) time using a total of O(nm/ log® n)
processors on the EREW PRAM model.

Step 5: Since computing the level function of a tree on N vertices can be done on the EREW
PRAM in O(log N) time with O(N/log N) processors using the Euler-tour technique [18],
Substep 5.1 requires O(log? m) time and O(m?2/log? m) processors on the EREW PRAM
model. (Let rq,r2,...,r¢ be arbitrary vertices of the trees Ry, Ra,..., Ry, respectively;
we use a dummy ve:rtex w and make it to be adjacent to the roots ry,ra,..., 7y vertex w
connects Ry, Ra, ..., Ry into a tree R; then, we compute the level of each vertex Df the tree R
rooted at vertex w, which is 1 plus the level of the vertex in the tree F; to which it belongs.)
Regarding Substep 5.2, we note that, after executing Substep 4.3, the number of vertices
in each tree R; equals the number of edges in its corresponding connected component Cj,
1 < i < /; that is, each tree F; contains at most 2m; vertices. Thus, this substep can be
executed in O(log® m) time using a total of O(m/ log® m) processors on the CREW PRAM
model.

12

Step 6: Consider the following implementation of this step on the EREW PRAM model:
Substep 6.1:

(i) construct the vertex sets W) and W5 such that:
Wi contains all the vertices a of R, Ha,..., Ry such that level(a) = even:

Ws contains all the vertices b of the same trees such that level(b) = odd;

(ii) construct an auxiliary (2m x m)-array L such that:
Llab, zy] = 1, iff ab is an edge in some R;, a € Wy, [bl(a) = = and [bl(b) = y;
Llab, zy] = —1, iff ab is an edge in some R;, a € Wy, lbl(a) = y, Ibl(b) = z;
initially, all the entries of the array L are 0; note that, a € W) implies ab;

(ili) compute the maximum and minimum among the elements of each column zy of the
array L; let them be max(zy) and min(zy) respectively;

(iv) for every column zy of the array L, do
if max(zy) < 0 or min(zy) = 0 then
set good-R := true; {i.e., all the R;s are “good-R;” trees}

If at the end, good-R = true, then the edges of the input graph G which correspond to the
edges of all the R;s are compatibly oriented.

Let us now compute the time and processor complexity of this procedure. Substep (i):
We have seen that the trees Ry, Rs,..., Ry contain O(m) vertices in total. Thus, the vertex
sets Wy and Ws can be constructed in O(1) time with O(m) processors, or in O(log” n) time
with O(m/log®n) processors on the EREW PRAM model. Substep (ii): It is easy to see
that the array L can be computed in O(1) time with O(m?) processors, or in O(log” n) time
with O(m?/log®n) processors on the EREW PRAM model. (Note that since the tree R;
has at most 2m; vertices and thus O(m;) edges, the array L suffices to accommodate all
pairs of an edge of a tree R; and an edge of G.) Substep (iii): The maximum and minimum
among m elements are computed in O(log? m) time with O(m/log? m) processors on the
EREW PRAM model. Substep (iv): Obviously, this substep is executed in O(log® m) time
with O(m/ log® m) processors on the EREW PRAM model. Thus, the entire Substep 6.1 is
executed in O(log? n) time using a total of O(m?/ log® n) processors on the EREW PRAM
model.

Substep 6.2: After the (successful) completion of Substep 6.1, all the edges of the Py-
components of G have been assigned an orientation. So, in order to complete this substep,
we need to check for every edge of every set B;, which corresponds to a F;, say, ryz,
whether the edges zy and yz have compatible orientations. If it is so for all these edges,
then a variable good-B is set to true. (This means that all the trees R; are good-B; trees.)

Step 7@ Thanks to the variables good-R and good-B of the previous step, Step 7 can be
executed in constant sequential time by simply checking whether they are both true.

Taking into consideration the time and processor complexity of each step of the algo-
rithm P4C_TRO, we conclude that:

Theorem 3.2. Algorithm P4{C_TRO runs in O(log® n) time using a total of O(m?/log® n)
processors on the CREW PRAM maodel.

13

Corollary 3.1. The non-trivial Py-components of a connected simple graph G on n vertices
and m edges can be computed and Py-transitive oriented in O(log® n) time using a total of
O(m?/log® n) processors on the CREW PRAM model.

3.3. Combining the P;-transitive orientations of the F;-components. The algo-
rithm relies on Lemma 2.7 and it is using three auxiliary arrays: an (n x k)-array A, an
(m x k)-array B, and a (k x k)-array H, where k is the number of non-trivial Py-components
of the input graph . The array A records to which Pj-components a vertex belongs; if
vertex v is a vertex of the i-th Pj-component, then the entry Alv, i] is equal to 1, otherwise
it is 0. The array B records the Pj-components to which an edge is adjacent, that is, the
components which contain one of its endpoints (note that the general form of the Pys of
type (1)-(6) with respect to a Psj-component C implies that at most one of the endpoints
of an edge of such a Py belongs to C); the corresponding entries are equal to 1 while the
remaining ones are equal to 0. The array H stores for a Pj-component C the Pi-components
C’' is of type B such that C is of type B with respect to C’; then, the entry in the row corre-
sponding to the Pj-component C and the column corresponding to the Py-component (' is
1.

Algorithm Fy-Transitive Orientation of all the Py-components (P4C_ALL_TRO)

1. Sort the non-trivial Py-components of the graph G in increasing order of their vertex
number; let them be C;, Ca, ..., C; in that order;

2. Initialize all the entries of the arrays A, B, and H to 0; Set H[i,i] := 1;
For each Fy-component C; (1 <1 < k) do in parallel
form a (2m)-array containing the vertices of the m; edges of C; (1 <1 < k);
sort this array, use array packing on the sorted array, and
update the corresponding entries of the array 4;

3. For every Py-component C;, 2 < i < k, do in parallel
3.1 for every edge zy of C;
for every Pj-component C;, 1 < j < 1, do in parallel
if Alz,j] =1or Aly,j] =1 (i.e., z or y belongs to C;)
then Blzry,j] := 1;
3.2 for every Pj-component C;, 1 < j < i, do in parallel
if all the entries of B for the rows which correspond to all the edges of (;
and the column which corresponds to C; are equal to 1,
then Hi, j] :=1; {C; is of type B w.r.t. C;}
3.3 find the minimum among the indices of the non-zero entries in H[i, #]; let it be i;
3.4 if i # i then
for each edge xy of C;, do in parallel
if A[z,i] =1 (ie., z is a vertex of C;)
then orient the edge zy towards z:
otherwise orient ry away from x;

Time and Processor Complexity. We now compute the time and processor complex-
ity of the proposed parallel algorithm on the CREW PRAM model of computation.

14

Step 1: It is well known that N elements can be sorted in O(log V) time with O(N)
processors on the CREW PRAM model [2,18]. Thus, this step is executed in O(logm)
time with O(m) processors on the same model of computation; note that 1 < k < m.

Step 2: The initialization of the arrays A, B, and H can be done in O(1) time using
O(kn + km + kk) = O(m?) processors on the EREW PRAM model; equivalently, it can be
done in O(log® n) time using O(m?/ log® n) processors on the same model.

Sorting the array of size 2m containing vertices of C; takes O(logm) time using O(m)
processors on the CREW PRAM model. Array packing on the sorted array takes O(logm)
time using O(m/ log m) processors on the EREW PRAM model. The entries of the array A
are updated in constant time using as many processors as the size of the packed sorted
array corresponding to C;; hence, O(m) processors suffice. Thus, the Py component C; can
be processed in O(logm) time using O(m) processors on the CREW PRAM model. Since
log m = ©(logn) because the graph & is connected, the processing of C; can be completed
in O(logn) time using O(m) processors, or in O(log®n) time using O(m/logn) processors
on the CREW PRAM model. Summing over all Py-components, Step 2 can be executed in
O(log®n) time using O(m?/logn) processors on the CREW PRAM model.

Step 3: Substep 3.1 can be completed in O(1) time using O(im;) = O(mm;) proces-
sors, or in O(log® n) time using O((mm;/ log® n) processors on the EREW PRAM model.
Substep 3.2 can be accomplished by computing the minimum of the subarrays Blzy, j]
(1 < j < i), where zy € E(C;); if the minimum of such a subarray is equal to 1, then
all the entries of the subarray are equal to 1, otherwise there exists at least one which
is not. Since the minimum value of the entries of an array of size N can be computed
in O(log V) time with O(N/log N) processors on the EREW PRAM model, then this
computation for C; on all the above subarrays can be executed in O(logm;) time using
O(im;/logm;) = O(mmy/logm;) processors on the EREW PRAM model. This implies
that it can be executed in O(logn) time using O(mm;/ logn) processors, or in O(log® n)
time using O(mm;/log®n) processors on the EREW PRAM model. In a similar fash-
ion, in Substep 3.3, computing the minimum index of a non-zero entry in HJ[i, =] takes
Ol(logk) = O(logm) time using O(k/logk) = O(m) processors on the EREW PRAM
model, which implies that it can also be done in O(log®n) time using O(m,/ logn) proces-
sors on the same model. Finally, Substep 3.4 can be carried out in O(1) time using O(m;)
processors, or O(log? n) time using O(m;/ lug?n} processors on the EREW PRAM model.
Summarizing, since Step 3 involves the execution of the above tasks for (nearly) all the
non-trivial P;-components (whose number k is O(m)), it will take O(log®n) time using
O(m?/log® n) processors on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.3. Given an acyclic Py-transitive orientation of the Py-components of a con-
nected simple graph G, Algorithm P{C_ALL_TRO produces an acyclic Py-transitive orien-
tation of the graph G(Ec) in O(log*n) time using a total of O(m?/log®n) processors on
the CREW PRAM model.

3.4. Detecting directed cycles in P;-components. We have shown that if the input
graph G is a Pj-comparability graph, then Algorithm P4C_ALL_TRO produces an acyclic
Fy-transitive orientation G(fé} of the graph G{E) spanned by the edges of the non-trivial
Pij-components of G. If G is not a Fj-comparability graph then a non-trivial F;-component

15

of G either cannot admit a Py-transitive orientation or contains a directed cycle. Whether
each non-trivial Py-component admits a Py-transitive orientation is determined during the
execution of Algorithm P4C_TRO; if not, the algorithin stops reporting that the input
graph is not a Py-comparability graph. Therefore, the recognition will be complete after we
check whether there exists a directed cycle in the Pj-transitive orientation of the non-trivial
FPj-components. In order to do this, we use an algorithm which orients trivial edges of G by
means of an iterative procedure, thus gradually shrinking directed paths (cycles) to directed
paths (cycles) of length at most 2 (4). The oriented trivial edges are added to the set Ec
producing a set EHE-

Algorithm for the Detection of Directed Cycles in the Py-components of G (P4C_DDC)
1 ._E'_I}C = E_é;

2. Repeat
21 Q=9 -
2.2 for every edge Ty in Ef do in parallel
for every vertex z of G adjacent to y do in parallel
if the edge zz is an edge of G
then if the edge rz has not yet been oriented
orient it from to z, and add zz to Q;
else if it is oriented from z to z
there exists a directed cycle; exit;
2.3 for every edge Ty in E—‘g do in parallel
for every edge ab of G do in parallel
if there exists an edge between a and z and it is az and
there exists an edge between y and b and it is ?,‘r_ﬁ then
then if the edge ab has not yet been oriented
orient it from a to b, and add ab to Q;
else if it is oriented from b to a
there exists a directed cycle; exit;
if there exists an edge between a and y and it is ya and
there exists an edge between z and b and it is
then if the edge ab has not yet been oriented
orient it from b to a, and add ab to Q;
else if it is oriented from a to b
seg mo g there exists a directed cycle; exit.
24 Eo:=EpUQ;
until Q = 0;

The following lemma is crucial for the operation of the algorithm.
Lemma 3.1. For every chordless directed path p of the graph G{Fc} whose length is at
least 4, one iteration of the repeat loop of Algorithm P{C_DDC produces another directed

path on edges of the graph G with the same endpoints as p and whose length does not exceed
5/6 of p's length.

16

Proof: Let the length of the path p be k; then £ > 4. We see p as the concatenation
of |k/3] directed Pis of G{Ec), followed by at most two additional edges. Since none of
these directed Pys is a Py of the input graph G (because of the orientations of its edges),
each such directed Py has a chord, which is a trivial edge. The edge may span two or three
edges of the directed Py; in either case, this edge will be assigned an orientation at the
execution of the repeat loop (see Substeps 2.2 and 2.3). In this way, there is a directed edge
“short-cutting” two or three edges for every one of these directed Pys. Thus, a new directed
path of length at most k — |k/3] = [2k/3] with the same endpoints as p is produced. Since
[2k/3] < (2k +2)/3 < 5k/6 for k > 4, the lemma follows.

The correctness of the algorithm is established by the following two lemmata.

Lemma 3.2, .fiigaﬂffhm P4C_DDC (upon completion) has oriented every trivial edge for
which the graph G{E¢) contains a directed path from one endpoint of the edge to the other.

Proof: Consider a trivial edge zy such that there exists a directed path from z to y in the
graph G{E_é}. Then, there is a chordless such path; let it be p. Then, the algorithm will
process p as described in Lemma 3.1 thus resulting in a cordless directed path from x to y
of length less than 5/6 of the length of p. Repeating this over and over, the resulting path
will eventually be of length 2 or 3, when this process can no longer be applied; then, the
edge ry will be oriented from z to y.

Lemma 3.3. Algorithm P{C_DDC correctly identifies whether the graph G{EE} contains
a directed cycle.

Proof: If G{ET:} contains a cycle, then the algorithm will shrink it as described in
Lemma 3.1, eventually yielding a directed triangle (P3;) or a directed P;. But then, the
directed P; or directed Py will be detected by the algorithm, and the input graph will cor-
rectly be characterized as not being a Pj-comparability graphs. On the other hand, if the
algorithm reports that there exists a directed _c;;cle, then it detected either a directed P or a
directed Py; this may either belonged to G(E¢), or was formed by edges that were oriented
because there was a directed path in G{Ec) leading from one of their endpoints to the
other. In either case, G {Fg} contains a directed cvcle, and thus the algorithm responded
correctly. g

Time and Processor Complexity. = We mention that each of the sets E_'g and @ of
edges is maintained as an array of size m (one for each edge of G) where it is recorded
whether the corresponding edge belongs to the set. Moreover, Lemma 3.1 implies that the
number of iterations of the repeat loop is Oflogm) = O(logn): the length of the longest
directed path (or cycle) is O(m), and at every iteration each directed path is “short-cut”
by a directed path of length which is at most a constant factor (less than 1) of the length
of the previous path.

Step 1: It is easy to see that this step can be executed in O(1) time with O(m) processors
or in O(log® n) time with O(m/ log®n) processors on the EREW PRAM model.

Step 2: Substep 2.1 takes constant time using O(m) processors on the EREW PRAM
model. Substep 2.4 can be executed in the same time and processor complexity on the

EREW PRAM model, in light of the way the sets E‘g and) are maintained.

17

Considering a single iteration of the repeat loop, we note that Substeps 2.2 and 2.3
involve O(nm) tests and O(m®) tests respectively. Because of the way the set @ is main-
tained, adding an edge to @ takes constant time on the EREW PRAM model. Therefore, if
assigning an orientation to an edge is done in constant time on the CREW PRAM model,
then each iteration of the repeat loop can be executed in O(1) time using O(m?) processors,
or in O(logn) time using O(m?/logn) processors on the CREW PRAM model. Assigning
the orientation of an edge in a brute force manner does it in constant time, but it has
the risk of concurrent write operation on the same memory location. We show next that
this can be avoided by maintaining for each edge e an array K.[l..m] which records the
different orientations that are assigned to e; the array K_[1..m] is cleared to 0 for all the
edges of G at the beginning of every iteration of the repeat loop. In particular, if a directed

path uwv assigns the orientation uv (Substep 2.2), then the entry K, [uw] is set equal to

1; if a directed path vpqu assigns the orientation uv (Substep 2.3), then the entry Ky, [pq]
is set equal to -1. [t is not difficult to see that the above method ensures exclusive write. In
Substep 2.2, only entries of the form K.[e'], where the edges e and ¢ are adjacent, are filled.
Such an entry, however, is filled (if ever) during the consideration of a single directed path.
For example, the entry K, [uw] is filled during the consideration of the directed path uwwv,
if such a path exists. In Substep 2.3, only entries of the form K,[e'], where the edges e
and €' are not adjacent, are filled. Such an entry, however, is filled (if ever) during the
consideration of a directed path with the four vertices of the edges e and ¢’. There may be
only two such paths, but it turns out that they cannot exist simultaneously. For example,
the entry Ky,[pq] is filled during the consideration of either the directed path upqu or the
directed path ugpv. However, if both of these paths exist then the triangle upg forms a
directed triangle, which would have been detected during the execution of Substep 2.2 at
the same iteration, and thus the algorithm would have stopped and would not have entered
Substep 2.3. Finally, since different sets of entries of the array K, are filled in Substep 2.2
and 2.3, there cannot be loss of information due to overwriting during the same iteration.

Let us now see how the orientation of an edge can be extracted from the array K..
At the end of each iteration of the repeat loop, this array may contain Os, 1s, and -1s. If
it contains both 1s and -ls, then there have been incompatible orientation assignments.
In order to detect that, we compute the maximum and the minimum of the elements in
the array. If the maximum is equal to 1 and the minimum is equal to -1, then there is
incompatibility in the assigned orientations. This implies that there is a directed cycle in a
Pj-component and that the input graph is not a Py-comparability graph. If the maximum
is equal to 1, then the final orientation is wv. If the minimum is equal to -1, then the
final orientation is uv. (In the remaining case when both the minimum and the maximum
are equal to (), nothing is done, since no orientation has been assigned during the current
iteration of the repeat loop.) Since the minimum and the maximum of the elements of
an array of size N can be computed in O(log N) time using O(N/log N) processors on
the EREW PRAM model, deciding the orientation of an edge takes O(logm) time using
Q(m/ logm) processors on the EREW PRAM model. Taking into account the time and
processor complexities of the Substeps 2.1-2.4 and the complexity of the handling of the
arrays K., and that for a connected graph on n vertices and m edges, O(log m) = O(logn),
we have that the execution of one iteration of the repeat loop can be completed in O(logn)
using O(m?/ log n) processors on the CREW PRAM model. Since the number of iterations
is O(log n), this implies that the entire Step 2 takes O(log” n) using O(m?/ log n) processors

18

on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.4. It can be decided whether the Py-components of a connected simple graph on
n vertices and m edges contain directed cycles in O{lﬂg2 n) time using a total of O(m?/logn)
processors on the CREW PRAM model.

Our results from Section 3 imply the following theorem.

Corollary 3.2. It can be decided whether a connected simple graph on n vertices and m
edges is a Py-comparability graph in O(log® n) time using a total of O(m?/ logn) processors
on the CREW PRAM model.

3.5. The Case of a Disconnected Input Graph. If the input graph is disconnected,
we compute its connected components, and apply the Algorithm P4G_REC in each one
of them. The connected components can be computed in O(log®n) time using O((n +
m)/logn) processors on the EREW PRAM model [20]. If n; and m; are the number of
vertices and edges of the i-th connected component, then its processing requires C'l[lng2 ;)
time using O(m?/ log n;) processors on the CREW PRAM model (Corollary 3.1). If m; > n,
then m; = ©(n), and hence O(m?/logn;) = O(m?/logm;) = O(m?/logn), since logn; =
log m;. Moreover, log? n; = O(log® n). If m; < n, then we can batch log® n/ log® n; tasks of
unit time duration and assign them to a single processor; in this way the needed processors
are reduced by a factor of log® n/log® n;, while at the same time the time increases by
the same factor. In particular, the time needed becomes O(log®n), while the number of
processors O(m? / log n), since logn; < logn and log n; = ©(log m;) because the component
is connected. Consequently, no matter whether m; is less or greater than n, we can process
the i-th connected component in O(log® n) time using O(m?/ log n) processors in the CREW
PRAM model. Thus, we can process all the connected components in O(log® n) time using
a total of O(m?/logn) processors on the same model of parallel computation. Therefore,
we have the following theorem.

Theorem 3.5. [t can be decided whether a simple graph on n vertices and m edges is a
Py-comparability graph in O(log® n) time using a total of O((n + m?)/logn) processors on
the CREW PRAM model.

4. Acyclic Fi-transitive Orientation

The orientation algorithm that we describe here takes advantage of the orientation of the
graph G{E”C} produced by the recognition algorithm of the previous section and orients the
edges that have not received an orientation at the end of the recognition process. It relies
on the following two lemmata.

Lemma 4.1. [n the directed graph G{E_g} . the length of the shortest directed path between
any pair of vertices does not exceed 2.

19

Proof: Suppose for contradiction that there are two vertices such that the length of the
shortest directed path from the one to the other exceeds 2. Then, there exist two vertices
u and v such that the length of the shortest path from u to v is equal to 3; let uabv be that
path. Since this path cannot be a P; because of the orientations assigned to its edges, then
there must be an edge between at least one of the following pairs of vertices: u and b, u
and v, a and v. Note that, in any case, this edge is assigned an orientation during the last
step of the recognition algorithm and this orientation is from u to b, from u to v, and from
a to v respectively (Lemma 3.2). However, this contradicts the fact that the path uabv is
the shortest directed path from u to v, thus establishing the lemma. g

Lemma 4.2. Letab be a (directed) edge of the graph G* (E_"’g} , which is the transitive closure

of the directed graph G{.Eg}. Then, the indegree of the vertex b is larger than the indegree
of the verter a.

Proof: The transitive closure implies that the indegree of a vertex v of G*{E_é:n is equal
to the number of vertices of G {E—"’C} such that there is a directed path from each of these
vertices to v. Let P(a) and P(b) be the sets of vertices of G{E_"c} such that there is a
directed path from each of these vertices to o and b respectively. Then, we need to show
that |P(a)| < |P(b)|. It is not difficult to see that P(a) C P(b): every vertex in P(a) also
belongs to P(b), since due to the edge EE, a directed path from a vertex to a implies that
there is a diE}cted path from that vertex to b; additionally, because there are no directed
cycles in G(Eg), a € P(a) whereas a € P(b). y

Our orientation algorithm involves the following algorithmic steps.
Algorithm for the Acyclic Py-transitive Orientation of a Graph G (P{G-TRO)

1. Apply the recognition procedure that we described in the previous section. If the
input graph G is not a Pj-comparability graph, then the algorithm stops printing the
corresponding diagnostic message; otherwise, the recognition procedure computes the
directed graph G {FC}

2. Compute the transitive closure G* {.‘TE;-} of the graph G {FC},

3. Compute the indegree(v) of each vertex of the graph G* {E_[;:}; set the indegree of very
vertex of G which is not a vertex of G*{ER) equal to (;

4. Orient the edges of G that have not yet been assigned an orientation: for such an
edge ry, if indegree(x) > indegree(y) then Ty if indegree(r) < indegree(y) then zy;
if indegree(z) = indegree(y) then zy is oriented towards that among x and y which
has the smaller index (we assume that each vertex of G possesses a distinet index
number).

Note that, in light of Lemma 4.1, the computation of the transitive closure G'{E_g} can
be done by adding a directed edge uv for a directed Py uwv. Therefore, for each di-
rected edge ab of G(Eg), we go through each vertex ¢ of G adjacent to b and check

whether the path abc is a directed P; of G‘{FC}; if yes, then the directed edge ac needs
to be added. To avoid concurrent writes, for each vertex v we use an (degree(v))*-array

20

H, [rankl[v, x), rank{-v,y}] , Where z and y are vertices of G. If the edge ab and the vertex ¢

form a directed P; abe, then we record the fact that a directed edge ac needs to be added by
setting the entry H, [rank{a, c),rank(a, b}] to 1; theentry H, [r:al.nkl[r:r,1 c), rank(a, bj] uniquely
corresponds to the path abe. In the end, the transitive closure is produced by adding to
G{E_f’c;} the edges uv for which there is a 1 in the subarray Hy[rank(u,v), #]; this can be
found in O(log® n) time with O(m?/log® n) processors using standard interval prefix com-
putations on the EREW PRAM model [2] (note that the total size of all the H arrays is
¥, (degree(v))? = O(m?)).
The correctness of the algorithm follows from the following lemma.

Lemma 4.3. For a Pj-comparability graph G, the algorithm P{G_TRO completes all the
steps of its description and produces an acyclic Py-transitive orientfation of G.

Proof: Since the input graph G is a Py-comparability graph, then Step 1 is completed
successfully, and so are the remaining steps of the algorithm. Clearly all the edges of G are
assigned an orientation. Furthermore, according to the discussion in the previous section,
the orientation of the directed graph G {“E’E} is Py-transitive and therefore so is the resulting
orientation. Additionally, 511;:& Step 1 of the algorithm P4G_TRO is completed successfully,
then the orientation of G{E{) is also acyclic.

Therefore, we need to show that the edges that were oriented in Step 4 did not cause the
formation of a directed cycle. Suppose for contradiction that the resulting directed graph
contains a directed cycle. Then, it contains a directed triangle (Lemma 2.2); let its vertices
be a, b, ¢, and suppose without loss of generality that index(a) < index(b) < index(c).
Because the orientation of the graph G{ETC} is acyclic and because of Lemma 3.2, at least
two of the directed triangle’s edges were oriented at Step 4 of the algorithm P4G_TRO.

We distinguish the following cases:
1. All three edges ab, be, ac receive their orientations in Step 4 of the algorithm P4{G_TRO.

(i) the orientation of the edges is: ab, be, ca. Then, ab implies that indegree(a) <
indegree(b), bc implies that indegree(b) < indegree(c), and ca implies that
indegree(c) < indegree(a). These three inequalities lead to contradiction.

(ii) the orientation of the edges is: ab, be, ca In this case, the corresponding inequali-
ties are: indegree(b) < indegree(a), indegree(c) < indegree(b), and indegree(a) <
indegree(c); a contradiction again.

2. Two of the three edges ab, be, ac receive their orientations during Step 4 of the algo-
rithm P{G.TRO.

(i) Suppose that the edges which get oriented during Step 4 are the edges ab and be.

& the orientation of the edges is: EE, EI-E, ca. Then, ab implies that indegree(a) <
indegree(b), be implies that indegree(b) < indegree(c), and ca implies that
indegree(a) > indegree(c) (see Lemma 4.2). These three inequalities lead to
contradiction.

t= the orientation of the edges is: EE, 1t;_.f_'_. ca In this case, the corresponding
inequalities are: indegree(b) < indegree(a), indegree(c) < indegree(b), and
indegree(c) < indegree(a); a contradiction again.

21

(i1) The remaining two cases (where the edges that get oriented during Step 4 are
the edges ab, ac and be, ac respectively) are handled similarly. g

Time and Processor Complexity. Step 1 takes O(log® n) time using a total of O((n+
m?)/logn) processors on the CREW PRAM model (Theorem 3.5). As described above,
the process of computing the transitive closure G~ {Eg} is based on the processing of all
pairs of adjacent edges; thus, it can be carried out in O(log®n) time using a total of
O(m?/ log® n) processors on the CREW PRAM model. Moreover, this process implies that
the graph G* {E‘E} has n vertices and O(m?) edges. Therefore, the computation of the
indegrees of its vertices can be done in O(logn) time with O(m?/logn) processors (or
equivalently in O(log? n) time with O(m?/log® n) processors) on the CREW PRAM model.
Obviously, Step 4 takes O(1) time and requires O(m) processors on the CREW PRAM
model. In summary, we have the following result.

Theorem 4.1. An acyclic Py-transitive orientation of a simple graph G on n vertices and
m edges can be produced in O(log” n) time using a total of O((n+m?)/ log n) processors on
the CREW PRAM model.

5. Concluding Remarks

In this paper we present efficient parallel algorithms for recognizing Py-comparability graphs
and for computing an acyclic Py-transitive orientation. Both algorithms run in O(log® n)
time using a total of O((n + m?)/ logn) processors on the CREW PRAM model, where n
and m are the number of vertices and edges of the input graph.

QOur algorithms are simple and rely on certain algorithmic and structural properties of
the Py-components of a graph [29]. To the best of our knowledge, in a sequential process en-
vironment, the currently fastest recognition and acyclic Py-transitive orientation algorithms
for Pj-comparability graphs exhibit a time complexity of O(n + m?) [29, 30].

We conjecture (but we are unable to prove) that if a Py-component contains a directed
P; or a directed Py with a trivial edge connecting the endpoints of these paths, then this
Pj-component contains a directed cycle. It would be nice to find out whether this is true
because it would lead to a faster directed cycle detection algorithm. If the above conjecture
is true, then a slightly modified version of our Pj-comparability recognition algorithm would
be cost optimal on the CREW PRAM model.

The obvious open question is whether we can design cost-optimal parallel algorithm for
the above problems on the CREW PRAM model. Moreover, cost-optimal or at least efficient
algorithms are needed for other well-known /important combinatorial and optimization
problems on Pj-comparability graphs, such as the coloring problem, the maximum clique
problem, the maximal clique and the clique cover problem, etc. We note that, due to the
work of Chvétal [5], the coloring problem and the maximum clique problem can be solved
in linear sequential time if an acyclic FPi-transitive orientation of the input graph is given.

22

6. References

[1] G.S. Adhar and S. Peng, Parallel algorithms for cographs and parity graphs with
applications, J. of Algorithms 11 (1990), 252-284.

[2] 8.G. AKl, Parallel Computation: Models and Methods, Prentice Hall, 1997.

[3] S.R. Arikati and U.N. Peled, A polynomial algorithm for the parity path problem on
perfectly orderable graphs, Discrete Appl. Math. 65 (1996), 5-20.

[4] P. Beame and J. Hastad, Optimal bounds for decision problems on the CRCW PRAM,
J. Assoc. Comput. Mach., 36 (1989), 643-670.

[5] V. Chvatal, Perfectly ordered graphs, Annals of Discrete Math. 21 (1984), 63-65.

[6] D.G Corneil, H. Lerches and L. Burlingham, Complement reducible graphs, Discrete
Appl. Math, 3 (1981), 163-174.

[7] D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput. 14 (1985), 926-934.

[8] E. Dahlhaus, Efficient parallel recognition algorithms of cographs and distance hered-
itary graphs, Discrete Appl. Math. 57 (1995), 29-44.

[9] E. Dahlhaus, Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition, J. of Algorithms 36 (2000), 205-240.

[10] S. de Agostino and R. Petreschi, Parallel recognition algorithms for graphs with re-
stricted neighbourhoods, Inter. J. of Found. of Comp. Science 1 (1990), 123-130.

[11] C.M.H. de Figueiredo, J. Gimbel, C.P. Mello, and J.L. Szwarcfiter, Even and odd pairs
in comparability and in Py-comparability graphs, Discrete Appl. Math. 91 (1999), 293~
207.

[12] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of
interval graphs, Canad. J. Math. 16 (1964), 539-548.

[13] M.C. Golumbic, The complexity of comparability graph recognition and coloring,
Computing 18 (1977), 199-208.

[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc.,
New York, 1980.

[15] D. Helmbold and E.W. Mayr, Applications of parallel algorithms to families of perfect
graphs, Computing 7 (1990), 93-107.

[16] C.T. Hoang and B.A. Reed, Some classes of perfectly orderable graphs, J. Graph
Theory 13 (1989), 445463,

[17] C.T. Hoang and B.A. Reed, P;-comparability Graphs, Discrete Math. 74 (1989), 173~
200.

[18] J. JAJ4, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

23

[19] P.N. Klein, Efficient parallel algorithms for chordal graphs, Proc. 29th Symp. Found.
of Comp. Sci. (1989), 150-161.

[20] C.P. Kruskal, L. Rudolph and M. Snir, Efficient parallel algorithms for graph problems,
Algorithmica 5 (1990), 4364.

[21] R. Lin and S. Olariu, An NC recognition algorithm for cographs, J. of Parallel and
Distrib. Comput. 13 (1991), 76-90.

[22] R.M. McConnell and J. Spinrad, Linear-time modular decomposition and efficient
transitive orientation of comparability graphs, Proc. 5th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (1994), 536-545.

[23] R.M. McConnell and J. Spinrad, Linear-time transitive orientation, Proc. 8th Annual
ACM-SIAM Symposium on Discrete Algorithms (1997), 19-25.

[24] M. Middlendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable
graphs, Discrete Math. 80 (1990), 327-333.

[25] M. Morvan and L. Viennot, Parallel comparability graph recognition and modular
decomposition, Proc. 15th Symposium on Theoretical Aspects of Computer Science
STACS 96, Lecture Notes in Computer Science 1046 (1996), 169-180.

[26] D. Nash and S.N. Maheshwari, Parallel algorithms for the connected components and
minimal spanning trees, Inform. Process. Lett. 14 (1982), 7-11.

[27] S.D. Nikolopoulos, Constant-time parallel recognition of split graphs, Inform. Process.
Lett. 54 (1995), 1-8.

[28] 5.D. Nikolopoulos, Coloring permutation graphs in parallel, Elect. Notes Discrete
Math. (Elsevier), 3 (1999), 181-187.

[29] S.D. Nikolopoulos and L. Palios, Recognition and orientation algorithms for Py-com-
parability graphs, Technical Report TR-23-2000 (2000), Department of Computer Sci-
ence, University of loannina, Ioannina, Greece.

[30] T. Raschle and K. Simon, On the P;-components of graphs, Discrete Appl. Math. 100
(2000), 215-235.

[31] J. Reif (ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San
Mateo, California, 1993.

[32] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985),
658-670.

24

